Publicación:
Análisis químico y evaluación de la actividad bactericida y antioxidante de ácidos biliares presentes en la bilis de Ganado Bovino (Bos taurus) del Departamento de Córdoba

dc.contributor.advisorGuzman Terán, Camilo Antoniospa
dc.contributor.advisorMontaño Castañeda, Mary Ceciliaspa
dc.contributor.authorCamargo Pereira, Cristian Javierspa
dc.date.accessioned2023-03-01T20:24:43Z
dc.date.available2023-03-01T20:24:43Z
dc.date.issued2023-02-28
dc.description.abstractLa ganadería bovina es una de las actividades más importante en Colombia y especialmente en el departamento de Córdoba, desde el punto de vista económico, social y cultura, y representa una de las principales fuentes de suministro de alimentos. En el desarrollo de esta actividad se generan varios subproductos, como la bilis, que no presentan una disposición final adecuada y que además podrían ser aprovechados. La bilis está compuesta por diversas sustancias, donde se destacan los ácidos biliares, que han despertado interés debido a sus importantes propiedades biológicas y farmacológicas. En este trabajo de investigación, se extrajeron los ácidos biliares presentes en la bilis del ganado (Bos taurus), la cual fue suministrada por FRIGOCER-EXPOCOL S.A.S (Cereté – Córdoba), para su identificación química fueron derivatizados como sus ésteres metílicos y analizados mediante Cromatografía de Gases acoplada a Espectrometría de Masas (CG-EM). Adicionalmente, a los ácidos biliares extraídos se le evaluó su actividad bactericida frente a Staphylococcus aureus y Pseudomona aeruginosa por el método de microdilución, empleando concentraciones entre 4000 μg/mL – 250 μg/mL. El potencial antioxidante fue evaluado frente al radical DPPH a una concentración de 100 μg/mL. Los resultados mostraron la presencia de 3 ácidos biliares mayoritarios, los ácidos cólicos, ácido desoxicólico y ácido 7alfa-hidroxi-3-oxo-colan-24-oico, representando más del 50% de la mezcla total de estos ácidos. La inhibición del crecimiento bacteriano se alcanzó en su totalidad con los dos microorganismos evaluados, aún a la concentración más baja utilizada (250 μg/mL). La actividad antioxidante de los ácidos biliares frente al radical DPPH fue muy baja, presentándose un porcentaje de inhibición de 8.9% a la concentración utilizada. Los ácidos biliares son agentes con pocos reportes sobre el estudio químico y el potencial bactericida y antioxidante en nuestro territorito, con este estudio se pretende dar una mejor disposición final a los subproductos del sacrificio del ganado bovino generado en nuestro departamento, y abrir la puerta a futuras investigaciones sobre el aprovechamiento de estos productos considerados de desechospa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. Introducción..........................................................................................................................................................................................................................................................................................................3spa
dc.description.tableofcontents2. Objetivos............................................................................................................................................................................................................................................................................................................5spa
dc.description.tableofcontents2.1. Objetivo General........................................................................................................................................................................................................................................................................................5spa
dc.description.tableofcontents2.2. Objetivos Específicos ............................................................................................................................................................................................................................................................................5spa
dc.description.tableofcontents3. Marco Teórico.................................................................................................................................................................................................................................................................................................6spa
dc.description.tableofcontents3.1. Actividad Ganadera en el Mundo..................................................................................................................................................................................................................................................6spa
dc.description.tableofcontents3.2. Sector Ganadero en Colombia........................................................................................................................................................................................................................................................7spa
dc.description.tableofcontents3.2.1. Actividad ganadera en departamento de Córdoba......................................................................................................................................................................................................8spa
dc.description.tableofcontents3.3. Generalidades del Ganado Bovino (Bos taurus).................................................................................................................................................................................................................8spa
dc.description.tableofcontents3.4. Bilis de Ganado Vacuno....................................................................................................................................................................................................................................................................10spa
dc.description.tableofcontents3.4.1. Ácidos biliares........................................................................................................................................................................................................................................................................................12spa
dc.description.tableofcontents3.4.2. Metabolismo de los Ácidos Biliares.......................................................................................................................................................................................................................................14spa
dc.description.tableofcontents3.5. Funciones Fisiológicas de los Ácidos Biliares......................................................................................................................................................................................................................15spa
dc.description.tableofcontents3.6. Actividad Antioxidante.......................................................................................................................................................................................................................................................................16spa
dc.description.tableofcontents3.7. Actividad Antimicrobiana ................................................................................................................................................................................................................................................................17spa
dc.description.tableofcontents4. Materiales y Metodología.....................................................................................................................................................................................................................................................................19spa
dc.description.tableofcontents4.1. Etapa de Muestreo.................................................................................................................................................................................................................................................................................19spa
dc.description.tableofcontents4.1.1. Área de recolección............................................................................................................................................................................................................................................................................19spa
dc.description.tableofcontents4.1.2. Recolección de material biológico........................................................................................................................................................................................................................................20spa
dc.description.tableofcontents4.2. Etapa de Laboratorio .........................................................................................................................................................................................................................................................................20spa
dc.description.tableofcontents4.2.1. Materiales, Reactivos y equipos...............................................................................................................................................................................................................................................20spa
dc.description.tableofcontents4.2.2. Extracción de ácidos biliares......................................................................................................................................................................................................................................................21spa
dc.description.tableofcontents4.2.3. Obtención de ésteres metílicos de ácidos biliares.....................................................................................................................................................................................................23spa
dc.description.tableofcontents4.2.4. Caracterización química..............................................................................................................................................................................................................................................................23spa
dc.description.tableofcontents4.2.5. Evaluación de la actividad antioxidante...........................................................................................................................................................................................................................24spa
dc.description.tableofcontents4.2.5.1. Método de radical DPPH• (2,2-difenil-1-picrilhidrazil)............................................................................................................................................................................................24spa
dc.description.tableofcontents4.2.6. Evaluación de la actividad bactericida...............................................................................................................................................................................................................................25spa
dc.description.tableofcontents4.2.6.1. Método por microdilución.......................................................................................................................................................................................................................................................26spa
dc.description.tableofcontents4.3. Análisis Estadístico..............................................................................................................................................................................................................................................................................26spa
dc.description.tableofcontents5. Resultados y Discusión de Resultados......................................................................................................................................................................................................................................27spa
dc.description.tableofcontents5.1. Obtención de los Extractos de Ácidos Biliares...................................................................................................................................................................................................................27spa
dc.description.tableofcontents5.2. Análisis Químico....................................................................................................................................................................................................................................................................................29spa
dc.description.tableofcontents5.2.1. Pruebas químicas preliminares................................................................................................................................................................................................................................................29spa
dc.description.tableofcontents5.2.2. Elucidación estructural de los compuestos mayoritarios presentes la mezcla de ácidos biliares.............................................................................................31spa
dc.description.tableofcontents5.2.2.1. Identificación de compuestos mayoritarios obtenidos del extracto de bilis bovina por el método de extracción por solvente.......................31spa
dc.description.tableofcontents5.2.2.2. Identificación de compuestos mayoritarios obtenidos del extracto de bilis bovina por el método de extracción por SPE...............................37spa
dc.description.tableofcontents5.3. Evaluación de la Actividad Antioxidante..............................................................................................................................................................................................................................43spa
dc.description.tableofcontents5.4. Evaluación de la Actividad Bactericida.................................................................................................................................................................................................................................44spa
dc.description.tableofcontents6. Conclusiones...............................................................................................................................................................................................................................................................................................47spa
dc.description.tableofcontents7. Bibliografía....................................................................................................................................................................................................................................................................................................48spa
dc.description.tableofcontents8. Anexos..............................................................................................................................................................................................................................................................................................................57spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7290
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsBovineseng
dc.subject.keywordsBile acidseng
dc.subject.keywordsAntioxidant activityeng
dc.subject.keywordsBactericidal activityeng
dc.subject.proposalBovinosspa
dc.subject.proposalÁcidos biliaresspa
dc.subject.proposalActividad antioxidantespa
dc.subject.proposalActividad bactericidaspa
dc.titleAnálisis químico y evaluación de la actividad bactericida y antioxidante de ácidos biliares presentes en la bilis de Ganado Bovino (Bos taurus) del Departamento de Córdobaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAdu, J. K., Amengor, C. D. K., Kabiri, N., Orman, E., Patamia, S. A. G., & Okrah, B. K. (2019). Validation of a Simple and Robust Liebermann-Burchard Colorimetric Method for the Assay of Cholesterol in Selected Milk Products in Ghana. International Journal of Food Science, 2019. https://doi.org/10.1155/2019/9045938spa
dcterms.referencesAlcaldía de Cereté. (2016). Plan De Desarrollo de Cereté - Córdoba “CERETE PROGRESA” para la vigencia 2016 - 2019. https://cpd.blob.core.windows.net/test1/23162planDesarrollo.pdfspa
dcterms.referencesAn, C., Chon, H., Ku, W., Eom, S., Seok, M., Kim, S., Lee, J., Kim, D., Lee, S., Koo, H., Cho, H., Han, S., Moon, J., Kang, M., & Ryu, K. (2022). Bile Acids: Major Regulator of the Gut Microbiome. Microorganisms, 10(9). https://doi.org/10.3390/MICROORGANISMS10091792spa
dcterms.referencesBegley, M., Gahan, C. G. M., & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews, 29(4), 625–651. https://doi.org/10.1016/J.FEMSRE.2004.09.003spa
dcterms.referencesBeier, R. C., Foley, S. L., Davidson, M. K., White, D. G., Mcdermott, P. F., Bodeis-Jones, S., Zhao, S., Andrews, K., Crippen, T. L., Sheffield, C. L., Poole, T. L., Anderson, R. C., & Nisbet, D. J. (2015). Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994–2003. Journal of Applied Microbiology, 118(2), 326–342. https://doi.org/10.1111/JAM.12707spa
dcterms.referencesBonaldi, A. (1993). Process for pharmaceutical grade high purity iodeoxycholic acid preparation (Patent No. 0 564 775 A2). In European Patent Office (0 564 775 A2).spa
dcterms.referencesBorroto, O. G. (2015). La fisiología digestiva del rumiante, objeto de investigación en el Instituto de Ciencia Animal durante cincuenta años. Revista Cubana de Ciencia Agrícola, 49(2).spa
dcterms.referencesBoyer, J. L. (2013). Bile Formation and Secretion. Comprehensive Physiology, 3(3), 1035. https://doi.org/10.1002/CPHY.C120027spa
dcterms.referencesChen, X. L., Su, S. L., Liu, R., Qian, D. W., Chen, L. L., Qiu, L. P., & Duan, J. A. (2021). Chemical constituents and pharmacological action of bile acids from animal: a review. Zhongguo Zhongyao Zazhi, 46(19), 4898–4906. https://doi.org/10.19540/J.CNKI.CJCMM.20210630.201spa
dcterms.referencesChiang, J. Y. L. (2013). Bile Acid Metabolism and Signaling. Comprehensive Physiology, 3(3), 1191. https://doi.org/10.1002/CPHY.C120023spa
dcterms.referencesChiang, J. Y. L., & Ferrell, J. M. (2018). Bile Acid Metabolism in Liver Pathobiology. Gene Expression, 18(2), 71. https://doi.org/10.3727/105221618X15156018385515spa
dcterms.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules 2022, Vol. 27, Page 8004, 27(22), 8004. https://doi.org/10.3390/MOLECULES27228004spa
dcterms.referencesCruz, A., Rodríguez, N. N., & Rodríguez, C. (2010). EVALUACIÓN IN VITRO DEL EFECTO ANTIBACTERIANO DE LOS EXTRACTOS DE Bidens pilosa, Lantana camara, Schinus molle Y Silybum marianum. Revista U.D.C.A Actualidad & Divulgación Científica, 13(2), 117–124. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262010000200014&lng=en&nrm=iso&tlng=esspa
dcterms.referencesCVS. (2021). Cobertura Geográfica. CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE . https://cvs.gov.co/cobertura-geografica/#1618430401559-5e6e55bb-47acspa
dcterms.referencesDANE. (2022). Cuentas nacionales anuales. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-anuales#pib-de-enclave-de-cultivos-ilicitos-fases-agricola-e-industrialspa
dcterms.referencesDanpure, C. J. (1997). Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 19(4), 317–326. https://doi.org/10.1002/BIES.950190409spa
dcterms.referencesDayal, B., Speck, J., Bagan, E., Tint, G. S., & Salen, G. (1981). p-Toluenesulfonic acid/methanol: Mild reagent for the preparation of bile acid methyl esters. Steroids, 37(2), 239–242. https://doi.org/10.1016/S0039-128X(81)80021-9spa
dcterms.referencesdi Gregorio, M. C., Cautela, J., & Galantini, L. (2021). Physiology and Physical Chemistry of Bile Acids. International Journal of Molecular Sciences, 22(4), 1–23. https://doi.org/10.3390/IJMS22041780spa
dcterms.referencesDi Gregorio, M. C., Cautela, J., & Galantini, L. (2021). Physiology and Physical Chemistry of Bile Acids. International Journal of Molecular Sciences 2021, Vol. 22, Page 1780, 22(4), 1780. https://doi.org/10.3390/IJMS22041780spa
dcterms.referencesdos Santos, J. A., Polonini, H. C., Suzuki, É. Y., Raposo, N. R. B., & da Silva, A. D. (2015). Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids, 98, 114–121. https://doi.org/10.1016/J.STEROIDS.2015.03.009spa
dcterms.referencesDupont, S., Fleurat-Lessard, P., Cruz, R. G., Lafarge, C., Grangeteau, C., Yahou, F., Gerbeau-Pissot, P., Abrahão Júnior, O., Gervais, P., Simon-Plas, F., Cayot, P., & Beney, L. (2021). Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants, 10(7). https://doi.org/10.3390/ANTIOX10071024spa
dcterms.referencesEneroth, P., Gordon, B., Ryhage, R., & Sjövall, J. (1966). Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. Journal of Lipid Research, 7(4), 511–523. https://doi.org/10.1016/S0022-2275(20)39261-0spa
dcterms.referencesEngelking, L. R. (2015). Bile Acids. Textbook of Veterinary Physiological Chemistry, 397–405. https://doi.org/10.1016/B978-0-12-391909-0.50062-1spa
dcterms.referencesEscorza, A., & Salinas, V. (2009). La capacidad antioxidante total. Bases y aplicaciones. Revista de Educación Bioquímica, 28(3), 89–101.spa
dcterms.referencesEstes, R. (2020). bovid . Encyclopedia Britannica. https://www.britannica.com/animal/bovidspa
dcterms.referencesFaustino, C., Serafim, C., Rijo, P., & Reis, C. P. (2016). Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opinion on Drug Delivery, 13(8), 1133–1148. https://doi.org/10.1080/17425247.2016.1178233spa
dcterms.referencesFedegan. (2018). Ganadería Colombiana: Hoja de Ruta 2018 – 2022. Federación Colombina de Ganaderos, 126.spa
dcterms.referencesFiorucci, S., Biagioli, M., Zampella, A., & Distrutti, E. (2018). Bile acids activated receptors regulate innate immunity. Frontiers in Immunology, 9(AUG), 1853. https://doi.org/10.3389/FIMMU.2018.01853/BIBTEXspa
dcterms.referencesFlora, S. J. S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2(4), 191. https://doi.org/10.4161/OXIM.2.4.9112spa
dcterms.referencesGómez, C., Stücheli, S., Kratschmar, D. V., Bouitbir, J., & Odermatt, A. (2020). Development and Validation of a Highly Sensitive LC-MS/MS Method for the Analysis of Bile Acids in Serum, Plasma, and Liver Tissue Samples. Metabolites, 10(7), 1–17. https://doi.org/10.3390/METABO10070282spa
dcterms.referencesGulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/S00204-020-02689-3spa
dcterms.referencesGuzior, D. v., & Quinn, R. A. (2021). Review: microbial transformations of human bile acids. Microbiome, 9(1), 1–13. https://doi.org/10.1186/S40168-021-01101-1/FIGURES/5spa
dcterms.referencesHarris, P. W., Schmidt, T., & McCabe, B. K. (2018). Bovine bile as a bio-surfactant pre-treatment option for anaerobic digestion of high-fat cattle slaughterhouse waste. Journal of Environmental Chemical Engineering, 6(1), 444–450. https://doi.org/10.1016/J.JECE.2017.12.034spa
dcterms.referencesHernández, J. G., López, A., Trejo, G., Ávila, S. v., Jiménez, A. R., & Hernández, H. (2021). In Vitro Bile Salt Hydrolase (BSH) Activity Screening of Different Probiotic Microorganisms. Foods 2021, Vol. 10, Page 674, 10(3), 674. https://doi.org/10.3390/FOODS10030674spa
dcterms.referencesHofmann, A. F., & Eckmann, L. (2006). How bile acids confer gut mucosal protection against bacteria. Proceedings of the National Academy of Sciences, 103(12), 4333–4334. https://doi.org/10.1073/PNAS.0600780103spa
dcterms.referencesHoz, J. V. de la. (2019). Aspectos económicos de la ganadería en el departamento de Córdoba. Economía & Región, 2(1), 87–123.spa
dcterms.referencesHundt, M., Basit, H., & John, S. (2021). Physiology, Bile Secretion. StatPearls.spa
dcterms.referencesICA. (2021). Censo Pecuario Nacional. Instituto Colombiano Agropecuario. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018spa
dcterms.referencesICA. (2022). Censos Pecuarios Nacional. Instituto Colombiano Agropecuario.spa
dcterms.referencesIGAC. (2016). Hay que ponerle freno de mano a la ganadería en Córdoba: IGAC. Instituto Geográfico Agustín Codazzi. https://igac.gov.co/es/noticias/hay-que-ponerle-freno-de-mano-la-ganaderia-en-cordoba-igacspa
dcterms.referencesITIS. (2007). Bos taurus. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=183838#nullspa
dcterms.referencesJayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49(3), 278. https://doi.org/10.1007/S13197-011-0290-7spa
dcterms.referencesKandrac, J., Kevresan, S., Gu, J. K., Mikov, M., Fawcett, J. P., & Kuhajda, K. (2006). Isolation and determination of bile acids. European Journal of Drug Metabolism and Pharmacokinetics, 31(3), 157–177. https://doi.org/10.1007/BF03190712spa
dcterms.referencesKirilenko, B. M., Hagey, L. R., Barnes, S., Falany, C. N., & Hiller, M. (2019). Evolutionary Analysis of Bile Acid-Conjugating Enzymes Reveals a Complex Duplication and Reciprocal Loss History. Genome Biology and Evolution, 11(11), 3256–3268. https://doi.org/10.1093/GBE/EVZ238spa
dcterms.referencesKoulenti, D., Xu, E., Song, A., Yin, I., Mok, S., Karageorgopoulos, D. E., Armaganidis, A., Tsiodras, S., & Lipman, J. (2020). Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2020, Vol. 8, Page 191, 8(2), 191. https://doi.org/10.3390/MICROORGANISMS8020191spa
dcterms.referencesLawson, A. M., & Setchell, K. D. R. (1988). Mass Spectrometry of Bile Acids. The Bile Acids: Chemistry, Physiology, and Metabolism, 167–267. https://doi.org/10.1007/978-1-4613-0901-7_5spa
dcterms.referencesLiverTox. (2016). Cholic Acid. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.spa
dcterms.referencesLobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118. https://doi.org/10.4103/0973-7847.70902spa
dcterms.referencesMarroki, A., & Bousmaha-Marroki, L. (2022). Antibiotic Resistance Diagnostic Methods for Pathogenic Bacteria. Encyclopedia of Infection and Immunity, 320–341. https://doi.org/10.1016/B978-0-12-818731-9.00133-6spa
dcterms.referencesMartínez, A. (2002). ESTEROLES. https://www.academia.edu/28633575/UNIVERSIDAD_DE_ANTIOQUIA_ESTEROLESspa
dcterms.referencesMishra, R., & Mishra, S. (2020). Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 159, 108639. https://doi.org/10.1016/J.STEROIDS.2020.108639spa
dcterms.referencesMi, S., Lim, D. W., Turner, J. M., Wales, P. W., & Curtis, J. M. (2016). Determination of bile acids in piglet bile by solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Lipids, 51(3), 359–372. https://doi.org/10.1007/s11745-016-4125-1spa
dcterms.referencesMolyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant. Songklanakarin Journal of Science and Technology (SJST), 26(2), 211–219. https://doaj.org/article/56a4ffb8551d4574908eb4ed8a264e44spa
dcterms.referencesMonowar, T., & Bhore, S. J. (2014). Antibiotic resistance needs global solutions. The Lancet Infectious Diseases, 14(7), 549. https://doi.org/10.1016/S1473-3099(14)70799-6spa
dcterms.referencesMonte, M. J., Marin, J. J. G., Antelo, A., & Vazquez-Tato, J. (2009). Bile acids: chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 15(7), 804–816. https://doi.org/10.3748/WJG.15.804spa
dcterms.referencesNavacchia, M. L., Marchesi, E., & Perrone, D. (2020). Bile Acid Conjugates with Anticancer Activity: Most Recent Research. Molecules 2021, Vol. 26, Page 25, 26(1), 25. https://doi.org/10.3390/MOLECULES26010025spa
dcterms.referencesNCBI. (2022). PubChem Compound Summary for CID 10133, Chenodeoxycholic acid. National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Chenodeoxycholic-acidspa
dcterms.referencesNurunnabi, M., Khatun, Z., Revuri, V., Nafiujjaman, M., Cha, S., Cho, S., Moo Huh, K., & Lee, Y. K. (2016). Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 6(78), 73986–74002. https://doi.org/10.1039/C6RA10978Kspa
dcterms.referencesOCDE/FAO. (2017). OECD-FAO Agricultural Outlook 2017-2026. OECD Publishing. https://doi.org/10.1787/AGR_OUTLOOK-2017-ENspa
dcterms.referencesOkoli, A. S., Wilkins, M. R., Raftery, M. J., & Mendz, G. L. (2010). Response of helicobacter hepaticus to bovine bile. Journal of Proteome Research, 9(3), 1374–1384. https://doi.org/10.1021/PR900915F/SUPPL_FILE/PR900915F_SI_003.PDFspa
dcterms.referencesPartridge, L. G., & Djerassi, C. (1977). Mass Spectrometry in Structural and Stereochemical Problems. 250. Characteristic Fragmentations of Cholesterol Acetate. Journal of Organic Chemistry, 42(17), 2799–2805. https://doi.org/10.1021/JO00437A001/ASSET/JO00437A001.FP.PNG_V03spa
dcterms.referencesParvez, Md. A. (2015). Concomitant Intravenous Therapy of Ceftriaxone and Calcium in Recumbent Dairy Cow Immediate after Delivery: Ante Mortem and Post Mortem Inspection. Research Journal for Veterinary Practitioners, 3(1), 15–18. https://doi.org/10.14737/JOURNAL.RJVP/2015/3.1.15.18spa
dcterms.referencesPastrana Franco, O., Santafé Patiño, G., & Sánchez Romero, E. (2019). Perfil lipídico y ensayos de las actividades antioxidante, insecticida y antialimentaria de la esponja marina Iotrochota birotulata (Iotrochotidae: Demospongiae). Revista de Biología Tropical, 67(1), 213–223. https://doi.org/10.15517/RBT.V67I1.32357spa
dcterms.referencesPersson, E., Löfgren, L., Hansson, G., Abrahamsson, B., Lennernäs, H., & Nilsson, R. (2007). Simultaneous assessment of lipid classes and bile acids in human intestinal fluid by solid-phase extraction and HPLC methods. Journal of Lipid Research, 48(1), 242–251. https://doi.org/10.1194/JLR.D600035-JLR200spa
dcterms.referencesPubChem. (2023). Ácido cólico . Centro Nacional de Información Biotecnológica. https://pubchem.ncbi.nlm.nih.gov/compound/Cholic-acid#section=Associated-Disorders-and-Diseasesspa
dcterms.referencesQiao, Y., Kong, H., Clark, C., Lomax, S., Su, D., Eiffert, S., & Sukkarieh, S. (2021). Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Computers and Electronics in Agriculture, 185, 106143. https://doi.org/10.1016/J.COMPAG.2021.106143spa
dcterms.referencesRitchie, H., Rosado, P., & Roser, M. (2019). Meat and Dairy Production. Our World in Data, 12(6). https://doi.org/10.1088/1748-9326/AA6CD5spa
dcterms.referencesRobinson, T. P., William Wint, G. R., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., Cinardi, G., D’Aietti, L., Hay, S. I., & Gilbert, M. (2014). Mapping the Global Distribution of Livestock. PLOS ONE, 9(5), e96084. https://doi.org/10.1371/JOURNAL.PONE.0096084spa
dcterms.referencesRocha-Granados, M. C., Zenick, B., Englander, H. E., & Mok, W. W. K. (2020). The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cellular Signalling, 75, 109750. https://doi.org/10.1016/J.CELLSIG.2020.109750spa
dcterms.referencesSánchez-Guijo, A., Blaschka, C., Hartmann, M. F., Wrenzycki, C., & Wudy, S. A. (2016). Profiling of bile acids in bovine follicular fluid by fused-core-LC–MS/MS. Journal of Steroid Biochemistry and Molecular Biology, 162, 117–125. https://doi.org/10.1016/j.jsbmb.2016.02.020spa
dcterms.referencesSanchez, M. J., Hidalgo, E., Zanette, L. C., de Campos Binder, L., Rivera, A. M., Molina-Flores, B., Maia-Elkhoury, A. N. S., Vianna, R. S., Valadas, S. Y. O. B., Vigilato, M. A. N., Pompei, J. C. A., & Cosivi, O. (2021). Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in Central and South America. 271–304. https://doi.org/10.1007/978-3-030-65365-1_9spa
dcterms.referencesSannasiddappa, T. H., Lund, P. A., & Clarke, S. R. (2017). In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Frontiers in Microbiology, 8(AUG). https://doi.org/10.3389/FMICB.2017.01581/FULLspa
dcterms.referencesScalia, S., Williams, J. R., Shim, J. H., Law, B., & Morgan, E. D. (1998). Supercritical fluid extraction of bile acids from bovine bile raw materials. Chromatographia 1998 48:11, 48(11), 785–789. https://doi.org/10.1007/BF02467648spa
dcterms.referencesSchütz, K. E., Lee, C., & DeVries, T. J. (2018). Cattle priorities: Feed and water selection, ability to move freely and to access pasture. Advances in Cattle Welfare, 93–122. https://doi.org/10.1016/B978-0-08-100938-3.00005-Xspa
dcterms.referencesSfakianos, M. K., Wilson, L., Sakalian, M., Falany, C. N., & Barnes, S. (2002). Conserved residues in the putative catalytic triad of human bile acid Coenzyme A:amino acid N-acyltransferase. The Journal of Biological Chemistry, 277(49), 47270–47275. https://doi.org/10.1074/JBC.M207463200spa
dcterms.referencesSheriha, G. M., Waller, G. R., Chan, T., & Tillman, A. D. (1968). Composition of bile acids in ruminants. Lipids 1968 3:1, 3(1), 72–78. https://doi.org/10.1007/BF02530972spa
dcterms.referencesShimadzu. (2019). Analysis of Bile Acid by GC-MS. Shimadzu Corporation.spa
dcterms.referencesSilva, A. A. S., Morais, S. M., Falcão, M. J. C., Vieira, I. G. P., Ribeiro, L. M., Viana, S. M., Teixeira, M. J., Barreto, F. S., Carvalho, C. A., Cardoso, R. P. A., & Andrade-Junior, H. F. (2014). Activity of cycloartane-type triterpenes and sterols isolated from Musa paradisiaca fruit peel against Leishmania infantum chagasi. Phytomedicine, 21(11), 1419–1423. https://doi.org/10.1016/J.PHYMED.2014.05.005spa
dcterms.referencesSingh, A. N., Baruah, M. M., & Sharma, N. (2017). Structure Based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against Prostate Cancer. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-02023-5spa
dcterms.referencesSingh, N., & Bhattacharyya, D. (2016). Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays. Journal of Chromatography B, 1019, 83–94. https://doi.org/10.1016/J.JCHROMB.2015.11.020spa
dcterms.referencesSogeocol. (2011). DEPARTAMENTOS DE COLOMBIA. https://www.sogeocol.edu.co/cordoba.htmspa
dcterms.referencesStaels, B., & Fonseca, V. A. (2009). Bile Acids and Metabolic Regulation: Mechanisms and clinical responses to bile acid sequestration. Diabetes Care, 32(Suppl 2), S237. https://doi.org/10.2337/DC09-S355spa
dcterms.referencesStyles, N. A., Shonsey, E. M., Falany, J. L., Guidry, A. L., Barnes, S., & Falany, C. N. (2016). Carboxy-terminal mutations of bile acid CoA: N-acyltransferase alter activity and substrate specificity. Journal of Lipid Research, 57(7), 1133–1143. https://doi.org/10.1194/jlr.M064428spa
dcterms.referencesSu, F. Z., Bai, C. X., Luo, Y., Zhang, W. Sen, Cui, N., Wang, Y. Y., Sun, Y. P., Zhu, W. B., Zhao, M. Y., Yang, B. Y., Kuang, H. X., & Wang, Q. H. (2022). Cattle Bile Arisaema Aqueous Extracts Protect Against Febrile Seizures in Rats Through Regulating Neurotransmitters and Suppressing Neuroinflammation. Frontiers in Pharmacology, 13, 1799. https://doi.org/10.3389/FPHAR.2022.889055/BIBTEXspa
dcterms.referencesSung, J. Y., Shaffer, E. A., & Costerton, J. W. (1993). Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids. Digestive Diseases and Sciences, 38(11), 2104–2112. https://doi.org/10.1007/BF01297092spa
dcterms.referencesTapias, K. (2021). Ganado Vacuno o Bovino: concepto, utilidad, cuidado y desarrollo. ESPACIO HONDURAS. https://www.espaciohonduras.net/ganado-vacuno-o-bovino-concepto-utilidad-cuidado-y-desarrollospa
dcterms.referencesTenover, F. C. (2009). Antibiotic Susceptibility Testing. Encyclopedia of Microbiology, 67–77. https://doi.org/10.1016/B978-012373944-5.00239-Xspa
dcterms.referencesTian, Y., Gui, W., Koo, I., Smith, P. B., Allman, E. L., Nichols, R. G., Rimal, B., Cai, J., Liu, Q., & Patterson, A. D. (2020b). The microbiome modulating activity of bile acids. Gut Microbes, 11(4), 979–996. https://doi.org/10.1080/19490976.2020.1732268/SUPPL_FILE/KGMI_A_1732268_SM4219.DOCXspa
dcterms.referencesTökes, L., Jones, G., & Djerassi, C. (1968). Mass Spectrometry in Structural and Stereochemical Problems. CLXI. Elucidation of the Course of the Characteristic Ring D Fragmentation of Steroids. Journal of the American Chemical Society, 90(20), 5465–5477. https://doi.org/10.1021/JA01022A025/ASSET/JA01022A025.FP.PNG_V03spa
dcterms.referencesTonin, F., & Arends, I. W. C. E. (2018). Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein Journal of Organic Chemistry, 14, 470. https://doi.org/10.3762/BJOC.14.33spa
dcterms.referencesValle Z, H. A., & Santafé P, G. G. (2009). Esteroles libres de la esponja marina Mycale laevis. Vitae, 16(1), 103–109. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042009000100012&lng=en&nrm=iso&tlng=esspa
dcterms.referencesVessey, D. A. (1978). The biochemical basis for the conjugation of bile acids with either glycine or taurine. The Biochemical Journal, 174(2), 621–626. https://doi.org/10.1042/BJ1740621spa
dcterms.referencesWang, D. Q. H., & Carey, M. C. (2014). Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World Journal of Gastroenterology : WJG, 20(29), 9952. https://doi.org/10.3748/WJG.V20.I29.9952spa
dcterms.referencesWilliams, G. W., & Anderson, D. P. (2020). The Latin American Livestock Industry: Growth and Challenges. Choices, 34(4), 1–11. https://doi.org/10.22004/AG.ECON.302483spa
dcterms.referencesWills, E. D. (1985). Functions of the liver. Biochemical Basis of Medicine, 359–368. https://doi.org/10.1016/B978-0-7236-0722-9.50033-Xspa
dcterms.referencesXiong, Q., Wilson, W. K., & Pang, J. (2007). The Liebermann-Burchard reaction: sulfonation, desaturation, and rearrangment of cholesterol in acid. Lipids, 42(1), 87–96. https://doi.org/10.1007/S11745-006-3013-5spa
dcterms.referencesZhang, J., Peng, J., Chen, X., Gong, Y., Wan, L., Gao, F., Gan, S., Wei, F., Ma, S., Chen, J., & Nie, J. (2016). Rapid identification of bile acids in snake bile using ultrahigh-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography B, 1036–1037, 157–169. https://doi.org/10.1016/J.JCHROMB.2016.10.011spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Camargo Pereira Cristian Javier.pdf
Tamaño:
1.66 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorizacion..pdf
Tamaño:
411.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: