Publicación: Orthogonal Frames in Krein Spaces †
dc.contributor.author | Ferrer, Osmin | |
dc.contributor.author | Sierra, Arley | |
dc.contributor.author | Polo, Osvaldo | |
dc.date.accessioned | 2023-02-02T18:24:51Z | |
dc.date.available | 2023-02-02T18:24:51Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper, we introduce the concept of orthogonal frames in Krein spaces, prove the independence of the choice of the fundamental symmetry, and from this, we obtain a number of interesting properties that they satisfy. We show that there is no distinction between orthogonal frames in a Krein space and orthogonal frames in its associated Hilbert. Furthermore, we characterize frames dual to a given frame, which is a useful tool for constructing examples. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.3390/math10193588 | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6991 | |
dc.language.iso | eng | spa |
dc.publisher.place | Basilea, Suiza | spa |
dc.relation.ispartofjournal | Volume 10 Issue 19 | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.proposal | Krein space | spa |
dc.subject.proposal | Fundamental symmetry | spa |
dc.subject.proposal | Hilbert associated | spa |
dc.subject.proposal | Frames | spa |
dc.title | Orthogonal Frames in Krein Spaces † | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Duffin, R.; Schaeffer, A. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [CrossRef] | spa |
dcterms.references | 2. Daubechies, I.; Grossmann, A.; Meyer, Y. Painless nonorthogonal expansions. J. Math. Phys. 1986, 27, 1271–1283. [CrossRef] | spa |
dcterms.references | 3. Christensen, O. An Introduction to Frames and Riesz Bases. In Applied and Numerical Harmonic Analysis; Birkhauser: Boston, MA, USA, 2016 | spa |
dcterms.references | 4. Azizov, T.; Iokhvidov, I.S. Linear Operator in Spaces with an Indefinite Metric; Wiley-Interscience: Chichester, UK,1989. | spa |
dcterms.references | 5. Bognár, J. Indefinite Inner Product Spaces; Springer: Berlin/Heidelberg, Germany, 1974 . | spa |
dcterms.references | 6. Esmeral, K.; Ferrer, O.; Wagner E. Frames in Krein spaces Arising from a Non-regular W-metric. Banach J. Math. Anal. 2015, 9, 1–16. [CrossRef] | spa |
dcterms.references | 7. Dirac, P.A.M. The physical interpretation of quantum mechanics. Proc. R. Soc. Lond. Ser. A 1942, 180, 1–40. | spa |
dcterms.references | 8. Pauli, W. On Dirac’s new method of field quantization. Rev. Mod. Phys. 1943, 15, 175–207. [CrossRef] | spa |
dcterms.references | 9. Pontrjagin, L.S. Hermitian operators in spaces with indefinite metrics. Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 1944, 8, 243–280. | spa |
dcterms.references | 10. Bhatt, G.; Johnson, B.; Weber, E. Orthogonal Wavelet Frames and Vector Valued Wavelet Transform. Appl. Comput. Harmon. Anal. 2007, 23, 215–234. [CrossRef] | spa |
dcterms.references | 11. Bhatt, B. A Construction of a Pairwise Orthogonal Wavelet Frames using Polyphase Matrix. Int. J. Math. Anal. 2011, 5, 1583–1593. | spa |
dcterms.references | 12. Kim, H.O.; Kim, R.; Lim, J.K.; Shen, Z. A pair of orthogonal frames. J. Approx. Theory 2007, 147, 196–204 [CrossRef] | spa |
dcterms.references | 13. Bhatt, G. Sums of A Pair of Orthogonal Frames. Mathematics 2019, 7, 582. [CrossRef] | spa |
dcterms.references | 14. Deguang, H.; Kornelson, K.; Larson, D.; Weber, V. Frames for Undergraduates. In Student Mathematical Library; American Mathematical Society: Providence, RI, USA, 2007 | spa |
dcterms.references | 15. G ˘avru¸ta, P. On the duality of fusion frames. J. Math. Anal. Appl. 2007, 333, 871–879. [CrossRef] | spa |
dcterms.references | 16. Asgari, M.S.; Khosravi, A. Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 2005, 308, 541–553. [CrossRef] | spa |
dcterms.references | 17. Casazza, P.G.; Kutyniok, G. Finite Frames. In Theory Applications; Birkhauser: New York, NY, USA, 2013. | spa |
dcterms.references | 18. Escobar, G.; Esmeral, K.; Ferrer, O. Construction and Coupling of Frames in Hilbert Spaces with W-Metrics. Rev. Integr. 2016, 34, 81–93. | spa |
dcterms.references | 19. Ferrer, O; Sierra, A; Sanabria, J. Soft Frames in Soft Hilbert Spaces. Mathematics 2021, 9, 2249. [CrossRef] | spa |
dcterms.references | 20. Wagner, E.; Carrillo, D.; Esmeral, K. Continuous frames in Krein spaces. Banach J. Math. Anal. 2022, 16, 1–26. [CrossRef] | spa |
dcterms.references | 21. Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Continuous frames in Hilbert space. Ann. Phys. 1993, 222, 1–37. [CrossRef] | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- mathematics-10-03588 (1).pdf
- Tamaño:
- 311.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: