Publicación:
Orthogonal Frames in Krein Spaces †

dc.contributor.authorFerrer, Osmin
dc.contributor.authorSierra, Arley
dc.contributor.authorPolo, Osvaldo
dc.date.accessioned2023-02-02T18:24:51Z
dc.date.available2023-02-02T18:24:51Z
dc.date.issued2022
dc.description.abstractIn this paper, we introduce the concept of orthogonal frames in Krein spaces, prove the independence of the choice of the fundamental symmetry, and from this, we obtain a number of interesting properties that they satisfy. We show that there is no distinction between orthogonal frames in a Krein space and orthogonal frames in its associated Hilbert. Furthermore, we characterize frames dual to a given frame, which is a useful tool for constructing examples.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.3390/math10193588
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6991
dc.language.isoengspa
dc.publisher.placeBasilea, Suizaspa
dc.relation.ispartofjournalVolume 10 Issue 19spa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalKrein spacespa
dc.subject.proposalFundamental symmetryspa
dc.subject.proposalHilbert associatedspa
dc.subject.proposalFramesspa
dc.titleOrthogonal Frames in Krein Spaces †spa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references1. Duffin, R.; Schaeffer, A. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [CrossRef]spa
dcterms.references2. Daubechies, I.; Grossmann, A.; Meyer, Y. Painless nonorthogonal expansions. J. Math. Phys. 1986, 27, 1271–1283. [CrossRef]spa
dcterms.references3. Christensen, O. An Introduction to Frames and Riesz Bases. In Applied and Numerical Harmonic Analysis; Birkhauser: Boston, MA, USA, 2016spa
dcterms.references4. Azizov, T.; Iokhvidov, I.S. Linear Operator in Spaces with an Indefinite Metric; Wiley-Interscience: Chichester, UK,1989.spa
dcterms.references5. Bognár, J. Indefinite Inner Product Spaces; Springer: Berlin/Heidelberg, Germany, 1974 .spa
dcterms.references6. Esmeral, K.; Ferrer, O.; Wagner E. Frames in Krein spaces Arising from a Non-regular W-metric. Banach J. Math. Anal. 2015, 9, 1–16. [CrossRef]spa
dcterms.references7. Dirac, P.A.M. The physical interpretation of quantum mechanics. Proc. R. Soc. Lond. Ser. A 1942, 180, 1–40.spa
dcterms.references8. Pauli, W. On Dirac’s new method of field quantization. Rev. Mod. Phys. 1943, 15, 175–207. [CrossRef]spa
dcterms.references9. Pontrjagin, L.S. Hermitian operators in spaces with indefinite metrics. Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 1944, 8, 243–280.spa
dcterms.references10. Bhatt, G.; Johnson, B.; Weber, E. Orthogonal Wavelet Frames and Vector Valued Wavelet Transform. Appl. Comput. Harmon. Anal. 2007, 23, 215–234. [CrossRef]spa
dcterms.references11. Bhatt, B. A Construction of a Pairwise Orthogonal Wavelet Frames using Polyphase Matrix. Int. J. Math. Anal. 2011, 5, 1583–1593.spa
dcterms.references12. Kim, H.O.; Kim, R.; Lim, J.K.; Shen, Z. A pair of orthogonal frames. J. Approx. Theory 2007, 147, 196–204 [CrossRef]spa
dcterms.references13. Bhatt, G. Sums of A Pair of Orthogonal Frames. Mathematics 2019, 7, 582. [CrossRef]spa
dcterms.references14. Deguang, H.; Kornelson, K.; Larson, D.; Weber, V. Frames for Undergraduates. In Student Mathematical Library; American Mathematical Society: Providence, RI, USA, 2007spa
dcterms.references15. G ˘avru¸ta, P. On the duality of fusion frames. J. Math. Anal. Appl. 2007, 333, 871–879. [CrossRef]spa
dcterms.references16. Asgari, M.S.; Khosravi, A. Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 2005, 308, 541–553. [CrossRef]spa
dcterms.references17. Casazza, P.G.; Kutyniok, G. Finite Frames. In Theory Applications; Birkhauser: New York, NY, USA, 2013.spa
dcterms.references18. Escobar, G.; Esmeral, K.; Ferrer, O. Construction and Coupling of Frames in Hilbert Spaces with W-Metrics. Rev. Integr. 2016, 34, 81–93.spa
dcterms.references19. Ferrer, O; Sierra, A; Sanabria, J. Soft Frames in Soft Hilbert Spaces. Mathematics 2021, 9, 2249. [CrossRef]spa
dcterms.references20. Wagner, E.; Carrillo, D.; Esmeral, K. Continuous frames in Krein spaces. Banach J. Math. Anal. 2022, 16, 1–26. [CrossRef]spa
dcterms.references21. Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Continuous frames in Hilbert space. Ann. Phys. 1993, 222, 1–37. [CrossRef]spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
mathematics-10-03588 (1).pdf
Tamaño:
311.96 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones