Publicación:
Influencia de la generación de espuma larvaria y la terrestrialidad prolongada sobre la morfología larval de Leptodactylus fuscus

dc.contributor.advisorOrtega León, Angela María
dc.contributor.advisorMéndez Narvaez, Javier
dc.contributor.authorMorales Vertel, Iván Darío
dc.contributor.juryZamora Abrego, Joan Gaston
dc.contributor.juryDelgadillo Méndez, Diana Alexandra
dc.date.accessioned2025-06-24T21:56:58Z
dc.date.available2026-06-21
dc.date.available2025-06-24T21:56:58Z
dc.date.issued2025-06-24
dc.description.abstractDurante el desarrollo temprano el ambiente puede determinar las condiciones con las cuales los organismos enfrentan las diferentes etapas de su desarrollo. Los anfibios, por su ciclo de vida complejo experimentan múltiples ambientes durante su desarrollo y exhiben respuestas plásticas adaptativas. Esta investigación aborda el efecto de la variación ambiental para el desarrollo larval en tierra y algunas de las respuestas larvales que ocurren previo a la transición al agua. Evaluamos si la terrestrialidad prolongada y la generación de un nuevo nido de espuma larval tiene efectos acumulativos durante el desarrollo a corto plazo en la transición al agua en renacuajos de la especie Leptodactylus fuscus. Para esto evaluamos la producción de espuma larval en diferentes edades (6 y 10d) y número de individuos en el nido (nido completo y mitades), y comparamos la morfología larval de hermanas en las diferentes edades y tratamientos. El volumen total de espuma larval producida aumento con el número de larvas en el nido. Contrario a esto, la velocidad de producción de espuma aumento con la reducción de las larvas en el nido y con la edad de producción, del mismo modo, las larvas que pasaron al agua son más grandes que sus hermanas que permanecieron en tierra produciendo espuma. Estos resultados muestran la importancia del estudio de las respuestas comportamentales y morfológicas de las primeras etapas de vida frente a los cambios en el ambiente de desarrollo.spa
dc.description.abstractDuring early development, the environment can determine the conditions under which organisms face the different stages of their development. Due to their complex life cycle, amphibians experience multiple environments during development and exhibit adaptive plastic responses. This research examines the effect of environmental variation on the development of terrestrial larvae and the responses that occur before they transition to water. We evaluated whether prolonged terrestriality and the generation of a new larval foam nest have cumulative effects on the transition to water during short-term development in tadpoles of the species Leptodactylus fuscus. To do this, we assessed larval foam production at different ages (6 and 10 days) and sisterhood sizes (full nest and halves), and compared the larval morphology of sisters at the various ages and treatments. The total foam volume produced increased with the number of larvae per nest; conversely, the foam production rate rose as the number of larvae decreased and with the age of production. Likewise, the larvae that entered the water are larger than their sisters that remained on land and produced foam. These results highlight the significance of studying the behavioral and morphological responses of early life stages to changes in the developmental environment.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. Titulospa
dc.description.tableofcontents2. Resumenspa
dc.description.tableofcontents3. Introducciónspa
dc.description.tableofcontents4. Metodologíaspa
dc.description.tableofcontents5. Resultados y discusiónspa
dc.description.tableofcontents6. Concluciónspa
dc.description.tableofcontents7. Referenciaspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9195
dc.language.isospa
dc.publisherUniversidad de Cordoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesBradford, D. F., & Seymour, R. S. (1985). Energy Conservation during the Delayed-Hatching Period in the Frog Pseudophryne bibroni. Physiological Zoology, 58(5), 491-496. https://doi.org/10.1086/physzool.58.5.30158576
dc.relation.referencesBurraco, P., Díaz-Paniagua, C., & Gomez-Mestre, I. (2017). Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Scientific Reports, 7(1), 7494. https://doi.org/10.1038/s41598-017-07201-z
dc.relation.referencesBurraco, P., & Gomez-Mestre, I. (2016). Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels. Physiological and Biochemical Zoology, 89(6), 462-472. https://doi.org/10.1086/688737
dc.relation.referencesBurraco, P., Valdés, A. E., & Orizaola, G. (2020). Metabolic costs of altered growth trajectories across life transitions in amphibians. Journal of Animal Ecology, 89(3), 855-866. https://doi.org/10.1111/1365-2656.13138
dc.relation.referencesCabrera-Guzmán, E., Crossland, M. R., Brown, G. P., & Shine, R. (2013). Larger Body Size at Metamorphosis Enhances Survival, Growth and Performance of Young Cane Toads (Rhinella marina). PLoS ONE, 8(7), e70121. https://doi.org/10.1371/journal.pone.0070121
dc.relation.referencesCaldwell, J. P., & Lopez, P. T. (1989). Foam-Generating Behavior in Tadpoles of Leptodactylus Mystaceus. Copeia, 1989(2), 498. https://doi.org/10.2307/1445453
dc.relation.referencesDelia, J., Bravo‐Valencia, L., & Warkentin, K. M. (2020). The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? Ecological Monographs, 90(3). https://doi.org/10.1002/ecm.1411
dc.relation.referencesDelia, J., Rivera-Ordonez, J. M., Salazar-Nicholls, M. J., & Warkentin, K. M. (2019). Hatching plasticity and the adaptive benefits of extended embryonic development in glassfrogs. Evolutionary Ecology, 33(1), 37-53. https://doi.org/10.1007/s10682-018-9963-2
dc.relation.referencesDownie, J. R. (1984). How Leptodactylus fuscus Tadpoles Make Foam, and Why. Copeia, 1984(3), 778-780. https://doi.org/10.2307/1445168
dc.relation.referencesDownie, J. R. (1988). Functions of the foam in the foam-nesting leptodactylid Physalaemus pustulosus. Functions of the foam in the foam-nesting leptodactylid Physalaemus pustulosus, 1(7), 302-307
dc.relation.referencesDownie, J. R. (1994). Developmental arrest in Leptodactylus fascus tadpoles (Anura Leptodactylidae) II Does a foam borne factor block development | British Herpetological Society. https://www.thebhs.org/publications/the-herpetological-journal/volume-4-number-2-april-1994/1357-03-developmental-arrest-in-leptodactylus-fascus-tadpoles-anura-leptodactylidae-ii-does-a-foam-borne-factor-block-development
dc.relation.referencesDuellman, W. E., & Trueb, L. (1994). Biology of Amphibians. JHU Press.
dc.relation.referencesGomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, 103(50), 19021-19026. https://doi.org/10.1073/pnas.0603562103
dc.relation.referencesGuevara-Molina, E. C., Gomes, F. R., & Warkentin, K. M. (2022). Heat-Induced Hatching of Red-Eyed Treefrog Embryos: Hydration and Clutch Structure Increase Behavioral Thermal Tolerance. Integrative Organismal Biology, 4(1), obac041. https://doi.org/10.1093/iob/obac041
dc.relation.referencesHaddad, C. F. B., & Prado, C. P. A. (2005). Reproductive Modes in Frogs and Their Unexpected Diversity in the Atlantic Forest of Brazil. BioScience, 55(3), 207. https://doi.org/10.1641/0006-3568(2005)055[0207:RMIFAT]2.0.CO;2
dc.relation.referencesHeyer, W. R. (1969). The adaptive ecology of the species groups of the genus leptodactylus (amphibia, leptodactylidae). Evolution, 23(3), 421-428. https://doi.org/10.1111/j.1558-5646.1969.tb03525.x
dc.relation.referencesKokubum, M. N. de C., & Giaretta, A. A. (2005). Reproductive ecology and behaviour of a species of Adenomera (Anura, Leptodactylinae) with endotrophic tadpoles: Systematic implications. Journal of Natural History, 39(20), 1745-1758. https://doi.org/10.1080/00222930400021515
dc.relation.referencesLisondro-Arosemena, A. K., Salazar-Nicholls, M. J., & Warkentin, K. M. (2024). Elevated ammonia cues hatching in red-eyed treefrogs: A mechanism for escape from drying eggs. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 342(5), 406-411. https://doi.org/10.1002/jez.b.23253
dc.relation.referencesMéndez-Narváez, J., Flechas, S. V., & Amézquita, A. (2015). Foam Nests Provide Context-Dependent Thermal Insulation to Embryos of Three Leptodactylid Frogs. Physiological and Biochemical Zoology, 88(3), 246-253. https://doi.org/10.1086/680383
dc.relation.referencesMéndez-Narváez, J., & Warkentin, K. M. (2022). Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecology and Evolution, 12(2), e8570. https://doi.org/10.1002/ece3.8570
dc.relation.referencesMéndez-Narváez, J., & Warkentin, K. M. (2023). Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. Journal of Comparative Physiology B, 193(5), 523-543. https://doi.org/10.1007/s00360-023-01506-4
dc.relation.referencesMéndez-Narváez, J., & Warkentin, K. M. (2025). Effects of larval foam-making and prolonged terrestriality on morphology, nitrogen excretion and development to metamorphosis in a Leptodactylid frog. PeerJ, 13, e18990. https://doi.org/10.7717/peerj.18990
dc.relation.referencesMoore, M. P., & Martin, R. A. (2019). On the evolution of carry‐over effects. Journal of Animal Ecology, 88(12), 1832-1844. https://doi.org/10.1111/1365-2656.13081
dc.relation.referencesMoravek, C. L., & Martin, K. L. (2011). Life Goes On: Delayed Hatching, Extended Incubation, and Heterokairy in Development of Embryonic California Grunion, Leuresthes tenuis. Copeia, 2011(2), 308-314. https://doi.org/10.1643/CG-10-164
dc.relation.referencesPhilibosian, R., Ruibal, R., Shoemaker, V. H., & McClanahan, L. L. (1974). Nesting Behavior and Early Larval Life of the Frog Leptodactylus bufonius. Herpetologica, 30(4), 381-386.
dc.relation.referencesRodrigues, A. P., Giaretta, A. A., da Silva, D. R., & Facure, K. G. (2011). Reproductive features of three maternal-caring species of Leptodactylus (Anura: Leptodactylidae) with a report on alloparental care in frogs. Journal of Natural History, 45(33-34), 2037-2047. https://doi.org/10.1080/00222933.2011.574799
dc.relation.referencesRolff, J., Johnston, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1783), 20190063. https://doi.org/10.1098/rstb.2019.0063
dc.relation.referencesSá, R. O. de, Grant, T., Camargo, A., Heyer, W. R., Ponssa, M. L., & Stanley, E. (2014). Systematics of the Neotropical Genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): Phylogeny, the Relevance of Non-molecular Evidence, and Species Accounts. South American Journal of Herpetology, 9(s1), S1-S100. https://doi.org/10.2994/SAJH-D-13-00022.1
dc.relation.referencesSalica, M. J., Vonesh, J. R., & Warkentin, K. M. (2017). Egg clutch dehydration induces early hatching in red-eyed treefrogs, Agalychnis callidryas. PeerJ, 5, e3549. https://doi.org/10.7717/peerj.3549
dc.relation.referencesSeymour, R. S., & Loveridge, J. P. (1994). Embryonic and Larval Respiration In the Arboreal foam Nests of the African Frog Chiromantis Xerampelina. Journal of Experimental Biology, 197(1), 31-46. https://doi.org/10.1242/jeb.197.1.31
dc.relation.referencesSeymour, R. S., & Roberts, J. D. (1991). Embryonic Respiration and Oxygen Distribution in Foamy and Nonfoamy Egg Masses of the Frog Limnodynastes tasmaniensis. Physiological Zoology, 64(5), 1322-1340. https://doi.org/10.1086/physzool.64.5.30156248
dc.relation.referencesSimmons, J. E. (2002). Herpetological collecting and collections management. Salt Lake City, Utah : Society for the Study of Amphibians and Reptiles. http://repositorio.fciencias.unam.mx:8080/xmlui/handle/11154/62901
dc.relation.referencesTejedo, M., Marangoni, F., Pertoldi, C., Richter-Boix, A., Laurila, A., Orizaola, G., Nicieza, A., Álvarez, D., & Gomez-Mestre, I. (2010). Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Climate Research, 43(1), 31-39. https://doi.org/10.3354/cr00878
dc.relation.referencesTouchon, J. C., McCoy, M. W., Vonesh, J. R., & Warkentin, K. M. (2013). Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology, 94(4), 850-860. https://doi.org/10.1890/12-0194.1
dc.relation.referencesTouchon, J. C., McMillan, W. O., Ibáñez, R., & Lessios, H. A. (2024). Flexible oviposition behavior enabled the evolution of terrestrial reproduction. Proceedings of the National Academy of Sciences, 121(31), e2312371121. https://doi.org/10.1073/pnas.2312371121
dc.relation.referencesTouchon, J. C., Urbina, J., & Warkentin, K. M. (2011). Habitat-specific constraints on induced hatching in a treefrog with reproductive mode plasticity. Behavioral Ecology, 22(1), 169-175. https://doi.org/10.1093/beheco/arq192
dc.relation.referencesTouchon, J. C., & Warkentin, K. M. (2008). Reproductive mode plasticity: Aquatic and terrestrial oviposition in a treefrog. Proceedings of the National Academy of Sciences, 105(21), 7495-7499. https://doi.org/10.1073/pnas.0711579105
dc.relation.referencesTouchon, J. C., & Warkentin, K. M. (2010). Short- and long-term effects of the abiotic egg environment on viability, development and vulnerability to predators of a Neotropical anuran: Effects of egg environment through metamorphosis. Functional Ecology, 24(3), 566-575. https://doi.org/10.1111/j.1365-2435.2009.01650.x
dc.relation.referencesTruman, J. W. (2019). The Evolution of Insect Metamorphosis. Current Biology, 29(23), R1252-R1268. https://doi.org/10.1016/j.cub.2019.10.009
dc.relation.referencesWarkentin, K. M. (1995). Adaptive plasticity in hatching age: A response to predation risk trade-offs. Proceedings of the National Academy of Sciences, 92(8), 3507-3510. https://doi.org/10.1073/pnas.92.8.3507
dc.relation.referencesWarkentin, K. M. (1999). Effects of hatching age on development and hatchling morphology in the red-eyed tree frog, Agalychnis callidryas. Biological Journal of the Linnean Society, 68(3), 443-470. https://doi.org/10.1111/j.1095-8312.1999.tb01180.x
dc.relation.referencesWassersug, R. J. (1975). The Adaptive Significance of the Tadpole Stage with Comments on the Maintenance of Complex Life Cycles in Anurans. American Zoologist, 15(2), 405-417. https://doi.org/10.1093/icb/15.2.405
dc.relation.referencesWilbur, H. M. (1980). Complex Life Cycles. Annual Review of Ecology and Systematics, 11(1), 67-93. https://doi.org/10.1146/annurev.es.11.110180.000435
dc.relation.referencesWright, P. A., Felskie, A., & Anderson, P. M. (1995). Induction of Ornithine-Urea Cycle Enzymes and Nitrogen Metabolism and Excretion in Rainbow Trout (Oncorhynchus Mykiss) During Early Life Stages. Journal of Experimental Biology, 198(1), 127-135. https://doi.org/10.1242/jeb.198.1.127
dc.relation.referencesZina, J. (2006). Communal nests in Physalaemus pustulosus (Amphibia: Leptodactylidae): experimental evidence for female oviposition preferences and protection against desiccation. Amphibia-Reptilia, 27(1), 148-150. https://doi.org/10.1163/156853806776052092
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsLarval developmenteng
dc.subject.keywordsLarval foameng
dc.subject.keywordsLarval morphologyeng
dc.subject.keywordsProlonged terrestrialityeng
dc.subject.keywordsLarval morphologyeng
dc.subject.proposalDesarrollo larvalspa
dc.subject.proposalEspuma larvalspa
dc.subject.proposalTerrestrialidad prolongadaspa
dc.subject.proposalMorfología larvalspa
dc.titleInfluencia de la generación de espuma larvaria y la terrestrialidad prolongada sobre la morfología larval de Leptodactylus fuscusspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
MoralesVertelIvánDarío.pdf
Tamaño:
936.62 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización de publicación.pdf
Tamaño:
295.98 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: