Publicación: Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
dc.contributor.advisor | Pérez Sierra, Omar Andrés | |
dc.contributor.author | Hernández Arteaga, Ana María | |
dc.contributor.jury | Mendoza Corvis, Fernando Alonso | |
dc.contributor.jury | Gontijo, Marco Tulio | |
dc.date.accessioned | 2025-02-07T21:17:05Z | |
dc.date.available | 2027-01-23 | |
dc.date.available | 2025-02-07T21:17:05Z | |
dc.date.issued | 2024-12 | |
dc.description.abstract | El queso costeño es un producto ampliamente reconocido en el país debido a sus características y condiciones del proceso de producción y comercialización, haciendo necesario el uso de alternativas que conserven sus características y mejoren su inocuidad y calidad. Los bacteriófagos han mostrado ser una excelente alternativa para el biocontrol de bacterias que puedan afectar la calidad e inocuidad de productos alimenticios de gran valor nutricional. Por esta razón, el objetivo de este trabajo es evaluar la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del lactosuero y queso. Los bacteriófagos fueron aislados mediante el método de enriquecimiento, empleando como huésped la cepa de E. coli (ATCC 11229). La presencia de bacteriófagos se confirmó mediante la técnica de microgotas sobre un césped bacteriano. Posteriormente, los fagos se purificaron y cuantificaron. El espectro lítico se evaluó frente a varias especies, y se caracterizó tanto la morfología como su actividad lítica. Los fagos aislados JA-QT, SL-LC y HM-QC, mostraron una alta actividad lítica frente a E. coli. Los títulos de los fagos purificados oscilaron entre 1010 y 1012 UFP/mL. Dentro del rango de huéspedes evaluados, se destacó una notable alta actividad lítica sobre Salmonella Enteritidis. Morfológicamente, los fagos presentaron cabezas y colas características del orden Caudovirales. Los resultados de la actividad lítica indicaron que una multiplicidad de infección superior a 10 es necesaria para lograr una reducción de 2 a 5 log de E. coli en un tiempo de 50 minutos. En conclusión, se aislaron tres bacteriófagos con diversidad morfológica a partir de entornos de producción de queso costeño, capaces de inhibir el crecimiento de E. coli. | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Agroalimentarias | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | LISTA DE TABLAS 8 | |
dc.description.tableofcontents | LISTA DE FIGURAS 9 | |
dc.description.tableofcontents | LISTA DE ANEXOS 10 | |
dc.description.tableofcontents | LISTA DE SÍMBOLOS Y ABREVIATURAS 11 | |
dc.description.tableofcontents | RESUMEN 12 | |
dc.description.tableofcontents | ABSTRACT 13 | |
dc.description.tableofcontents | 1 INTRODUCCIÓN 14 | |
dc.description.tableofcontents | 2 REVISIÓN DE LITERATURA 16 | |
dc.description.tableofcontents | 2.1 ENFERMEDADES TRANSMITIDAS POR ALIMENTOS 16 | |
dc.description.tableofcontents | 2.1.1 Escherichia coli 17 | |
dc.description.tableofcontents | 2.2 QUESO COSTEÑO 18 | |
dc.description.tableofcontents | 2.3 BACTERIÓFAGOS 19 | |
dc.description.tableofcontents | 2.3.1 Ciclo de vida de bacteriófagos 19 | |
dc.description.tableofcontents | 2.3.2 Aislamiento de bacteriófagos 21 | |
dc.description.tableofcontents | 2.3.3 Espectro lítico de fagos 22 | |
dc.description.tableofcontents | 2.3.4 Morfología de los bacteriófagos 24 | |
dc.description.tableofcontents | 2.3.5 Aplicaciones de bacteriófagos en alimentos 26 | |
dc.description.tableofcontents | 3 OBJETIVOS 28 | |
dc.description.tableofcontents | 3.1 OBJETIVO GENERAL 28 | |
dc.description.tableofcontents | 3.2 OBJETIVOS ESPECÍFICOS 28 | |
dc.description.tableofcontents | 4 MATERIALES Y MÉTODOS 29 | |
dc.description.tableofcontents | 4.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 29 | |
dc.description.tableofcontents | 4.1.1 Condiciones experimentales 29 | |
dc.description.tableofcontents | 4.1.2 Cultivo de la bacteria huésped 29 | |
dc.description.tableofcontents | 4.1.3 Enriquecimiento y aislamiento de bacteriófagos 29 | |
dc.description.tableofcontents | 4.1.4 Determinación de la presencia de bacteriófagos en agar semisólido 30 | |
dc.description.tableofcontents | 4.1.5 Purificación y propagación de bacteriófagos 30 | |
dc.description.tableofcontents | 4.1.6 Determinación del título de la suspensión del fago 30 | |
dc.description.tableofcontents | 4.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 31 | |
dc.description.tableofcontents | 4.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 31 | |
dc.description.tableofcontents | 4.2.2 Caracterización morfológica de bacteriófagos aislados 32 | |
dc.description.tableofcontents | 4.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 32 | |
dc.description.tableofcontents | 4.4 Diseño experimental 33 | |
dc.description.tableofcontents | 5 RESULTADOS Y DISCUSIONES 34 | |
dc.description.tableofcontents | 5.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 34 | |
dc.description.tableofcontents | 5.1.1 Aislamiento de bacteriófagos 34 | |
dc.description.tableofcontents | 5.1.2 Purificación y propagación de bacteriófagos 36 | |
dc.description.tableofcontents | 5.1.3 Determinación del título de la suspensión de los bacteriófagos 385.1.3 Determinación del título de la suspensión de los bacteriófagos 38 | |
dc.description.tableofcontents | 5.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 39 | |
dc.description.tableofcontents | 5.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 39 | |
dc.description.tableofcontents | 5.2.2 Caracterización morfológica de bacteriófagos aislados 43 | |
dc.description.tableofcontents | 5.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 46 | |
dc.description.tableofcontents | 6 CONCLUSIONES 51 | |
dc.description.tableofcontents | 7 RECOMENDACIONES 52 | |
dc.description.tableofcontents | 8 REFERENCIAS BIBLIOGRÁFICAS 53 | |
dc.description.tableofcontents | ANEXOS 64 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9053 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Berástegui, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Agroalimentarias | |
dc.relation.references | Adams, M. H. (1959). Bacteriophages. In New York, Interscience Publishers. | |
dc.relation.references | Alexyuk, P., Bogoyavlenskiy, A., Alexyuk, M., Akanova, K., Moldakhanov, Y., & Berezin, V. (2023). Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms, 11(6). https://doi.org/10.3390/microorganisms11061524 | |
dc.relation.references | Alharbi, N. M., & Ziadi, M. M. (2021). Wastewater as a fertility source for novel bacteriophages against multi-drug resistant bacteria. Saudi Journal of Biological Sciences, 28(8), 4358–4364. https://doi.org/10.1016/J.SJBS.2021.04.025 | |
dc.relation.references | Aljamali, N., Najim, M., & Alabbasy, A. (2021). Review on Food poisoning (Types, Causes, Symptoms, Diagnosis, Treatment). 3, 54–61. https://doi.org/10.36348/gajpdr.2021.v03i04.001 | |
dc.relation.references | Atterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., Wagenaar, J. A., Allen, V. M., & Barrow, P. A. (2007). Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549. https://doi.org/10.1128/AEM.00049-07 | |
dc.relation.references | Ayala, R., Moiseenko, A. V, Chen, T.-H., Kulikov, E. E., Golomidova, A. K., Orekhov, P. S., Street, M. A., Sokolova, O. S., Letarov, A. V, & Wolf, M. (2023). Nearly complete structure of bacteriophage DT57C reveals architecture of head-to-tail interface and lateral tail fibers. Nature Communications, 14(1), 8205. https://doi.org/10.1038/s41467-023-43824-9 | |
dc.relation.references | Azzam, M., & Faiesal, A. (2019). Novel “Superspreader” Coliphages for Detecting Microbial Water Pollution. International Journal of Environment and Pollution, 8, 57–70. | |
dc.relation.references | Bao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., & Wang, R. (2015). Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses, 7, 4836–4853. https://doi.org/10.3390/v7082847 | |
dc.relation.references | Bebeacua, C., Tremblay, D., Farenc, C., Chapot-Chartier, M.-P., Sadovskaya, I., van Heel, M., Veesler, D., Moineau, S., & Cambillau, C. (2013). Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. Journal of Virology, 87(22), 12302–12312. https://doi.org/10.1128/JVI.02033-13 | |
dc.relation.references | Benala, M., Vaiyapuri, M., Visnuvinayagam, S., George, J. C., Raveendran, K., George, I., Mothadaka, M. P., & Badireddy, M. R. (2021). A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods, 294(March), 1–9. https://doi.org/10.1016/j.jviromet.2021.114177 | |
dc.relation.references | Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4). https://doi.org/10.1093/femsle/fnw002 | |
dc.relation.references | Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529–563. https://doi.org/10.3934/microbiol.2017.3.529 | |
dc.relation.references | Borbón Ramos, M. E., & Prieto Alvarado, F. E. (2019). Concordancia y subregistro en la notificación de brotes de enfermedades transmitidas por alimentos en Colombia. Revista de Salud Pública, 21(6 SE-Artículos/Investigación), 608–613. https://doi.org/10.15446/rsap.v21n6.50268 | |
dc.relation.references | Bueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23–27. https://doi.org/10.1016/J.IJFOODMICRO.2012.06.012 | |
dc.relation.references | Butt, S., Saleh, M., & Gagnon, J. (2020). Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. In Toxins (Vol. 12, Issue 12). https://doi.org/10.3390/toxins12120760 | |
dc.relation.references | Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471–477. https://doi.org/10.1038/nrg1089 | |
dc.relation.references | Chang, C., Yu, X., Guo, W., Guo, C., Guo, X., Li, Q., & Zhu, Y. (2022). Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Frontiers in Microbiology, 13. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.825828 | |
dc.relation.references | Christie, G. E. (1999). PROPAGATION OF VIRUSES | Bacteria. Encyclopedia of Virology (Second Edition), 1413–1418. https://doi.org/https://doi.org/10.1006/rwvi.1999.0237 | |
dc.relation.references | Costa, M. J., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2023). Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses, 15(6). https://doi.org/10.3390/v15061271 | |
dc.relation.references | Dharmaraj, T., Kratochvil, M. J., Pourtois, J. D., Chen, Q., Hajfathalian, M., Hargil, A., Lin, Y. H., Evans, Z., Oromí-Bosch, A., Berry, J. D., McBride, R., Haddock, N. L., Holman, D. R., Van Belleghem, J. D., Chang, T. H., Barr, J. J., Lavigne, R., Heilshorn, S. C., Blankenberg, F. G., & Bollyky, P. L. (2023). Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS Nexus, 2(12), 1–18. https://doi.org/10.1093/pnasnexus/pgad406 | |
dc.relation.references | Ekici, G., & Dümen, E. (2019). Escherichia coli and Food Safety (M. S. Erjavec (ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.82375 | |
dc.relation.references | El Haddad, L., Roy, J. P., Khalil, G. E., St-Gelais, D., Champagne, C. P., Labrie, S., & Moineau, S. (2016). Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology, 217, 7–13. https://doi.org/10.1016/j.ijfoodmicro.2015.10.001 | |
dc.relation.references | Endersen, L., & Coffey, A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1–8. https://doi.org/10.1016/j.cofs.2020.10.006 | |
dc.relation.references | Fathima, B., & Archer, A. C. (2021). Bacteriophage therapy: recent developments and applications of a renaissant weapon. Research in Microbiology, 172(6), 103863. https://doi.org/10.1016/j.resmic.2021.103863 | |
dc.relation.references | Fikadu, A., Amankwah, S., Alemu, B., Alemu, Y., Naga, A., Tekle, E., & Kassa, T. (2024). Isolation and Phenotypic Characterization of Virulent Bacteriophages Against Multidrug-Resistant Escherichia coli and Its Phage-Resistant Variant from Sewage Sources. Infect Drug Resist., 17, 293–303. https://doi.org/https://doi.org/10.2147/IDR.S441085 | |
dc.relation.references | Fong, K., Wong, C. W. Y., Wang, S., & Delaquis, P. (2021). How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (New Rochelle, N.Y.), 2(2), 83–91. https://doi.org/10.1089/phage.2020.0036 | |
dc.relation.references | Food and Drug Administration. (2006). Food Additives Permitted for Direct Addition to Food for Human Consumption; Bacteriophage Preparation. https://www.federalregister.gov/documents/2006/08/18/E6-13621/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-bacteriophage-preparation | |
dc.relation.references | Gallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R., & Marina, A. (2022). Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 13(1), 3627. https://doi.org/10.1038/s41467-022-31144-3 | |
dc.relation.references | García, P., Madera, C., Martínez, B., Rodríguez, A., & Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/JDS.2008-1744 | |
dc.relation.references | Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel, Switzerland), 11(10). https://doi.org/10.3390/antibiotics11101324 | |
dc.relation.references | Gerba, C. P. (2009). Environmentally Transmitted Pathogens. In Environmental Microbiology (pp. 445–484). https://doi.org/10.1016/B978-0-12-370519-8.00022-5 | |
dc.relation.references | Gibson, B., Wilson, D. J., Feil, E., & Eyre-Walker, A. (2018). The distribution of bacterial doubling times in the wild. Proceedings of the Royal Society B: Biological Sciences, 285(1880). https://doi.org/10.1098/rspb.2018.0789 | |
dc.relation.references | Gnezda-Meijer, K., Mahne, I., Poljšak-Prijatelj, M., & Stopar, D. (2006). Host physiological status determines phage-like particle distribution in the lysate. FEMS Microbiology Ecology, 55(1), 136–145. https://doi.org/10.1111/j.1574-6941.2005.00008.x | |
dc.relation.references | González-Morelo, K., Correa, A., Cabarcas, A. D. C., Castillo, P. M. M., Loraine, B., & Amador, O. (2018). Effect of Fat Content on the Properties of Colombian Queso Costeño Made from Goat Milk. International Journal of ChemTech Research, 11(5), 113–123. http://dx.doi.org/10.20902/IJCTR.2018.110513 | |
dc.relation.references | Goodridge, L., Gallaccio, A., & Griffiths, M. W. (2003). Morphological, host range, and genetic characterization of two coliphages. Applied and Environmental Microbiology, 69(9), 5364–5371. https://doi.org/10.1128/AEM.69.9.5364-5371.2003 | |
dc.relation.references | Guenther, S., & Loessner, M. J. (2011). Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses . Bacteriophage, 1(2), 94–100. https://doi.org/10.4161/bact.1.2.15662 | |
dc.relation.references | Guo, M., Gao, Y., Xue, Y., Liu, Y., Zeng, X., Cheng, Y., Ma, J., Wang, H., Sun, J., Wang, Z., & Yan, Y. (2021). Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Frontiers in Cellular and Infection Microbiology, 11, 690377. https://doi.org/10.3389/fcimb.2021.690377 | |
dc.relation.references | Gutiérrez -Castañeda, C., Quintero-Peñaranda, R., Burbano-Caicedo, I., & Simancas-Trujillo, R. (2017). Modelo de quesería artesanal bajo un signo distintivo en el Caribe Colombiano: Caso Atlántico. Revista Lasallista de Investigacion, 14(1), 72–83. https://doi.org/10.22507/rli.v14n1a6 | |
dc.relation.references | Han, S., Byun, K. H., Mizan, M. F. R., Kang, I., & Ha, S. Do. (2022). Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. In Food Control (Vol. 137). https://doi.org/10.1016/j.foodcont.2022.108976 | |
dc.relation.references | Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M. (2018). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212–213, 38–58. https://doi.org/10.1016/j.micres.2018.04.007 | |
dc.relation.references | Harding, K. R., Kyte, N., & Fineran, P. C. (2023). Jumbo phages. Current Biology, 33(14), R750–R751. https://doi.org/10.1016/j.cub.2023.05.056 | |
dc.relation.references | Holtappels, D., Alfenas-Zerbini, P., & Koskella, B. (2023). Drivers and consequences of bacteriophage host range. FEMS Microbiology Reviews, 47(4), fuad038. https://doi.org/10.1093/femsre/fuad038 | |
dc.relation.references | Hu, B., Margolin, W., Molineux, I. J., & Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proceedings of the National Academy of Sciences, 112(35), E4919–E4928. https://doi.org/10.1073/pnas.1501064112 | |
dc.relation.references | Huang, L., & Xiang, Y. (2020). Structures of the tailed bacteriophages that infect Gram-positive bacteria. Current Opinion in Virology, 45, 65–74. https://doi.org/10.1016/j.coviro.2020.09.002 | |
dc.relation.references | Hungaro, H. M., Mendonça, R. C. S., Gouvêa, D. M., Vanetti, M. C. D., & Pinto, C. L. de O. (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International, 52(1), 75–81. https://doi.org/10.1016/J.FOODRES.2013.02.032 | |
dc.relation.references | Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. https://doi.org/10.3390/ph12010035 | |
dc.relation.references | Hyman, P., & Abedon, S. T. B. T.-A. in A. M. (2010). Chapter 7 - Bacteriophage Host Range and Bacterial Resistance. In Advances in Applied Microbiology (Vol. 70, pp. 217–248). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2164(10)70007-1 | |
dc.relation.references | Imam, M., Alrashid, B., Patel, F., Dowah, A. S. A., Brown, N., Millard, A., Clokie, M. R. J., & Galyov, E. E. (2019). vB_PaeM_MIJ3, a Novel Jumbo Phage Infecting Pseudomonas aeruginosa, Possesses Unusual Genomic Features. Frontiers in Microbiology, 10, 2772. https://doi.org/10.3389/fmicb.2019.02772 | |
dc.relation.references | Imran, A., Shehzadi, U., Islam, F., Afzaal, M., Ali, R., Ali, Y. A., Chauhan, A., Biswas, S., Khurshid, S., Usman, I., Hussain, G., Zahra, S. M., Shah, M. A., & Rasool, A. (2023). Bacteriophages and food safety: An updated overview. Food Science and Nutrition, 11(7), 3621–3630. https://doi.org/10.1002/fsn3.3360 | |
dc.relation.references | Instituto Nacional de Salud (INS). (2020a). Informe de Evento: Enfermedades trasmitidas por alimentos. Periodo epidemilógico XIII. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf | |
dc.relation.references | Instituto Nacional de Salud (INS). (2020b). Informe de evento enfermedades transmitidas por alimentos, colombia, 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf | |
dc.relation.references | Instituto Nacional de Salud (INS). (2023). Informe de evento Brotes Enfermedades Transmitidas por Alimentos Código 349 I Semestre 2023. http://www.ins.gov.co/buscador-eventos/Informesdeevento/ETA PE VI 2023.pdf | |
dc.relation.references | Ismael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0 | |
dc.relation.references | Iyer, L. M., Anantharaman, V., Krishnan, A., Maxwell Burroughs, A., & Aravind, L. (2021). Jumbo phages: A comparative genomic overview of core functions and adaptions for biological conflicts. Viruses, 13(1), 1–42. https://doi.org/10.3390/v13010063 | |
dc.relation.references | Jofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. In F. de la Cruz (Ed.), Horizontal gene transfer. Methods in Molecular Biology (Humana). https://doi.org/https://doi.org/10.1007/978-1-4939-9877-7_4 | |
dc.relation.references | Jones, K. R., Eftim, S., Lindahl, A. J., Black, S., & Nappier, S. P. (2022). Occurrence of coliphage in effluent: A systematic literature review and meta-analysis. Hygiene and Environmental Health Advances, 3, 100014. https://doi.org/10.1016/J.HEHA.2022.100014 | |
dc.relation.references | Klumpp, J., Dunne, M., & Loessner, M. J. (2023). A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Current Opinion in Microbiology, 71, 102240. https://doi.org/10.1016/j.mib.2022.102240 | |
dc.relation.references | Kozlova, A. P., Muntyan, V. S., Vladimirova, M. E., Saksaganskaia, A. S., Kabilov, M. R., Gorbunova, M. K., Gorshkov, A. N., Grudinin, M. P., Simarov, B. V., & Roumiantseva, M. L. (2024). Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. International Journal of Molecular Sciences, 25(13). https://doi.org/10.3390/ijms25137388 | |
dc.relation.references | Kuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biological Control, 165, 104817. https://doi.org/10.1016/J.BIOCONTROL.2021.104817 | |
dc.relation.references | Kuek, M., McLean, S. K., & Palombo, E. A. (2023). Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol. Antibiotics (Basel, Switzerland), 12(11). https://doi.org/10.3390/antibiotics12111579 | |
dc.relation.references | Kwenda, A. (2014). An Investigation on the Causes of Escherichia coli and Coliform Contamination of Cheddar Cheese and How to Reduce the Problem (A Case Study at a Cheese Manufacturing Firm in Harare, Zimbabwe). International Journal of Nutrition and Food Sciences, 3, 6. https://doi.org/10.11648/j.ijnfs.s.2014030601.12 | |
dc.relation.references | Leiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S., & Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal, 7, 355. https://doi.org/10.1186/1743-422X-7-355 | |
dc.relation.references | LeLièvre, V., Besnard, A., Schlusselhuber, M., Desmasures, N., & Dalmasso, M. (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiology, 78, 89–98. https://doi.org/10.1016/J.FM.2018.10.009 | |
dc.relation.references | Letarov, A. V, & Kulikov, E. E. (2018). Determination of the Bacteriophage Host Range: Culture-Based Approach. Methods in Molecular Biology (Clifton, N.J.), 1693, 75–84. https://doi.org/10.1007/978-1-4939-7395-8_7 | |
dc.relation.references | Lin, J., Du, F., Long, M., & Li, P. (2022). Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules (Basel, Switzerland), 27(6). https://doi.org/10.3390/molecules27061857 | |
dc.relation.references | Lopez, M. E. S., Batalha, L. S., Vidigal, P. M. P., Albino, L. A. A., Boggione, D. M. G., Gontijo, M. T. P., Bazzolli, D. M. S., & Mendonca, R. C. S. (2016). Genome sequence of the enterohemorrhagic Escherichia coli bacteriophage UFV-AREG1. Genome Announcements, 4(5), 4–5. https://doi.org/10.1128/genomeA.00412-16 | |
dc.relation.references | Lopez, M. E. S., Gontijo, M. T. P., Batalha, L. S., & Mendonca, R. C. S. (2018). Bio-Sanitization Using Specific Bacteriophages to Control <em>Escherichia coli</em> O157:H7 in Cherry Tomatoes. Advance Journal of Food Science and Technology, 16(SPL), 92–101. https://doi.org/10.19026/ajfst.16.5942 | |
dc.relation.references | Lopez, M. E. S., Gontijo, M. T. P., Cardoso, R. R., Batalha, L. S., Eller, M. R., Bazzolli, D. M. S., Vidigal, P. M. P., & Mendonça, R. C. S. (2023). Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Frontiers in Cellular and Infection Microbiology, 13, 1178248. https://doi.org/10.3389/fcimb.2023.1178248 | |
dc.relation.references | Lukman, C., Yonathan, C., Magdalena, S., & Waturangi, D. E. (2020). Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Research Notes, 13(1), 1–7. https://doi.org/10.1186/S13104-019-4859-Y/FIGURES/2 | |
dc.relation.references | Maffei, E., Shaidullina, A., Burkolter, M., Heyer, Y., Estermann, F., Druelle, V., Sauer, P., Willi, L., Michaelis, S., Hilbi, H., Thaler, D. S., & Harms, A. (2021). Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLOS Biology, 19(11), 1–52. https://doi.org/10.1371/journal.pbio.3001424 | |
dc.relation.references | Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F., & Kirpichnikova, A. (2017). Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science, 249(May), 100–133. https://doi.org/10.1016/j.cis.2017.05.014 | |
dc.relation.references | Mangalea, M. R., & Duerkop, B. A. (2020). Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity, 88(7). https://doi.org/10.1128/IAI.00926-19 | |
dc.relation.references | Mattey, M., & Spencer, J. (2008). Bacteriophage therapy - cooked goose or Phoenix rising? Current Opinion in Biotechnology, 19(6), 608–612. https://doi.org/10.1016/j.copbio.2008.09.001 | |
dc.relation.references | Mendoza-Corvis, F. A., Pérez Sierra, O. A., Durango Villadiego, A. M., Gontijo, M. T. P., Batalha, L. S., & Soto Lopez, M. E. (2025). Physicochemical, textural and organoleptic characteristics of costeño cheese: An autochthonous product of the Colombian Caribbean coast. International Dairy Journal, 160(December 2023). https://doi.org/10.1016/j.idairyj.2024.106094 | |
dc.relation.references | Molina, F., Simancas, A., Tabla, R., Gómez, A., Roa, I., & Rebollo, J. E. (2020). Diversity and Local Coadaptation of Escherichia coli and Coliphages From Small Ruminants. Frontiers in Microbiology, 11, 564522. https://doi.org/10.3389/fmicb.2020.564522 | |
dc.relation.references | Moye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses, 10(4). https://doi.org/10.3390/v10040205 | |
dc.relation.references | Mozaffari, P., Berizi, E., Hosseinzadeh, S., Derakhshan, Z., Taghadosi, V., Montaseri, Z., & Götz, F. (2022). Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 315, 198754. https://doi.org/10.1016/j.virusres.2022.198754 | |
dc.relation.references | Muñoz, A. I., & Rodríguez, E. C. (2021). Distribución y caracterización fenotípica y genotípica de Listeria monocytogenes en aislamientos de alimentos, Colombia, 2010-2018. Biomédica, 41(Sp. 2 SE-Artículos originales), 165–179. https://doi.org/10.7705/biomedica.6152 | |
dc.relation.references | Nair, A., Ghugare, G. S., & Khairnar, K. (2022). An Appraisal of Bacteriophage Isolation Techniques from Environment. Microbial Ecology, 83(3), 519–535. https://doi.org/10.1007/s00248-021-01782-z | |
dc.relation.references | Nawaz, A., Zafar, S., Shahzadi, M., Bukhari, S. M. A. U. S., Khan, N., Shah, A. A., Badshah, M., & Khan, S. (2023). Bacteriophages: an overview of the control strategies against phytopathogens. Egyptian Journal of Biological Pest Control, 33(1), 108. https://doi.org/10.1186/s41938-023-00751-7 | |
dc.relation.references | Nirmal Kumar, G. P., Sundarrajan, S., Paul, V. D., Nandini, S., Saravanan, R. S., Hariharan, S., Sriram, B., & Padmanabhan, S. (2012). Use of prophage free host for achieving homogenous population of bacteriophages: new findings. Virus Research, 169(1), 182–187. https://doi.org/10.1016/j.virusres.2012.07.026 | |
dc.relation.references | O’Sullivan, L., Bolton, D., McAuliffe, O., & Coffey, A. (2019). Bacteriophages in Food Applications: From Foe to Friend. Annual Review of Food Science and Technology, 10, 151–172. https://doi.org/10.1146/annurev-food-032818-121747 | |
dc.relation.references | Organización Mundial de la Salud (OMS). (2020). Inocuidad de los alimentos. https://www.who.int/es/news-room/fact-sheets/detail/food-safety | |
dc.relation.references | Organización Panamericana de la Salud, (OPS). (2020). Enfermedades transmitidas por alimentos - OPS/OMS | Organización Panamericana de la Salud. OPS. https://www.paho.org/es/temas/enfermedades-transmitidas-por-alimentos | |
dc.relation.references | Połaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5(4), 324–346. https://doi.org/10.3934/microbiol.2019.4.324 | |
dc.relation.references | Rajnovic, D., Muñoz-Berbel, X., & Mas, J. (2019). Fast phage detection and quantification: An optical density-based approach. PLoS ONE, 14(5), 1–14. https://doi.org/10.1371/journal.pone.0216292 | |
dc.relation.references | Ranveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. Npj Science of Food, 8(1), 1. https://doi.org/10.1038/s41538-023-00245-8 | |
dc.relation.references | Reina, J., & Reina, N. (2018). [Phage therapy, an alternative to antibiotic therapy?)]. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 31(2), 101–104 | |
dc.relation.references | Ross, A., Ward, S., & Hyman, P. (2016). More is better: Selecting for broad host range bacteriophages. Frontiers in Microbiology, 7(SEP), 1–6. https://doi.org/10.3389/fmicb.2016.01352 | |
dc.relation.references | Ruíz-Pérez, R. A., Menco-Morales, N. Y., & Chams-Chams, L. M. (2017). Microbiological evaluation of artisan coastal cheese and hygieniclocative evaluation of small shops in córdoba, Colombia. Revista de Salud Publica, 19(3), 311–317. https://doi.org/10.15446/rsap.v19n3.54853 | |
dc.relation.references | Shousha, A., Awaiwanont, N., Sofka, D., Smulders, F. J. M., Paulsen, P., Szostak, M. P., Humphrey, T., & Hilbert, F. (2015). Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Applied and Environmental Microbiology, 81(14), 4600–4606. https://doi.org/10.1128/AEM.00872-15 | |
dc.relation.references | Sinha, S., Grewal, R. K., & Roy, S. (2018). Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy. In Advances in Applied Microbiology (1st ed., Vol. 103). Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.01.005 | |
dc.relation.references | Sjahriani, T., Wasito, E. B., & Tyasningsih, W. (2021). Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/7383121 | |
dc.relation.references | Sochocka, M., Tomczyk, T., Sobczyński, M., Szermer-Olearnik, B., & Boratyński, J. (2015). The kinetics of Escherichia coli B growth and bacteriophage T4 multiplication in SM-1 novel minimal culture medium. Journal of General and Applied Microbiology, 61(3), 75–81. https://doi.org/10.2323/jgam.61.75 | |
dc.relation.references | Soto-Varela, Z. E., Gutiérrez, C. G., de Moya, Y., Mattos, R., & Bolívar-Anillo, Hernando José Villarreal, J. L. (2018). Detección molecular de Salmonella spp., Listeria spp. y Brucella spp. en queso artesanal fresco comercializado en Barranquilla: Biomedica, 38, 30–36. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572018000600030&nrm=iso | |
dc.relation.references | Soto Lopez, M. E., De Carvalho, M. M., Meireles Gouvêa, D., Silva Batalha, L., Oliveira Neves, I., & Santos Mendonça, R. C. (2015). Isolation and characterization of lytic bacteriophages as an alternative to prevent pseudomonas spp in poultry industry. MOJ Food Processing & Technology, Volume 1(Issue 3). https://doi.org/10.15406/MOJFPT.2015.01.00018 | |
dc.relation.references | Soto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en colombia. Salud Uninorte, 32(1), 105–122. https://www.redalyc.org/articulo.oa?id=81745985010 | |
dc.relation.references | Tabla, R., Gómez, A., Rebollo, J. E., Molina, F., & Roa, I. (2022). Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli. LWT, 153, 112430. https://doi.org/10.1016/J.LWT.2021.112430 | |
dc.relation.references | Tabla, R., Gómez, A., Simancas, A., Rebollo, J. E., Molina, F., & Roa, I. (2016). Enterobacteriaceae species during manufacturing and ripening of semi–hard and soft raw ewe’s milk cheese: Gas production capacity. Small Ruminant Research, 145, 123–129. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.11.008 | |
dc.relation.references | Tang, Z., Tang, N., Wang, X., Ren, H., Zhang, C., Zou, L., Han, L., Guo, L., & Liu, W. (2023). Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1091442 | |
dc.relation.references | Thung, T., B.M.F., S., J.M.K.J.K., P., Chang, W., Loo, Y., KUAN, C. H. A. O., C.Y., N., A., U., O.S.B., R., Mahyudin, N. A., Basri, D., & S., W. (2017). Isolation of food-borne pathogen bacteriophages from retail food and environmental sewage. International Food Research Journal, 24, 450–454. | |
dc.relation.references | Unidad de Planificación Rural Agropecuaria (UPRA). (2021). Analisis prospectivo de la cadena láctea bovina colombiana. https://www.upra.gov.co/documents/10184/166404/20210728_DT_Prospectiva_Leche1.pdf/18a3ed0f-7eb6-4bda-9dd3-b55f85df8ee9 | |
dc.relation.references | Van Twest, R., & Kropinski, A. M. (2009). Bacteriophage enrichment from water and soil. Methods in Molecular Biology (Clifton, N.J.), 501, 15–21. https://doi.org/10.1007/978-1-60327-164-6_2 | |
dc.relation.references | Vasquez, I., Retamales, J., Parra, B., Machimbirike, V., Robeson, J., & Santander, J. (2023). Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. In Viruses (Vol. 15, Issue 2). https://doi.org/10.3390/v15020379 | |
dc.relation.references | Venturini, C., Petrovic Fabijan, A., Fajardo Lubian, A., Barbirz, S., & Iredell, J. (2022). Biological foundations of successful bacteriophage therapy. EMBO Molecular Medicine, 14(7), e12435. https://doi.org/https://doi.org/10.15252/emmm.202012435 | |
dc.relation.references | Wang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 39, 43–50. https://doi.org/10.1016/J.COFS.2020.12.015 | |
dc.relation.references | Wang, X., Wei, X., Zhang, Q., Li, L., Liu, Z., Chen, Y., Liu, Y., & Cai, Y. (2024). Genome sequence of Shiga toxin-producing Escherichia coli jumbo bacteriophage vB\_EcoM\_JNE01. Microbiology Resource Announcements, 13(2), e01145-23. https://doi.org/10.1128/mra.01145-23 | |
dc.relation.references | Xie, Y., Wahab, L., & Gill, J. J. (2018). Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4). https://doi.org/10.3390/v10040189 | |
dc.relation.references | Xuan, G., Lin, H., Tan, L., Zhao, G., & Wang, J. (2022). Quorum Sensing Promotes Phage Infection in Pseudomonas aeruginosa PAO1. MBio, 13(1), e0317421. https://doi.org/10.1128/mbio.03174-21 | |
dc.relation.references | Yamaki, S., Yamazaki, K., & Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2022.109680 | |
dc.relation.references | Yap, M. L., & Rossmann, M. G. (2014). Structure and function of bacteriophage T4. Future Microbiology, 9(12), 1319–1327. https://doi.org/10.2217/fmb.14.91 | |
dc.relation.references | You, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. Journal of Bacteriology, 184(7), 1888–1894. https://doi.org/10.1128/JB.184.7.1888-1894.2002 | |
dc.relation.references | Yuan, X., Zhang, S., Wang, J., Li, C., Li, N., Yu, S., Kong, L., Zeng, H., Yang, G., Huang, Y., Li, H., Zhang, J., Wu, Q., & Ding, Y. (2021). Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Research, 293, 198274. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198274 | |
dc.relation.references | Yuan, Y., & Gao, M. (2017). Jumbo Bacteriophages: An Overview. Frontiers in Microbiology, 8, 403. https://doi.org/10.3389/fmicb.2017.00403 | |
dc.relation.references | Zaki, B. M., Mohamed, A. A., Dawoud, A., Essam, K., Hammouda, Z. K., Abdelsattar, A. S., & El-Shibiny, A. (2023). Chapter Two - Isolation, screening and characterization of phage. In V. B. T.-P. in M. B. and T. S. SINGH (Ed.), Phage Therapy - Part A (Vol. 200, pp. 13–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.pmbts.2023.03.008 | |
dc.relation.references | Zhang, B., Xu, J., He, X., Tong, Y., & Ren, H. (2022). Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. In Microorganisms (Vol. 10, Issue 8). https://doi.org/10.3390/microorganisms10081590 | |
dc.relation.references | Zhang, M., Zhang, T., Yu, M., Chen, Y.-L., & Jin, M. (2022). The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses, 14(9). https://doi.org/10.3390/v14091904 | |
dc.relation.references | Zhu, Y., Shang, J., Peng, C., & Sun, Y. (2022). Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1032186 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Bacteriophages | eng |
dc.subject.keywords | Escherichia coli | eng |
dc.subject.keywords | Multiplicity of infection (MOI) | eng |
dc.subject.keywords | Costeño cheese | eng |
dc.subject.keywords | Lytic activity | eng |
dc.subject.proposal | Bacteriófagos | spa |
dc.subject.proposal | Escherichia coli | spa |
dc.subject.proposal | Multiplicidad de infección (MOI) | spa |
dc.subject.proposal | Queso costeño | spa |
dc.subject.proposal | Actividad lítica | spa |
dc.title | Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: