Publicación: Influencia de la generación de espuma larvaria y la terrestrialidad prolongada sobre la morfología larval de Leptodactylus fuscus
dc.contributor.advisor | Ortega León, Angela María | |
dc.contributor.advisor | Méndez Narvaez, Javier | |
dc.contributor.author | Morales Vertel, Iván Darío | |
dc.contributor.jury | Zamora Abrego, Joan Gaston | |
dc.contributor.jury | Delgadillo Méndez, Diana Alexandra | |
dc.date.accessioned | 2025-06-24T21:56:58Z | |
dc.date.available | 2026-06-21 | |
dc.date.available | 2025-06-24T21:56:58Z | |
dc.date.issued | 2025-06-24 | |
dc.description.abstract | Durante el desarrollo temprano el ambiente puede determinar las condiciones con las cuales los organismos enfrentan las diferentes etapas de su desarrollo. Los anfibios, por su ciclo de vida complejo experimentan múltiples ambientes durante su desarrollo y exhiben respuestas plásticas adaptativas. Esta investigación aborda el efecto de la variación ambiental para el desarrollo larval en tierra y algunas de las respuestas larvales que ocurren previo a la transición al agua. Evaluamos si la terrestrialidad prolongada y la generación de un nuevo nido de espuma larval tiene efectos acumulativos durante el desarrollo a corto plazo en la transición al agua en renacuajos de la especie Leptodactylus fuscus. Para esto evaluamos la producción de espuma larval en diferentes edades (6 y 10d) y número de individuos en el nido (nido completo y mitades), y comparamos la morfología larval de hermanas en las diferentes edades y tratamientos. El volumen total de espuma larval producida aumento con el número de larvas en el nido. Contrario a esto, la velocidad de producción de espuma aumento con la reducción de las larvas en el nido y con la edad de producción, del mismo modo, las larvas que pasaron al agua son más grandes que sus hermanas que permanecieron en tierra produciendo espuma. Estos resultados muestran la importancia del estudio de las respuestas comportamentales y morfológicas de las primeras etapas de vida frente a los cambios en el ambiente de desarrollo. | spa |
dc.description.abstract | During early development, the environment can determine the conditions under which organisms face the different stages of their development. Due to their complex life cycle, amphibians experience multiple environments during development and exhibit adaptive plastic responses. This research examines the effect of environmental variation on the development of terrestrial larvae and the responses that occur before they transition to water. We evaluated whether prolonged terrestriality and the generation of a new larval foam nest have cumulative effects on the transition to water during short-term development in tadpoles of the species Leptodactylus fuscus. To do this, we assessed larval foam production at different ages (6 and 10 days) and sisterhood sizes (full nest and halves), and compared the larval morphology of sisters at the various ages and treatments. The total foam volume produced increased with the number of larvae per nest; conversely, the foam production rate rose as the number of larvae decreased and with the age of production. Likewise, the larvae that entered the water are larger than their sisters that remained on land and produced foam. These results highlight the significance of studying the behavioral and morphological responses of early life stages to changes in the developmental environment. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Biólogo(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. Titulo | spa |
dc.description.tableofcontents | 2. Resumen | spa |
dc.description.tableofcontents | 3. Introducción | spa |
dc.description.tableofcontents | 4. Metodología | spa |
dc.description.tableofcontents | 5. Resultados y discusión | spa |
dc.description.tableofcontents | 6. Conclución | spa |
dc.description.tableofcontents | 7. Referencia | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9195 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Cordoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Biología | |
dc.relation.references | Bradford, D. F., & Seymour, R. S. (1985). Energy Conservation during the Delayed-Hatching Period in the Frog Pseudophryne bibroni. Physiological Zoology, 58(5), 491-496. https://doi.org/10.1086/physzool.58.5.30158576 | |
dc.relation.references | Burraco, P., Díaz-Paniagua, C., & Gomez-Mestre, I. (2017). Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Scientific Reports, 7(1), 7494. https://doi.org/10.1038/s41598-017-07201-z | |
dc.relation.references | Burraco, P., & Gomez-Mestre, I. (2016). Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels. Physiological and Biochemical Zoology, 89(6), 462-472. https://doi.org/10.1086/688737 | |
dc.relation.references | Burraco, P., Valdés, A. E., & Orizaola, G. (2020). Metabolic costs of altered growth trajectories across life transitions in amphibians. Journal of Animal Ecology, 89(3), 855-866. https://doi.org/10.1111/1365-2656.13138 | |
dc.relation.references | Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P., & Shine, R. (2013). Larger Body Size at Metamorphosis Enhances Survival, Growth and Performance of Young Cane Toads (Rhinella marina). PLoS ONE, 8(7), e70121. https://doi.org/10.1371/journal.pone.0070121 | |
dc.relation.references | Caldwell, J. P., & Lopez, P. T. (1989). Foam-Generating Behavior in Tadpoles of Leptodactylus Mystaceus. Copeia, 1989(2), 498. https://doi.org/10.2307/1445453 | |
dc.relation.references | Delia, J., Bravo‐Valencia, L., & Warkentin, K. M. (2020). The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? Ecological Monographs, 90(3). https://doi.org/10.1002/ecm.1411 | |
dc.relation.references | Delia, J., Rivera-Ordonez, J. M., Salazar-Nicholls, M. J., & Warkentin, K. M. (2019). Hatching plasticity and the adaptive benefits of extended embryonic development in glassfrogs. Evolutionary Ecology, 33(1), 37-53. https://doi.org/10.1007/s10682-018-9963-2 | |
dc.relation.references | Downie, J. R. (1984). How Leptodactylus fuscus Tadpoles Make Foam, and Why. Copeia, 1984(3), 778-780. https://doi.org/10.2307/1445168 | |
dc.relation.references | Downie, J. R. (1988). Functions of the foam in the foam-nesting leptodactylid Physalaemus pustulosus. Functions of the foam in the foam-nesting leptodactylid Physalaemus pustulosus, 1(7), 302-307 | |
dc.relation.references | Downie, J. R. (1994). Developmental arrest in Leptodactylus fascus tadpoles (Anura Leptodactylidae) II Does a foam borne factor block development | British Herpetological Society. https://www.thebhs.org/publications/the-herpetological-journal/volume-4-number-2-april-1994/1357-03-developmental-arrest-in-leptodactylus-fascus-tadpoles-anura-leptodactylidae-ii-does-a-foam-borne-factor-block-development | |
dc.relation.references | Duellman, W. E., & Trueb, L. (1994). Biology of Amphibians. JHU Press. | |
dc.relation.references | Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, 103(50), 19021-19026. https://doi.org/10.1073/pnas.0603562103 | |
dc.relation.references | Guevara-Molina, E. C., Gomes, F. R., & Warkentin, K. M. (2022). Heat-Induced Hatching of Red-Eyed Treefrog Embryos: Hydration and Clutch Structure Increase Behavioral Thermal Tolerance. Integrative Organismal Biology, 4(1), obac041. https://doi.org/10.1093/iob/obac041 | |
dc.relation.references | Haddad, C. F. B., & Prado, C. P. A. (2005). Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlantic Forest of Brazil. BioScience, 55(3), 207. https://doi.org/10.1641/0006-3568(2005)055[0207:RMIFAT]2.0.CO;2 | |
dc.relation.references | Heyer, W. R. (1969). The adaptive ecology of the species groups of the genus leptodactylus (amphibia, leptodactylidae). Evolution, 23(3), 421-428. https://doi.org/10.1111/j.1558-5646.1969.tb03525.x | |
dc.relation.references | Kokubum, M. N. de C., & Giaretta, A. A. (2005). Reproductive ecology and behaviour of a species of Adenomera (Anura, Leptodactylinae) with endotrophic tadpoles: Systematic implications. Journal of Natural History, 39(20), 1745-1758. https://doi.org/10.1080/00222930400021515 | |
dc.relation.references | Lisondro-Arosemena, A. K., Salazar-Nicholls, M. J., & Warkentin, K. M. (2024). Elevated ammonia cues hatching in red-eyed treefrogs: A mechanism for escape from drying eggs. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 342(5), 406-411. https://doi.org/10.1002/jez.b.23253 | |
dc.relation.references | Méndez-Narváez, J., Flechas, S. V., & Amézquita, A. (2015). Foam Nests Provide Context-Dependent Thermal Insulation to Embryos of Three Leptodactylid Frogs. Physiological and Biochemical Zoology, 88(3), 246-253. https://doi.org/10.1086/680383 | |
dc.relation.references | Méndez-Narváez, J., & Warkentin, K. M. (2022). Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecology and Evolution, 12(2), e8570. https://doi.org/10.1002/ece3.8570 | |
dc.relation.references | Méndez-Narváez, J., & Warkentin, K. M. (2023). Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. Journal of Comparative Physiology B, 193(5), 523-543. https://doi.org/10.1007/s00360-023-01506-4 | |
dc.relation.references | Méndez-Narváez, J., & Warkentin, K. M. (2025). Effects of larval foam-making and prolonged terrestriality on morphology, nitrogen excretion and development to metamorphosis in a Leptodactylid frog. PeerJ, 13, e18990. https://doi.org/10.7717/peerj.18990 | |
dc.relation.references | Moore, M. P., & Martin, R. A. (2019). On the evolution of carry‐over effects. Journal of Animal Ecology, 88(12), 1832-1844. https://doi.org/10.1111/1365-2656.13081 | |
dc.relation.references | Moravek, C. L., & Martin, K. L. (2011). Life Goes On: Delayed Hatching, Extended Incubation, and Heterokairy in Development of Embryonic California Grunion, Leuresthes tenuis. Copeia, 2011(2), 308-314. https://doi.org/10.1643/CG-10-164 | |
dc.relation.references | Philibosian, R., Ruibal, R., Shoemaker, V. H., & McClanahan, L. L. (1974). Nesting Behavior and Early Larval Life of the Frog Leptodactylus bufonius. Herpetologica, 30(4), 381-386. | |
dc.relation.references | Rodrigues, A. P., Giaretta, A. A., da Silva, D. R., & Facure, K. G. (2011). Reproductive features of three maternal-caring species of Leptodactylus (Anura: Leptodactylidae) with a report on alloparental care in frogs. Journal of Natural History, 45(33-34), 2037-2047. https://doi.org/10.1080/00222933.2011.574799 | |
dc.relation.references | Rolff, J., Johnston, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1783), 20190063. https://doi.org/10.1098/rstb.2019.0063 | |
dc.relation.references | Sá, R. O. de, Grant, T., Camargo, A., Heyer, W. R., Ponssa, M. L., & Stanley, E. (2014). Systematics of the Neotropical Genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the Relevance of Non-molecular Evidence, and Species Accounts. South American Journal of Herpetology, 9(s1), S1-S100. https://doi.org/10.2994/SAJH-D-13-00022.1 | |
dc.relation.references | Salica, M. J., Vonesh, J. R., & Warkentin, K. M. (2017). Egg clutch dehydration induces early hatching in red-eyed treefrogs, Agalychnis callidryas. PeerJ, 5, e3549. https://doi.org/10.7717/peerj.3549 | |
dc.relation.references | Seymour, R. S., & Loveridge, J. P. (1994). Embryonic and Larval Respiration In the Arboreal foam Nests of the African Frog Chiromantis Xerampelina. Journal of Experimental Biology, 197(1), 31-46. https://doi.org/10.1242/jeb.197.1.31 | |
dc.relation.references | Seymour, R. S., & Roberts, J. D. (1991). Embryonic Respiration and Oxygen Distribution in Foamy and Nonfoamy Egg Masses of the Frog Limnodynastes tasmaniensis. Physiological Zoology, 64(5), 1322-1340. https://doi.org/10.1086/physzool.64.5.30156248 | |
dc.relation.references | Simmons, J. E. (2002). Herpetological collecting and collections management. Salt Lake City, Utah : Society for the Study of Amphibians and Reptiles. http://repositorio.fciencias.unam.mx:8080/xmlui/handle/11154/62901 | |
dc.relation.references | Tejedo, M., Marangoni, F., Pertoldi, C., Richter-Boix, A., Laurila, A., Orizaola, G., Nicieza, A., Álvarez, D., & Gomez-Mestre, I. (2010). Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Climate Research, 43(1), 31-39. https://doi.org/10.3354/cr00878 | |
dc.relation.references | Touchon, J. C., McCoy, M. W., Vonesh, J. R., & Warkentin, K. M. (2013). Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology, 94(4), 850-860. https://doi.org/10.1890/12-0194.1 | |
dc.relation.references | Touchon, J. C., McMillan, W. O., Ibáñez, R., & Lessios, H. A. (2024). Flexible oviposition behavior enabled the evolution of terrestrial reproduction. Proceedings of the National Academy of Sciences, 121(31), e2312371121. https://doi.org/10.1073/pnas.2312371121 | |
dc.relation.references | Touchon, J. C., Urbina, J., & Warkentin, K. M. (2011). Habitat-specific constraints on induced hatching in a treefrog with reproductive mode plasticity. Behavioral Ecology, 22(1), 169-175. https://doi.org/10.1093/beheco/arq192 | |
dc.relation.references | Touchon, J. C., & Warkentin, K. M. (2008). Reproductive mode plasticity: Aquatic and terrestrial oviposition in a treefrog. Proceedings of the National Academy of Sciences, 105(21), 7495-7499. https://doi.org/10.1073/pnas.0711579105 | |
dc.relation.references | Touchon, J. C., & Warkentin, K. M. (2010). Short- and long-term effects of the abiotic egg environment on viability, development and vulnerability to predators of a Neotropical anuran: Effects of egg environment through metamorphosis. Functional Ecology, 24(3), 566-575. https://doi.org/10.1111/j.1365-2435.2009.01650.x | |
dc.relation.references | Truman, J. W. (2019). The Evolution of Insect Metamorphosis. Current Biology, 29(23), R1252-R1268. https://doi.org/10.1016/j.cub.2019.10.009 | |
dc.relation.references | Warkentin, K. M. (1995). Adaptive plasticity in hatching age: A response to predation risk trade-offs. Proceedings of the National Academy of Sciences, 92(8), 3507-3510. https://doi.org/10.1073/pnas.92.8.3507 | |
dc.relation.references | Warkentin, K. M. (1999). Effects of hatching age on development and hatchling morphology in the red-eyed tree frog, Agalychnis callidryas. Biological Journal of the Linnean Society, 68(3), 443-470. https://doi.org/10.1111/j.1095-8312.1999.tb01180.x | |
dc.relation.references | Wassersug, R. J. (1975). The Adaptive Significance of the Tadpole Stage with Comments on the Maintenance of Complex Life Cycles in Anurans. American Zoologist, 15(2), 405-417. https://doi.org/10.1093/icb/15.2.405 | |
dc.relation.references | Wilbur, H. M. (1980). Complex Life Cycles. Annual Review of Ecology and Systematics, 11(1), 67-93. https://doi.org/10.1146/annurev.es.11.110180.000435 | |
dc.relation.references | Wright, P. A., Felskie, A., & Anderson, P. M. (1995). Induction of Ornithine-Urea Cycle Enzymes and Nitrogen Metabolism and Excretion in Rainbow Trout (Oncorhynchus Mykiss) During Early Life Stages. Journal of Experimental Biology, 198(1), 127-135. https://doi.org/10.1242/jeb.198.1.127 | |
dc.relation.references | Zina, J. (2006). Communal nests in Physalaemus pustulosus (Amphibia: Leptodactylidae): experimental evidence for female oviposition preferences and protection against desiccation. Amphibia-Reptilia, 27(1), 148-150. https://doi.org/10.1163/156853806776052092 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Larval development | eng |
dc.subject.keywords | Larval foam | eng |
dc.subject.keywords | Larval morphology | eng |
dc.subject.keywords | Prolonged terrestriality | eng |
dc.subject.keywords | Larval morphology | eng |
dc.subject.proposal | Desarrollo larval | spa |
dc.subject.proposal | Espuma larval | spa |
dc.subject.proposal | Terrestrialidad prolongada | spa |
dc.subject.proposal | Morfología larval | spa |
dc.title | Influencia de la generación de espuma larvaria y la terrestrialidad prolongada sobre la morfología larval de Leptodactylus fuscus | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: