Publicación:
CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética

dc.audience
dc.contributor.advisorBeltrán Jiménez, Jailes Joaquín
dc.contributor.authorOsorno Bolívar, Carlos Eduardo
dc.contributor.educationalvalidatorBeltrán Jiménez Jailes Joaquín
dc.contributor.jurySánchez Pacheco, Luis Carlos
dc.contributor.juryGarcía Negrete, Carlos
dc.date.accessioned2025-02-07T13:25:28Z
dc.date.available2025-02-07T13:25:28Z
dc.date.issued2025-02-05
dc.description.abstractEl CuO es un material semiconductor tipo p con propiedades destacadas como una estrecha banda prohibida (~1.2 eV, en bulk), alta conductividad eléctrica y térmica, estabilidad química y aplicaciones multifuncionales que van desde la catálisis hasta sensores y espintrónica. El potencial de sus aplicaciones puede mejorarse mediante el dopaje con metales de transición, lo que permite modificar su estructura cristalina, propiedades ópticas y comportamiento magnético. En este trabajo de grado se estudia los efectos del dopaje con Co en nanopartículas de CuO, investigando de manera integral sus propiedades morfológicas, vibracionales, estructurales, ópticas y magnéticas. La síntesis de las nanopartículas de CuO y Cu_(1-x) Co_x O con diferentes concentraciones de Co (x = 0.01 a 0.08), se realizó mediante el método de co-precipitación asistida por microondas. Los resultados de FTIR-ATR, RAMAN y DRX indicaron que el dopante se introdujo homogéneamente en la matriz del CuO hasta x = 0.05. Los resultados por difracción de rayos X confirmaron la formación de la fase monoclínica del CuO y evidenciaron la incorporación del Co en su red cristalina, formando una solución sólida sin presencia de fases impuras en las muestras de concentración menor igual al 6 % mol. Adicionalmente, las técnicas de microscopía electrónica (FIB-FESEM y espectroscopía Uv-Vis) revelaron un cambio en la morfología de 2D para la muestra pura y 3D, para la muestra con 5 % mol del dopante.spa
dc.description.abstractCuO is a p-type semiconductor material with remarkable properties such as a narrow bandgap (~1.2 eV, in bulk), high electrical and thermal conductivity, chemical stability and multifunctional applications ranging from catalysis to sensors and spintronics. The potential of their applications can be improved through the doping with transition metals, by modifiying their crystalline structure, optical properties and magnetic behaviour. In this work, the effects of Co doping on CuO nanoparticles are studied, investigating their morphological, vibrational, structural, optical and magnetic properties in a comprehensive way. The synthesis of CuO and Cu1-xCoxO nanoparticles with different Co concentrations (x = 0.01 to 0.08) was carried out by microwave-assisted co-precipitation method. FTIR-ATR, RAMAN and XRD results indicated that the dopant was homogeneously introduced into the CuO matrix up to x = 0.05. X-ray diffraction results confirmed the formation of the monoclinic phase of CuO and evidenced the incorporation of Co in its crystal lattice of the semiconductor, forming a solid solution without the presence of impurity phases in the samples with concentrations lower than 6 % mol. Additionally, FIB-FESEM and Uv-Vis spectroscopy revealed a change in morphology from 2D for the pure sample to 3D for the sample with 5 % mol of the dopant.eng
dc.description.degreelevelPregrado
dc.description.degreenameQuímico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsAGRADECIMIENTOSspa
dc.description.tableofcontentsRESUMENspa
dc.description.tableofcontentsLISTA DE FIGURASspa
dc.description.tableofcontentsLISTA DE ABREVIACIONESspa
dc.description.tableofcontentsINTRODUCCIÓNspa
dc.description.tableofcontentsCAPÍTULO 1 FUNDAMENTACIÓN TEÓRICAspa
dc.description.tableofcontents1. MARCO TEÓRICOspa
dc.description.tableofcontents1.1. Semiconducotres magnéticamente diluidosspa
dc.description.tableofcontents1.2. Óxidos semiconductores magnéticamente diluidos (ODMS)spa
dc.description.tableofcontents1.3. CuOspa
dc.description.tableofcontents1.3.1. Propiedades físicas y químicasspa
dc.description.tableofcontents1.3.2. Morfología, formación y yacimientosspa
dc.description.tableofcontents1.3.3. Estructura cristalinaspa
dc.description.tableofcontents1.3.4. Propiedades ópticasspa
dc.description.tableofcontents1.3.5. Propiedaes magnéticasspa
dc.description.tableofcontents1.3.6. Aplicacionesspa
dc.description.tableofcontentsCAPÍTULO 2 SÍNTESIS ASISTIDA POR MICROONDAS Y TÉCNICAS DE CARACTERIZACIÓNspa
dc.description.tableofcontents2. SÍNTESIS ASISTIDA POR MICROONDASspa
dc.description.tableofcontents2.1. Síntesis por microondasspa
dc.description.tableofcontents2.1.1. Química de microondas y efectos de las microondasspa
dc.description.tableofcontents2.1.2. Aceleraciones de velocidad por calentamiento con microondasspa
dc.description.tableofcontents2.1.3. Preparación asistida por microondas en distintos disolventesspa
dc.description.tableofcontents2.1.4. Preparación asistida por microondas en un sistema de reacción abiertospa
dc.description.tableofcontents2.1.5. Preparación de nanoestructuras en solución acuosa asistida por microondasspa
dc.description.tableofcontents2.2. Acetatos de metales de transición como precursoresspa
dc.description.tableofcontents2.3. TÉCNICAS DE CARACTERIZACIÓNspa
dc.description.tableofcontents2.3.1. Microscopía de barrido electrónico con espectroscopía de dispersión de energía (SEM-EDS) y Microscopía electrónica de barrido de emisión de campo dual beam (FIB-FESEM)spa
dc.description.tableofcontents2.4. Espectroscopía infrarroja con transformada de Fourier (FTIR)spa
dc.description.tableofcontents2.4.1. Tipos de vibraciones molecularesspa
dc.description.tableofcontents2.4.2. Espectrometría de reflectancia atenuada total (ATR)spa
dc.description.tableofcontents2.5. Espectroscopía RAMANspa
dc.description.tableofcontents2.5.1. Mecanismo de la dispersión Raman y Rayleighspa
dc.description.tableofcontents2.5.2. Intensidad de los picos Raman normalesspa
dc.description.tableofcontents2.5.3. Dispersión Rayleigh, Stok y Antistokspa
dc.description.tableofcontents2.6. Difracción de rayos X (DRX)spa
dc.description.tableofcontents2.6.1. Ley de Braggspa
dc.description.tableofcontents2.6.2. Método de refinamiento Rietveldspa
dc.description.tableofcontents2.7. Espectroscopía UV-Visspa
dc.description.tableofcontents2.7.1. Origen de los espectros UV-Visspa
dc.description.tableofcontents2.7.2. Transmitancia y absorbanciaspa
dc.description.tableofcontents2.7.3. Ley de Beerspa
dc.description.tableofcontents2.8. Uv-relectancia difusa (UV-DR)spa
dc.description.tableofcontents2.9. Medidas magnéticasspa
dc.description.tableofcontents2.9.1. Magnetrómetro de muestra vibrantespa
dc.description.tableofcontents2.10. Estado del artespa
dc.description.tableofcontentsCAPÍTULO 3 PREPARACIÓN Y CARACTERIZACIÓN DE LAS MUESTRASspa
dc.description.tableofcontents3. Síntesis de NPs de CuO y CuO dopadas con Co (x = 0.01, 0.02, 0.03, 0.04, 0.05 y 0.08)spa
dc.description.tableofcontents3.1. Reactivos y equiposspa
dc.description.tableofcontents3.2. Cálculos estequiométricosspa
dc.description.tableofcontents3.3. Procedimiento experimentalspa
dc.description.tableofcontents3.3.1. Masas pesadas experimentalmente, tiempo de exposición y porcentaje de rendimiento de cada reacciónspa
dc.description.tableofcontents3.4. Caracterizaciónspa
dc.description.tableofcontents3.4.1. Microscopio electrónico de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS)spa
dc.description.tableofcontents3.4.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM)spa
dc.description.tableofcontents3.4.3. Espectroscopía infrarroja con transformada de Fourier y refelctancia total atenuada (FTIR-ATR)spa
dc.description.tableofcontents3.4.4. Espectroscopía RAMANspa
dc.description.tableofcontents3.4.5. Difracción de rayos X (DRX)spa
dc.description.tableofcontents3.4.6. UV-Visible (UV-Vis)spa
dc.description.tableofcontents3.4.7. UV-reflectancia difusa (UV-DR)spa
dc.description.tableofcontents3.4.8. Magnetometría de muestra vibrante (VMS)spa
dc.description.tableofcontentsCAPÍTULO 4 OBJETIVOSspa
dc.description.tableofcontents4. Objetivosspa
dc.description.tableofcontents4.1. Objetivo generalspa
dc.description.tableofcontents4.2. Objetivos específicosspa
dc.description.tableofcontentsCAPÍTULO 5 RESULTADOS Y DISCUSIÓNspa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓNspa
dc.description.tableofcontents5.1. Microscopía electrónica de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS)spa
dc.description.tableofcontents5.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM)spa
dc.description.tableofcontents5.3. Propiedades vibracionalesspa
dc.description.tableofcontents5.3.1. Espectroscopía infrarroja con transformada de Fourier (FTIR)spa
dc.description.tableofcontents5.3.2. Espectroscopía RAMANspa
dc.description.tableofcontents5.4. Difracción de rayos Xspa
dc.description.tableofcontents5.4.1. Patrones de difracción de rayos X e identificación de fasesspa
dc.description.tableofcontents5.4.2. Patrones de difracción de rayos X ajustadosspa
dc.description.tableofcontents5.4.3. Parámetros de redspa
dc.description.tableofcontents5.5. Propiedades ópticasspa
dc.description.tableofcontents5.5.1. Espectroscopía UV-visspa
dc.description.tableofcontents5.5.2. UV- Reflectancia difusaspa
dc.description.tableofcontents5.6. Medidas magnéticasspa
dc.description.tableofcontents6. CONCLUSIONESspa
dc.description.tableofcontents7. TRABAJO A FUTUROspa
dc.description.tableofcontents8. BIBLIOGRAFÍAspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9029
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programQuímica
dc.relation.referencesAbdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. In Journal of the Nigerian Association of Mathematical Physics (Vol. 35).
dc.relation.referencesAlburaih, H. A., Aadil, M., Ejaz, S. R., Hassan, W., Anwar, A., Anjum, S., Aman, S., Al-Buriahi, M. S., Alrowaili, Z. A., & Trukhanov, A. V. (2022). Wet-chemical synthesis of urchin-like Co-doped CuO: A visible light trigger photocatalyst for water remediation and antimicrobial applications. Ceramics International, 48(15), 21804–21813. https://doi.org/10.1016/j.ceramint.2022.04.159
dc.relation.referencesAnu Prathap, M. U., Kaur, B., & Srivastava, R. (2012). Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. Journal of Colloid and Interface Science, 370(1), 144–154. https://doi.org/10.1016/j.jcis.2011.12.074
dc.relation.referencesAromaa, J., Kekkonen, M., Mousapour, M., Jokilaakso, A., & Lundström, M. (2021). The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation, 2(4), 625–640. https://doi.org/10.3390/cmd2040033
dc.relation.referencesArun, L., Karthikeyan, C., Philip, D., Dhayanithi, D., Giridharan, N. V., & Unni, C. (2018). Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Optical and Quantum Electronics, 50(12), 414. https://doi.org/10.1007/s11082-018-1684-9
dc.relation.referencesAtchaya, S., & Meena Devi, J. (2024). Experimental Investigation on Structural, Optical, Electrical and Magnetic Properties of Copper Oxide Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 94(1), 153–160. https://doi.org/10.1007/s40010-023-00855-7
dc.relation.referencesAharoni. A. (1996). Introduction to the theory of ferromagnetism (pp. 45-67). Oxford University Press.
dc.relation.referencesAndrew. E. R. (1955). Nuclear Magnetic Resonance. Physical Review. 98(3). 703-707.
dc.relation.referencesA. El-Trass, H. ElShamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012), doi: 10.1016/j.apsusc.2011.11.025. 42.
dc.relation.referencesBaghbanzadeh, M., Carbone, L., Cozzoli, P. D., & Kappe, C. O. (2011). Microwave‐Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie International Edition, 50(48), 11312–11359. https://doi.org/10.1002/anie.201101274
dc.relation.referencesBaghurst, D. R., & Mingos, D. M. P. (1992). A new reaction vessel for accelerated syntheses using microwave dielectric super-heating effects. Journal of the Chemical Society, Dalton Transactions, 7, 1151. https://doi.org/10.1039/dt9920001151
dc.relation.referencesBasith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., & Hussain, S. (2014a). Optical and magnetic properties of Co-doped CuO flower/plates/particles- like nanostructures. Journal of Nanoscience and Nanotechnology, 14(3), 2577–2583. https://doi.org/10.1166/jnn.2014.8514
dc.relation.referencesBayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, 45(8), 3670–3674. https://doi.org/10.1007/s11661-014-2306-1
dc.relation.referencesBeltrán, J. J., Barrero, C. A., & Punnoose, A. (2016). Identifying the sources of ferromagnetism in sol-gel synthesized Zn1−xCoxO (0≤x≤0.10) nanoparticles. Journal of Solid State Chemistry, 240, 30–42. https://doi.org/10.1016/j.jssc.2016.05.013
dc.relation.referencesBeltrán, J. J., Barrero, C. A., & Punnoose, A. (2019). Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders. Physical Chemistry Chemical Physics, 21(17), 8808–8819. https://doi.org/10.1039/C9CP01277J
dc.relation.referencesBilecka, I., & Niederberger, M. (2010a). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358. https://doi.org/10.1039/b9nr00377k
dc.relation.referencesBriceño, C., & Cáceres, L. (1994). Química Briceño.
dc.relation.referencesBritannica. (2024). Cupric oxide | chemical compound | Britannica. Encyclopedia Britannica. The Editors of Encyclopaedia Britannica. (2024, September 12). Cupric Oxide | Chemical Compound | Britannica. Encyclopedia Britannica. Https://Www.Britannica.Com/Science/Cupric-Oxide.
dc.relation.referencesBarber, J., et al. (2010). Temperature-dependent anti-Stokes Raman scattering: Applications in microthermometry. Journal of Applied Physics, 108(3), 033104. https://doi.org/10.1063/1.3455334
dc.relation.referencesBonger A., Journeau P.H., Thollet G., Basset D. and Gauthier C., A history of SEM developmentsTowards ` wet-STEM ` imaging, Micron, 2007; 38: 390-401.
dc.relation.referencesBreton P.J., From Microns to nanometers: early landmarks in the science of scanning electron microscope imaging, Scanning Microscopy, 13-1: 1-6. (1999).
dc.relation.referencesBroers A.N., Recent advances in SEM with Lathanum hesaboride cathodes, Scanning Electron Microscopy, (Eds. Johari O., Corvin I.) IITRI, Chicago I: 10-18. (1974)
dc.relation.referencesBozzola, J. J., & Russell, L. D. (1998). Electron Microscopy: Principles and Techniques for Biologists (2nd ed.). Jones and Bartlett Publishers.
dc.relation.referencesÇETİNKAYA, S. (2024a). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.31127/tuje.1290655
dc.relation.referencesCoey, J. M. D. (2006). Dilute Ferromagnetic Oxides. In Local-Moment Ferromagnets (pp. 185–198). Springer-Verlag. https://doi.org/10.1007/11417255_12
dc.relation.referencesCollins, M. J. (2010). Future Trends in Microwave Synthesis. Future Medicinal Chemistry, 2(2), 151–155. https://doi.org/10.4155/fmc.09.133
dc.relation.referencesCUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry @Aalto - Aalto University Wiki. (2024). Https://Wiki.Aalto.Fi/Display/SSC/CuO.
dc.relation.referencesCullity. B. D.. & Graham. C. D. (2009). Introduction to Magnetic Materials (pp. 102-125). John Wiley & Sons.
dc.relation.referencesCoey. J. M. D.. & Venkatesan. M. (Eds.). (2010). Magnetism and Magnetic Materials (pp. 78-92). Cambridge University Press.
dc.relation.referencesCrewe A.V. and Lin P.S.D, Production of a field emission source, In progress in optics XI (Eds. Wolf E.) North Holland 1973, pp. 225-246.
dc.relation.referencesDahl, J. A., Maddux, B. L. S., & Hutchison, J. E. (2007). Toward Greener Nanosynthesis. Chemical Reviews, 107(6), 2228–2269. https://doi.org/10.1021/cr050943k
dc.relation.referencesDallinger, D., & Kappe, C. O. (2007). Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 107(6), 2563–2591. https://doi.org/10.1021/cr0509410
dc.relation.referencesDouglas A. Skoog, F. James Holler, & Timothy A. Nieman. (2001). Principios de análisis instrumental (McGraw-Hill Interamericana de España S.L., Ed.; 5ta ed.). Concepción Hernández Madrid.
dc.relation.referencesDavidson, M. W., & Abramowitz, M. (2002). Introduction to Optical Microscopy. In Encyclopedia of Imaging Science and Technology (pp. 1-25). Wiley.
dc.relation.referencesDunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press.
dc.relation.referencesDunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers (pp. 33-48). Cambridge University Press.
dc.relation.referencesDodrill, B., & Lindemuth, J. R. (2021). Vibrating sample magnetometry. In Magnetic Measurement Techniques for Materials Characterization (pp. 15–37). Springer International Publishing.
dc.relation.referencesEgerton, R. F. (2005). Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer.
dc.relation.referencesFard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology-Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529–9539. https://doi.org/10.1002/slct.201901514
dc.relation.referencesFelix, S., Chakkravarthy, R. B. P., & Grace, A. N. (2015). Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. IOP Conference Series: Materials Science and Engineering, 73, 012115. https://doi.org/10.1088/1757-899X/73/1/012115
dc.relation.referencesFlewitt, P. E. J., & Wild, R. K. (2011). Physical Methods for Materials Characterisation (2nd ed.). CRC Press.
dc.relation.referencesFriel, J. J., & Lyman, C. E. (2006). X-ray Mapping in Electron-Beam Instruments. Microscopy and Microanalysis, 12(1), 2–25. https://doi.org/10.1017/S1431927606060058
dc.relation.referencesGabriel, C., Gabriel, S., H. Grant, E., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213. https://doi.org/10.1039/a827213z
dc.relation.referencesGao, D., Yang, G., Li, J., Zhang, J., Zhang, J., & Xue, D. (2010a). Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C, 114(43), 18347–18351. https://doi.org/10.1021/jp106015t
dc.relation.referencesGarcía Ramón M. (2007). Centro de Investigación en Energía Introducción al Método Rietveld Septiembre de 2007.
dc.relation.referencesGatou, M.-A., Lagopati, N., Vagena, I.-A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials, 13(1), 122. https://doi.org/10.3390/nano13010122
dc.relation.referencesGedye, R. N., Rank, W., & Westaway, K. C. (1991). The rapid synthesis of organic compounds in microwave ovens. II. Canadian Journal of Chemistry, 69(4), 706–711. https://doi.org/10.1139/v91-106
dc.relation.referencesGedye, R. N., Smith, F. E., & Westaway, K. C. (1988). The rapid synthesis of organic compounds in microwave ovens. Canadian Journal of Chemistry, 66(1), 17–26. https://doi.org/10.1139/v88-003
dc.relation.referencesGedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9
dc.relation.referencesGiguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27(41), 4945–4948. https://doi.org/10.1016/S0040-4039(00)85103-5
dc.relation.referencesGonjal Prado Jesús, & Morán Emilio. (2011). Síntesis asistida por microondas de sólidos inorgánicos. Http://Www.Rseq.Org/.
dc.relation.referencesGupta, R. K., Serbetçi, Z., & Yakuphanoglu, F. (2012). Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515, 96–100. https://doi.org/10.1016/j.jallcom.2011.11.098
dc.relation.referencesGuruvammal, D., Selvaraj, S., & Meenakshi Sundar, S. (2018). Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. Journal of Magnetism and Magnetic Materials, 452, 335–342. https://doi.org/10.1016/j.jmmm.2017.12.097
dc.relation.referencesGoldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-ray Microanalysis (3rd ed.). Springer.
dc.relation.referencesGnauck P., Drexel V., Greiser J., A new high resolution field emission scanning electron microscope with variable pressure capabilities, Microscopy and Microanalysis,2001; 7: 880-981.
dc.relation.referencesHao Zhang, Yulong Liu, Ke Zhu, Gueigu Siu, YonghongXiong, CaoshuiXiong, HaoZhang et al, J. Phys.: Condens.Matter, 2035 (1999).
dc.relation.referencesHansen. M. F.. Mørup. S.. & Frandsen. C. (2005). Vibrating sample magnetometer study of nanostructured materials. Journal of Magnetism and Magnetic Materials. 294(1). 76-80.
dc.relation.referencesHayes. L. (2002). Microwave Synthesis_ Chemistry at the Speed of Light - PDF Room.
dc.relation.referencesHorikoshi, S., Abe, H., Sumi, T., Torigoe, K., Sakai, H., Serpone, N., & Abe, M. (2011). Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale, 3(4), 1697. https://doi.org/10.1039/c0nr00861c
dc.relation.referencesHorikoshi, S., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2009). Microwave frequency effects on the photoactivity of TiO2: Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue. Chemical Physics Letters, 470(4–6), 304–307. https://doi.org/10.1016/j.cplett.2009.01.051
dc.relation.referencesIrwin, J. C., Chrzanowski, J., Wei, T., Lockwood, D. J., & Wold, A. (1990). Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 166(5-6), 456-464.
dc.relation.referencesJacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science, 30(21), 5321–5327. https://doi.org/10.1007/BF00351541
dc.relation.referencesJhung, S. H., Jin, T., Hwang, Y. K., & Chang, J. (2007). Microwave Effect in the Fast Synthesis of Microporous Materials: Which Stage Between Nucleation and Crystal Growth is Accelerated by Microwave Irradiation? Chemistry – A European Journal, 13(16), 4410–4417. https://doi.org/10.1002/chem.200700098
dc.relation.referencesJ. Tauc, (Plenum, 1974), Amorphous and Liquid Semiconductors, https://books.google.co.in/books? id¼AiNRAAAAMAAJ.
dc.relation.referencesJoy D.C. and Pawley J.B., High resolution scanning electron microscopy, Ultra microscopy, 1993; 47; 80- 100.
dc.relation.referencesJ Schilling, J., White A., Scherer G., Stupian R., Hillebrand, U., The construction of a Field emission scanning electron microscopy and its application to the study of fibres. Int J Sci. 2005; 15-20.
dc.relation.referencesKappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655
dc.relation.referencesKomarneni, S., & Roy, R. (1985). Titania gel spheres by a new sol-gel process. Materials Letters, 3(4), 165–167. https://doi.org/10.1016/0167-577X(85)90151-X
dc.relation.referencesKUBA, J., MITCHELS, J., HOVORKA, M., ERDMANN, P., BERKA, L., KIRMSE, R., KÖNIG, J., DE BOCK, J., GOETZE, B., & RIGORT, A. (2021). Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out. Journal of Microscopy, 281(2), 112–124. https://doi.org/10.1111/jmi.12939
dc.relation.referencesLiang, Y., Wei, Z., Wang, R., & Zhang, X. (2022). The Microwave Facile Synthesis of NiOx@graphene Nanocomposites for Application in Supercapacitors: Insights into the Formation and Storage Mechanisms. Coatings, 12(8), 1060. https://doi.org/10.3390/coatings12081060
dc.relation.referencesLizarraga Matto. (2021). INFLUENCIA DE LA TEMPERATURA EN LA ESTRUCTURA CRISTALINA DE LA MONTMORILLONITA ESTUDIO POR DIFRACCIÓN DE RAYOS-X Y MÉTODO DE RIETVELD. 41–42.
dc.relation.referencesLima. E.. & Silva. G. (2019). Recent advances in vibrating sample magnetometry for magnetic measurements. Journal of Magnetism and Magnetic Materials. 473. 207-215.
dc.relation.referencesLong, D. A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons.
dc.relation.referencesMaini, A., & Shah, M. A. (2021). Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application.
dc.relation.referencesInternational Journal of Ceramic Engineering & Science, 3(4), 192–199. https://doi.org/10.1002/ces2.10097
dc.relation.referencesMateriales y propiedades. Uvigo.es. Recuperado el 6 de mayo de 2024. De https://quintans.webs.uvigo.es/recursos/Web_electromagnetismo/magnetismo_materiales.htm.
dc.relation.referencesM. Kaur et al., J. Cryst. Growth. 289, 670 (2006), doi: 10.1016/j.jcrysgro.2005.11.111.
dc.relation.referencesNakajima, K., & Ozaki, M. (2024). Anisotropic crystal growth in blue phase I transitioned from a uniformly oriented cholesteric phase. Soft Matter, 20(20), 4072–4078. https://doi.org/10.1039/D4SM00289J
dc.relation.referencesNüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis – a critical technology overview. Green Chem., 6(3), 128–141. https://doi.org/10.1039/B310502D
dc.relation.referencesOhno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science, 281(5379), 951–956. https://doi.org/10.1126/science.281.5379.951
dc.relation.referencesOwen, T. (2000). Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard.
dc.relation.referencesPatete, J. M., Peng, X., Koenigsmann, C., Xu, Y., Karn, B., & Wong, S. S. (2011). Viable methodologies for the synthesis of high-quality nanostructures. Green Chemistry, 13(3), 482. https://doi.org/10.1039/c0gc00516a
dc.relation.referencesPearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93(1), 1–13. https://doi.org/10.1063/1.1517164
dc.relation.referencesPolshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. https://doi.org/10.1039/b921171c
dc.relation.referencesPonnarasan, V., & Krishnan, A. (2017a). Synthesis, Structural and Optical Properties of Cobalt Doped CuO Nanoparticles. International Journal of Nanoscience, 16(2). https://doi.org/10.1142/S0219581X16500319
dc.relation.referencesPonnar, M., Thangamani, C., Monisha, P., Gomathi, S. S., & Pushpanathan, K. (2018). Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Applied Surface Science, 449, 132–143. https://doi.org/10.1016/j.apsusc.2018.01.126
dc.relation.referencesPrabhu, R. S., Priyanka, R., Vijay, M., & Vikashini, G. K. (2021). Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research. Research Article—Pharmaceutical Sciences—OA Journal—MCI Approved—Index Copernicus, 11, 2321-3272.
dc.relation.referencesPawely J., The development if field emission scanning electron microscopy for imaging biological surfaces, Scanning, Vol. 19: 324-336, (1997).
dc.relation.referencesRajamohan, R., Raorane, C. J., Kim, S.-C., Ashokkumar, S., & Lee, Y. R. (2023). Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. Micromachines, 14(2), 456. https://doi.org/10.3390/mi14020456
dc.relation.referencesRana, K. K., & Rana, S. (2014). Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. OALib, 01(06), 1–20. https://doi.org/10.4236/oalib.1100686
dc.relation.referencesRao, K. J., Vaidhyanathan, B., Ganguli, M., & Ramakrishnan, P. A. (1999). Synthesis of Inorganic Solids Using Microwaves. Chemistry of Materials, 11(4), 882–895. https://doi.org/10.1021/cm9803859
dc.relation.referencesRashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: Synthesis, characterizations, and raman spectroscopy. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/714853
dc.relation.referencesRubio, N., Herrero, M. A., Meneghetti, M., Díaz-Ortiz, Á., Schiavon, M., Prato, M., & Vázquez, E. (2009). Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 19(25), 4407. https://doi.org/10.1039/b900776h
dc.relation.referencesReimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (2nd ed.). Springer.
dc.relation.referencesSEAS. (2023, January). Semiconductor intrínseco y extrínseco que son y cómo funcionan.
dc.relation.referencesSi, Y., Guo, C., Xie, C., & Xiong, Z. (2018). An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 11(10), 1912. https://doi.org/10.3390/ma11101912
dc.relation.referencesSkoog, D. A., Holler, Fj., & Crouch, S. R. (2009). Principios de análisis instrumental.
dc.relation.referencesSwatsitang, E., Karaphun, A., & Putjuso, T. (2020). Influence of Fe:Co co–doping on the morphology, optical and magnetic properties of Cu1-(x+y)FexCoyO nanostructures prepared by a hydrothermal method. Physica B: Condensed Matter, 583, 412044. https://doi.org/10.1016/j.physb.2020.412044
dc.relation.referencesSmith, K.C.A., Oately, C.W. The Field emission Scanning electron microscopy and its fields of application. British Journal of Applied physics. 1995; 6 (11): 391.
dc.relation.referencesSingh KK., Robinson D., Pathak YV., Morphological characterization of malto dextrin derivatives using Field emission scanning electron microscopy. Cells and materials. 1993, pp. 543-620.
dc.relation.referencesSmith, E., & Dent, G. (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons.
dc.relation.referencesS. Asbrink and L.-J. Norrby, Acta. Cryst. B 26 ( 1970) 8.
dc.relation.referencesSrivastava, S., & Agarwal, A. (2018). INFLUENCE OF Co DOPING ON STRUCTURAL AND OPTICAL PROPERTIES OF CuO NANOPARTICLES. Journal of Ovonic Research, 14(5).
dc.relation.referencesTaunk, M., & Singh, N. (2023). A Comparative Analysis of X-Ray Diffraction, Morphology, and Optical Properties of Sonochemically Synthesized Cupric Oxide Nanostructures. Journal of Electronic Materials, 52(10), 6888–6901. https://doi.org/10.1007/s11664-023-10611-7
dc.relation.referencesThakur, N., Anu, & Kumar, K. (2020). Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.104011
dc.relation.referencesTompsett, G. A., Conner, W. C., & Yngvesson, K. S. (2006). Microwave Synthesis of Nanoporous Materials. ChemPhysChem, 7(2), 296–319. https://doi.org/10.1002/cphc.200500449
dc.relation.referencesTauc, J.; Grigorovici, R.; Vancu, A. Optical Properties AndElectronic Structure of Amorphous Germanium. Phys. Status Solidi B1966, 15, 627−637.
dc.relation.referencesTEMA 7 Módulo 2. ESPECTROSCOPIA. (2024). Ppt Descargar. https://slideplayer.es/slide/3528146/
dc.relation.referencesUma, H. B., Kumar, M. S. V., & Ananda, S. (2022). Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. Journal of Molecular Structure, 1264. https://doi.org/10.1016/j.molstruc.2022.133110
dc.relation.referencesVarghese, D., Tom, C., & Krishna Chandar, N. (2017). Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conference Series: Materials Science and Engineering, 263, 022002. https://doi.org/10.1088/1757-899X/263/2/022002
dc.relation.referencesVera cuartero Yagüe. (2012). Evolución de las propiedades multiferroicas del TbMnO 3 mediante la dilución de la subred de Mn.
dc.relation.referencesVijayalakshmi, R. V., Saravanan, G., Kumar, P. P., & Ravichandran, K. (2018). Systematic analysis of CuO and Co doped CuO nanoparticles and the impact of dopant on magnetic and optical properties. 030160. https://doi.org/10.1063/1.5032495
dc.relation.referencesVindhya, P. S., & Kavitha, V. T. (2023). Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Materials Science and Engineering: B, 289. https://doi.org/10.1016/j.mseb.2022.116258 Varma, D. (2022). Raman Spectroscopy! How does it work? - Materials101. Materials101. https://materials101.science/raman-spectroscopy-how-does-it-work/
dc.relation.referencesWatauchi, S., Wakihara, M., & Tanaka, I. (2001). Control of the anisotropic growth rates of oxide single crystals in floating zone growth. Journal of Crystal Growth, 229(1–4), 423–427. https://doi.org/10.1016/S0022-0248(01)01194-0
dc.relation.referencesW.G. Fateley, F.R. Dollish, M.T. McDevitt and F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations (Wiley, New York, 1972).
dc.relation.referencesXiang, L., Guo, J., Wu, C., Cai, M., Zhou, X., & Zhang, N. (2018). A brief review on the growth mechanism of CuO nanowires via thermal oxidation. In Journal of Materials Research (Vol. 33, Issue 16, pp. 2264–2280). Cambridge University Press. https://doi.org/10.1557/jmr.2018.215
dc.relation.referencesXu, J. F., Ji, W., Shen, Z. X., Li, W. S., Tang, S. H., Ye, X. R., Jia, D. Z., & Xin, X. Q. (1999). Raman Spectra of CuO Nanocrystals (Vol. 30).
dc.relation.referencesXu, Z. P., & Zeng, H. C. (1999). Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chemistry of Materials, 11(1), 67–74. https://doi.org/10.1021/cm980420b
dc.relation.referencesYakout, S. M., & El-Sayed, A. M. (2016). Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. Journal of Superconductivity and Novel Magnetism, 29(11), 2961–2968. https://doi.org/10.1007/s10948-016-3641-9
dc.relation.referencesYakout, S. M. (2020). Spintronics: Future technology for new data storage and communication devices. Journal of Superconductivity and Novel Magnetism, 33(9), 2557–2580. https://doi.org/10.1007/s10948-020-05545-8
dc.relation.referencesZhang, Y., Ji, Y., Li, J., Liu, H., Hu, X., Zhong, Z., & Su, F. (2018). Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 11(2), 804–819. https://doi.org/10.1007/s12274-017-1689-x
dc.relation.referencesZhao, Y., Li, Z., Lv, Z., Liang, X., Min, J., Wang, L., & Shi, Y. (2010). A new phase and optical properties of the N-doped ZnO film. Materials Research Bulletin, 45(9), 1046–1050. https://doi.org/10.1016/j.materresbull.2010.06.008
dc.relation.referencesZhao, Y., Zhao, J., Li, Y., Ma, D., Hou, S., Li, L., Hao, X., & Wang, Z. (2011). Room temperature synthesis of 2D CuO nanoleaves in aqueous solution. Nanotechnology, 22(11), 115604. https://doi.org/10.1088/0957-4484/22/11/115604
dc.relation.referencesZhu, Y. J., & Chen, F. (2014). Microwave-assisted preparation of inorganic nanostructures in liquid phase. In Chemical Reviews (Vol. 114, Issue 12, pp. 6462–6555). American Chemical Society. https://doi.org/10.1021/cr400366s
dc.relation.referencesZimbovskii, D. S., & Churagulov, B. R. (2018). Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorganic Materials, 54(7), 660–666. https://doi.org/10.1134/S0020168518070208
dc.relation.referencesZoolfakar, A. S., Rani, R. A., Morfa, A. J., O’Mullane, A. P., & Kalantar-Zadeh, K. (2014a). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2(27), 5247–5270. https://doi.org/10.1039/c4tc00345d
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCu1-xCoxO (0.00<x<0.08)
dc.subject.keywordsMicrowave assisted synthesis
dc.subject.keywordsCobalt doping influence
dc.subject.keywordsBand gap
dc.subject.keywordsFerromagnetism at room temperature
dc.subject.proposalCu1-xCoxO (0.00<x<0.08)
dc.subject.proposalSíntesis asistida por microondas
dc.subject.proposalInfluencia del dopaje con Co
dc.subject.proposalNanoláminas
dc.subject.proposalBrecha de banda
dc.subject.proposalFerromagnetismo a temperatura ambiente
dc.titleCuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnéticaspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Autorización de publicación.pdf
Tamaño:
259.12 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Carlos Eduardo Osorno Bolívar. Final.pdf
Tamaño:
6.3 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: