Publicación:
Endosimbiontes bacterianos y microbiota intestinal de vectores de Leishmania y otros tripanosomátidos del departamento de Sucre, región Caribe de Colombia

dc.contributor.advisorPaternina Tuirán, Luis Enrique
dc.contributor.advisorMattar Velilla, Salim
dc.contributor.authorAlemán Santos, Maira Alejandra
dc.contributor.juryLozano Sardaneta, Yokomi Nisei
dc.contributor.juryMaestre Serrano, Ronald
dc.contributor.juryHoyos López, Richard
dc.date.accessioned2025-04-24T18:11:57Z
dc.date.available2026-04-24
dc.date.available2025-04-24T18:11:57Z
dc.date.issued2025-04-24
dc.description.abstractIntroducción y justificación. Los flebotominos son dípteros de gran relevancia en salud pública por su papel como vectores transmisores de diversos patógenos como Leishmania, Bartonella, Vesiculovirus, y Phlebovirus. Pese a la importancia epidemiológica de los flebotominos, no existen métodos de control efectivo debido a sus peculiares características. Los esfuerzos para el control de la leishmaniasis se han centrado en el diagnóstico y el tratamiento de la enfermedad. Esto ha motivado la implementación de medidas alternativas hacia el flebotomino para el control de la enfermedad, basándose en las relaciones antagónicas de algunas bacterias del tracto digestivo del vector y los parásitos del género Leishmania. No obstante, su aplicación para el control de la leishmaniasis es limitada por la falta de conocimiento sobre la frecuencia con la que se presentan estas interacciones en la naturaleza. El control biológico con la bacteria Wolbachia ha sido usada exitosamente para mitigar enfermedades virales en los mosquitos portadores de los arbovirus Dengue y Chikungunya. También, este endosimbionte interfiere con el establecimiento del apicomplexo Plasmodium. En este escenario, las herramientas de metagenómica ofrecen la oportunidad de caracterizar el bacterioma de los vectores, para establecer las posibles relaciones antagónicas que protejan a los insectos de la infección con los parásitos. Objetivo. Caracterizar los endosimbiontes bacterianos y la microbiota intestinal en vectores de Leishmania y otros tripanosomátidos en el departamento de Sucre, región Caribe de Colombia. Métodos. Estudio de tipo descriptivo prospectivo realizado entre noviembre 2021 y febrero 2023 en el departamento de Sucre en los municipios de Sincelejo, Colosó, Sampués y Ovejas. Mediante búsqueda activa, trampas Shannon y CDC-light se realizaron muestreos para la recolección de flebotominos. Las hembras recolectadas se mantuvieron vivas hasta su disección para la identificación taxonómica y la búsqueda microscópica de flagelados en el tracto intestinal. spa
dc.description.abstractIntroduction & Justification. Sand flies are highly relevant to public health because they are vectors of pathogens such as Leishmania, Bartonella, Vesiculovirus, and Phlebovirus. Despite the epidemiological importance of sandflies, there are no effective control methods for them owing to their unique characteristics. Efforts to control leishmaniasis have focused on its diagnosis and treatment. This has led to the implementation of alternative measures targeting sand fly vectors for disease control, based on the antagonistic relationships between some bacteria in the digestive tract of sand flies and parasites of the Leishmania genus. However, their application for leishmaniasis control is limited by a lack of knowledge regarding the frequency with which these interactions occur in nature. Biological control with the bacterium Wolbachia has been successfully used to mitigate viral diseases in mosquitoes carrying the arboviruses, Dengue and Chikungunya. This endosymbiont also interferes with the establishment of Plasmodium apicomplexan. In this scenario, metagenomic tools offer the opportunity to characterize the bacteriome of vectors to establish potential antagonistic relationships that protect insects from parasitic infection. Objective. To characterize bacterial endosymbionts and intestinal microbiota in vectors of Leishmania and other trypanosomatids in the Department of Sucre, Caribbean region of Colombia. Methods. This prospective descriptive study was conducted between November 2021 and February 2023 in the Department of Sucre in the municipalities of Sincelejo, Colosó, Sampués, and Ovejas. Sand flies were collected using active search, Shannon, and CDC light traps. The collected females were kept alive until dissection for taxonomic identification and microscopic search for flagellates in the intestinal tract. eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor(a) en Microbiología y Salud Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN.................................................5
dc.description.tableofcontentsABSTRACT...............................................7
dc.description.tableofcontentsINTRODUCCIÓN.....................................9
dc.description.tableofcontentsMARCO TEÓRICO..................................14
dc.description.tableofcontentsLos flebotominos como vectores de Leishmania.............14
dc.description.tableofcontentsLos parásitos tripanosomátidos y el género Leishmania.............18
dc.description.tableofcontentsEndosimbiontes bacterianos como potenciales biocontroladores de Leishmania.......21
dc.description.tableofcontentsEstudios del Microbioma en vectores de Leishmania...........24
dc.description.tableofcontentsOBJETIVO GENERAL.........................30
dc.description.tableofcontentsOBJETIVOS ESPECÍFICOS.....................30
dc.description.tableofcontentsMATERIALES Y MÉTODOS...........................31
dc.description.tableofcontentsTipo y área de estudio....................31
dc.description.tableofcontentsRecolección de hembras flebotominas...............................33
dc.description.tableofcontentsDisección de flebotominos y búsqueda de tripanosomátidos por microscopía.........34
dc.description.tableofcontentsExtracción de ADN..............................34
dc.description.tableofcontentsFrecuencia de infección con endosimbiontes bacterianos de hembras flebotominas infectadas naturalmente y no infectadas con tripanosomátidos..35
dc.description.tableofcontentsIdentificación de genogrupos de endosimbiontes bacterianos detectados en hembras flebotominas naturalmente y no infectadas con tripanosomátido..37
dc.description.tableofcontentsIdentificación de parásitos tripanosomátidos en intestinos de hembras flebotominas del departamento de Sucre....38
dc.description.tableofcontentsCaracterización de la microbiota intestinal de hembras de Pintomyia evansi y Micropygomyia cayennensis cayennensis naturalmente infectadas y no infectadas con tripanosomátidos..39
dc.description.tableofcontentsRESULTADOS...............................................42
dc.description.tableofcontentsCaptura e identificación de hembras flebotominas del departamento de Sucre.....42
dc.description.tableofcontentsInfección por parásitos flagelados en intestinos de hembras flebotominas.............44
dc.description.tableofcontentsPrevalencia de tripanosomátidos mediante PCR anidada (nPCR) de 18S ribosomal en intestinos de hembras flebotominas.....45
dc.description.tableofcontentsPrevalencia de Wolbachia y Cardinium en intestinos de hembras flebotominas....46
dc.description.tableofcontentsIdentificación de genogrupos de endosimbiontes bacterianos en flebotominos...48
dc.description.tableofcontentsIdentificación de Leishmania y otros tripanosomátidos en intestinos de hembras flebotominas.....50
dc.description.tableofcontentsCaracterización del microbioma intestinal de Pintomyia evansi y Micropygomyia cayennensis cayennensis naturalmente infectadas y no infectadas con tripanosomátidos..53
dc.description.tableofcontentsDISCUSIÓN..........................63
dc.description.tableofcontentsFlebotominos y su importancia epidemiológica......................63
dc.description.tableofcontentsPrevalencia de Wolbachia y Cardinium en infecciones con parásitos tripanosomátidos..................65
dc.description.tableofcontentsGenotipificación de endosimbiontes asociados a hembras flebotominas...........67
dc.description.tableofcontentsIdentificación de Leishmania y otros tripanosomátidos en hembras flebotominas.........69
dc.description.tableofcontentsMicrobioma bacteriano de Pintomyia evansi y Micropygomyia cayennensis cayennensis.............70
dc.description.tableofcontentsCONCLUSIONES.......................75
dc.description.tableofcontentsBIBLIOGRAFÍA....................77
dc.description.tableofcontentsANEXOS.............................99
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9134
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeBerástegui, Córdoba, Colombia
dc.publisher.programDoctorado en Microbiología y Salud Tropical
dc.relation.referencesAdams, Z., & Shimabukuro, P. (2018). A cybercatalogue of American sand fly types (Diptera, Psychodidae, Phlebotominae) deposited at the Natural History Museum, London. Biodiversity Data Journal, 6, e24484. https://doi.org/10.3897/BDJ.6.e24484
dc.relation.referencesAhuja, K., Arora, G., Khare, P., & Selvapandiyan, A. (2015). Selective elimination of Leptomonas from the in vitro co-culture with Leishmania. Parasitology International, 64(4), 1-5. https://doi.org/10.1016/j.parint.2015.01.003
dc.relation.referencesAlemán Santos, M., Martínez-Pérez, L., Rivero-Rodríguez, M., Cortés-Alemán, L., Pérez-Doria, A., & Bejarano-Martínez, E. (2021). Detección de Leishmania spp. (Trypanosomatidae) e identificación de ingestas sanguíneas en flebotomíneos de un nuevo foco de leishmaniasis en el Caribe colombiano. Ciencia e Innovación en Salud. https://doi.org/10.17081/innosa.142
dc.relation.referencesAlexander, B., & Maroli, M. (2003). Control of phlebotomine sandflies. Medical and Veterinary Entomology, 17(1), 1-18. https://doi.org/10.1046/j.1365-2915.2003.00420.x
dc.relation.referencesAngelella, G. M., Foutz, J. J., & Galindo-Schuller, J. (2025). Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host. Journal of Insect Physiology, 160, 104746. https://doi.org/10.1016/j.jinsphys.2024.104746
dc.relation.referencesArias, J., Naiff, R. D., Miles, M. A., Biancardi, C. B., De Freitas, R. A., Castellon, E. G., & Arias, J. R. (1985). Flagellate Infections of Brazilian Sand Flies (Diptera: Psychodidae): Isolation In Vitro and Biochemical Identification of Endotrypanum and Leishmania. The American Journal of Tropical Medicine and Hygiene, 34(6), 1098-1108. https://doi.org/10.4269/ajtmh.1985.34.1098
dc.relation.referencesAzambuja, P., Es, G., & Na, R. (2005). Gut microbiota and parasite transmission by insect vectors. Trends in Parasitology, 21(12). https://doi.org/10.1016/j.pt.2005.09.011
dc.relation.referencesAzpurua, J., De La Cruz, D., Valderama, A., & Windsor, D. (2010). Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama. PLoS Neglected Tropical Diseases, 4(3), e627. https://doi.org/10.1371/journal.pntd.0000627
dc.relation.referencesBattisti, J. M., Lawyer, P. G., & Minnick, M. F. (2015). Colonization of Lutzomyia verrucarum and Lutzomyia longipalpis Sand Flies (Diptera: Psychodidae) by Bartonella bacilliformis, the Etiologic Agent of Carrión’s Disease. PLOS Neglected Tropical Diseases, 9(10), e0004128. https://doi.org/10.1371/journal.pntd.0004128
dc.relation.referencesBedoya-Polo, A. (2017). Identificación genética de parásitos tripanosomatídeos (Trypanosomatida: Trypanosomatidae) que infectan a especies de flebotomíneos poco abundantes en un foco de leishmaniasis de Sampués, Sucre.
dc.relation.referencesBejarano, E. E. (2012). Natural infection of Lutzomyia evansi (Diptera: Psychodidae) with Leishmania (Viannia) spp. in northern Colombia. ResearchGate. https://www.researchgate.net/publication/288622976_Natural_infection_of_ Lutzomyia_evansi_Diptera_Psychodidae_with_Leishmania_Viannia_spp_in_nort hern_Colombia
dc.relation.referencesBejarano, E. E., & Estrada, L. G. (2016). FAMILY PSYCHODIDAE. Zootaxa, 4122(1). https://doi.org/10.11646/zootaxa.4122.1.20
dc.relation.referencesBejarano, E. E., Uribe, S., Rojas, W., & Dario Velez, I. (2002). Phlebotomine sand flies (Diptera: Psychodidae) associated with the appearance of urban Leishmaniasis in the city of Sincelejo, Colombia. Memorias Do Instituto Oswaldo Cruz, 97(5), 645-647
dc.relation.referencesBonfante-Garrido, R., Urdaneta, R., Urdaneta, I., & Alvarado, J. (1990). Natural infection of Lutzomyia trinidadensis (Diptera: Psychodidae) with Leishmania in Barquisimeto, Venezuela. Memórias do Instituto Oswaldo Cruz, 85(4), 477-477. https://doi.org/10.1590/S0074-02761990000400015
dc.relation.referencesBonfante-Garrido, R., Urdaneta, R., Urdaneta, I., Alvarado, J., & Perdomo, R. (1999). Natural Infection of Lutzomyia rangeliana (Ortiz, 1952) (Diptera: Psychodidae) with Leishmania in Barquisimeto, Lara State, Venezuela. Memórias do Instituto Oswaldo Cruz, 94(1), 11-11. https://doi.org/10.1590/S0074-02761999000100005
dc.relation.referencesChao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1
dc.relation.referencesChicharro, C., & Alvar, J. (2003). Lower trypanosomatids in HIV/AIDS patients. Annals of Tropical Medicine & Parasitology, 97(sup1), 75-78. https://doi.org/10.1179/000349803225002552
dc.relation.referencesCochero, S., Anaya, Y., Díaz, Y., Paternina, M., Luna, A., Paternina, L., & Bejarano, E. E. (2007). Infección natural de Lutzomyia cayennensis cayennensis con parásitos tripanosomatídeos (Kinetoplastida: Trypanosomatidae) en Los Montes de María, Colombia. Revista Cubana de Medicina Tropical, 59(1), 0-0
dc.relation.referencesCohnstaedt, L. W., Beati, L., Caceres, A. G., Ferro, C., & Munstermann, L. E. (2011). Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia). The American Society of Tropical Medicine and Hygiene, 84(6), 913-922. https://doi.org/10.4269/ajtmh.2011.11-0040
dc.relation.referencesColman, D. R., Toolson, E. C., & Takacs‐Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124-5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x
dc.relation.referencesCortés Alemán, L., Pérez-Doria, A., & Bejarano Martínez, E. E. (2009). Flebotomíneos (Diptera: Psychodidae) antropofílicos de importancia en salud pública en Los Montes de María, Colombia. Revista Cubana de Medicina Tropical, 61(3), 220-225
dc.relation.referencesCortés, L. A., & Fernández, J. J. (2008). Especies de Lutzomyia en un foco urbano de leishmaniasis visceral y cutánea en El Carmen de Bolívar, Bolívar, Colombia. Biomédica, 28(3), 423-432
dc.relation.referencesDa Rocha, N. O., Lambert, S. M., Dias‐Lima, A. G., Julião, F. S., & Souza, B. M. P. S. (2018). Molecular detection of Wolbachia pipientis in natural populations of sandfly vectors of Leishmania infantum in endemic areas: First detection in Lutzomyia longipalpis. Medical and Veterinary Entomology, 32(1), 111-114. https://doi.org/10.1111/mve.12255
dc.relation.referencesda Silva Gonçalves, D., Iturbe-Ormaetxe, I., Martins-da-Silva, A., Telleria, E. L., Rocha, M. N., Traub-Csekö, Y. M., O’Neill, S. L., Sant’Anna, M. R. V., & Moreira, L. A. (2019). Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasites & Vectors, 12(1), 33. https://doi.org/10.1186/s13071-018-3227-4
dc.relation.referencesde Pita-Pereira, D., Cardoso, M. A. B., Alves, C. R., Brazil, R. P., & Britto, C. (2008). Detection of natural infection in Lutzomyia cruzi and Lutzomyia forattinii (Diptera: Psychodidae: Phlebotominae) by Leishmania infantum chagasi in an endemic area of visceral leishmaniasis in Brazil using a PCR multiplex assay. Acta Tropica, 107(1), 66-69. https://doi.org/10.1016/j.actatropica.2008.04.015
dc.relation.referencesde Souza Rocha, L., dos Santos, C. B., Falqueto, A., Grimaldi, G., & Cupolillo, E. (2010). Molecular biological identification of monoxenous trypanosomatids and Leishmania from antropophilic sand flies (Diptera: Psychodidae) in Southeast Brazil. Parasitology Research, 107(2), 465-468. https://doi.org/10.1007/s00436-010-1903-1
dc.relation.referencesDedet, J., & Pratlong, F. (2000). Leishmania, Trypanosoma and Monoxenous Trypanosomatids as Emerging Opportunistic Agents sup1. Journal of Eukaryotic Microbiology, 47(1), 37-39. https://doi.org/10.1111/j.1550-7408.2000.tb00008.x
dc.relation.referencesDepaquit, J., Grandadam, M., Fouque, F., Andry, P., & Peyrefitte, C. (2010). Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Eurosurveillance, 15(10). https://doi.org/10.2807/ese.15.10.19507-en
dc.relation.referencesDixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
dc.relation.referencesDubourg, G., Lagier, J.-C., Armougom, F., Robert, C., Audoly, G., Papazian, L., & Raoult, D. (2013). High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. International Journal of Antimicrobial Agents, 41(2), 149-155. https://doi.org/10.1016/j.ijantimicag.2012.10.012
dc.relation.referencesEstrada, L. G., Ortega, E., Vivero, R. J., Bejarano, E. E., & Cadena, H. (2020). Development of Lutzomyia evansi immature stages in peridomiciliary environment in a leishmaniasis urban focus in the Colombian Caribbean. Acta Tropica, 208, 105523. https://doi.org/10.1016/j.actatropica.2020.105523
dc.relation.referencesFerro, C., López, M., Fuya, P., Lugo, L., Cordovez, J. M., & González, C. (2015). Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia. PLOS ONE, 10(10), e0139391. https://doi.org/10.1371/journal.pone.0139391
dc.relation.referencesFinney, C. A. M., Kamhawi, S., & Wasmuth, J. D. (2015). Does the Arthropod Microbiota Impact the Establishment of Vector-Borne Diseases in Mammalian Hosts? PLOS Pathogens, 11(4), e1004646. https://doi.org/10.1371/journal.ppat.1004646
dc.relation.referencesFraihi, W., Fares, W., Perrin, P., Dorkeld, F., Sereno, D., Barhoumi, W., Sbissi, I., Cherni, S., Chelbi, I., Durvasula, R., Ramalho-Ortigao, M., Gtari, M., & Zhioua, E. (2017). An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLOS Neglected Tropical Diseases, 11(3), e0005484. https://doi.org/10.1371/journal.pntd.0005484
dc.relation.referencesFriendly, M. (1994). Mosaic Displays for Multi-Way Contingency Tables. Journal of the American Statistical Association, 89(425), 190-200. https://doi.org/10.1080/01621459.1994.10476460
dc.relation.referencesFrolov, A. O., Kostygov, A. Y., & Yurchenko, V. (2021). Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Trends in Parasitology, 37(6), 538-551. https://doi.org/10.1016/j.pt.2021.02.004
dc.relation.referencesFu, G., Perona-Wright, G., & Barker, D. C. (1998). Leishmania braziliensis:Characterisation of a Complex Specific Subtelomeric Repeat Sequence and Its Use in the Detection of Parasites. Experimental Parasitology, 90(3), 236-243. https://doi.org/10.1006/expr.1998.4326
dc.relation.referencesGenoy J., Y. M., Castillo F., J. A., & Bacca, T. (2013). Ácaros oribátidos presentes en seis sistemas de uso del suelo en Obonuco, Pasto (Nariño). Boletín Científico. Centro de Museos. Museo de Historia Natural, 17(2), 60-68
dc.relation.referencesGibson, W. (2017). Kinetoplastea. En J. M. Archibald, A. G. B. Simpson, & C. H. Slamovits (Eds.), Handbook of the Protists (pp. 1089-1138). Springer International Publishing. https://doi.org/10.1007/978-3-319-28149-0_7
dc.relation.referencesGnankine, O., & Dabiré, R. K. (2024). Natural occurrence of Wolbachia in Anopheles sp. And Aedes aegypti populations could compromise the success of vector control strategies. Frontiers in Tropical Diseases, 5, 1329015. https://doi.org/10.3389/fitd.2024.1329015
dc.relation.referencesGobernación de Sucre. (2025). Nuestro departamento (Sucre). https://www.sucre.gov.co/departamento/nuestro-departamento
dc.relation.referencesGómez Vargas, W., & Zapata Úsuga, G. (2022). Especies de Lutzomyia (Diptera: Psychodidae, Phlebotominae) en el área de influencia de la Central Hidroeléctrica Sogamoso (Santander, Colombia). Boletín Científico Centro de Museos Museo de Historia Natural, 26(1), 121-133. https://doi.org/10.17151/bccm.2022.26.1.9
dc.relation.referencesGómez-Gómez, J. L. (2023). Leishmaniasis: Periodo epidemiológico XIII de 2023. (Informe de evento, p. 5). Instituto Nacional de Salud. https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMANI ASIS%20PE%20XIII%202023.pdf
dc.relation.referencesGonzález, C., Cabrera, O., Munstermann, L., & Ferro, C. (2006). Distribución de los vectores de Leishmania infantum (Kinetoplastida: Trypanosomatidae) en Colombia.http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120 -41572006000500009
dc.relation.referencesGonzález, C., León, C., Paz, A., López, M., Molina, G., Toro, D., Ortiz, M., Cordovez, J. M., Atencia, M. C., Aguilera, G., & Tovar, C. (2018). Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLOS ONE, 13(1), e0190686. https://doi.org/10.1371/journal.pone.0190686
dc.relation.referencesGouveia, C., Asensi, M. D., Zahner, V., Rangel, E. F., & Oliveira, S. M. P. de. (2008). Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotropical Entomology, 37, 597-601. https://doi.org/10.1590/S1519-566X2008000500016
dc.relation.referencesGuernaoui, S., Garcia, D., Gazanion, E., Ouhdouch, Y., Boumezzough, A., Pesson, B., Fontenille, D., & Sereno, D. (2011). Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae). Journal of Vector Ecology, 36(s1), S144-S147. https://doi.org/10.1111/j.1948-7134.2011.00124.x
dc.relation.referencesGuimarães, V. C. F. V., Costa, P. L., Silva, F. J. D., Melo, F. L. D., Dantas-Torres, F., Rodrigues, E. H. G., & Brandão Filho, S. P. (2014). Molecular detection of Leishmania in phlebotomine sand flies in a cutaneous and visceral leishmaniasis endemic area in northeastern Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 56(4), 357-360. https://doi.org/10.1590/S0036-46652014000400015
dc.relation.referencesGuzmán-Vásquez, D. A. (2020). Caracterización eco-epidemiológica de un brote de leishmaniasis visceral en el corregimiento Sabanas de la Negra, municipio de Sampués, Sucre [Maestria, Universidad de Córdoba]. https://repositorio.unicordoba.edu.co/handle/ucordoba/3242
dc.relation.referencesHernandez-Tatis, Y. (2020). Identificación molecular de Leishmania mediante PCR-RFLP del gen HSP70 a partir de muestras del Caribe Colombiano. [Tesis pregrado]. Universidad de Sucre.
dc.relation.referencesHoffmann, A. A., Ross, P. A., & Rašić, G. (2015). Wolbachia strains for disease control: Ecological and evolutionary considerations. Evolutionary Applications, 8(8), 751-768. https://doi.org/10.1111/eva.12286
dc.relation.referencesHoy, M. A. (2009). The predatory mite Metaseiulus occidentalis: Mitey small and mitey large genomes. BioEssays, 31(5), 581-590. https://doi.org/10.1002/bies.200800175
dc.relation.referencesHusson, J., Josse, J., & Pagès, J. (2010). Principal component methods - hierarchical clustering - partitional clustering: Why would we need to choose for visualizing data? https://www.semanticscholar.org/paper/Principal-component-methods-hier archical-clustering-Josse/04335d99d840ac3370f5aeb262828cf127d3ff1c
dc.relation.referencesInstituto Nacional de Salud. (2022). Informe de evento Leishmaniasis, Colombia, 2022 (p. 29).https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMA NIASIS%20INFORME%202022.pdf
dc.relation.referencesKamhawi, S. (2006). Phlebotomine sand flies and Leishmania parasites: Friends or foes? Trends in Parasitology, 22(9), 439-445. https://doi.org/10.1016/j.pt.2006.06.012
dc.relation.referencesKarimian, F., Koosha, M., Choubdar, N., & Oshaghi, M. A. (2022). Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLOS Neglected Tropical Diseases, 16(7), e0010609. https://doi.org/10.1371/journal.pntd.0010609
dc.relation.referencesKarimian, F., Vatandoost, H., Rassi, Y., Maleki-Ravasan, N., Choubdar, N., Koosha, M., Arzamani, K., Moradi-Asl, E., Veysi, A., Alipour, H., Shirani, M., & Oshaghi, M. A. (2018). wsp-based analysis of Wolbachia strains associated with Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) main cutaneous leishmaniasis vectors, introduction of a new subgroup wSerg. Pathogens and Global Health, 112(3), 152-160. https://doi.org/10.1080/20477724.2018.1471438
dc.relation.referencesKatoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
dc.relation.referencesKindt, R., & Coe, R. (2005). Tree diversity analysis: A manual and software for common statistical methods for ecological and biodiversity studies. World Agrofirestry Centre.
dc.relation.referencesKlinhom, S., Kunasol, C., Sriwichaiin, S., Kerdphoo, S., Chattipakorn, N., Chattipakorn, S. C., & Thitaram, C. (2025). Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders. Scientific Reports, 15, 1327. https://doi.org/10.1038/s41598-025-85495-0
dc.relation.referencesKommedal, Ø., Karlsen, B., & Sæbø, Ø. (2008). Analysis of Mixed Sequencing Chromatograms and Its Application in Direct 16S rRNA Gene Sequencing of Polymicrobial Samples. Journal of Clinical Microbiology, 46(11), 3766-3771. https://doi.org/10.1128/JCM.00213-08
dc.relation.referencesKonecka, E., & Olszanowski, Z. (2019). A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Molecular Phylogenetics and Evolution, 131, 64-71. https://doi.org/10.1016/j.ympev.2018.10.043
dc.relation.referencesLambraño Cruz, L. F., Bejarano Martínez, E. E., & Manjarrez Pinzón, G. (2019). Variación temporal de especies de Lutzomyia (Diptera: Psychodidae) en el área urbana de Sincelejo (Colombia). https://repositorio.unisucre.edu.co/handle/001/846
dc.relation.referencesLambraño Cruz, L. F., Manjarrez Pinzón, G., & Bejarano Martínez, E. E. (2012). Variación temporal de especies de Lutzomyia (Diptera: Psychodidae) en el área urbana de Sincelejo (Colombia). Revista Salud Uninorte, 28(2), 191-200
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01
dc.relation.referencesLi, K., Chen, H., Jiang, J., Li, X., Xu, J., & Ma, Y. (2016). Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Scientific Reports, 6(1), 36406. https://doi.org/10.1038/srep36406
dc.relation.referencesLozano-Sardaneta, Y. N., Jacobo-Olvera, E., Ruiz-Tovar, K., Sánchez-Montes, S., Rodríguez-Rojas, J. J., Fernández-Figueroa, E. A., Roldán-Fernández, S. G., Rodriguez-Martinez, L. M., Dzul-Manzanilla, F., Correa-Morales, F., Treviño-Garza, N., Díaz-Albíter, H. M., Zwetsch, A., Valadas, S. Y. O. B., Nilce-Silveira, A., Becker, I., & Huerta, H. (2022). Detection of Wolbachia and Leishmania DNA in sand flies (Diptera: Psychodidae, Phlebotominae) from a focus of cutaneous leishmaniasis in Tabasco, Mexico. Parasitology Research, 121(2), 513-520. https://doi.org/10.1007/s00436-021-07412-4
dc.relation.referencesLozano-Sardaneta, Y. N., Marina, C. F., Torres-Monzón, J. A., Sánchez-Cordero, V., & Becker, I. (2023). Molecular detection of Wolbachia and Bartonella as part of the microbiome of phlebotomine sand flies from Chiapas, Mexico. Parasitology Research, 122(6), 1293-1301. https://doi.org/10.1007/s00436-023-07829-z
dc.relation.referencesLozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-Salas, P., Sánchez-Cordero, V., & Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitology International, 82, 102286. https://doi.org/10.1016/j.parint.2021.102286
dc.relation.referencesLu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature Protocols, 17(12), 2815-2839. https://doi.org/10.1038/s41596-022-00738-y
dc.relation.referencesLukeš, J., Butenko, A., Hashimi, H., Maslov, D. A., Votýpka, J., & Yurchenko, V. (2018). Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends in Parasitology, 34(6), 466-480. https://doi.org/10.1016/j.pt.2018.03.002
dc.relation.referencesMahmoudzadeh-Niknam, H., Abrishami, F., Doroudian, M., Moradi, M., Alimohammadian, M. H., Parvizi, P., Hatam, G., Mohebali, M., & Khalaj, V. (2011). The Problem of Mixing up of Leishmania Isolates in the Laboratory: Suggestion of ITS1 Gene Sequencing for Verification of Species. Iranian Journal of Parasitology, 6(1), 41
dc.relation.referencesManguin, S., Ngo, C. T., Tainchum, K., Juntarajumnong, W., Chareonviriyaphap, T., Michon, A.-L., Jumas-Bilak, E., Manguin, S., Ngo, C. T., Tainchum, K., Juntarajumnong, W., Chareonviriyaphap, T., Michon, A.-L., & Jumas-Bilak, E. (2013). Bacterial Biodiversity in Midguts of Anopheles Mosquitoes, Malaria Vectors in Southeast Asia. En Anopheles mosquitoes—New insights into malaria vectors. IntechOpen. https://doi.org/10.5772/55610
dc.relation.referencesMarcondes, C. B. (2007). A proposal of generic and subgeneric abbreviations for phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae) of the world. Entomological News, 118(4), 351-356. https://doi.org/10.3157/0013-872X(2007)118[351:APOGAS]2.0.CO;2
dc.relation.referencesMaroli, M., Feliciangeli, M. D., Bichaud, L., Charrel, R. N., & Gradoni, L. (2013). Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Medical and Veterinary Entomology, 27(2), 123-147. https://doi.org/10.1111/j.1365-2915.2012.01034.x
dc.relation.referencesMartínez-de la Puente, J., Gutiérrez-López, R., Díez-Fernández, A., Soriguer, R. C., Moreno-Indias, I., & Figuerola, J. (2021). Effects of Mosquito Microbiota on the Survival Cost and Development Success of Avian Plasmodium. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.562220
dc.relation.referencesMcCarthy, C. B., Diambra, L. A., & Pomar, R. V. R. (2011). Metagenomic Analysis of Taxa Associated with Lutzomyia longipalpis, Vector of Visceral Leishmaniasis, Using an Unbiased High-Throughput Approach. PLOS Neglected Tropical Diseases, 5(9), e1304. https://doi.org/10.1371/journal.pntd.0001304
dc.relation.referencesMikery, O., Marina, C., Ibañez-Bernal, S., Sanchez, D., & Castillo, A. (2012). Natural infection of Lutzomyia cruciata (Diptera: Psychodidae, Phlebotominae) with Wolbachia in coffee plantations from Chiapas, Mexico. Acta Zoológica Mexicana, 28(2), 401-413
dc.relation.referencesMikery-Pacheco, O., Marina-Fernández, C., Ibáñez-Bernal, S., Sánchez-Guillen, D., & Castillo-Vera, A. (2012). Infección natural de Lutzomyia cruciata (Diptera: Psychodidae, Phlebotominae) con Wolbachia en cafetales de Chiapas, México. ACTA ZOOLÓGICA MEXICANA (N.S.), 28(2). https://doi.org/10.21829/azm.2012.282842
dc.relation.referencesMilani, C., Hevia, A., Foroni, E., Duranti, S., Turroni, F., Lugli, G. A., Sanchez, B., Martín, R., Gueimonde, M., Van Sinderen, D., Margolles, A., & Ventura, M. (2013). Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol. PLoS ONE, 8(7), e68739. https://doi.org/10.1371/journal.pone.0068739
dc.relation.referencesMontoya-Lerma, J., Cadena, H., Oviedo, M., Ready, P. D., Barazarte, R., Travi, B. L., & Lane, R. P. (2003). Comparative vectorial efficiency of Lutzomyia evansi and Lu. Longipalpis for transmitting Leishmania chagasi. Acta Tropica, 85(1), 19-29. https://doi.org/10.1016/S0001-706X(02)00189-4
dc.relation.referencesMoreira, D., López-García, P., & Vickerman, K. (2004). An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: Proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1861-1875. https://doi.org/10.1099/ijs.0.63081-0
dc.relation.referencesMoreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., Lu, G., Pyke, A. T., Hedges, L. M., Rocha, B. C., Hall-Mendelin, S., Day, A., Riegler, M., Hugo, L. E., Johnson, K. N., Kay, B. H., McGraw, E. A., Hurk, A. F. van den, Ryan, P. A., & O’Neill, S. L. (2009). A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 139(7), 1268-1278. https://doi.org/10.1016/j.cell.2009.11.042
dc.relation.referencesMukhopadhyay, J., Braig, H. R., Rowton, E. D., & Ghosh, K. (2012). Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World. PLOS ONE, 7(5), e35748. https://doi.org/10.1371/journal.pone.0035748
dc.relation.referencesNaiff, R. D., Barrett, T. V., & Freitas, R. A. (1989). Isolation of Trypanosoma freitasi (Kinetoplastida: Trypanosomatidae) from Psychodopygus claustrei (Diptera: Psychodidae). Memórias do Instituto Oswaldo Cruz, 84(2), 273-275. https://doi.org/10.1590/S0074-02761989000200020
dc.relation.referencesNakamura, Y., Kawai, S., Yukuhiro, F., Ito, S., Gotoh, T., Kisimoto, R., Yanase, T., Matsumoto, Y., Kageyama, D., & Noda, H. (2009). Prevalence of Cardinium Bacteria in Planthoppers and Spider Mites and Taxonomic Revision of “ Candidatus Cardinium hertigii” Based on Detection of a New Cardinium Group from Biting Midges. Applied and Environmental Microbiology, 75(21), 6757-6763. https://doi.org/10.1128/AEM.01583-09
dc.relation.referencesNikodemova, M., Holzhausen, E. A., Deblois, C. L., Barnet, J. H., Peppard, P. E., Suen, G., & Malecki, K. M. (2023). The effect of low-abundance OTU filtering methods on the reliability and variability of microbial composition assessed by 16S rRNA amplicon sequencing. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1165295
dc.relation.referencesNoyes, H. a, Stevens, J. R., Teixeira, M., Phelan, J., & Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. In wombats and kangaroos in Australia1. International Journal for Parasitology, 29(2), 331-339. https://doi.org/10.1016/S0020-7519(98)00167-2
dc.relation.referencesOksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., ... Borman, T. (2025). vegan: Community Ecology Package (Versión 2.6-10) [Software]. https://cran.r-project.org/web/packages/vegan/index.html
dc.relation.referencesOliveira, F., Rc, J., Jg, V., & S, K. (2009). Sand flies, Leishmania, and transcriptome-borne solutions. Parasitology International, 58(1). https://doi.org/10.1016/j.parint.2008.07.004
dc.relation.referencesOmondi, Z., Kenan-Arserim, S., Töz, S., & Özbel, Y. (2024). Host–Parasite Interactions: Regulation of Leishmania Infection in Sand Fly. ResearchGate. https://doi.org/10.1007/s11686-022-00519-3
dc.relation.referencesOno, M., Braig, H. R., Munstermann, L. E., Ferro, C., & O’NeilL, S. L. (2001). Wolbachia Infections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 38(2), 237-241. https://doi.org/10.1603/0022-2585-38.2.237
dc.relation.referencesOrganización Panamericana de la Salud. (2024, diciembre 11). Leishmaniasis: Informe epidemiológico de las Américas. Núm. 13, Diciembre del 2024. Leishmaniases: Epidemiological Report of the Americas;, 11 p
dc.relation.referencesPapadopoulos, C., Karas, P. A., Vasileiadis, S., Ligda, P., Saratsis, A., Sotiraki, S., & Karpouzas, D. G. (2020). Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens, 9(6), 428. https://doi.org/10.3390/pathogens9060428
dc.relation.referencesParvizi, P., Bordbar, A., & Najafzadeh, N. (2013). Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in two sister species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishmaniasis. Memorias Do Instituto Oswaldo Cruz, 108(4), 414-420. https://doi.org/10.1590/S0074-0276108042013004
dc.relation.referencesPaternina, L. E., Verbel-Vergara, D., Romero-Ricardo, L., Pérez-Doria, A., Paternina-Gómez, M., Martínez, L., & Bejarano, E. E. (2016). Evidence for anthropophily in five species of phlebotomine sand flies (Diptera: Psychodidae) from northern Colombia, revealed by molecular identification of bloodmeals. Acta Tropica, 153, 86-92. https://doi.org/10.1016/j.actatropica.2015.10.005
dc.relation.referencesPaternina-Gómez, M., Perez-Doria, A., Velbel-Vergara, D., Martínez-Abad, L., & Bejarano, E. E. (2011). Entomología y control de vectores Infección natural de Lutzomyia micropyga con tripanosomatídeos en el Caribe colombiano. ResearchGate. https://doi.org/10.7705/biomedica.v31i0.497
dc.relation.referencesPereira de Oliveira, S., Moraes, B. A. D., Gonçalves, C. A., Giordano-Dias, C. M., d’Almeida, J. M., Asensi, M. D., Mello, R. P., & Brazil, R. P. (2000). Prevalência da microbiota no trato digestivo de fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) provenientes do campo. Revista da Sociedade Brasileira de Medicina Tropical, 33(3), 319-322. https://doi.org/10.1590/S0037-86822000000300012
dc.relation.referencesPereira deOliveira, S. M. P. de, Morais, B. A. de, Gonçalves, C. A., Giordano-Dias, C. M., Vilela, M. L., Brazil, R. P., d’Almeida, J. M., Asensi, M. D., & Mello, R. P. (2001). Microbiota do trato digestivo de fêmeas de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) provenientes de colônia alimentadas com sangue e com sangue e sacarose. Cadernos de Saúde Pública, 17, 229-232. https://doi.org/10.1590/S0102-311X2001000100024
dc.relation.referencesPerez-Doria, A. (2011). Búsqueda de infección natural con parásitos causantes de leishmaniasis cutánea en poblaciones flebotomíneas (Diptera: Psychodidae) de los Montes de María, Sucre, Colombia. [Tesis maestría]. Universidad de Córdoba
dc.relation.referencesPessoa, F. A. C., Medeiros, J. F., & Barrett, T. V. (2007). Effects of timber harvest on phlebotomine sand flies (Diptera: Psychodidae) in a production forest: abundance of species on tree trunks and prevalence of trypanosomatids. Memórias do Instituto Oswaldo Cruz, 102(5), 593-599. https://doi.org/10.1590/S0074-02762007005000075
dc.relation.referencesPigott, D. M., Bhatt, S., Golding, N., Duda, K. A., Battle, K. E., Brady, O. J., Messina, J. P., Balard, Y., Bastien, P., Pratlong, F., Brownstein, J. S., Freifeld, C. C., Mekaru, S. R., Gething, P. W., George, D. B., Myers, M. F., Reithinger, R., & Hay, S. I. (2014). Global distribution maps of the leishmaniases. eLife, 3, e02851. https://doi.org/10.7554/eLife.02851
dc.relation.referencesPodlipaev, S. A. (2000). Insect trypanosomatids: The need to know more. Memórias do Instituto Oswaldo Cruz, 95(4), 517-522. https://doi.org/10.1590/S0074-02762000000400013
dc.relation.referencesReady, P. D. (2013). Biology of Phlebotomine Sand Flies as Vectors of Disease Agents. Annual Review of Entomology, 58(1), 227-250. https://doi.org/10.1146/annurev-ento-120811-153557
dc.relation.referencesRivero-Rodríguez, M. E., Rodríguez-Jiménez, J. L., Pérez-Doria, A., & Elías Bejarano, E. (2018). Aislamiento de Leishmania infantum a partir de Canis familiaris en área urbana del Caribe colombiano. Revista de Investigaciones Veterinarias del Perú, 29(3), 923-930. https://doi.org/10.15381/rivep.v29i3.13708
dc.relation.referencesRodríguez-Rojas, J. J., Lozano-Sardaneta, Y. N., Fernández-Salas, I., Sánchez-Casas, R. M., & Becker, I. (2024). Species diversity, barcode, detection of pathogens and blood meal pattern in Phlebotominae (Diptera: Psychodidae) from northeastern Mexico. Acta Tropica, 249, 107064. https://doi.org/10.1016/j.actatropica.2023.107064
dc.relation.referencesRogers, M. E., Corware, K., Müller, I., & Bates, P. A. (2010). Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes and Infection, 12(11), 875-879. https://doi.org/10.1016/j.micinf.2010.05.014
dc.relation.referencesRojas-Jaimes, J., Zuñiga-Requena, E., & Correa-Nuñez, G. (2018). Lutzomyia shannoni un potencial vector de Leishmania chagasi en Madre de Dios, Perú. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 534. https://doi.org/10.17843/rpmesp.2018.353.3291
dc.relation.referencesRomero Ricardo, L., Meza, N. L., Pérez Doria, A., & Bejarano Martínez, E. (2013). Lutzomyia abonnenci y Lutzomyia olmeca bicolor (Diptera: Psychodidae), Nuevos registros para el departamento de Sucre, Colombia. Acta Biológica Colombiana, 18(2), 375-380
dc.relation.referencesRueda-Concha, K. L., Payares-Mercado, A., Guerra-Castillo, J., Melendrez, J., Arroyo-Munive, Y., Martínez-Abad, L., Cochero, S., Bejarano, E. E., & Paternina, L. E. (2022). Circulación de Leishmania infantum y Trypanosoma cruzi en perros domésticos de áreas urbanas de Sincelejo, región Caribe de Colombia. Biomédica, 42(4), 633-649. https://doi.org/10.7705/biomedica.6369
dc.relation.referencesSalgado-Almario, J., Hernández, C. A., & Ovalle, C. E. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomédica, 39(2), 278-290. https://doi.org/10.7705/biomedica.v39i3.4312
dc.relation.referencesSanchez, J. P., Cañola, J., Molina, J. P., Bejarano, N., Vélez-Mira, A., Vélez, I. D., & Robledo, S. M. (2020). Ecoepidemiología de la leishmaniasis visceral en Colombia (1943-2019): Revisión sistemática. Hechos Microbiológicos, 11(1 y 2), 22-60. https://doi.org/10.17533/udea.hm.v11n1a03
dc.relation.referencesSandoval, C. M., Gutiérrez, R., Cárdenas, R., & Ferro, C. (2006). Especies de género Lutzomyia (Psychodidae, Phlebotominae) en áreas de transmisión de leishmaniasis tegumentaria y visceral en el departamento de Santander, en la cordillera oriental de los Andes colombianos. Biomédica, 26(1), 217. https://doi.org/10.7705/biomedica.v26i1.1515
dc.relation.referencesSantamaría, E., Ponce, N., Zipa, Y., & Ferro, C. (2006). Presence of infected vectors of Leishmania (V.) panamensis within dwellings in two endemic foci in the foothill of the middle Magdalena valley, western Boyacá, Colombia. Biomédica, 26, 82-94
dc.relation.referencesSant’Anna, M. R. V., Darby, A. C., Brazil, R. P., Montoya-Lerma, J., Dillon, V. M., Bates, P. A., & Dillon, R. J. (2012). Investigation of the Bacterial Communities Associated with Females of Lutzomyia Sand Fly Species from South America. PLoS ONE, 7(8), e42531. https://doi.org/10.1371/journal.pone.0042531
dc.relation.referencesSimões, P. M., Mialdea, G., Reiss, D., Sagot, M. ‐F., & Charlat, S. (2011). Wolbachia detection: An assessment of standard PCR Protocols. Molecular Ecology Resources, 11(3), 567-572. https://doi.org/10.1111/j.1755-0998.2010.02955.x
dc.relation.referencesSmith, A., Clark, P., Averis, S., Lymbery, A. J., Wayne, A. F., Morris, K. D., & Thompson, R. C. A. (2008). Trypanosomes in a declining species of threatened Australian marsupial, the brush-tailed bettong Bettongia penicillata (Marsupialia: Potoroidae). Parasitology, 135(11), 1329-1335. https://doi.org/10.1017/S0031182008004824
dc.relation.referencesT. C. Hsieh, K. H. Ma and Anne Chao. (2015). iNEXT: Interpolation and Extrapolation for Species Diversity (p. 3.0.1) [Dataset]. https://doi.org/10.32614/CRAN.package.iNEXT
dc.relation.referencesTabbabi, A., Mizushima, D., Yamamoto, D. S., & Kato, H. (2022). Sand Flies and Their Microbiota. Parasitologia, 2(2), Article 2. https://doi.org/10.3390/parasitologia2020008
dc.relation.referencesTabbabi, A., Watanabe, S., Mizushima, D., Caceres, A. G., Gomez, E. A., Yamamoto, D. S., Cui, L., Hashiguchi, Y., & Kato, H. (2020). Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms, 9(1), 68. https://doi.org/10.3390/microorganisms9010068
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
dc.relation.referencesTanure, A., Rêgo, F. D., Tonelli, G. B., Campos, A. M., Shimabukuro, P. H. F., Gontijo, C. M. F., Paz, G. F., & Andrade-Filho, J. D. (2020). Diversity of phlebotomine sand flies and molecular detection of trypanosomatids in Brumadinho, Minas Gerais, Brazil. PLOS ONE, 15(6), e0234445. https://doi.org/10.1371/journal.pone.0234445
dc.relation.referencesTelleria, E. L., Martins-da-Silva, A., Tempone, A. J., & Traub-Csekö, Y. M. (2018). Leishmania, microbiota and sand fly immunity. Parasitology, 145(10), 1336-1353. https://doi.org/10.1017/S0031182018001014
dc.relation.referencesTrifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232-W235. https://doi.org/10.1093/nar/gkw256
dc.relation.referencesUrueta-S, E. J. (1975). Arañas Rojas (Acarina: Tetranychidae) del departamento de Antioquia. Revista Colombiana de Entomología, 1(2-3), Article 2-3. https://doi.org/10.25100/socolen.v1i2-3.10432
dc.relation.referencesVelez-B., I. D., Travi, B. L., Gallego, J., Palma, G. I., Agudelo, S. D. P., Montoya, J., Jaramillo, C., & Llano, R. (1995). Evaluación ecoepidemiológica de la leishmaniosis visceral en la comunidad indígena Zenú de San Andrés de Sotavento, Córdoba: Primer paso para su control. Revista Colombiana de Entomología, 21(3), 111-122. https://doi.org/10.25100/socolen.v21i3.9973
dc.relation.referencesVeras, P., & Bezerra De Menezes, J. (2016). Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection. International Journal of Molecular Sciences, 17(8), 1270. https://doi.org/10.3390/ijms17081270
dc.relation.referencesVillarreal Julio, R. G., Herrera, G., Muskus López, C. E., Villarreal Julio, R. G., Herrera, G., & Muskus López, C. E. (2021). Identificación de especies de Leishmania mediante PCR en tiempo real acoplada a curvas de fusión de alta resolución. Revista Cubana de Medicina Tropical, 73(3). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0375-076020210003 00007&lng=es&nrm=iso&tlng=es
dc.relation.referencesVivero-Gomez, R. J., Cadavid-Restrepo, G., Herrera, C. X. M., & Soto, S. I. U. (2017). Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasites & Vectors, 10(1), 110. https://doi.org/10.1186/s13071-017-2031-x
dc.relation.referencesVivero-Gomez, R. J., Castañeda-Monsalve, V. A., Atencia, M. C., Hoyos-Lopez, R., Hurst, G. D., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLOS Neglected Tropical Diseases, 15(12), e0009942. https://doi.org/10.1371/journal.pntd.0009942
dc.relation.referencesVivero-Gomez, R. J., Castañeda-Monsalve, V. A., Romero, L. R., D. Hurst, G., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 9(6), 1214. https://doi.org/10.3390/microorganisms9061214
dc.relation.referencesVivero-Gomez, R. J., Gutiérrez-García, M., Moreno-Herrera, C. X., Cadavid-Restrepo, G., & Uribe-Soto, S. (2016). Presencia de Wolbachia y Leishmania en una población de Lutzomyia evansi de la Costa Caribe de Colombia. Revista de la Facultad de Ciencias, 5(2), Article 2. https://doi.org/10.15446/rev.fac.cienc.v5n2.56684
dc.relation.referencesVivero-Gomez, R. J., Jaramillo, N. G., Cadavid-Restrepo, G., Soto, S. I. U., & Herrera, C. X. M. (2016). Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasites & Vectors, 9(1), 496. https://doi.org/10.1186/s13071-016-1766-0
dc.relation.referencesVivero-Gomez, R. J., Villegas-Plazas, M., Cadavid-Restrepo, G. E., Herrera, C. X. M., Uribe, S. I., & Junca, H. (2019). Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Scientific Reports, 9(1), 17746. https://doi.org/10.1038/s41598-019-53769-z
dc.relation.referencesVotýpka, J., Zeman, Š., Stříbrná, E., Pajer, P., Bartoš, O., Kment, P., Iv, J. L., & Iii, J. L. (2024). Multiple and frequent trypanosomatid co-infections of insects: The Cuban case study. Parasitology, 151(6), 567-578. https://doi.org/10.1017/S0031182024000453
dc.relation.referencesWallace, F. G. (1966). The trypanosomatid parasites of insects and arachnids. Experimental Parasitology, 18(1), 124-193. https://doi.org/10.1016/0014-4894(66)90015-4
dc.relation.referencesWallace, F. G., & Hertig, M. (1968). Ultrastructural comparison of promastigote flagellates (leptomonads) of wild-caught Panamanian Phlebotomus. The Journal of Parasitology, 54(3), 606-612. WHO. (2024). Leishmaniasis. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/l eishmaniasis
dc.relation.referencesWickham, H. (2016). Ggplot2. Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4
dc.relation.referencesYoung, D. G., & Duncan, M. A. (1994). Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae): 887. https://doi.org/10.21236/ADA285737
dc.relation.referencesYoung, D. G., Morales, A., Kreutzer, R. D., Alexander, J. B., Corredor, A., & Tesh, R. B. (1987). Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from Cryopreserved Colombian Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 24(5), 587-589. https://doi.org/10.1093/jmedent/24.5.587
dc.relation.referencesYun, J.-H., Roh, S. W., Whon, T. W., Jung, M.-J., Kim, M.-S., Park, D.-S., Yoon, C., Nam, Y.-D., Kim, Y.-J., Choi, J.-H., Kim, J.-Y., Shin, N.-R., Kim, S.-H., Lee, W.-J., & Bae, J.-W. (2014). Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host. Applied and Environmental Microbiology, 80(17), 5254-5264. https://doi.org/10.1128/AEM.01226-14
dc.relation.referencesZambrano Hernández, C. P., Ayala Sotelo, M. S., Fuya Oviedo, O. P., Barraza, O. C., & Rodríguez Toro, G. (2016). Cartagena: Nuevo foco de leishmaniasis visceral urbana en Colombia. Ciencia en Desarrollo, 7(1), 83-91. https://doi.org/10.19053/01217488.4234
dc.relation.referencesZchori‐Fein, E., & Perlman, S. J. (2004). Distribution of the bacterial symbiont Cardinium in arthropods. Molecular Ecology, 13(7), 2009-2016. https://doi.org/10.1111/j.1365-294X.2004.02203.x
dc.relation.referencesZhou, W., Rousset, F., & O’Neill, S. (1998). Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 509-515. https://doi.org/10.1098/rspb.1998.0324
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsEndosymbiontseng
dc.subject.keywordsVectoreng
dc.subject.keywordsPhlebotomine sandflieseng
dc.subject.keywordsBiological control agentseng
dc.subject.keywordsLeishmaniaeng
dc.subject.keywordsTrypanosomatidaeeng
dc.subject.keywordsMinION sequencingeng
dc.subject.proposalEndosimbiontesspa
dc.subject.proposalVectorspa
dc.subject.proposalFlebotominosspa
dc.subject.proposalAgentes de control biológicospa
dc.subject.proposalLeishmaniaspa
dc.subject.proposalTrypanosomatidaespa
dc.subject.proposalSecuenciación MinIONspa
dc.titleEndosimbiontes bacterianos y microbiota intestinal de vectores de Leishmania y otros tripanosomátidos del departamento de Sucre, región Caribe de Colombia
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
AlemánSantosMairaAlejandra.pdf
Tamaño:
10.4 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización Publicación pdf.pdf
Tamaño:
417.59 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones