Publicación:
Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño

dc.contributor.advisorPérez Sierra, Omar Andrés
dc.contributor.authorHernández Arteaga, Ana María
dc.contributor.juryMendoza Corvis, Fernando Alonso
dc.contributor.juryGontijo, Marco Tulio
dc.date.accessioned2025-02-07T21:17:05Z
dc.date.available2027-01-23
dc.date.available2025-02-07T21:17:05Z
dc.date.issued2024-12
dc.description.abstractEl queso costeño es un producto ampliamente reconocido en el país debido a sus características y condiciones del proceso de producción y comercialización, haciendo necesario el uso de alternativas que conserven sus características y mejoren su inocuidad y calidad. Los bacteriófagos han mostrado ser una excelente alternativa para el biocontrol de bacterias que puedan afectar la calidad e inocuidad de productos alimenticios de gran valor nutricional. Por esta razón, el objetivo de este trabajo es evaluar la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del lactosuero y queso. Los bacteriófagos fueron aislados mediante el método de enriquecimiento, empleando como huésped la cepa de E. coli (ATCC 11229). La presencia de bacteriófagos se confirmó mediante la técnica de microgotas sobre un césped bacteriano. Posteriormente, los fagos se purificaron y cuantificaron. El espectro lítico se evaluó frente a varias especies, y se caracterizó tanto la morfología como su actividad lítica. Los fagos aislados JA-QT, SL-LC y HM-QC, mostraron una alta actividad lítica frente a E. coli. Los títulos de los fagos purificados oscilaron entre 1010 y 1012 UFP/mL. Dentro del rango de huéspedes evaluados, se destacó una notable alta actividad lítica sobre Salmonella Enteritidis. Morfológicamente, los fagos presentaron cabezas y colas características del orden Caudovirales. Los resultados de la actividad lítica indicaron que una multiplicidad de infección superior a 10 es necesaria para lograr una reducción de 2 a 5 log de E. coli en un tiempo de 50 minutos. En conclusión, se aislaron tres bacteriófagos con diversidad morfológica a partir de entornos de producción de queso costeño, capaces de inhibir el crecimiento de E. coli.
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agroalimentarias
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsLISTA DE TABLAS 8
dc.description.tableofcontentsLISTA DE FIGURAS 9
dc.description.tableofcontentsLISTA DE ANEXOS 10
dc.description.tableofcontentsLISTA DE SÍMBOLOS Y ABREVIATURAS 11
dc.description.tableofcontentsRESUMEN 12
dc.description.tableofcontentsABSTRACT 13
dc.description.tableofcontents1 INTRODUCCIÓN 14
dc.description.tableofcontents2 REVISIÓN DE LITERATURA 16
dc.description.tableofcontents2.1 ENFERMEDADES TRANSMITIDAS POR ALIMENTOS 16
dc.description.tableofcontents2.1.1 Escherichia coli 17
dc.description.tableofcontents2.2 QUESO COSTEÑO 18
dc.description.tableofcontents2.3 BACTERIÓFAGOS 19
dc.description.tableofcontents2.3.1 Ciclo de vida de bacteriófagos 19
dc.description.tableofcontents2.3.2 Aislamiento de bacteriófagos 21
dc.description.tableofcontents2.3.3 Espectro lítico de fagos 22
dc.description.tableofcontents2.3.4 Morfología de los bacteriófagos 24
dc.description.tableofcontents2.3.5 Aplicaciones de bacteriófagos en alimentos 26
dc.description.tableofcontents3 OBJETIVOS 28
dc.description.tableofcontents3.1 OBJETIVO GENERAL 28
dc.description.tableofcontents3.2 OBJETIVOS ESPECÍFICOS 28
dc.description.tableofcontents4 MATERIALES Y MÉTODOS 29
dc.description.tableofcontents4.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 29
dc.description.tableofcontents4.1.1 Condiciones experimentales 29
dc.description.tableofcontents4.1.2 Cultivo de la bacteria huésped 29
dc.description.tableofcontents4.1.3 Enriquecimiento y aislamiento de bacteriófagos 29
dc.description.tableofcontents4.1.4 Determinación de la presencia de bacteriófagos en agar semisólido 30
dc.description.tableofcontents4.1.5 Purificación y propagación de bacteriófagos 30
dc.description.tableofcontents4.1.6 Determinación del título de la suspensión del fago 30
dc.description.tableofcontents4.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 31
dc.description.tableofcontents4.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 31
dc.description.tableofcontents4.2.2 Caracterización morfológica de bacteriófagos aislados 32
dc.description.tableofcontents4.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 32
dc.description.tableofcontents4.4 Diseño experimental 33
dc.description.tableofcontents5 RESULTADOS Y DISCUSIONES 34
dc.description.tableofcontents5.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 34
dc.description.tableofcontents5.1.1 Aislamiento de bacteriófagos 34
dc.description.tableofcontents5.1.2 Purificación y propagación de bacteriófagos 36
dc.description.tableofcontents5.1.3 Determinación del título de la suspensión de los bacteriófagos 385.1.3 Determinación del título de la suspensión de los bacteriófagos 38
dc.description.tableofcontents5.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 39
dc.description.tableofcontents5.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 39
dc.description.tableofcontents5.2.2 Caracterización morfológica de bacteriófagos aislados 43
dc.description.tableofcontents5.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 46
dc.description.tableofcontents6 CONCLUSIONES 51
dc.description.tableofcontents7 RECOMENDACIONES 52
dc.description.tableofcontents8 REFERENCIAS BIBLIOGRÁFICAS 53
dc.description.tableofcontentsANEXOS 64
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9053
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBerástegui, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Agroalimentarias
dc.relation.referencesAdams, M. H. (1959). Bacteriophages. In New York, Interscience Publishers.
dc.relation.referencesAlexyuk, P., Bogoyavlenskiy, A., Alexyuk, M., Akanova, K., Moldakhanov, Y., & Berezin, V. (2023). Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms, 11(6). https://doi.org/10.3390/microorganisms11061524
dc.relation.referencesAlharbi, N. M., & Ziadi, M. M. (2021). Wastewater as a fertility source for novel bacteriophages against multi-drug resistant bacteria. Saudi Journal of Biological Sciences, 28(8), 4358–4364. https://doi.org/10.1016/J.SJBS.2021.04.025
dc.relation.referencesAljamali, N., Najim, M., & Alabbasy, A. (2021). Review on Food poisoning (Types, Causes, Symptoms, Diagnosis, Treatment). 3, 54–61. https://doi.org/10.36348/gajpdr.2021.v03i04.001
dc.relation.referencesAtterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., Wagenaar, J. A., Allen, V. M., & Barrow, P. A. (2007). Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549. https://doi.org/10.1128/AEM.00049-07
dc.relation.referencesAyala, R., Moiseenko, A. V, Chen, T.-H., Kulikov, E. E., Golomidova, A. K., Orekhov, P. S., Street, M. A., Sokolova, O. S., Letarov, A. V, & Wolf, M. (2023). Nearly complete structure of bacteriophage DT57C reveals architecture of head-to-tail interface and lateral tail fibers. Nature Communications, 14(1), 8205. https://doi.org/10.1038/s41467-023-43824-9
dc.relation.referencesAzzam, M., & Faiesal, A. (2019). Novel “Superspreader” Coliphages for Detecting Microbial Water Pollution. International Journal of Environment and Pollution, 8, 57–70.
dc.relation.referencesBao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., & Wang, R. (2015). Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses, 7, 4836–4853. https://doi.org/10.3390/v7082847
dc.relation.referencesBebeacua, C., Tremblay, D., Farenc, C., Chapot-Chartier, M.-P., Sadovskaya, I., van Heel, M., Veesler, D., Moineau, S., & Cambillau, C. (2013). Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. Journal of Virology, 87(22), 12302–12312. https://doi.org/10.1128/JVI.02033-13
dc.relation.referencesBenala, M., Vaiyapuri, M., Visnuvinayagam, S., George, J. C., Raveendran, K., George, I., Mothadaka, M. P., & Badireddy, M. R. (2021). A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods, 294(March), 1–9. https://doi.org/10.1016/j.jviromet.2021.114177
dc.relation.referencesBertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4). https://doi.org/10.1093/femsle/fnw002
dc.relation.referencesBintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529–563. https://doi.org/10.3934/microbiol.2017.3.529
dc.relation.referencesBorbón Ramos, M. E., & Prieto Alvarado, F. E. (2019). Concordancia y subregistro en la notificación de brotes de enfermedades transmitidas por alimentos en Colombia. Revista de Salud Pública, 21(6 SE-Artículos/Investigación), 608–613. https://doi.org/10.15446/rsap.v21n6.50268
dc.relation.referencesBueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23–27. https://doi.org/10.1016/J.IJFOODMICRO.2012.06.012
dc.relation.referencesButt, S., Saleh, M., & Gagnon, J. (2020). Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. In Toxins (Vol. 12, Issue 12). https://doi.org/10.3390/toxins12120760
dc.relation.referencesCampbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471–477. https://doi.org/10.1038/nrg1089
dc.relation.referencesChang, C., Yu, X., Guo, W., Guo, C., Guo, X., Li, Q., & Zhu, Y. (2022). Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Frontiers in Microbiology, 13. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.825828
dc.relation.referencesChristie, G. E. (1999). PROPAGATION OF VIRUSES | Bacteria. Encyclopedia of Virology (Second Edition), 1413–1418. https://doi.org/https://doi.org/10.1006/rwvi.1999.0237
dc.relation.referencesCosta, M. J., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2023). Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses, 15(6). https://doi.org/10.3390/v15061271
dc.relation.referencesDharmaraj, T., Kratochvil, M. J., Pourtois, J. D., Chen, Q., Hajfathalian, M., Hargil, A., Lin, Y. H., Evans, Z., Oromí-Bosch, A., Berry, J. D., McBride, R., Haddock, N. L., Holman, D. R., Van Belleghem, J. D., Chang, T. H., Barr, J. J., Lavigne, R., Heilshorn, S. C., Blankenberg, F. G., & Bollyky, P. L. (2023). Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS Nexus, 2(12), 1–18. https://doi.org/10.1093/pnasnexus/pgad406
dc.relation.referencesEkici, G., & Dümen, E. (2019). Escherichia coli and Food Safety (M. S. Erjavec (ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.82375
dc.relation.referencesEl Haddad, L., Roy, J. P., Khalil, G. E., St-Gelais, D., Champagne, C. P., Labrie, S., & Moineau, S. (2016). Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology, 217, 7–13. https://doi.org/10.1016/j.ijfoodmicro.2015.10.001
dc.relation.referencesEndersen, L., & Coffey, A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1–8. https://doi.org/10.1016/j.cofs.2020.10.006
dc.relation.referencesFathima, B., & Archer, A. C. (2021). Bacteriophage therapy: recent developments and applications of a renaissant weapon. Research in Microbiology, 172(6), 103863. https://doi.org/10.1016/j.resmic.2021.103863
dc.relation.referencesFikadu, A., Amankwah, S., Alemu, B., Alemu, Y., Naga, A., Tekle, E., & Kassa, T. (2024). Isolation and Phenotypic Characterization of Virulent Bacteriophages Against Multidrug-Resistant Escherichia coli and Its Phage-Resistant Variant from Sewage Sources. Infect Drug Resist., 17, 293–303. https://doi.org/https://doi.org/10.2147/IDR.S441085
dc.relation.referencesFong, K., Wong, C. W. Y., Wang, S., & Delaquis, P. (2021). How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (New Rochelle, N.Y.), 2(2), 83–91. https://doi.org/10.1089/phage.2020.0036
dc.relation.referencesFood and Drug Administration. (2006). Food Additives Permitted for Direct Addition to Food for Human Consumption; Bacteriophage Preparation. https://www.federalregister.gov/documents/2006/08/18/E6-13621/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-bacteriophage-preparation
dc.relation.referencesGallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R., & Marina, A. (2022). Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 13(1), 3627. https://doi.org/10.1038/s41467-022-31144-3
dc.relation.referencesGarcía, P., Madera, C., Martínez, B., Rodríguez, A., & Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/JDS.2008-1744
dc.relation.referencesGarvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel, Switzerland), 11(10). https://doi.org/10.3390/antibiotics11101324
dc.relation.referencesGerba, C. P. (2009). Environmentally Transmitted Pathogens. In Environmental Microbiology (pp. 445–484). https://doi.org/10.1016/B978-0-12-370519-8.00022-5
dc.relation.referencesGibson, B., Wilson, D. J., Feil, E., & Eyre-Walker, A. (2018). The distribution of bacterial doubling times in the wild. Proceedings of the Royal Society B: Biological Sciences, 285(1880). https://doi.org/10.1098/rspb.2018.0789
dc.relation.referencesGnezda-Meijer, K., Mahne, I., Poljšak-Prijatelj, M., & Stopar, D. (2006). Host physiological status determines phage-like particle distribution in the lysate. FEMS Microbiology Ecology, 55(1), 136–145. https://doi.org/10.1111/j.1574-6941.2005.00008.x
dc.relation.referencesGonzález-Morelo, K., Correa, A., Cabarcas, A. D. C., Castillo, P. M. M., Loraine, B., & Amador, O. (2018). Effect of Fat Content on the Properties of Colombian Queso Costeño Made from Goat Milk. International Journal of ChemTech Research, 11(5), 113–123. http://dx.doi.org/10.20902/IJCTR.2018.110513
dc.relation.referencesGoodridge, L., Gallaccio, A., & Griffiths, M. W. (2003). Morphological, host range, and genetic characterization of two coliphages. Applied and Environmental Microbiology, 69(9), 5364–5371. https://doi.org/10.1128/AEM.69.9.5364-5371.2003
dc.relation.referencesGuenther, S., & Loessner, M. J. (2011). Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses . Bacteriophage, 1(2), 94–100. https://doi.org/10.4161/bact.1.2.15662
dc.relation.referencesGuo, M., Gao, Y., Xue, Y., Liu, Y., Zeng, X., Cheng, Y., Ma, J., Wang, H., Sun, J., Wang, Z., & Yan, Y. (2021). Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Frontiers in Cellular and Infection Microbiology, 11, 690377. https://doi.org/10.3389/fcimb.2021.690377
dc.relation.referencesGutiérrez -Castañeda, C., Quintero-Peñaranda, R., Burbano-Caicedo, I., & Simancas-Trujillo, R. (2017). Modelo de quesería artesanal bajo un signo distintivo en el Caribe Colombiano: Caso Atlántico. Revista Lasallista de Investigacion, 14(1), 72–83. https://doi.org/10.22507/rli.v14n1a6
dc.relation.referencesHan, S., Byun, K. H., Mizan, M. F. R., Kang, I., & Ha, S. Do. (2022). Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. In Food Control (Vol. 137). https://doi.org/10.1016/j.foodcont.2022.108976
dc.relation.referencesHarada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M. (2018). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212–213, 38–58. https://doi.org/10.1016/j.micres.2018.04.007
dc.relation.referencesHarding, K. R., Kyte, N., & Fineran, P. C. (2023). Jumbo phages. Current Biology, 33(14), R750–R751. https://doi.org/10.1016/j.cub.2023.05.056
dc.relation.referencesHoltappels, D., Alfenas-Zerbini, P., & Koskella, B. (2023). Drivers and consequences of bacteriophage host range. FEMS Microbiology Reviews, 47(4), fuad038. https://doi.org/10.1093/femsre/fuad038
dc.relation.referencesHu, B., Margolin, W., Molineux, I. J., & Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proceedings of the National Academy of Sciences, 112(35), E4919–E4928. https://doi.org/10.1073/pnas.1501064112
dc.relation.referencesHuang, L., & Xiang, Y. (2020). Structures of the tailed bacteriophages that infect Gram-positive bacteria. Current Opinion in Virology, 45, 65–74. https://doi.org/10.1016/j.coviro.2020.09.002
dc.relation.referencesHungaro, H. M., Mendonça, R. C. S., Gouvêa, D. M., Vanetti, M. C. D., & Pinto, C. L. de O. (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International, 52(1), 75–81. https://doi.org/10.1016/J.FOODRES.2013.02.032
dc.relation.referencesHyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. https://doi.org/10.3390/ph12010035
dc.relation.referencesHyman, P., & Abedon, S. T. B. T.-A. in A. M. (2010). Chapter 7 - Bacteriophage Host Range and Bacterial Resistance. In Advances in Applied Microbiology (Vol. 70, pp. 217–248). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2164(10)70007-1
dc.relation.referencesImam, M., Alrashid, B., Patel, F., Dowah, A. S. A., Brown, N., Millard, A., Clokie, M. R. J., & Galyov, E. E. (2019). vB_PaeM_MIJ3, a Novel Jumbo Phage Infecting Pseudomonas aeruginosa, Possesses Unusual Genomic Features. Frontiers in Microbiology, 10, 2772. https://doi.org/10.3389/fmicb.2019.02772
dc.relation.referencesImran, A., Shehzadi, U., Islam, F., Afzaal, M., Ali, R., Ali, Y. A., Chauhan, A., Biswas, S., Khurshid, S., Usman, I., Hussain, G., Zahra, S. M., Shah, M. A., & Rasool, A. (2023). Bacteriophages and food safety: An updated overview. Food Science and Nutrition, 11(7), 3621–3630. https://doi.org/10.1002/fsn3.3360
dc.relation.referencesInstituto Nacional de Salud (INS). (2020a). Informe de Evento: Enfermedades trasmitidas por alimentos. Periodo epidemilógico XIII. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf
dc.relation.referencesInstituto Nacional de Salud (INS). (2020b). Informe de evento enfermedades transmitidas por alimentos, colombia, 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf
dc.relation.referencesInstituto Nacional de Salud (INS). (2023). Informe de evento Brotes Enfermedades Transmitidas por Alimentos Código 349 I Semestre 2023. http://www.ins.gov.co/buscador-eventos/Informesdeevento/ETA PE VI 2023.pdf
dc.relation.referencesIsmael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0
dc.relation.referencesIyer, L. M., Anantharaman, V., Krishnan, A., Maxwell Burroughs, A., & Aravind, L. (2021). Jumbo phages: A comparative genomic overview of core functions and adaptions for biological conflicts. Viruses, 13(1), 1–42. https://doi.org/10.3390/v13010063
dc.relation.referencesJofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. In F. de la Cruz (Ed.), Horizontal gene transfer. Methods in Molecular Biology (Humana). https://doi.org/https://doi.org/10.1007/978-1-4939-9877-7_4
dc.relation.referencesJones, K. R., Eftim, S., Lindahl, A. J., Black, S., & Nappier, S. P. (2022). Occurrence of coliphage in effluent: A systematic literature review and meta-analysis. Hygiene and Environmental Health Advances, 3, 100014. https://doi.org/10.1016/J.HEHA.2022.100014
dc.relation.referencesKlumpp, J., Dunne, M., & Loessner, M. J. (2023). A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Current Opinion in Microbiology, 71, 102240. https://doi.org/10.1016/j.mib.2022.102240
dc.relation.referencesKozlova, A. P., Muntyan, V. S., Vladimirova, M. E., Saksaganskaia, A. S., Kabilov, M. R., Gorbunova, M. K., Gorshkov, A. N., Grudinin, M. P., Simarov, B. V., & Roumiantseva, M. L. (2024). Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. International Journal of Molecular Sciences, 25(13). https://doi.org/10.3390/ijms25137388
dc.relation.referencesKuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biological Control, 165, 104817. https://doi.org/10.1016/J.BIOCONTROL.2021.104817
dc.relation.referencesKuek, M., McLean, S. K., & Palombo, E. A. (2023). Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol. Antibiotics (Basel, Switzerland), 12(11). https://doi.org/10.3390/antibiotics12111579
dc.relation.referencesKwenda, A. (2014). An Investigation on the Causes of Escherichia coli and Coliform Contamination of Cheddar Cheese and How to Reduce the Problem (A Case Study at a Cheese Manufacturing Firm in Harare, Zimbabwe). International Journal of Nutrition and Food Sciences, 3, 6. https://doi.org/10.11648/j.ijnfs.s.2014030601.12
dc.relation.referencesLeiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S., & Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal, 7, 355. https://doi.org/10.1186/1743-422X-7-355
dc.relation.referencesLeLièvre, V., Besnard, A., Schlusselhuber, M., Desmasures, N., & Dalmasso, M. (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiology, 78, 89–98. https://doi.org/10.1016/J.FM.2018.10.009
dc.relation.referencesLetarov, A. V, & Kulikov, E. E. (2018). Determination of the Bacteriophage Host Range: Culture-Based Approach. Methods in Molecular Biology (Clifton, N.J.), 1693, 75–84. https://doi.org/10.1007/978-1-4939-7395-8_7
dc.relation.referencesLin, J., Du, F., Long, M., & Li, P. (2022). Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules (Basel, Switzerland), 27(6). https://doi.org/10.3390/molecules27061857
dc.relation.referencesLopez, M. E. S., Batalha, L. S., Vidigal, P. M. P., Albino, L. A. A., Boggione, D. M. G., Gontijo, M. T. P., Bazzolli, D. M. S., & Mendonca, R. C. S. (2016). Genome sequence of the enterohemorrhagic Escherichia coli bacteriophage UFV-AREG1. Genome Announcements, 4(5), 4–5. https://doi.org/10.1128/genomeA.00412-16
dc.relation.referencesLopez, M. E. S., Gontijo, M. T. P., Batalha, L. S., & Mendonca, R. C. S. (2018). Bio-Sanitization Using Specific Bacteriophages to Control <em>Escherichia coli</em> O157:H7 in Cherry Tomatoes. Advance Journal of Food Science and Technology, 16(SPL), 92–101. https://doi.org/10.19026/ajfst.16.5942
dc.relation.referencesLopez, M. E. S., Gontijo, M. T. P., Cardoso, R. R., Batalha, L. S., Eller, M. R., Bazzolli, D. M. S., Vidigal, P. M. P., & Mendonça, R. C. S. (2023). Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Frontiers in Cellular and Infection Microbiology, 13, 1178248. https://doi.org/10.3389/fcimb.2023.1178248
dc.relation.referencesLukman, C., Yonathan, C., Magdalena, S., & Waturangi, D. E. (2020). Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Research Notes, 13(1), 1–7. https://doi.org/10.1186/S13104-019-4859-Y/FIGURES/2
dc.relation.referencesMaffei, E., Shaidullina, A., Burkolter, M., Heyer, Y., Estermann, F., Druelle, V., Sauer, P., Willi, L., Michaelis, S., Hilbi, H., Thaler, D. S., & Harms, A. (2021). Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLOS Biology, 19(11), 1–52. https://doi.org/10.1371/journal.pbio.3001424
dc.relation.referencesMalik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F., & Kirpichnikova, A. (2017). Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science, 249(May), 100–133. https://doi.org/10.1016/j.cis.2017.05.014
dc.relation.referencesMangalea, M. R., & Duerkop, B. A. (2020). Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity, 88(7). https://doi.org/10.1128/IAI.00926-19
dc.relation.referencesMattey, M., & Spencer, J. (2008). Bacteriophage therapy - cooked goose or Phoenix rising? Current Opinion in Biotechnology, 19(6), 608–612. https://doi.org/10.1016/j.copbio.2008.09.001
dc.relation.referencesMendoza-Corvis, F. A., Pérez Sierra, O. A., Durango Villadiego, A. M., Gontijo, M. T. P., Batalha, L. S., & Soto Lopez, M. E. (2025). Physicochemical, textural and organoleptic characteristics of costeño cheese: An autochthonous product of the Colombian Caribbean coast. International Dairy Journal, 160(December 2023). https://doi.org/10.1016/j.idairyj.2024.106094
dc.relation.referencesMolina, F., Simancas, A., Tabla, R., Gómez, A., Roa, I., & Rebollo, J. E. (2020). Diversity and Local Coadaptation of Escherichia coli and Coliphages From Small Ruminants. Frontiers in Microbiology, 11, 564522. https://doi.org/10.3389/fmicb.2020.564522
dc.relation.referencesMoye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses, 10(4). https://doi.org/10.3390/v10040205
dc.relation.referencesMozaffari, P., Berizi, E., Hosseinzadeh, S., Derakhshan, Z., Taghadosi, V., Montaseri, Z., & Götz, F. (2022). Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 315, 198754. https://doi.org/10.1016/j.virusres.2022.198754
dc.relation.referencesMuñoz, A. I., & Rodríguez, E. C. (2021). Distribución y caracterización fenotípica y genotípica de Listeria monocytogenes en aislamientos de alimentos, Colombia, 2010-2018. Biomédica, 41(Sp. 2 SE-Artículos originales), 165–179. https://doi.org/10.7705/biomedica.6152
dc.relation.referencesNair, A., Ghugare, G. S., & Khairnar, K. (2022). An Appraisal of Bacteriophage Isolation Techniques from Environment. Microbial Ecology, 83(3), 519–535. https://doi.org/10.1007/s00248-021-01782-z
dc.relation.referencesNawaz, A., Zafar, S., Shahzadi, M., Bukhari, S. M. A. U. S., Khan, N., Shah, A. A., Badshah, M., & Khan, S. (2023). Bacteriophages: an overview of the control strategies against phytopathogens. Egyptian Journal of Biological Pest Control, 33(1), 108. https://doi.org/10.1186/s41938-023-00751-7
dc.relation.referencesNirmal Kumar, G. P., Sundarrajan, S., Paul, V. D., Nandini, S., Saravanan, R. S., Hariharan, S., Sriram, B., & Padmanabhan, S. (2012). Use of prophage free host for achieving homogenous population of bacteriophages: new findings. Virus Research, 169(1), 182–187. https://doi.org/10.1016/j.virusres.2012.07.026
dc.relation.referencesO’Sullivan, L., Bolton, D., McAuliffe, O., & Coffey, A. (2019). Bacteriophages in Food Applications: From Foe to Friend. Annual Review of Food Science and Technology, 10, 151–172. https://doi.org/10.1146/annurev-food-032818-121747
dc.relation.referencesOrganización Mundial de la Salud (OMS). (2020). Inocuidad de los alimentos. https://www.who.int/es/news-room/fact-sheets/detail/food-safety
dc.relation.referencesOrganización Panamericana de la Salud, (OPS). (2020). Enfermedades transmitidas por alimentos - OPS/OMS | Organización Panamericana de la Salud. OPS. https://www.paho.org/es/temas/enfermedades-transmitidas-por-alimentos
dc.relation.referencesPołaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5(4), 324–346. https://doi.org/10.3934/microbiol.2019.4.324
dc.relation.referencesRajnovic, D., Muñoz-Berbel, X., & Mas, J. (2019). Fast phage detection and quantification: An optical density-based approach. PLoS ONE, 14(5), 1–14. https://doi.org/10.1371/journal.pone.0216292
dc.relation.referencesRanveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. Npj Science of Food, 8(1), 1. https://doi.org/10.1038/s41538-023-00245-8
dc.relation.referencesReina, J., & Reina, N. (2018). [Phage therapy, an alternative to antibiotic therapy?)]. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 31(2), 101–104
dc.relation.referencesRoss, A., Ward, S., & Hyman, P. (2016). More is better: Selecting for broad host range bacteriophages. Frontiers in Microbiology, 7(SEP), 1–6. https://doi.org/10.3389/fmicb.2016.01352
dc.relation.referencesRuíz-Pérez, R. A., Menco-Morales, N. Y., & Chams-Chams, L. M. (2017). Microbiological evaluation of artisan coastal cheese and hygieniclocative evaluation of small shops in córdoba, Colombia. Revista de Salud Publica, 19(3), 311–317. https://doi.org/10.15446/rsap.v19n3.54853
dc.relation.referencesShousha, A., Awaiwanont, N., Sofka, D., Smulders, F. J. M., Paulsen, P., Szostak, M. P., Humphrey, T., & Hilbert, F. (2015). Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Applied and Environmental Microbiology, 81(14), 4600–4606. https://doi.org/10.1128/AEM.00872-15
dc.relation.referencesSinha, S., Grewal, R. K., & Roy, S. (2018). Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy. In Advances in Applied Microbiology (1st ed., Vol. 103). Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.01.005
dc.relation.referencesSjahriani, T., Wasito, E. B., & Tyasningsih, W. (2021). Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/7383121
dc.relation.referencesSochocka, M., Tomczyk, T., Sobczyński, M., Szermer-Olearnik, B., & Boratyński, J. (2015). The kinetics of Escherichia coli B growth and bacteriophage T4 multiplication in SM-1 novel minimal culture medium. Journal of General and Applied Microbiology, 61(3), 75–81. https://doi.org/10.2323/jgam.61.75
dc.relation.referencesSoto-Varela, Z. E., Gutiérrez, C. G., de Moya, Y., Mattos, R., & Bolívar-Anillo, Hernando José Villarreal, J. L. (2018). Detección molecular de Salmonella spp., Listeria spp. y Brucella spp. en queso artesanal fresco comercializado en Barranquilla: Biomedica, 38, 30–36. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572018000600030&nrm=iso
dc.relation.referencesSoto Lopez, M. E., De Carvalho, M. M., Meireles Gouvêa, D., Silva Batalha, L., Oliveira Neves, I., & Santos Mendonça, R. C. (2015). Isolation and characterization of lytic bacteriophages as an alternative to prevent pseudomonas spp in poultry industry. MOJ Food Processing & Technology, Volume 1(Issue 3). https://doi.org/10.15406/MOJFPT.2015.01.00018
dc.relation.referencesSoto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en colombia. Salud Uninorte, 32(1), 105–122. https://www.redalyc.org/articulo.oa?id=81745985010
dc.relation.referencesTabla, R., Gómez, A., Rebollo, J. E., Molina, F., & Roa, I. (2022). Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli. LWT, 153, 112430. https://doi.org/10.1016/J.LWT.2021.112430
dc.relation.referencesTabla, R., Gómez, A., Simancas, A., Rebollo, J. E., Molina, F., & Roa, I. (2016). Enterobacteriaceae species during manufacturing and ripening of semi–hard and soft raw ewe’s milk cheese: Gas production capacity. Small Ruminant Research, 145, 123–129. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.11.008
dc.relation.referencesTang, Z., Tang, N., Wang, X., Ren, H., Zhang, C., Zou, L., Han, L., Guo, L., & Liu, W. (2023). Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1091442
dc.relation.referencesThung, T., B.M.F., S., J.M.K.J.K., P., Chang, W., Loo, Y., KUAN, C. H. A. O., C.Y., N., A., U., O.S.B., R., Mahyudin, N. A., Basri, D., & S., W. (2017). Isolation of food-borne pathogen bacteriophages from retail food and environmental sewage. International Food Research Journal, 24, 450–454.
dc.relation.referencesUnidad de Planificación Rural Agropecuaria (UPRA). (2021). Analisis prospectivo de la cadena láctea bovina colombiana. https://www.upra.gov.co/documents/10184/166404/20210728_DT_Prospectiva_Leche1.pdf/18a3ed0f-7eb6-4bda-9dd3-b55f85df8ee9
dc.relation.referencesVan Twest, R., & Kropinski, A. M. (2009). Bacteriophage enrichment from water and soil. Methods in Molecular Biology (Clifton, N.J.), 501, 15–21. https://doi.org/10.1007/978-1-60327-164-6_2
dc.relation.referencesVasquez, I., Retamales, J., Parra, B., Machimbirike, V., Robeson, J., & Santander, J. (2023). Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. In Viruses (Vol. 15, Issue 2). https://doi.org/10.3390/v15020379
dc.relation.referencesVenturini, C., Petrovic Fabijan, A., Fajardo Lubian, A., Barbirz, S., & Iredell, J. (2022). Biological foundations of successful bacteriophage therapy. EMBO Molecular Medicine, 14(7), e12435. https://doi.org/https://doi.org/10.15252/emmm.202012435
dc.relation.referencesWang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 39, 43–50. https://doi.org/10.1016/J.COFS.2020.12.015
dc.relation.referencesWang, X., Wei, X., Zhang, Q., Li, L., Liu, Z., Chen, Y., Liu, Y., & Cai, Y. (2024). Genome sequence of Shiga toxin-producing Escherichia coli jumbo bacteriophage vB\_EcoM\_JNE01. Microbiology Resource Announcements, 13(2), e01145-23. https://doi.org/10.1128/mra.01145-23
dc.relation.referencesXie, Y., Wahab, L., & Gill, J. J. (2018). Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4). https://doi.org/10.3390/v10040189
dc.relation.referencesXuan, G., Lin, H., Tan, L., Zhao, G., & Wang, J. (2022). Quorum Sensing Promotes Phage Infection in Pseudomonas aeruginosa PAO1. MBio, 13(1), e0317421. https://doi.org/10.1128/mbio.03174-21
dc.relation.referencesYamaki, S., Yamazaki, K., & Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2022.109680
dc.relation.referencesYap, M. L., & Rossmann, M. G. (2014). Structure and function of bacteriophage T4. Future Microbiology, 9(12), 1319–1327. https://doi.org/10.2217/fmb.14.91
dc.relation.referencesYou, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. Journal of Bacteriology, 184(7), 1888–1894. https://doi.org/10.1128/JB.184.7.1888-1894.2002
dc.relation.referencesYuan, X., Zhang, S., Wang, J., Li, C., Li, N., Yu, S., Kong, L., Zeng, H., Yang, G., Huang, Y., Li, H., Zhang, J., Wu, Q., & Ding, Y. (2021). Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Research, 293, 198274. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198274
dc.relation.referencesYuan, Y., & Gao, M. (2017). Jumbo Bacteriophages: An Overview. Frontiers in Microbiology, 8, 403. https://doi.org/10.3389/fmicb.2017.00403
dc.relation.referencesZaki, B. M., Mohamed, A. A., Dawoud, A., Essam, K., Hammouda, Z. K., Abdelsattar, A. S., & El-Shibiny, A. (2023). Chapter Two - Isolation, screening and characterization of phage. In V. B. T.-P. in M. B. and T. S. SINGH (Ed.), Phage Therapy - Part A (Vol. 200, pp. 13–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.pmbts.2023.03.008
dc.relation.referencesZhang, B., Xu, J., He, X., Tong, Y., & Ren, H. (2022). Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. In Microorganisms (Vol. 10, Issue 8). https://doi.org/10.3390/microorganisms10081590
dc.relation.referencesZhang, M., Zhang, T., Yu, M., Chen, Y.-L., & Jin, M. (2022). The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses, 14(9). https://doi.org/10.3390/v14091904
dc.relation.referencesZhu, Y., Shang, J., Peng, C., & Sun, Y. (2022). Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1032186
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBacteriophageseng
dc.subject.keywordsEscherichia colieng
dc.subject.keywordsMultiplicity of infection (MOI)eng
dc.subject.keywordsCosteño cheeseeng
dc.subject.keywordsLytic activityeng
dc.subject.proposalBacteriófagosspa
dc.subject.proposalEscherichia colispa
dc.subject.proposalMultiplicidad de infección (MOI)spa
dc.subject.proposalQueso costeñospa
dc.subject.proposalActividad líticaspa
dc.titleEvaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeñospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
HernandezArteagaAnaMaría.pdf
Tamaño:
1.96 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
611.97 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones