Publicación: Estudio sobre la patogenicidad de Candidatus Rickettsia colombiensis
dc.contributor.advisor | Máttar Velilla, Salim | |
dc.contributor.author | Miranda Regino, Jorge | |
dc.contributor.jury | Castro, Lyda | |
dc.contributor.jury | Monsalve Buriticá, Santiago | |
dc.contributor.jury | Bermúdez Sergio | |
dc.date.accessioned | 2025-10-07T13:32:32Z | |
dc.date.available | 2025-10-07T13:32:32Z | |
dc.date.issued | 2025-10-06 | |
dc.description.abstract | Las Rickettsiosis son zoonosis transmitidas por garrapatas, y existe preocupación por el aumento de casos y en particular por la aparición de nuevas especies del grupo de las fiebres manchadas (GFM). Candidatus Rickettsia colombiensis es una nueva especie del GFM, de patogenicidad desconocida, pero relacionada filogenéticamente con especies patógenas. Por otro lado, la reactividad serológica cruzada entre especies de rickettsia es bien conocida, en ese sentido, Ca. R. colombiensis podría ser útil para el diagnóstico de rickettsiosis causadas por rickettsias del GFM. Objetivo. Determinar el potencial patógeno de Candidatus Rickettsia colombiensis y analizar la reactividad cruzada frente a otras especies rickettsia del GFM. Metodos. Ca. R. colombiensis fue aislado de Amblyomma dissimile mediante Shell vial. Posteriormente, cinco Syriam hámsters (M. auratus) machos fueron inoculados vía intraperitoneal (IP) y 5 por vía intradérmica (ID) con 1×106 células Vero infectadas con Ca. R. colombiensis. Un animal control fue usado para cada grupo. El estado de salud de los animales fue evaluado diariamente, las necropsias se realizaron los días 5, 10, 15 y 16 DPI, muestras de suero para inmunofluorescencia indirecta y tejidos para qPCR e histopatológia, fueron procesadas. La reactividad cruzada de los anticuerpos en los hamsteres y sueros humanos infectados por Rickettsia sp. del GFM fue establecido utilizando las láminas antigenadas con R. rickettsii, R. parkeri y Ca. R. colombiensis. Para caracterizar el genoma se tomaron los datos crudos de la secuenciación y se realizó un reensamblaje y una nueva anotación del genoma. Posteriormente, se realizó un analisis filogenetico y se identificaron los genes de virulencia mediante VFanalyzer y por comparativa genómica. A cada gen se le realizó un análisis de la secuencia nucleotídica y una modelación de la estructura 3D para las proteínas OmpA, OmpB, Sca1 y Sca2 en SWISS-MODEL. Resultados. Todos los animales se mantuvieron sanos y no mostraron cambios en los parámetros fisiológicos ni histopatologicos. DNA de Rickettsia fue negativo en los tejidos. Todos los animales inoculados tuvieron anticuerpos IgG anti- Ca. R. colombiensis con títulos de 1:64 hasta 1:1024. Los controles fueron negativos. Ninguno de los sueros presentó anticuerpos contra R. rickettsii y R. parkeri. El 56% (84/150) de los sueros humanos, tuvieron anticuerpos IgG contra Ca. R colombiensis. Pero cuando se evaluaron sueros con títulos iguales o superiores a 1:128, el 100% fueron seroreactivas. El reensamblaje produjo un genoma de (~1,4 Mbp) y cuatro contigs plasmídicos. En total 1852 genes, de los cuales 1200 son codificantes y 652 (35%) pseudogenes, el contenido de GC 32,4 % y la presencia de cuatro plásmidos. El análisis filogenético demostró que Ca. R. colombiensis se encuentra en el subclado GFMIb que contienen R. tamurae, R. monacensis y Rickettsia endosimbionte de Ixodes pacificus con soportes de rama de 100%. El VFanalyzer y la genómica comparativa muestran la ausencia de los genes rickA, RARP-2, VapC y la pseudogenizacion del gen ralf y RisK1. La estructura 3D de las proteínas OmpA y OmpB estuvieron acorde a los modelos del PDB, mientras que los modelos de Sca1 y Sca2 presentaron una baja calidad. Conclusión. Ca. R. colombiensis causo una infección subclínica en los hámsters y sugiere la posibilidad de infectar otros mamíferos. El análisis filogenético demostró que Ca. R. colombiensis se encuentra en el subclado GFMIb que contienen R. tamurae, R. monacensis y Rickettsia endosimbionte. Los hallazgos clínicos, patológicos y moleculares concluyen que no es una especie patógena. La reactividad cruzada podría ser una ventaja para realizar el diagnostico de rickettsiosis con antígenos de Ca. R. colombiensis | spa |
dc.description.abstract | Rickettsioses are zoonoses transmitted primarily by ticks. There is concern about the increase in cases and, in particular, the emergence of new species of the spotted fever group (SFG). Candidatus Rickettsia colombiensis is a new species of the SFG, of unknown pathogenicity, but phylogenetically related to pathogenic species. On the other hand, serological cross-reactivity between rickettsia species is well known; therefore, Ca. R. colombiensis could be useful for the diagnosis of rickettsioses caused by SFG rickettsias. Objective. To determine the pathogenic potential of Ca. R. colombiensis, a new species of the SFG in Syrian hamsters (M. auratus), and to analyze cross-reactivity against other SFG rickettsia species in human and Syrian hamster sera. Methods. Ca. R. colombiensis was isolated from Amblyomma dissimile by Shell vial. Subsequently, five male hamsters were inoculated intraperitoneally (IP) and 5 intradermally (ID) with 1 × 106 Vero cells infected with Ca. R. colombiensis. One control animal was used for each group. The health status of the animals was assessed daily, necropsies were performed on days 5, 10, 15 and 16 DPI, serum samples for indirect immunofluorescence and tissues for qPCR and histopathology were processed. Cross-reactivity of antibodies in hamsters and human sera infected with Rickettsia sp. of SFG was established using slides antigenized with R. rickettsii, R. parkeri and Ca. R. colombiensis. To characterize the genome, raw sequencing data were taken and genome reassembly and re-annotation were performed. Subsequently, a phylogenetic analysis was performed and virulence genes were identified using VFanalyzer and by genomic comparison. Nucleotide sequence analysis for each gene and 3D structure modeling the OmpA, OmpB, Sca1, and Sca2 proteins were performed in SWISS-MODEL. Results. All animals remained healthy and showed no changes in physiological or histopathological parameters. Rickettsia DNA was negative in tissues. All inoculated animals had anti-Ca. R. colombiensis IgG antibodies with titers ranging from 1:64 to 1:1024. Controls were negative. None of the sera presented antibodies against R. rickettsii and R. parkeri. 56% (84/150) of the human sera had IgG antibodies against Ca. R. colombiensis. However, when sera with titers equal to or greater than 1:128 were evaluated, 100% were seroreactive. The reassembly produced a genome of (~1.4 Mbp) and four plasmid contigs. A total of 1852 genes were identified, of which 1200 were coding and 652 (35%) were pseudogenes, with a GC content of 32.4% and the presence of four plasmids. Phylogenetic analysis showed that Ca. R. colombiensis is located in the GFMIb suclade containing R. tamurae, R. monacensis and Rickettsia endosymbiont of Ixodes pacificus with 100% branch support. VFanalyzer and comparative genomics showed the absence of the genes rickA, RARP-2, VapC and the pseudogenization of ralf and RisK1. The 3D structures of the OmpA and OmpB proteins were in agreement with the PDB models, whereas the Sca1 and Sca2 models presented a low quality. Conclusion. Ca. R. colombiensis causes a subclinical infection in hamsters and suggests the possibility of infecting other mammals. However, clinical, pathological, and molecular findings conclude that it is not a pathogenic species. Cross-reactivity could be an advantage for diagnosing rickettsiosis with Ca. R. colombiensis antigens | eng |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor(a) en Microbiología y Salud Tropical | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | INDICE DE FIGURAS | spa |
dc.description.tableofcontents | INDICE DE TABLAS | spa |
dc.description.tableofcontents | INDICE DE ANEXOS | spa |
dc.description.tableofcontents | RESUMEN | spa |
dc.description.tableofcontents | ABSTRACT | spa |
dc.description.tableofcontents | INTRODUCCIÓN | spa |
dc.description.tableofcontents | PLANTEAMIENTO DEL PROBLEMA | spa |
dc.description.tableofcontents | MARCO TEORICO | spa |
dc.description.tableofcontents | Clasificación de Rickettsiae | spa |
dc.description.tableofcontents | Candidatus a Rickettsia patógenos de humanos. | spa |
dc.description.tableofcontents | Candidatus a Rickettsia como posible patógenos humanos | spa |
dc.description.tableofcontents | Candidatus a Rickettsia reportados en animales | spa |
dc.description.tableofcontents | Patogenesis de Rickettsiae | spa |
dc.description.tableofcontents | Inmunidad del hospedero a la infección | spa |
dc.description.tableofcontents | OBJETIVOS | spa |
dc.description.tableofcontents | HIPÓTESIS | spa |
dc.description.tableofcontents | METODOLOGIA | spa |
dc.description.tableofcontents | Tipo de estudio y aspectos eticos | spa |
dc.description.tableofcontents | Metodología Objetivo específico 1. Establecer la infección y los cambios patológicos en Syriam hamster (Mesocricetus auratus) inoculados con Candidatus Rickettsia colombiensis | spa |
dc.description.tableofcontents | Metodología Objetivo específico 2. Establecer la reactividad cruzada de los anticuerpos producidos en los Syriam hamster (M. auratus) infectados con Ca. R. colombiensis contra otras especies de rickettsia del GFM circulantes en la región | spa |
dc.description.tableofcontents | Metodología Objetivo específico 3. Analizar la reactividad cruzada de los anticuerpos producidos en los Syriam hamster (M. auratus) infectados con Ca. R. colombiensis contra otras especies de rickettsia circulantes en la región | spa |
dc.description.tableofcontents | Metodología Objetivo específico 4. Caracterización del genoma Candidatus Rickettsia colombiensis (anteriormente Candidatus Rickettsia colombianensi) | spa |
dc.description.tableofcontents | RESULTADOS | spa |
dc.description.tableofcontents | Resultados del Objetivo específico 1 | spa |
dc.description.tableofcontents | Resultados del Objetivo 2 | spa |
dc.description.tableofcontents | Resultados del Objetivo 3 | spa |
dc.description.tableofcontents | Resultados objetivo 4 | spa |
dc.description.tableofcontents | DISCUSIÓN | spa |
dc.description.tableofcontents | CONCLUSIONES | spa |
dc.description.tableofcontents | RECOMENDACIONES Y PERSPECTIVAS | spa |
dc.description.tableofcontents | REFERENCIAS | spa |
dc.description.tableofcontents | ANEXOS | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9560 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Doctorado en Microbiología y Salud Tropical | |
dc.relation.references | Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 2005;18(4):719-756 | |
dc.relation.references | Biggs HM, Behravesh CB, Bradley KK, Dahlgren FS, Drexler NA, Dumler JS, et al. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States: A practical guide for health care and public health professionals. Morbidity and Mortality Weekly Report: Recommendations and Reports 2016;65(2):1-44. | |
dc.relation.references | Mattar S, Tique V, Miranda J, Montes E, Garzon D. Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. Journal of infection and public health 2017;10(5):507-512. | |
dc.relation.references | Quintero Velez JC, Aguirre-Acevedo DC, Rodas JD, Arboleda M, Troyo A, Vega Aguilar F, et al. Epidemiological characterization of incident cases of Rickettsia infection in rural areas of Uraba region, Colombia. PLoS Negl Trop Dis 2018 October 31;12(10):e0006911. | |
dc.relation.references | Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 2013 October 01;26(4):657-702 | |
dc.relation.references | ECDC. Epidemiological situation of rickettsioses in EU/EFTA countries. Technical report 2013. | |
dc.relation.references | Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean spotted fever: Current knowledge and recent advances. Tropical Medicine and Infectious Disease 2021;6(4):172. | |
dc.relation.references | Buczek W, Koman-Izko A, Buczek AM, Buczek A, Bartosik K, Kulina D, et al. Spotted fever group rickettsiae transmitted by Dermacentor ticks and determinants of their spread in Europe. Ann Agric Environ Med 2020 December 22;27(4):505-511. | |
dc.relation.references | Binder AM, Armstrong PA. Increase in Reports of Tick-Borne Rickettsial Diseases in the United States. Am J Nurs 2019 July 01;119(7):20-21. | |
dc.relation.references | Álvarez-Hernández G, Roldán JFG, Milan NSH, Lash RR, Behravesh CB, Paddock CD. Rocky Mountain spotted fever in Mexico: past, present, and future. The Lancet Infectious Diseases 2017;17(6):e189-e196. | |
dc.relation.references | Patino L, Afanador A, Paul JH. A spotted fever in Tobia, Colombia. 1937. Biomedica 2006 June 01;26(2):178-193. | |
dc.relation.references | Acosta J, Urquijo L, Díaz A, Sepúlveda M, Mantilla G, Heredia D, et al. Brote de rickettsiosis en Necoclí, Antioquia, febrero-marzo de 2006. Inf Quinc Epidemiol Nac 2006;11(12):177-192. | |
dc.relation.references | Pacheco O, Giraldo M, Martínez M, Hidalgo M, Galeano A, Echeverri I, et al. Estudio de brote febril hemorrágico en el corregimiento de Alto de Mulatos-Distrito Especial Portuario de Turbo, Antioquia, enero de 2008. Inf Quinc Epidemiol Nac 2008;13(10):145-160. | |
dc.relation.references | Hidalgo M, Miranda J, Heredia D, Zambrano P, Vesga JF, Lizarazo D, et al. Outbreak of Rocky Mountain spotted fever in Cordoba, Colombia. Mem Inst Oswaldo Cruz 2011 February 01;106(1):117-118. | |
dc.relation.references | Piotrowski M, Rymaszewska A. Expansion of tick-borne rickettsioses in the world. Microorganisms 2020;8(12):1906. | |
dc.relation.references | Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020 July 01;70(7):3956-4042. | |
dc.relation.references | Miranda J, Portillo A, Oteo JA, Mattar S. Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae): a new proposed Rickettsia detected in Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. J Med Entomol 2012;49(4):960-965. | |
dc.relation.references | Rodriguez MM, Oviedo A, Bautista D, Tamaris-Turizo DP, Flores FS, Castro LR. Molecular Detection of Rickettsia and Other Bacteria in Ticks and Birds in an Urban Fragment of Tropical Dry Forest in Magdalena, Colombia. Life 2023;13(1):145. | |
dc.relation.references | Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG. Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 2002;68(9):4559-4566. | |
dc.relation.references | Jado I, Oteo JA, Aldamiz M, Gil H, Escudero R, Ibarra V, et al. Rickettsia monacensis and human disease, Spain. Emerg Infect Dis 2007 September 01;13(9):1405-1407. | |
dc.relation.references | Fournier P, Takada N, Fujita H, Raoult D. Rickettsia tamurae sp. nov., isolated from Amblyomma testudinarium ticks. Int J Syst Evol Microbiol 2006 July 01;56(Pt 7):1673-1675. | |
dc.relation.references | McDade JE. Evidence supporting the hypothesis that rickettsial virulence factors determine the severity of spotted fever and typhus group infections. Ann N Y Acad Sci 1990;590:20-26. | |
dc.relation.references | Londoño AF, Mendell NL, Walker DH, Bouyer DH. A biosafety level-2 dose-dependent lethal mouse model of spotted fever rickettsiosis: Rickettsia parkeri Atlantic Rainforest strain. PLoS neglected tropical diseases 2019;13(6):e0007054. | |
dc.relation.references | Baker JA. A Rickettsial Infection in Canadian Voles. J Exp Med 1946 June 30;84(1):37-50. | |
dc.relation.references | Aita T, Sando E, Katoh S, Hamaguchi S, Fujita H, Kurita N. Serological cross-reactivity between spotted fever and typhus groups of rickettsia infection in Japan. International Journal of Infectious Diseases 2023;130:178-181. | |
dc.relation.references | Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, et al. Wholly Rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio 2017;8(5):10.1128/mbio. 00859-17. | |
dc.relation.references | Diop A, Raoult D, Fournier P. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microb Infect 2018;20(7-8):401-409. | |
dc.relation.references | McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathogens and Disease 2021;79(4):ftab019. | |
dc.relation.references | Blanc G, Ngwamidiba M, Ogata H, Fournier P, Claverie J, Raoult D. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 2005;22(10):2073-2083. | |
dc.relation.references | Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2015;39(1):47-80. | |
dc.relation.references | Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 2005;123(6):1013-1023. | |
dc.relation.references | Hillman Jr RD, Baktash YM, Martinez JJ. OmpA‐mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell Microbiol 2013;15(5):727-741. | |
dc.relation.references | Sahni A, Patel J, Narra HP, Schroeder CL, Walker DH, Sahni SK. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PloS one 2017;12(8):e0183181. | |
dc.relation.references | Helminiak L, Mishra S, Kim HK. Pathogenicity and virulence of Rickettsia. Virulence 2022;13(1):1752-1771 | |
dc.relation.references | Stokes JV, Walker DH, Varela-Stokes AS. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks and tick-borne diseases 2020;11(6):101538. | |
dc.relation.references | Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature 2008 February 21;451(7181):990-993. | |
dc.relation.references | Miranda J, Mattar S, Puerta-Gonzalez A, Muskus C, Oteo JA. Genome Sequence of "Candidatus Rickettsia colombianensi," a Novel Tick-Associated Bacterium Distributed in Colombia. Microbiol Resour Announc 2019 April 04;8(14):e01433-18. | |
dc.relation.references | Soto E, Mattar S. Fiebres hemorrágicas por Arenavirus en Latinoamérica. Revista Salud Uninorte 2010;26(2):298-310. | |
dc.relation.references | Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of rickettsial diseases: pathogenic and immune mechanisms of an endotheliotropic infection. Annual Review of Pathology: Mechanisms of Disease 2019;14:127-152. | |
dc.relation.references | Hidalgo M, Sánchez R, Orejuela L, Hernández J, Walker DH, Valbuena G. Prevalence of antibodies against spotted fever group rickettsiae in a rural area of Colombia. Am J Trop Med Hyg 2007;77(2):378-380. | |
dc.relation.references | Hidalgo M, Vesga JF, Lizarazo D, Valbuena G. A survey of antibodies against Rickettsia rickettsii and Ehrlichia chafeensis in domestic animals from a rural area of Colombia. Am J Trop Med Hyg 2009 June 01;80(6):1029-1030. | |
dc.relation.references | Miranda A, Florez S, Máttar S. Alta seroprevalencia de rickettsiosis en trabajadores del campo en el municipio de Ciénaga de Oro, Córdoba. Inf Quinc Epidemiol Nac 2001;7(5):71. | |
dc.relation.references | Quintero JC, Londono AF, Diaz FJ, Agudelo-Florez P, Arboleda M, Rodas JD. Ecoepidemiology of rickettsial infection in rodents, ectoparasites and humans in northeastern Antioquia, Colombia. Biomedica 2013 September 01;33 Suppl 1:38-51. | |
dc.relation.references | Quintero V JC, Paternina T LE, Uribe Y A, Muskus C, Hidalgo M, Gil J, et al. Eco-epidemiological analysis of rickettsial seropositivity in rural areas of Colombia: A multilevel approach. PLoS neglected tropical diseases 2017;11(9):e0005892. | |
dc.relation.references | Cotes-Perdomo A, Cárdenas-Carreño J, Hoyos J, González C, Castro LR. Molecular detection of Candidatus Rickettsia colombianensi in ticks (Acari, Ixodidae) collected from herpetofauna in San Juan de Carare, Colombia. International Journal for Parasitology: Parasites and Wildlife 2022;19:110-114. | |
dc.relation.references | Santodomingo A, Cotes-Perdomo A, Foley J, Castro LR. Rickettsial infection in ticks (Acari: Ixodidae) from reptiles in the Colombian Caribbean. Ticks and tick-borne diseases 2018;9(3):623-628. | |
dc.relation.references | Luz HR, Silva-Santos E, Costa-Campos CE, Acosta I, Martins TF, Muñoz-Leal S, et al. Detection of Rickettsia spp. in ticks parasitizing toads (Rhinella marina) in the northern Brazilian Amazon. Experimental and Applied Acarology 2018;75:309-318. | |
dc.relation.references | Bassini-Silva R, de Castro Jacinavicius F, Muñoz-Leal S, Maturano R, Takatsu JC, Tolesano-Pascoli GV, et al. Bacterial pathogens’ screening in Brazilian chigger mites (Trombidiformes: Trombiculidae), with the first report of'Candidatus Rickettsia colombianensi'-like in avian-associated chiggers. Arch Microbiol 2023;205(1):51. | |
dc.relation.references | Romero L, Costa FB, Labruna MB. Ticks and tick-borne Rickettsia in El Salvador. Experimental and Applied Acarology 2021;83:545-554. | |
dc.relation.references | Ogrzewalska M, Literák I, Capek M, Sychra O, Calderón VÁ, Rodríguez BC, et al. Bacteria of the genus Rickettsia in ticks (Acari: Ixodidae) collected from birds in Costa Rica. Ticks and Tick-borne Diseases 2015;6(4):478-482. | |
dc.relation.references | Bermudez S, Martinez-Mandiche J, Dominguez L, Gonzalez C, Chavarria O, Moreno A, et al. Diversity of Rickettsia in ticks collected from wild animals in Panama. Ticks and Tick-borne Diseases 2021;12(4):101723. | |
dc.relation.references | Novakova M, Literak I, Chevez L, Martins TF, Ogrzewalska M, Labruna MB. Rickettsial infections in ticks from reptiles, birds and humans in Honduras. Ticks and Tick-borne Diseases 2015;6(6):737-742. | |
dc.relation.references | Sánchez-Montes S, Isaak-Delgado AB, Guzmán-Cornejo C, Rendón-Franco E, Muñoz-García CI, Bermúdez S, et al. Rickettsia species in ticks that parasitize amphibians and reptiles: Novel report from Mexico and review of the worldwide record. Ticks and tick-borne diseases 2019;10(5):987-994. | |
dc.relation.references | Paddock CD, Sumner JW, Comer JA, Zaki SR, Goldsmith CS, Goddard J, et al. Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clinical Infectious Diseases 2004;38(6):805-811. | |
dc.relation.references | Angelakis E, Bechah Y, Raoult D. The history of epidemic typhus. Microbiology spectrum 2016;4(4):10.1128/microbiolspec. poh-2015. | |
dc.relation.references | Paddock CD, Karpathy SE, Henry A, Ryle L, Hecht JA, Hacker JK, et al. Rickettsia rickettsii subsp californica subsp nov, the Etiologic Agent of Pacific Coast Tick Fever. J Infect Dis 2025;231(4):849-858. | |
dc.relation.references | Kim HK. Rickettsia-host-tick interactions: knowledge advances and gaps. Infect Immun 2022;90(9):621. | |
dc.relation.references | Newton PN, Fournier P, Tappe D, Richards AL. Renewed risk for epidemic typhus related to war and massive population displacement, Ukraine. Emerging Infectious Diseases 2022;28(10):2125. | |
dc.relation.references | Dardona Z, Amane M, Boussaa S. Scabies and Lice Infestations in Gaza: Risk Factors and Public Health Challenges During the 2023–2024 Conflict. Egyptian Journal of Dermatology and Venerology 2025;45(2):127-133. | |
dc.relation.references | Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM. Evolution and diversity of Rickettsia bacteria. BMC biology 2009;7(1):6 | |
dc.relation.references | Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nature Reviews Microbiology 2021;19(6):375-390. | |
dc.relation.references | Parola P, Musso D, Raoult D. Rickettsia felis: the next mosquito-borne outbreak? The Lancet Infectious Diseases 2016;16(10):1112-1113. | |
dc.relation.references | Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, et al. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PloS one 2008;3(4):e2018. | |
dc.relation.references | Snellgrove AN, Krapiunaya I, Scott P, Levin ML. Assessment of the pathogenicity of Rickettsia amblyommatis, Rickettsia bellii, and Rickettsia montanensis in a guinea pig model. Vector-Borne and Zoonotic Diseases 2021;21(4):232-241. | |
dc.relation.references | El Karkouri K, Ghigo E, Raoult D, Fournier P. Genomic evolution and adaptation of arthropod-associated Rickettsia. Scientific Reports 2022;12(1):3807. | |
dc.relation.references | Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020;70(11):5607-5612. | |
dc.relation.references | Li H, Li X, Du J, Zhang X, Cui N, Yang Z, et al. Candidatus Rickettsia xinyangensis as cause of spotted fever group rickettsiosis, Xinyang, China, 2015. Emerging Infectious Diseases 2020;26(5):985. | |
dc.relation.references | Santibáñez S, Portillo A, Ibarra V, Santibáñez P, Metola L, García-García C, et al. Epidemiological, clinical, and microbiological characteristics in a large series of patients affected by Dermacentor-borne-necrosis-erythema-lymphadenopathy from a unique centre from Spain. Pathogens 2022;11(5):528. | |
dc.relation.references | Portillo A, Ibarra V, Santibáñez S, Pérez-Martínez L, Blanco JR, Oteo JA. Genetic characterisation of ompA, ompB and gltA genes from Candidatus Rickettsia rioja. Clinical Microbiology and Infection 2009;15:307-308. | |
dc.relation.references | Liu W, Li H, Lu Q, Cui N, Yang Z, Hu J, et al. Candidatus Rickettsia tarasevichiae infection in Eastern Central China: a case series. Ann Intern Med 2016;164(10):641-648. | |
dc.relation.references | Eremeeva ME, Weiner LM, Zambrano ML, Dasch GA, Hu R, Vilcins I, et al. Detection and characterization of a novel spotted fever group Rickettsia genotype in Haemaphysalis leporispalustris from California, USA. Ticks and tick-borne diseases 2018;9(4):814-818. | |
dc.relation.references | Probert WS, Haw MP, Nichol AC, Glaser CA, Park SY, Campbell LE, et al. Newly Recognized Spotted Fever Group Rickettsia as Cause of Severe Rocky Mountain Spotted Fever–Like Illness, Northern California, USA. Emerging Infectious Diseases 2024;30(7):1344. | |
dc.relation.references | Jiang J, Blair PJ, Felices V, Moron C, Cespedes M, Anaya E, et al. Phylogenetic analysis of a novel molecular isolate of spotted fever group Rickettsiae from northern Peru: Candidatus Rickettsia andeanae. Ann N Y Acad Sci 2005;1063(1):337-342. | |
dc.relation.references | Blair PJ, Schoeler GB, Moron C, Anaya E, Caceda R, Cespedes M, et al. Evidence of rickettsial and leptospira infections in Andean northern Peru. Am J Trop Med Hyg 2004;70(4):357-363. | |
dc.relation.references | Blair PJ, Jiang J, Schoeler GB, Moron C, Anaya E, Cespedes M, et al. Characterization of spotted fever group rickettsiae in flea and tick specimens from northern Peru. J Clin Microbiol 2004;42(11):4961-4967. | |
dc.relation.references | Lee JK, Moraru GM, Stokes JV, Wills RW, Mitchell E, Unz E, et al. Rickettsia parkeri and “Candidatus Rickettsia andeanae” in questing Amblyomma maculatum (Acari: Ixodidae) from Mississippi. J Med Entomol 2017;54(2):476-480. | |
dc.relation.references | Paddock CD, Hecht JA, Green AN, Waldrup KA, Teel PD, Karpathy SE, et al. Rickettsia parkeri (Rickettsiales: Rickettsiaceae) in the sky islands of West Texas. J Med Entomol 2020;57(5):1582-1587. | |
dc.relation.references | Delgado-De la Mora J, Sánchez-Montes S, Licona-Enríquez JD, Delgado-De la Mora D, Paddock CD, Beati L, et al. Rickettsia parkeri and Candidatus Rickettsia andeanae in tick of the Amblyomma maculatum group, Mexico. Emerging Infectious Diseases 2019;25(4):836. | |
dc.relation.references | Flores-Mendoza C, Florin D, Felices V, Pozo EJ, Graf PC, Burrus RG, et al. Detection of Rickettsia parkeri from within Piura, Peru, and the first reported presence of Candidatus Rickettsia andeanae in the tick Rhipicephalus sanguineus. Vector-Borne and Zoonotic Diseases 2013;13(7):505-508. | |
dc.relation.references | Nieri-Bastos FA, Lopes MG, Cançado PHD, Rossa GAR, Faccini JLH, Gennari SM, et al. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes. Memórias do Instituto Oswaldo Cruz 2014;109(2):259-261. | |
dc.relation.references | Ogrzewalska M, Literak I, Martins TF, Labruna MB. Rickettsial infections in ticks from wild birds in Paraguay. Ticks and tick-borne diseases 2014;5(2):83-89. | |
dc.relation.references | Troncoso-Toro I, Muñoz-Leal S, Thompson M, Salinas J, Varas E, González-Acuña D. Detección de “Candidatus Rickettsia andeanae” en Rhipicephalus sanguineus sensu stricto (Acari: Ixodidae) en Rapa Nui-Isla de Pascua. Revista chilena de infectología 2021;38(4):548-554. | |
dc.relation.references | Sebastian PS, Winter M, Abate SD, Tarragona EL, Nava S. Molecular detection of Candidatus Rickettsia andeanae and Ehrlichia sp. in Amblyomma pseudoconcolor Aragão, 1908 (Acari: Ixodidae) from the argentinian Patagonia. Animals 2022;12(23):3307. | |
dc.relation.references | Rivera-Páez FA, Martins TF, Ossa-López PA, Sampieri BR, Camargo-Mathias MI. Detection of Rickettsia spp. in ticks (Acari: Ixodidae) of domestic animals in Colombia. Ticks and tick-borne diseases 2018;9(4):819-823. | |
dc.relation.references | Alvarez Londoño J, Martínez-Sánchez ET, Aristizábal-Mier M, Orozco-Piedrahita LM, Faccini-Martínez ÁA, Serpa MCA, et al. Serologic and molecular survey for Rickettsia in small mammals in the Andes of Colombia. Acta Trop 2025:107589. | |
dc.relation.references | Pacheco RC, Arzua M, Nieri-Bastos FA, Moraes-Filho J, Marcili A, Richtzenhain LJ, et al. Rickettsial infection in ticks (Acari: Ixodidae) collected on birds in southern Brazil. J Med Entomol 2012;49(3):710-716. | |
dc.relation.references | Peckle M, Luz HR, Labruna MB, Serpa MCA, Lima S, Maturano R, et al. Multi-locus phylogenetic analysis groups the New World bacterium Rickettsia sp. strain ApPR with the Old World species R. africae; proposal of “Candidatus Rickettsia paranaensis”. Ticks and tick-borne diseases 2019;10(6):101261. | |
dc.relation.references | Durães LS, Bitencourth K, Ramalho FR, Nogueira MC, Nunes EdC, Gazêta GS. Biodiversity of potential vectors of rickettsiae and epidemiological mosaic of spotted fever in the state of Paraná, Brazil. Frontiers in Public Health 2021;9:577789. | |
dc.relation.references | Borsoi ABP, Bitencourth K, de Oliveira SV, Amorim M, Gazêta GS. Human parasitism by Amblyomma parkeri ticks infected with Candidatus Rickettsia paranaensis, Brazil. Emerging infectious diseases 2019;25(12):2339. | |
dc.relation.references | Philip RN, Casper EA, Burgdorfer W, Gerloff RK, Hughes LE, John Bell E. Serologic typing of rickettsiae of the spotted fever group by microimmunofluorescence. The Journal of Immunology 1978;121(5):1961-1968. | |
dc.relation.references | Shapiro MR, Fritz CL, Tait K, Paddock CD, Nicholson WL, Abramowicz KF, et al. Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clinical infectious diseases 2010;50(4):541-548. | |
dc.relation.references | Johnston SH, Glaser CA, Padgett K, Wadford DA, Espinosa A, Espinosa N, et al. Rickettsia spp. 364D causing a cluster of eschar-associated illness, California. Pediatr Infect Dis J 2013;32(9):1036-1039. | |
dc.relation.references | Erol U, Sahin OF, Urhan OF, Genc MG, Altay K. Primarily molecular detection and phylogenetic analyses of spotted fever group Rickettsia species in cats in Türkiye; with new host reports of Rickettsia aeschlimannii, Rickettsia slovaca, and Candidatus Rickettsia barbariae. Comp Immunol Microbiol Infect Dis 2025:102319. | |
dc.relation.references | Liu G, Zhao S, Tan W, Hornok S, Yuan W, Mi L, et al. Rickettsiae in red fox (Vulpes vulpes), marbled polecat (Vormela peregusna) and their ticks in northwestern China. Parasites & vectors 2021;14:1-6. | |
dc.relation.references | Liu X, Yang M, Liu G, Zhao S, Yuan W, Xiao R, et al. Molecular evidence of Rickettsia raoultii,“Candidatus Rickettsia barbariae” and a novel Babesia genotype in marbled polecats (Vormela peregusna) at the China-Kazakhstan border. Parasites & vectors 2018;11:1-5. | |
dc.relation.references | Papa A, Xanthopoulou K, Kotriotsiou T, Papaioakim M, Sotiraki S, Chaligiannis I, et al. Rickettsia species in human-parasitizing ticks in Greece. Trans R Soc Trop Med Hyg 2016;110(5):299-304. | |
dc.relation.references | Seidi S, Omidi AH, Esmaeili S. Distribution of different Rickettsia species in countries of the WHO Eastern Mediterranean (WHO-EMRO) region: An overview. Travel Medicine and Infectious Disease 2024;58:102695. | |
dc.relation.references | Essbauer S, Hofmann M, Kleinemeier C, Wölfel S, Matthee S. Rickettsia diversity in southern Africa: A small mammal perspective. Ticks and tick-borne diseases 2018;9(2):288-301. | |
dc.relation.references | Walker DH, Hudnall SD, Szaniawski WK, Feng H. Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: the macrophage is the principal target. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 1999;12(5):529-533. | |
dc.relation.references | Fournier P, Gouriet F, Brouqui P, Lucht F, Raoult D. Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clinical infectious diseases 2005;40(10):1435-1444. | |
dc.relation.references | Valbuena G, Feng HM, Walker DH. Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites. Microb Infect 2002;4(6):625-633. | |
dc.relation.references | Walker DH, Valbuena GA, Olano JP. Pathogenic mechanisms of diseases caused by Rickettsia. Ann N Y Acad Sci 2003;990(1):1-11 | |
dc.relation.references | Walker DH, Ismail N. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nature Reviews Microbiology 2008;6(5):375-386. | |
dc.relation.references | Sumner JW, Sims KG, Jones DC, Anderson BE. Protection of guinea-pigs from experimental Rocky Mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 1995;13(1):29-35. | |
dc.relation.references | Martinez JJ, Cossart P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci 2004;117(21):5097-5106. | |
dc.relation.references | Policastro PF, Hackstadt T. Differential activity of Rickettsia rickettsii ompA and ompB promoter regions in a heterologous reporter gene system. Microbiology 1994;140(11):2941-2949. | |
dc.relation.references | Ngwamidiba M, Blanc G, Raoult D, Fournier P. Sca 1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC microbiology 2006;6(1):12. | |
dc.relation.references | Riley SP, Goh KC, Hermanas TM, Cardwell MM, Chan YG, Martinez JJ. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect Immun 2010;78(5):1895-1904. | |
dc.relation.references | Cardwell MM, Martinez JJ. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect Immun 2009;77(12):5272-5280. | |
dc.relation.references | Balraj P, Renesto P, Raoult D. Advances in Rickettsia pathogenicity. Ann N Y Acad Sci 2009;1166(1):94-105. | |
dc.relation.references | Vellaiswamy M, Kowalczewska M, Merhej V, Nappez C, Vincentelli R, Renesto P, et al. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb Pathog 2011;50(5):233-242. | |
dc.relation.references | Reed SC, Serio AW, Welch MD. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho‐family GTPase‐dependent pathway. Cell Microbiol 2012;14(4):529-545. | |
dc.relation.references | Silverman DJ, Santucci LA, Meyers N, Sekeyova Z. Penetration of host cells by Rickettsia rickettsii appears to be mediated by a phospholipase of rickettsial origin. Infect Immun 1992;60(7):2733-2740. | |
dc.relation.references | Walker DH, Feng H, Popov VL. Rickettsial phospholipase A2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am J Trop Med Hyg 2001;65(6):936-942. | |
dc.relation.references | Whitworth T, Popov VL, Yu X, Walker DH, Bouyer DH. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect Immun 2005;73(10):6668-6673. | |
dc.relation.references | Rahman MS, Gillespie JJ, Kaur SJ, Sears KT, Ceraul SM, Beier-Sexton M, et al. Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells. PLoS pathogens 2013;9(6):e1003399 | |
dc.relation.references | Fuxelius H, Darby A, Min C, Cho N, Andersson SG. The genomic and metabolic diversity of Rickettsia. Res Microbiol 2007;158(10):745-753. | |
dc.relation.references | Engström P, Burke TP, Tran CJ, Iavarone AT, Welch MD. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. Science advances 2021;7(26):eabg2517 | |
dc.relation.references | Gillespie JJ, Brayton KA, Williams KP, Quevedo Diaz MA, Brown WC, Azad AF, et al. Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun 2010;78(5):1809-1823. | |
dc.relation.references | Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, et al. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 2005;280(2):1392-1400. | |
dc.relation.references | Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 2002;295(5555):679-682. | |
dc.relation.references | Rennoll-Bankert KE, Rahman MS, Guillotte ML, Lehman SS, Beier-Sexton M, Gillespie JJ, et al. RalF-mediated activation of Arf6 controls Rickettsia typhi invasion by co-opting phosphoinositol metabolism. Infect Immun 2016;84(12):3496-3506. | |
dc.relation.references | Lehman SS, Noriea NF, Aistleitner K, Clark TR, Dooley CA, Nair V, et al. The rickettsial ankyrin repeat protein 2 is a type IV secreted effector that associates with the endoplasmic reticulum. MBio 2018;9(3):10.1128/mbio. 00975-18. | |
dc.relation.references | Aistleitner K, Clark T, Dooley C, Hackstadt T. Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii. PLoS Pathogens 2020;16(5):e1008582. | |
dc.relation.references | Jeffery CJ. Moonlighting proteins—an update. Molecular BioSystems 2009;5(4):345-350. | |
dc.relation.references | Emelyanov VV, Loukianov EV. A 29.5 KDA Heat‐modifiable Major Outer Membrane Protein of Rickettsia Prowazekii, Putative Virulence Factor, is a Peptidyl‐Prolyl Cis/trans Isomerase. IUBMB Life 2004;56(4):215-219. | |
dc.relation.references | Cruz R, Huesgen P, Riley SP, Wlodawer A, Faro C, Overall CM, et al. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes. PLoS pathogens 2014;10(8):e1004324. | |
dc.relation.references | Curto P, Barro A, Almeida C, Vieira-Pires RS, Simões I. The retropepsin-type protease APRc as a novel ig-binding protein and moonlighting immune evasion factor of rickettsia. Mbio 2021;12(6):3059. | |
dc.relation.references | Voss OH, Gillespie JJ, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, et al. Risk1, a phosphatidylinositol 3-kinase effector, promotes Rickettsia typhi intracellular survival. MBio 2020;11(3):10.1128/mbio. 00820-20. | |
dc.relation.references | Audia JP, Winkler HH. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J Bacteriol 2006;188(17):6261-6268. | |
dc.relation.references | Schiffrin B, Machin JM, Karamanos TK, Zhuravleva A, Brockwell DJ, Radford SE, et al. Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Communications Biology 2022;5(1):560 | |
dc.relation.references | Narra HP, Sahni A, Sepuru KM, Alsing J, Sahni SK. Sensing the messenger: Potential roles of cyclic-di-GMP in rickettsial pathogenesis. International journal of molecular sciences 2022;23(7):3853. | |
dc.relation.references | Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu.Rev.Genet. 2006;40(1):385-407. | |
dc.relation.references | Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 2004;427(6973):457-461. | |
dc.relation.references | Kleba B, Clark TR, Lutter EI, Ellison DW, Hackstadt T. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 2010;78(5):2240-2247. | |
dc.relation.references | Renesto P, Samson L, Ogata H, Azza S, Fourquet P, Gorvel J, et al. Identification of two putative rickettsial adhesins by proteomic analysis. Res Microbiol 2006;157(7):605-612. | |
dc.relation.references | Park H, Lee JH, Gouin E, Cossart P, Izard T. The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem 2011;286(40):35096-35103. | |
dc.relation.references | Lamason RL, Bastounis E, Kafai NM, Serrano R, Del Álamo JC, Theriot JA, et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 2016;167(3):670-683. e10. | |
dc.relation.references | Kovář L. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol (Praha) 2004;49(3):327-336. | |
dc.relation.references | Fang R, Ismail N, Soong L, Popov VL, Whitworth T, Bouyer DH, et al. Differential interaction of dendritic cells with Rickettsia conorii: impact on host susceptibility to murine spotted fever rickettsiosis. Infect Immun 2007;75(6):3112-3123. | |
dc.relation.references | Feng H, Popov VL, Walker DH. Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect Immun 1994;62(5):1952-1960. | |
dc.relation.references | Feng H, Walker DH. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect Immun 2000;68(12):6729-6736. | |
dc.relation.references | Cragun WC, Bartlett BL, Ellis MW, Hoover AZ, Tyring SK, Mendoza N, et al. The expanding spectrum of eschar-associated rickettsioses in the United States. Arch Dermatol 2010;146(6):641-648. | |
dc.relation.references | Curto P, Simões I, Riley SP, Martinez JJ. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells. Front Cell Infect Microbiol. 2016; 6: 80. | |
dc.relation.references | Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 1997;76(1):129-138. | |
dc.relation.references | Feng H, Whitworth T, Popov V, Walker DH. Effect of antibody on the rickettsia-host cell interaction. Infect Immun 2004;72(6):3524-3530. | |
dc.relation.references | Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, Hackstadt T. Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 2008;76(2):542-550. | |
dc.relation.references | Arshad F, Sarfraz A, Shehroz M, Nishan U, Perveen A, Ullah R, et al. Core-genome guided novel therapeutic targets identification and chimeric vaccine designing against Rickettsia rickettsii. Scientific Reports 2025;15(1):921. | |
dc.relation.references | Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clinical infectious diseases 2001;32(6):897-928. | |
dc.relation.references | Paddock CD. Rickettsia parkeri as a paradigm for multiple causes of tick-borne spotted fever in the western hemisphere. Ann N Y Acad Sci 2005 December 01;1063:315-326 | |
dc.relation.references | Galvão MA, Mafra CL, Moron C, Anaya E, Walker DH. Rickettsiosis of the genus Rickettsia in South America. Ann N Y Acad Sci 2003;990(1):57-61. | |
dc.relation.references | Perlman SJ, Hunter MS, Zchori-Fein E. The emerging diversity of Rickettsia. Proc Biol Sci 2006 September 07;273(1598):2097-2106. | |
dc.relation.references | La Scola B, Raoult D. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 1997;35(11):2715-2727. | |
dc.relation.references | Fournier PE, Grunnenberger F, Jaulhac B, Gastinger G, Raoult D. Evidence of Rickettsia helvetica infection in humans, eastern France. Emerg Infect Dis 2000 August 01;6(4):389-392. | |
dc.relation.references | Raoult D, Berbis P, Roux V, Xu W, Maurin M. A new tick-transmitted disease due to Rickettsia slovaca. Lancet 1997 July 12;350(9071):112-113. | |
dc.relation.references | Imaoka K, Kaneko S, Tabara K, Kusatake K, Morita E. The First Human Case of Rickettsia tamurae Infection in Japan. Case Rep Dermatol 2011 March 25;3(1):68-73. | |
dc.relation.references | Pacheco RC, Horta MC, Moraes-Filho J, Ataliba AC, Pinter A, Labruna MB. Infección por rickettsia en capibaras (Hydrochoerus hydrochaeris) de São Paulo, Brasil: evidencia serológica de infección por Rickettsia bellii y Rickettsia parkeri. Biomédica 2007;27(3):364-371. | |
dc.relation.references | Yen W, Stern K, Mishra S, Helminiak L, Sanchez-Vicente S, Kim HK. Virulence potential of Rickettsia amblyommatis for spotted fever pathogenesis in mice. Pathogens and Disease 2021;79(5):ftab024. | |
dc.relation.references | Jiang J, An H, Lee JS, O’Guinn ML, Kim HC, Chong ST, et al. Molecular characterization of Haemaphysalis longicornis-borne rickettsiae, Republic of Korea and China. Ticks Tick Borne Dis 9: 1606–1613. 2018. | |
dc.relation.references | Qin X, Han H, Han F, Zhao F, Zhang Z, Xue Z, et al. Rickettsia japonica and novel Rickettsia species in ticks, China. Emerging Infectious Diseases 2019;25(5):992. | |
dc.relation.references | Hirunkanokpun S, Ahantarig A, Baimai V, Pramual P, Rakthong P, Trinachartvanit W. Two novel rickettsiae (Candidatus Rickettsia isanensis and Candidatus Rickettsia ranongensis) and co-detections of bacteria and protozoa in Amblyomma ticks of reptiles from Thailand. BMC microbiology 2025;25(1):463. | |
dc.relation.references | Kelly PJ, Raoult D, Mason PR. Isolation of spotted fever group rickettsias from triturated ticks using a modification of the centrifugation-shell vial technique. Trans R Soc Trop Med Hyg 1991 June 01;85(3):397-398. | |
dc.relation.references | Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A, et al. Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of São Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol 2004;42(1):90-98. | |
dc.relation.references | GIMENEZ DF. Staining Rickettsiae in Yolk-Sac Cultures. Stain Technol 1964 May 01;39:135-140. | |
dc.relation.references | Feng WC, Waner JL. Serological cross-reaction and cross-protection in guinea pigs infected with Rickettsia rickettsii and Rickettsia montana. Infect Immun 1980 May 01;28(2):627-629. | |
dc.relation.references | Brustolin JM, da Silva Krawczak F, Alves MEM, Weiller MA, de Souza CL, Rosa FB, et al. Experimental infection in Cavia porcellus by infected Amblyomma ovale nymphs with Rickettsia sp. (Atlantic rainforest strain). Parasitol Res 2018 March 01;117(3):713-720. | |
dc.relation.references | Soares JF, Soares HS, Barbieri AM, Labruna MB. Experimental infection of the tick Amblyomma cajennense, Cayenne tick, with Rickettsia rickettsii, the agent of Rocky Mountain spotted fever. Med Vet Entomol 2012 June 01;26(2):139-151. | |
dc.relation.references | Horta MC, Labruna MB, Sangioni LA, Vianna MC, Gennari SM, Galvão MA, et al. Prevalence of antibodies to spotted fever group rickettsiae in humans and domestic animals in a Brazilian spotted fever-endemic area in the state of São Paulo, Brazil: serologic evidence for infection by Rickettsia rickettsii and another spotted fever group Rickettsia. Am J Trop Med Hyg 2004;71(1):93-97. | |
dc.relation.references | Roux V, Fournier PE, Raoult D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol 1996 September 01;34(9):2058-2065. | |
dc.relation.references | Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods 2017;14(6):587-589. | |
dc.relation.references | Nguyen L, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32(1):268-274. | |
dc.relation.references | Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018;35(2):518-522. | |
dc.relation.references | Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10(3):512-526. | |
dc.relation.references | Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018 June 01;35(6):1547-1549. | |
dc.relation.references | Trifinopoulos J, Nguyen L, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016;44(W1):W232-W235. | |
dc.relation.references | De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 2023;39(5):btad311. | |
dc.relation.references | Wick R. Filtlong. https://github.com/rrwick/Filtlong, Consultado 25 abril de 2025. | |
dc.relation.references | Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019;37(5):540-546. | |
dc.relation.references | Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018;34(18):3094-3100. | |
dc.relation.references | Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience 2021;10(2):giab008. | |
dc.relation.references | Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021;38(10):4647-4654. | |
dc.relation.references | Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44(14):6614-6624. | |
dc.relation.references | Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol 2022;39(7):msac153. | |
dc.relation.references | Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019;20(1):238. | |
dc.relation.references | Uribe JE, Kelava S, Nava S, Cotes-Perdomo AP, Castro LR, Rivera-Paéz FA, et al. New insights into the molecular phylogeny, biogeographical history, and diversification of Amblyomma ticks (Acari: Ixodidae) based on mitogenomes and nuclear sequences. Parasites & Vectors 2024;17(1):139. | |
dc.relation.references | Whelan S, Irisarri I, Burki F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 2018;34(22):3929-3930. | |
dc.relation.references | Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30(4):772-780. | |
dc.relation.references | Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC evolutionary biology 2010;10(1):210. | |
dc.relation.references | Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28(12):1647-1649. | |
dc.relation.references | Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020;37(5):1530-1534. | |
dc.relation.references | Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013;30(5):1188-1195. | |
dc.relation.references | Schwarz G. Estimating the dimension of a model The Annals of Statistics 6 (2), 461–464. URL: http://dx.doi.org/10.1214/aos/1176344136 1978. | |
dc.relation.references | Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33(suppl_1):D325-D328. | |
dc.relation.references | Echeverry-Perez Jr JS, Castelli Sr M, Munoz-Leal Sr S, Nava Sr S, Sassera Sr D, Sanchez-Vialas A, et al. Evolution and comparative genomics of tick-associated endosymbionts: insights into metabolic pathways and historical biogeographic patterns. bioRxiv 2025:2025.07. 01.660216. | |
dc.relation.references | Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46(W1):W296-W303. | |
dc.relation.references | Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Science 2023;32(11):e4792. | |
dc.relation.references | National Toxicology Program. Nonneoplastic Lesion Atlas [cited 13 December 2024]. . Accessed Dec 13, 2024. | |
dc.relation.references | Piranda EM, Faccini JLH, Pinter A, Saito TB, Pacheco RC, Hagiwara MK, et al. Experimental infection of dogs with a Brazilian strain of Rickettsia rickettsii: clinical and laboratory findings. Memórias do Instituto Oswaldo Cruz 2008;103:696-701. | |
dc.relation.references | Rivas JJ, Moreira-Soto A, Alvarado G, Taylor L, Calderón-Arguedas O, Hun L, et al. Pathogenic potential of a Costa Rican strain of ‘Candidatus Rickettsia amblyommii’in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii. Ticks and Tick-borne Diseases 2015;6(6):805-811. | |
dc.relation.references | Stokes JV, Levin ML, Cross CE, Ross AL, Snellgrove AN, Willeford BV, et al. Evaluating the clinical and immune responses to spotted fever rickettsioses in the guinea pig‐tick‐Rickettsia system. Current Protocols 2022;2(11):e584. | |
dc.relation.references | Miao J, Chard LS, Wang Z, Wang Y. Syrian hamster as an animal model for the study on infectious diseases. Frontiers in immunology 2019;10:2329. | |
dc.relation.references | Blanton LS, Mendell NL, Walker DH, Bouyer DH. “Rickettsia amblyommii” induces cross protection against lethal Rocky Mountain spotted fever in a guinea pig model. Vector-Borne and Zoonotic Diseases 2014;14(8):557-562. | |
dc.relation.references | Burgdorfer W, Hayes SF, Thomas LA, Lancaster JL. New spotted fever group Rickettsia from the lone star tick, Amblyomma americanum. Rickettsiae and rickettsial diseases/edited by W.Burgdorfer; RL Anacker 1981. | |
dc.relation.references | PHILIP RN, Casper EA, Anacker RL, Cory J, Hayes SF, Burgdorfer W, et al. Rickettsia bellii sp. nov.: a tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int J Syst Evol Microbiol 1983;33(1):94-106. | |
dc.relation.references | Horta MC, Sabatini GS, Moraes-Filho J, Ogrzewalska M, Canal RB, Pacheco RC, et al. Experimental infection of the opossum Didelphis aurita by Rickettsia felis, Rickettsia bellii, and Rickettsia parkeri and evaluation of the transmission of the infection to ticks Amblyomma cajennense and Amblyomma dubitatum. Vector-Borne and Zoonotic Diseases 2010;10(10):959-967. | |
dc.relation.references | St. John HK, Adams ML, Masuoka PM, Flyer-Adams JG, Jiang J, Rozmajzl PJ, et al. Prevalence, distribution, and development of an ecological niche model of Dermacentor variabilis ticks positive for Rickettsia montanensis. Vector-borne and Zoonotic Diseases 2016;16(4):253-263. | |
dc.relation.references | Norment BR, Burgdorfer W. Susceptibility and reservoir potential of the dog to spotted fever-group rickettsiae. Am J Vet Res 1984;45(9):1706-1710. | |
dc.relation.references | Barrett A, Little SE, Shaw E. “Rickettsia amblyommii” and R. montanensis infection in dogs following natural exposure to ticks. Vector-Borne and Zoonotic Diseases 2014;14(1):20-25. | |
dc.relation.references | Oteo JA, Portillo A. Tick-borne rickettsioses in Europe. Ticks and tick-borne diseases 2012;3(5-6):271-278. | |
dc.relation.references | de Sousa R, Dos Santos ML, Cruz C, Almeida V, Garrote AR, Ramirez F, et al. Rare case of rickettsiosis caused by Rickettsia monacensis, Portugal, 2021. Emerging Infectious Diseases 2022;28(5):1068. | |
dc.relation.references | Parker RR, Kohls GM, Cox GW, Davis GE. Observations on an infectious agent from Amblyomma maculatum. Public Health Reports (1896-1970) 1939:1482-1484. | |
dc.relation.references | Lackman DB, Parker RR, Gerloff RK. Serological characteristics of a pathogenic rickettsia occurring in Amblyomma maculatum. Public Health Reports (1896-1970) 1949:1342-1349. | |
dc.relation.references | Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, et al. Amblyomma sculptum Salivary PGE2 Modulates the Dendritic Cell-Rickettsia rickettsii Interactions in vitro and in vivo. Frontiers in immunology 2019;10:118. | |
dc.relation.references | Ramachandra RN, Wikel SK. Modulation of host-immune responses by ticks (Acari: Ixodidae): effect of salivary gland extracts on host macrophages and lymphocyte cytokine production. J Med Entomol 1992;29(5):818-826. | |
dc.relation.references | Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in cellular and infection microbiology 2017;7:281. | |
dc.relation.references | Uchiyama T, Zhao L, Yan Y, Uchida T. Cross-reactivity of Rickettsia japonica and Rickettsia typhi demonstrated by immunofluorescence and Western immunoblotting. Microbiol Immunol 1995;39(12):951-957. | |
dc.relation.references | Gage KL, Jerrells TR. Demonstration and partial characterization of antigens of Rickettsia rhipicephali that induce cross-reactive cellular and humoral immune responses to Rickettsia rickettsii. Infect Immun 1992;60(12):5099-5106. | |
dc.relation.references | Delisle J, Mendell NL, Stull-Lane A, Bloch KC, Bouyer DH, Moncayo AC. Human infections by multiple spotted fever group rickettsiae in Tennessee. Am J Trop Med Hyg 2016;94(6):1212. | |
dc.relation.references | Vaughn MF, Delisle J, Johnson J, Daves G, Williams C, Reber J, et al. Seroepidemiologic study of human infections with spotted fever group rickettsiae in North Carolina. J Clin Microbiol 2014;52(11):3960-3966. | |
dc.relation.references | Willson R, Zhao Y, Brosamer K, Pal Y, Blanton LS, Arroyave E, et al. Development of a rapid antigen-based lateral flow assay for tick-borne spotted fever rickettsioses. PloS one 2025;20(1):e0312819. | |
dc.relation.references | Stewart AG, Stewart AG. An update on the laboratory diagnosis of Rickettsia spp. infection. Pathogens 2021;10(10):1319. | |
dc.relation.references | Alhassan A, Liu H, McGill J, Cerezo A, Jakkula LU, Nair AD, et al. Rickettsia rickettsii whole-cell antigens offer protection against Rocky Mountain spotted fever in the canine host. Infect Immun 2019;87(2):10.1128/iai. 00628-18. | |
dc.relation.references | Burgdorfer W, Hayes SF, Mavros AJ. Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. Rickettsiae and rickettsial diseases 1980. | |
dc.relation.references | Wikswo ME, Hu R, Dasch GA, Krueger L, Arugay A, Jones K, et al. Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J Med Entomol 2014;45(3):509-516. | |
dc.relation.references | Carmichael JR, Fuerst PA. Molecular detection of Rickettsia bellii, Rickettsia montanensis, and Rickettsia rickettsii in a Dermacentor variabilis tick from nature. Vector-Borne and Zoonotic Diseases 2010;10(2):111-115. | |
dc.relation.references | Szabó M, Nieri-Bastos FA, Spolidorio MG, Martins TF, Barbieri AM, Labruna MB. In vitro isolation from Amblyomma ovale (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest Rickettsia, the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitology 2013;140(6):719-728. | |
dc.relation.references | de Abreu, Daniel Paiva Barros, Peixoto MP, Luz HR, Zeringota V, Santolin, Ísis Daniele Alves Costa, Famadas KM, et al. Two for the price of one: co-infection with Rickettsia bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks and Tick-Borne Diseases 2019;10(6):101266. | |
dc.relation.references | Miranda J, Mattar S. Molecular detection of Rickettsia bellii and Rickettsia sp. strain Colombianensi in ticks from Cordoba, Colombia. Ticks and tick-borne diseases 2014;5(2):208-212. | |
dc.relation.references | Darby AC, Cho N, Fuxelius H, Westberg J, Andersson SG. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. TRENDS in Genetics 2007;23(10):511-520. | |
dc.relation.references | Fournier P, El Karkouri K, Leroy Q, Robert C, Giumelli B, Renesto P, et al. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 2009;10(1):166. | |
dc.relation.references | Felsheim RF, Kurtti TJ, Munderloh UG. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PloS one 2009;4(12):e8361. | |
dc.relation.references | El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier P, Raoult D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Frontiers in microbiology 2017;8:1363. | |
dc.relation.references | El Karkouri K, Pontarotti P, Raoult D, Fournier P. Origin and evolution of rickettsial plasmids. PLoS One 2016;11(2):e0147492. | |
dc.relation.references | Murray GG, Weinert LA, Rhule EL, Welch JJ. The phylogeny of Rickettsia using different evolutionary signatures: how tree-like is bacterial evolution? Syst Biol 2016;65(2):265-279. | |
dc.relation.references | Mendoza-Roldan JA, Ravindran Santhakumari Manoj R, Latrofa MS, Iatta R, Annoscia G, Lovreglio P, et al. Role of reptiles and associated arthropods in the epidemiology of rickettsioses: A one health paradigm. PLoS neglected tropical diseases 2021;15(2):e0009090. | |
dc.relation.references | Scott JD, Durden LA. Amblyomma dissimile Koch (Acari: Ixodidae) parasitizes bird captured in Canada. Systematic and Applied Acarology 2015;20(8):854-860. | |
dc.relation.references | Zhang J, Lu G, Li J, Kelly P, Li M, Wang J, et al. Molecular Detection of Rickettsia felis and Rickettsia bellii in Mosquitoes. Vector-Borne and Zoonotic Diseases 2019;19(11):802-809. | |
dc.relation.references | Oliveira KAd, Oliveira LSd, Dias C, Silva Jr A, Almeida MR, Almada G, et al. Molecular identification of Rickettsia felis in ticks and fleas from an endemic area for Brazilian Spotted Fever. Memórias do Instituto Oswaldo Cruz 2008;103:191-194. | |
dc.relation.references | Choi Y, Lee E, Park J, Lee K, Han S, Kim J, et al. Molecular detection of various rickettsiae in mites (Acari: Trombiculidae) in southern Jeolla Province, Korea. Microbiol Immunol 2007;51(3):307-312. | |
dc.relation.references | MEDINA‐SANCHEZ A, Bouyer DH, ALCANTARA‐RODRIGUEZ V, Mafra C, ZAVALA‐CASTRO J, Whitworth T, et al. Detection of a typhus group Rickettsia in Amblyomma ticks in the state of Nuevo Leon, Mexico. Ann N Y Acad Sci 2005;1063(1):327-332 | |
dc.relation.references | Li H, Walker DH. rOmpA is a critical protein for the adhesion ofRickettsia rickettsiito host cells. Microb Pathog 1998;24(5):289-298. | |
dc.relation.references | Chan YG, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ. Rickettsial outer‐membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c‐Cbl, clathrin and caveolin 2‐dependent manner. Cell Microbiol 2009;11(4):629-644 | |
dc.relation.references | Engström P, Burke TP, Mitchell G, Ingabire N, Mark KG, Golovkine G, et al. Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nature microbiology 2019;4(12):2538-2551. | |
dc.relation.references | Lamason RL, Kafai NM, Welch MD. A streamlined method for transposon mutagenesis of Rickettsia parkeri yields numerous mutations that impact infection. PLoS One 2018;13(5):e0197012. | |
dc.relation.references | Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, et al. Which way in? The RalF Arf-GEF orchestrates Rickettsia host cell invasion. PLoS Pathogens 2015;11(8):e1005115. | |
dc.relation.references | Jeng RL, Goley ED, D’Alessio JA, Chaga OY, Svitkina TM, Borisy GG, et al. A Rickettsia WASP‐like protein activates the Arp2/3 complex and mediates actin‐based motility. Cell Microbiol 2004;6(8):761-769. | |
dc.relation.references | Pelc RS, McClure JC, Kaur SJ, Sears KT, Rahman MS, Ceraul SM. Disrupting protein expression with peptide nucleic acids reduces infection by obligate intracellular Rickettsia. PloS one 2015;10(3):e0119283. | |
dc.relation.references | Harris EK, Jirakanwisal K, Verhoeve VI, Fongsaran C, Suwanbongkot C, Welch MD, et al. Role of Sca2 and RickA in the dissemination of Rickettsia parkeri in Amblyomma maculatum. Infect Immun 2018;86(6):10.1128/iai. 00123-18. | |
dc.relation.references | Pornwiroon W, Bourchookarn A, Paddock CD, Macaluso KR. Proteomic analysis of Rickettsia parkeri strain portsmouth. Infect Immun 2009;77(12):5262-5271. | |
dc.relation.references | Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, Gimenez G, et al. Effect of rickettsial toxin VapC on its eukaryotic host. PLoS One 2011;6(10):e26528 | |
dc.relation.references | Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nature Reviews Microbiology 2005;3(5):371-382. | |
dc.relation.references | Socolovschi C, Audoly G, Raoult D. Connection of toxin–antitoxin modules to inoculation eschar and arthropod vertical transmission in Rickettsiales. Comp Immunol Microbiol Infect Dis 2013;36(2):199-209 | |
dc.relation.references | Gillespie JJ, Phan IQ, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE, et al. The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathogens and disease 2016;74(6):ftw058. | |
dc.relation.references | Chan YG, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Frontiers in microbiology 2010;1:139. | |
dc.relation.references | Uchiyama T, Kawano H, Kusuhara Y. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microb Infect 2006;8(3):801-809 | |
dc.relation.references | Madasu Y, Suarez C, Kast DJ, Kovar DR, Dominguez R. Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proceedings of the National Academy of Sciences 2013;110(29):E2677-E2686. | |
dc.relation.references | Sakharkar KR, Dhar PK, Chow VT. Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. Int J Syst Evol Microbiol 2004;54(6):1937-1941 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Pathogenic | eng |
dc.subject.keywords | Animal model | eng |
dc.subject.keywords | Cross-reactivity | eng |
dc.subject.keywords | Rickettsia | eng |
dc.subject.keywords | Indirect fluorescent antibody technique | eng |
dc.subject.keywords | Genome | eng |
dc.subject.proposal | Patogenicidad | spa |
dc.subject.proposal | Model animal | spa |
dc.subject.proposal | Reactividad cruzada | spa |
dc.subject.proposal | Rickettsia | spa |
dc.subject.proposal | Inmunofluorescencia indirecta | spa |
dc.subject.proposal | Genoma | spa |
dc.title | Estudio sobre la patogenicidad de Candidatus Rickettsia colombiensis | spa |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: