Publicación: CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética
dc.audience | ||
dc.contributor.advisor | Beltrán Jiménez, Jailes Joaquín | |
dc.contributor.author | Osorno Bolívar, Carlos Eduardo | |
dc.contributor.educationalvalidator | Beltrán Jiménez Jailes Joaquín | |
dc.contributor.jury | Sánchez Pacheco, Luis Carlos | |
dc.contributor.jury | García Negrete, Carlos | |
dc.date.accessioned | 2025-02-07T13:25:28Z | |
dc.date.available | 2025-02-07T13:25:28Z | |
dc.date.issued | 2025-02-05 | |
dc.description.abstract | El CuO es un material semiconductor tipo p con propiedades destacadas como una estrecha banda prohibida (~1.2 eV, en bulk), alta conductividad eléctrica y térmica, estabilidad química y aplicaciones multifuncionales que van desde la catálisis hasta sensores y espintrónica. El potencial de sus aplicaciones puede mejorarse mediante el dopaje con metales de transición, lo que permite modificar su estructura cristalina, propiedades ópticas y comportamiento magnético. En este trabajo de grado se estudia los efectos del dopaje con Co en nanopartículas de CuO, investigando de manera integral sus propiedades morfológicas, vibracionales, estructurales, ópticas y magnéticas. La síntesis de las nanopartículas de CuO y Cu_(1-x) Co_x O con diferentes concentraciones de Co (x = 0.01 a 0.08), se realizó mediante el método de co-precipitación asistida por microondas. Los resultados de FTIR-ATR, RAMAN y DRX indicaron que el dopante se introdujo homogéneamente en la matriz del CuO hasta x = 0.05. Los resultados por difracción de rayos X confirmaron la formación de la fase monoclínica del CuO y evidenciaron la incorporación del Co en su red cristalina, formando una solución sólida sin presencia de fases impuras en las muestras de concentración menor igual al 6 % mol. Adicionalmente, las técnicas de microscopía electrónica (FIB-FESEM y espectroscopía Uv-Vis) revelaron un cambio en la morfología de 2D para la muestra pura y 3D, para la muestra con 5 % mol del dopante. | spa |
dc.description.abstract | CuO is a p-type semiconductor material with remarkable properties such as a narrow bandgap (~1.2 eV, in bulk), high electrical and thermal conductivity, chemical stability and multifunctional applications ranging from catalysis to sensors and spintronics. The potential of their applications can be improved through the doping with transition metals, by modifiying their crystalline structure, optical properties and magnetic behaviour. In this work, the effects of Co doping on CuO nanoparticles are studied, investigating their morphological, vibrational, structural, optical and magnetic properties in a comprehensive way. The synthesis of CuO and Cu1-xCoxO nanoparticles with different Co concentrations (x = 0.01 to 0.08) was carried out by microwave-assisted co-precipitation method. FTIR-ATR, RAMAN and XRD results indicated that the dopant was homogeneously introduced into the CuO matrix up to x = 0.05. X-ray diffraction results confirmed the formation of the monoclinic phase of CuO and evidenced the incorporation of Co in its crystal lattice of the semiconductor, forming a solid solution without the presence of impurity phases in the samples with concentrations lower than 6 % mol. Additionally, FIB-FESEM and Uv-Vis spectroscopy revealed a change in morphology from 2D for the pure sample to 3D for the sample with 5 % mol of the dopant. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | AGRADECIMIENTOS | spa |
dc.description.tableofcontents | RESUMEN | spa |
dc.description.tableofcontents | LISTA DE FIGURAS | spa |
dc.description.tableofcontents | LISTA DE ABREVIACIONES | spa |
dc.description.tableofcontents | INTRODUCCIÓN | spa |
dc.description.tableofcontents | CAPÍTULO 1 FUNDAMENTACIÓN TEÓRICA | spa |
dc.description.tableofcontents | 1. MARCO TEÓRICO | spa |
dc.description.tableofcontents | 1.1. Semiconducotres magnéticamente diluidos | spa |
dc.description.tableofcontents | 1.2. Óxidos semiconductores magnéticamente diluidos (ODMS) | spa |
dc.description.tableofcontents | 1.3. CuO | spa |
dc.description.tableofcontents | 1.3.1. Propiedades físicas y químicas | spa |
dc.description.tableofcontents | 1.3.2. Morfología, formación y yacimientos | spa |
dc.description.tableofcontents | 1.3.3. Estructura cristalina | spa |
dc.description.tableofcontents | 1.3.4. Propiedades ópticas | spa |
dc.description.tableofcontents | 1.3.5. Propiedaes magnéticas | spa |
dc.description.tableofcontents | 1.3.6. Aplicaciones | spa |
dc.description.tableofcontents | CAPÍTULO 2 SÍNTESIS ASISTIDA POR MICROONDAS Y TÉCNICAS DE CARACTERIZACIÓN | spa |
dc.description.tableofcontents | 2. SÍNTESIS ASISTIDA POR MICROONDAS | spa |
dc.description.tableofcontents | 2.1. Síntesis por microondas | spa |
dc.description.tableofcontents | 2.1.1. Química de microondas y efectos de las microondas | spa |
dc.description.tableofcontents | 2.1.2. Aceleraciones de velocidad por calentamiento con microondas | spa |
dc.description.tableofcontents | 2.1.3. Preparación asistida por microondas en distintos disolventes | spa |
dc.description.tableofcontents | 2.1.4. Preparación asistida por microondas en un sistema de reacción abierto | spa |
dc.description.tableofcontents | 2.1.5. Preparación de nanoestructuras en solución acuosa asistida por microondas | spa |
dc.description.tableofcontents | 2.2. Acetatos de metales de transición como precursores | spa |
dc.description.tableofcontents | 2.3. TÉCNICAS DE CARACTERIZACIÓN | spa |
dc.description.tableofcontents | 2.3.1. Microscopía de barrido electrónico con espectroscopía de dispersión de energía (SEM-EDS) y Microscopía electrónica de barrido de emisión de campo dual beam (FIB-FESEM) | spa |
dc.description.tableofcontents | 2.4. Espectroscopía infrarroja con transformada de Fourier (FTIR) | spa |
dc.description.tableofcontents | 2.4.1. Tipos de vibraciones moleculares | spa |
dc.description.tableofcontents | 2.4.2. Espectrometría de reflectancia atenuada total (ATR) | spa |
dc.description.tableofcontents | 2.5. Espectroscopía RAMAN | spa |
dc.description.tableofcontents | 2.5.1. Mecanismo de la dispersión Raman y Rayleigh | spa |
dc.description.tableofcontents | 2.5.2. Intensidad de los picos Raman normales | spa |
dc.description.tableofcontents | 2.5.3. Dispersión Rayleigh, Stok y Antistok | spa |
dc.description.tableofcontents | 2.6. Difracción de rayos X (DRX) | spa |
dc.description.tableofcontents | 2.6.1. Ley de Bragg | spa |
dc.description.tableofcontents | 2.6.2. Método de refinamiento Rietveld | spa |
dc.description.tableofcontents | 2.7. Espectroscopía UV-Vis | spa |
dc.description.tableofcontents | 2.7.1. Origen de los espectros UV-Vis | spa |
dc.description.tableofcontents | 2.7.2. Transmitancia y absorbancia | spa |
dc.description.tableofcontents | 2.7.3. Ley de Beer | spa |
dc.description.tableofcontents | 2.8. Uv-relectancia difusa (UV-DR) | spa |
dc.description.tableofcontents | 2.9. Medidas magnéticas | spa |
dc.description.tableofcontents | 2.9.1. Magnetrómetro de muestra vibrante | spa |
dc.description.tableofcontents | 2.10. Estado del arte | spa |
dc.description.tableofcontents | CAPÍTULO 3 PREPARACIÓN Y CARACTERIZACIÓN DE LAS MUESTRAS | spa |
dc.description.tableofcontents | 3. Síntesis de NPs de CuO y CuO dopadas con Co (x = 0.01, 0.02, 0.03, 0.04, 0.05 y 0.08) | spa |
dc.description.tableofcontents | 3.1. Reactivos y equipos | spa |
dc.description.tableofcontents | 3.2. Cálculos estequiométricos | spa |
dc.description.tableofcontents | 3.3. Procedimiento experimental | spa |
dc.description.tableofcontents | 3.3.1. Masas pesadas experimentalmente, tiempo de exposición y porcentaje de rendimiento de cada reacción | spa |
dc.description.tableofcontents | 3.4. Caracterización | spa |
dc.description.tableofcontents | 3.4.1. Microscopio electrónico de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS) | spa |
dc.description.tableofcontents | 3.4.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM) | spa |
dc.description.tableofcontents | 3.4.3. Espectroscopía infrarroja con transformada de Fourier y refelctancia total atenuada (FTIR-ATR) | spa |
dc.description.tableofcontents | 3.4.4. Espectroscopía RAMAN | spa |
dc.description.tableofcontents | 3.4.5. Difracción de rayos X (DRX) | spa |
dc.description.tableofcontents | 3.4.6. UV-Visible (UV-Vis) | spa |
dc.description.tableofcontents | 3.4.7. UV-reflectancia difusa (UV-DR) | spa |
dc.description.tableofcontents | 3.4.8. Magnetometría de muestra vibrante (VMS) | spa |
dc.description.tableofcontents | CAPÍTULO 4 OBJETIVOS | spa |
dc.description.tableofcontents | 4. Objetivos | spa |
dc.description.tableofcontents | 4.1. Objetivo general | spa |
dc.description.tableofcontents | 4.2. Objetivos específicos | spa |
dc.description.tableofcontents | CAPÍTULO 5 RESULTADOS Y DISCUSIÓN | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN | spa |
dc.description.tableofcontents | 5.1. Microscopía electrónica de barrido con espectroscopía de rayos X de energía dispersiva (SEM-EDS) | spa |
dc.description.tableofcontents | 5.2. Microscopía electrónica de emisión de campo dual beam (FIB – FESEM) | spa |
dc.description.tableofcontents | 5.3. Propiedades vibracionales | spa |
dc.description.tableofcontents | 5.3.1. Espectroscopía infrarroja con transformada de Fourier (FTIR) | spa |
dc.description.tableofcontents | 5.3.2. Espectroscopía RAMAN | spa |
dc.description.tableofcontents | 5.4. Difracción de rayos X | spa |
dc.description.tableofcontents | 5.4.1. Patrones de difracción de rayos X e identificación de fases | spa |
dc.description.tableofcontents | 5.4.2. Patrones de difracción de rayos X ajustados | spa |
dc.description.tableofcontents | 5.4.3. Parámetros de red | spa |
dc.description.tableofcontents | 5.5. Propiedades ópticas | spa |
dc.description.tableofcontents | 5.5.1. Espectroscopía UV-vis | spa |
dc.description.tableofcontents | 5.5.2. UV- Reflectancia difusa | spa |
dc.description.tableofcontents | 5.6. Medidas magnéticas | spa |
dc.description.tableofcontents | 6. CONCLUSIONES | spa |
dc.description.tableofcontents | 7. TRABAJO A FUTURO | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9029 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Abdullahi, S. S., Güner, S., Koseoglu, Y., Musa, I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple Method For The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. In Journal of the Nigerian Association of Mathematical Physics (Vol. 35). | |
dc.relation.references | Alburaih, H. A., Aadil, M., Ejaz, S. R., Hassan, W., Anwar, A., Anjum, S., Aman, S., Al-Buriahi, M. S., Alrowaili, Z. A., & Trukhanov, A. V. (2022). Wet-chemical synthesis of urchin-like Co-doped CuO: A visible light trigger photocatalyst for water remediation and antimicrobial applications. Ceramics International, 48(15), 21804–21813. https://doi.org/10.1016/j.ceramint.2022.04.159 | |
dc.relation.references | Anu Prathap, M. U., Kaur, B., & Srivastava, R. (2012). Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. Journal of Colloid and Interface Science, 370(1), 144–154. https://doi.org/10.1016/j.jcis.2011.12.074 | |
dc.relation.references | Aromaa, J., Kekkonen, M., Mousapour, M., Jokilaakso, A., & Lundström, M. (2021). The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation, 2(4), 625–640. https://doi.org/10.3390/cmd2040033 | |
dc.relation.references | Arun, L., Karthikeyan, C., Philip, D., Dhayanithi, D., Giridharan, N. V., & Unni, C. (2018). Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Optical and Quantum Electronics, 50(12), 414. https://doi.org/10.1007/s11082-018-1684-9 | |
dc.relation.references | Atchaya, S., & Meena Devi, J. (2024). Experimental Investigation on Structural, Optical, Electrical and Magnetic Properties of Copper Oxide Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 94(1), 153–160. https://doi.org/10.1007/s40010-023-00855-7 | |
dc.relation.references | Aharoni. A. (1996). Introduction to the theory of ferromagnetism (pp. 45-67). Oxford University Press. | |
dc.relation.references | Andrew. E. R. (1955). Nuclear Magnetic Resonance. Physical Review. 98(3). 703-707. | |
dc.relation.references | A. El-Trass, H. ElShamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012), doi: 10.1016/j.apsusc.2011.11.025. 42. | |
dc.relation.references | Baghbanzadeh, M., Carbone, L., Cozzoli, P. D., & Kappe, C. O. (2011). Microwave‐Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie International Edition, 50(48), 11312–11359. https://doi.org/10.1002/anie.201101274 | |
dc.relation.references | Baghurst, D. R., & Mingos, D. M. P. (1992). A new reaction vessel for accelerated syntheses using microwave dielectric super-heating effects. Journal of the Chemical Society, Dalton Transactions, 7, 1151. https://doi.org/10.1039/dt9920001151 | |
dc.relation.references | Basith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., & Hussain, S. (2014a). Optical and magnetic properties of Co-doped CuO flower/plates/particles- like nanostructures. Journal of Nanoscience and Nanotechnology, 14(3), 2577–2583. https://doi.org/10.1166/jnn.2014.8514 | |
dc.relation.references | Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of Cobalt Doping on Nanostructured CuO Thin Films. Metallurgical and Materials Transactions A, 45(8), 3670–3674. https://doi.org/10.1007/s11661-014-2306-1 | |
dc.relation.references | Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2016). Identifying the sources of ferromagnetism in sol-gel synthesized Zn1−xCoxO (0≤x≤0.10) nanoparticles. Journal of Solid State Chemistry, 240, 30–42. https://doi.org/10.1016/j.jssc.2016.05.013 | |
dc.relation.references | Beltrán, J. J., Barrero, C. A., & Punnoose, A. (2019). Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders. Physical Chemistry Chemical Physics, 21(17), 8808–8819. https://doi.org/10.1039/C9CP01277J | |
dc.relation.references | Bilecka, I., & Niederberger, M. (2010a). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2(8), 1358. https://doi.org/10.1039/b9nr00377k | |
dc.relation.references | Briceño, C., & Cáceres, L. (1994). Química Briceño. | |
dc.relation.references | Britannica. (2024). Cupric oxide | chemical compound | Britannica. Encyclopedia Britannica. The Editors of Encyclopaedia Britannica. (2024, September 12). Cupric Oxide | Chemical Compound | Britannica. Encyclopedia Britannica. Https://Www.Britannica.Com/Science/Cupric-Oxide. | |
dc.relation.references | Barber, J., et al. (2010). Temperature-dependent anti-Stokes Raman scattering: Applications in microthermometry. Journal of Applied Physics, 108(3), 033104. https://doi.org/10.1063/1.3455334 | |
dc.relation.references | Bonger A., Journeau P.H., Thollet G., Basset D. and Gauthier C., A history of SEM developmentsTowards ` wet-STEM ` imaging, Micron, 2007; 38: 390-401. | |
dc.relation.references | Breton P.J., From Microns to nanometers: early landmarks in the science of scanning electron microscope imaging, Scanning Microscopy, 13-1: 1-6. (1999). | |
dc.relation.references | Broers A.N., Recent advances in SEM with Lathanum hesaboride cathodes, Scanning Electron Microscopy, (Eds. Johari O., Corvin I.) IITRI, Chicago I: 10-18. (1974) | |
dc.relation.references | Bozzola, J. J., & Russell, L. D. (1998). Electron Microscopy: Principles and Techniques for Biologists (2nd ed.). Jones and Bartlett Publishers. | |
dc.relation.references | ÇETİNKAYA, S. (2024a). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107–115. https://doi.org/10.31127/tuje.1290655 | |
dc.relation.references | Coey, J. M. D. (2006). Dilute Ferromagnetic Oxides. In Local-Moment Ferromagnets (pp. 185–198). Springer-Verlag. https://doi.org/10.1007/11417255_12 | |
dc.relation.references | Collins, M. J. (2010). Future Trends in Microwave Synthesis. Future Medicinal Chemistry, 2(2), 151–155. https://doi.org/10.4155/fmc.09.133 | |
dc.relation.references | CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry Aalto - Aalto University Wiki. (2024). CUO - Solid State Chemistry @Aalto - Aalto University Wiki. (2024). Https://Wiki.Aalto.Fi/Display/SSC/CuO. | |
dc.relation.references | Cullity. B. D.. & Graham. C. D. (2009). Introduction to Magnetic Materials (pp. 102-125). John Wiley & Sons. | |
dc.relation.references | Coey. J. M. D.. & Venkatesan. M. (Eds.). (2010). Magnetism and Magnetic Materials (pp. 78-92). Cambridge University Press. | |
dc.relation.references | Crewe A.V. and Lin P.S.D, Production of a field emission source, In progress in optics XI (Eds. Wolf E.) North Holland 1973, pp. 225-246. | |
dc.relation.references | Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. (2007). Toward Greener Nanosynthesis. Chemical Reviews, 107(6), 2228–2269. https://doi.org/10.1021/cr050943k | |
dc.relation.references | Dallinger, D., & Kappe, C. O. (2007). Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 107(6), 2563–2591. https://doi.org/10.1021/cr0509410 | |
dc.relation.references | Douglas A. Skoog, F. James Holler, & Timothy A. Nieman. (2001). Principios de análisis instrumental (McGraw-Hill Interamericana de España S.L., Ed.; 5ta ed.). Concepción Hernández Madrid. | |
dc.relation.references | Davidson, M. W., & Abramowitz, M. (2002). Introduction to Optical Microscopy. In Encyclopedia of Imaging Science and Technology (pp. 1-25). Wiley. | |
dc.relation.references | Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press. | |
dc.relation.references | Dunlop. D. J.. & Özdemir. Ö. (1997). Rock Magnetism: Fundamentals and Frontiers (pp. 33-48). Cambridge University Press. | |
dc.relation.references | Dodrill, B., & Lindemuth, J. R. (2021). Vibrating sample magnetometry. In Magnetic Measurement Techniques for Materials Characterization (pp. 15–37). Springer International Publishing. | |
dc.relation.references | Egerton, R. F. (2005). Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer. | |
dc.relation.references | Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. (2019). Morphology-Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect, 4(33), 9529–9539. https://doi.org/10.1002/slct.201901514 | |
dc.relation.references | Felix, S., Chakkravarthy, R. B. P., & Grace, A. N. (2015). Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. IOP Conference Series: Materials Science and Engineering, 73, 012115. https://doi.org/10.1088/1757-899X/73/1/012115 | |
dc.relation.references | Flewitt, P. E. J., & Wild, R. K. (2011). Physical Methods for Materials Characterisation (2nd ed.). CRC Press. | |
dc.relation.references | Friel, J. J., & Lyman, C. E. (2006). X-ray Mapping in Electron-Beam Instruments. Microscopy and Microanalysis, 12(1), 2–25. https://doi.org/10.1017/S1431927606060058 | |
dc.relation.references | Gabriel, C., Gabriel, S., H. Grant, E., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213. https://doi.org/10.1039/a827213z | |
dc.relation.references | Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J., & Xue, D. (2010a). Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C, 114(43), 18347–18351. https://doi.org/10.1021/jp106015t | |
dc.relation.references | García Ramón M. (2007). Centro de Investigación en Energía Introducción al Método Rietveld Septiembre de 2007. | |
dc.relation.references | Gatou, M.-A., Lagopati, N., Vagena, I.-A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials, 13(1), 122. https://doi.org/10.3390/nano13010122 | |
dc.relation.references | Gedye, R. N., Rank, W., & Westaway, K. C. (1991). The rapid synthesis of organic compounds in microwave ovens. II. Canadian Journal of Chemistry, 69(4), 706–711. https://doi.org/10.1139/v91-106 | |
dc.relation.references | Gedye, R. N., Smith, F. E., & Westaway, K. C. (1988). The rapid synthesis of organic compounds in microwave ovens. Canadian Journal of Chemistry, 66(1), 17–26. https://doi.org/10.1139/v88-003 | |
dc.relation.references | Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27(3), 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9 | |
dc.relation.references | Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27(41), 4945–4948. https://doi.org/10.1016/S0040-4039(00)85103-5 | |
dc.relation.references | Gonjal Prado Jesús, & Morán Emilio. (2011). Síntesis asistida por microondas de sólidos inorgánicos. Http://Www.Rseq.Org/. | |
dc.relation.references | Gupta, R. K., Serbetçi, Z., & Yakuphanoglu, F. (2012). Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515, 96–100. https://doi.org/10.1016/j.jallcom.2011.11.098 | |
dc.relation.references | Guruvammal, D., Selvaraj, S., & Meenakshi Sundar, S. (2018). Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. Journal of Magnetism and Magnetic Materials, 452, 335–342. https://doi.org/10.1016/j.jmmm.2017.12.097 | |
dc.relation.references | Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-ray Microanalysis (3rd ed.). Springer. | |
dc.relation.references | Gnauck P., Drexel V., Greiser J., A new high resolution field emission scanning electron microscope with variable pressure capabilities, Microscopy and Microanalysis,2001; 7: 880-981. | |
dc.relation.references | Hao Zhang, Yulong Liu, Ke Zhu, Gueigu Siu, YonghongXiong, CaoshuiXiong, HaoZhang et al, J. Phys.: Condens.Matter, 2035 (1999). | |
dc.relation.references | Hansen. M. F.. Mørup. S.. & Frandsen. C. (2005). Vibrating sample magnetometer study of nanostructured materials. Journal of Magnetism and Magnetic Materials. 294(1). 76-80. | |
dc.relation.references | Hayes. L. (2002). Microwave Synthesis_ Chemistry at the Speed of Light - PDF Room. | |
dc.relation.references | Horikoshi, S., Abe, H., Sumi, T., Torigoe, K., Sakai, H., Serpone, N., & Abe, M. (2011). Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale, 3(4), 1697. https://doi.org/10.1039/c0nr00861c | |
dc.relation.references | Horikoshi, S., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2009). Microwave frequency effects on the photoactivity of TiO2: Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue. Chemical Physics Letters, 470(4–6), 304–307. https://doi.org/10.1016/j.cplett.2009.01.051 | |
dc.relation.references | Irwin, J. C., Chrzanowski, J., Wei, T., Lockwood, D. J., & Wold, A. (1990). Raman scattering from single crystals of cupric oxide. Physica C: Superconductivity, 166(5-6), 456-464. | |
dc.relation.references | Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science, 30(21), 5321–5327. https://doi.org/10.1007/BF00351541 | |
dc.relation.references | Jhung, S. H., Jin, T., Hwang, Y. K., & Chang, J. (2007). Microwave Effect in the Fast Synthesis of Microporous Materials: Which Stage Between Nucleation and Crystal Growth is Accelerated by Microwave Irradiation? Chemistry – A European Journal, 13(16), 4410–4417. https://doi.org/10.1002/chem.200700098 | |
dc.relation.references | J. Tauc, (Plenum, 1974), Amorphous and Liquid Semiconductors, https://books.google.co.in/books? id¼AiNRAAAAMAAJ. | |
dc.relation.references | Joy D.C. and Pawley J.B., High resolution scanning electron microscopy, Ultra microscopy, 1993; 47; 80- 100. | |
dc.relation.references | J Schilling, J., White A., Scherer G., Stupian R., Hillebrand, U., The construction of a Field emission scanning electron microscopy and its application to the study of fibres. Int J Sci. 2005; 15-20. | |
dc.relation.references | Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655 | |
dc.relation.references | Komarneni, S., & Roy, R. (1985). Titania gel spheres by a new sol-gel process. Materials Letters, 3(4), 165–167. https://doi.org/10.1016/0167-577X(85)90151-X | |
dc.relation.references | KUBA, J., MITCHELS, J., HOVORKA, M., ERDMANN, P., BERKA, L., KIRMSE, R., KÖNIG, J., DE BOCK, J., GOETZE, B., & RIGORT, A. (2021). Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out. Journal of Microscopy, 281(2), 112–124. https://doi.org/10.1111/jmi.12939 | |
dc.relation.references | Liang, Y., Wei, Z., Wang, R., & Zhang, X. (2022). The Microwave Facile Synthesis of NiOx@graphene Nanocomposites for Application in Supercapacitors: Insights into the Formation and Storage Mechanisms. Coatings, 12(8), 1060. https://doi.org/10.3390/coatings12081060 | |
dc.relation.references | Lizarraga Matto. (2021). INFLUENCIA DE LA TEMPERATURA EN LA ESTRUCTURA CRISTALINA DE LA MONTMORILLONITA ESTUDIO POR DIFRACCIÓN DE RAYOS-X Y MÉTODO DE RIETVELD. 41–42. | |
dc.relation.references | Lima. E.. & Silva. G. (2019). Recent advances in vibrating sample magnetometry for magnetic measurements. Journal of Magnetism and Magnetic Materials. 473. 207-215. | |
dc.relation.references | Long, D. A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons. | |
dc.relation.references | Maini, A., & Shah, M. A. (2021). Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application. | |
dc.relation.references | International Journal of Ceramic Engineering & Science, 3(4), 192–199. https://doi.org/10.1002/ces2.10097 | |
dc.relation.references | Materiales y propiedades. Uvigo.es. Recuperado el 6 de mayo de 2024. De https://quintans.webs.uvigo.es/recursos/Web_electromagnetismo/magnetismo_materiales.htm. | |
dc.relation.references | M. Kaur et al., J. Cryst. Growth. 289, 670 (2006), doi: 10.1016/j.jcrysgro.2005.11.111. | |
dc.relation.references | Nakajima, K., & Ozaki, M. (2024). Anisotropic crystal growth in blue phase I transitioned from a uniformly oriented cholesteric phase. Soft Matter, 20(20), 4072–4078. https://doi.org/10.1039/D4SM00289J | |
dc.relation.references | Nüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis – a critical technology overview. Green Chem., 6(3), 128–141. https://doi.org/10.1039/B310502D | |
dc.relation.references | Ohno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science, 281(5379), 951–956. https://doi.org/10.1126/science.281.5379.951 | |
dc.relation.references | Owen, T. (2000). Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard. | |
dc.relation.references | Patete, J. M., Peng, X., Koenigsmann, C., Xu, Y., Karn, B., & Wong, S. S. (2011). Viable methodologies for the synthesis of high-quality nanostructures. Green Chemistry, 13(3), 482. https://doi.org/10.1039/c0gc00516a | |
dc.relation.references | Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93(1), 1–13. https://doi.org/10.1063/1.1517164 | |
dc.relation.references | Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. https://doi.org/10.1039/b921171c | |
dc.relation.references | Ponnarasan, V., & Krishnan, A. (2017a). Synthesis, Structural and Optical Properties of Cobalt Doped CuO Nanoparticles. International Journal of Nanoscience, 16(2). https://doi.org/10.1142/S0219581X16500319 | |
dc.relation.references | Ponnar, M., Thangamani, C., Monisha, P., Gomathi, S. S., & Pushpanathan, K. (2018). Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Applied Surface Science, 449, 132–143. https://doi.org/10.1016/j.apsusc.2018.01.126 | |
dc.relation.references | Prabhu, R. S., Priyanka, R., Vijay, M., & Vikashini, G. K. (2021). Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research. Research Article—Pharmaceutical Sciences—OA Journal—MCI Approved—Index Copernicus, 11, 2321-3272. | |
dc.relation.references | Pawely J., The development if field emission scanning electron microscopy for imaging biological surfaces, Scanning, Vol. 19: 324-336, (1997). | |
dc.relation.references | Rajamohan, R., Raorane, C. J., Kim, S.-C., Ashokkumar, S., & Lee, Y. R. (2023). Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. Micromachines, 14(2), 456. https://doi.org/10.3390/mi14020456 | |
dc.relation.references | Rana, K. K., & Rana, S. (2014). Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. OALib, 01(06), 1–20. https://doi.org/10.4236/oalib.1100686 | |
dc.relation.references | Rao, K. J., Vaidhyanathan, B., Ganguli, M., & Ramakrishnan, P. A. (1999). Synthesis of Inorganic Solids Using Microwaves. Chemistry of Materials, 11(4), 882–895. https://doi.org/10.1021/cm9803859 | |
dc.relation.references | Rashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: Synthesis, characterizations, and raman spectroscopy. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/714853 | |
dc.relation.references | Rubio, N., Herrero, M. A., Meneghetti, M., Díaz-Ortiz, Á., Schiavon, M., Prato, M., & Vázquez, E. (2009). Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 19(25), 4407. https://doi.org/10.1039/b900776h | |
dc.relation.references | Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (2nd ed.). Springer. | |
dc.relation.references | SEAS. (2023, January). Semiconductor intrínseco y extrínseco que son y cómo funcionan. | |
dc.relation.references | Si, Y., Guo, C., Xie, C., & Xiong, Z. (2018). An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 11(10), 1912. https://doi.org/10.3390/ma11101912 | |
dc.relation.references | Skoog, D. A., Holler, Fj., & Crouch, S. R. (2009). Principios de análisis instrumental. | |
dc.relation.references | Swatsitang, E., Karaphun, A., & Putjuso, T. (2020). Influence of Fe:Co co–doping on the morphology, optical and magnetic properties of Cu1-(x+y)FexCoyO nanostructures prepared by a hydrothermal method. Physica B: Condensed Matter, 583, 412044. https://doi.org/10.1016/j.physb.2020.412044 | |
dc.relation.references | Smith, K.C.A., Oately, C.W. The Field emission Scanning electron microscopy and its fields of application. British Journal of Applied physics. 1995; 6 (11): 391. | |
dc.relation.references | Singh KK., Robinson D., Pathak YV., Morphological characterization of malto dextrin derivatives using Field emission scanning electron microscopy. Cells and materials. 1993, pp. 543-620. | |
dc.relation.references | Smith, E., & Dent, G. (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons. | |
dc.relation.references | S. Asbrink and L.-J. Norrby, Acta. Cryst. B 26 ( 1970) 8. | |
dc.relation.references | Srivastava, S., & Agarwal, A. (2018). INFLUENCE OF Co DOPING ON STRUCTURAL AND OPTICAL PROPERTIES OF CuO NANOPARTICLES. Journal of Ovonic Research, 14(5). | |
dc.relation.references | Taunk, M., & Singh, N. (2023). A Comparative Analysis of X-Ray Diffraction, Morphology, and Optical Properties of Sonochemically Synthesized Cupric Oxide Nanostructures. Journal of Electronic Materials, 52(10), 6888–6901. https://doi.org/10.1007/s11664-023-10611-7 | |
dc.relation.references | Thakur, N., Anu, & Kumar, K. (2020). Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.104011 | |
dc.relation.references | Tompsett, G. A., Conner, W. C., & Yngvesson, K. S. (2006). Microwave Synthesis of Nanoporous Materials. ChemPhysChem, 7(2), 296–319. https://doi.org/10.1002/cphc.200500449 | |
dc.relation.references | Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties AndElectronic Structure of Amorphous Germanium. Phys. Status Solidi B1966, 15, 627−637. | |
dc.relation.references | TEMA 7 Módulo 2. ESPECTROSCOPIA. (2024). Ppt Descargar. https://slideplayer.es/slide/3528146/ | |
dc.relation.references | Uma, H. B., Kumar, M. S. V., & Ananda, S. (2022). Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. Journal of Molecular Structure, 1264. https://doi.org/10.1016/j.molstruc.2022.133110 | |
dc.relation.references | Varghese, D., Tom, C., & Krishna Chandar, N. (2017). Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conference Series: Materials Science and Engineering, 263, 022002. https://doi.org/10.1088/1757-899X/263/2/022002 | |
dc.relation.references | Vera cuartero Yagüe. (2012). Evolución de las propiedades multiferroicas del TbMnO 3 mediante la dilución de la subred de Mn. | |
dc.relation.references | Vijayalakshmi, R. V., Saravanan, G., Kumar, P. P., & Ravichandran, K. (2018). Systematic analysis of CuO and Co doped CuO nanoparticles and the impact of dopant on magnetic and optical properties. 030160. https://doi.org/10.1063/1.5032495 | |
dc.relation.references | Vindhya, P. S., & Kavitha, V. T. (2023). Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Materials Science and Engineering: B, 289. https://doi.org/10.1016/j.mseb.2022.116258 Varma, D. (2022). Raman Spectroscopy! How does it work? - Materials101. Materials101. https://materials101.science/raman-spectroscopy-how-does-it-work/ | |
dc.relation.references | Watauchi, S., Wakihara, M., & Tanaka, I. (2001). Control of the anisotropic growth rates of oxide single crystals in floating zone growth. Journal of Crystal Growth, 229(1–4), 423–427. https://doi.org/10.1016/S0022-0248(01)01194-0 | |
dc.relation.references | W.G. Fateley, F.R. Dollish, M.T. McDevitt and F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations (Wiley, New York, 1972). | |
dc.relation.references | Xiang, L., Guo, J., Wu, C., Cai, M., Zhou, X., & Zhang, N. (2018). A brief review on the growth mechanism of CuO nanowires via thermal oxidation. In Journal of Materials Research (Vol. 33, Issue 16, pp. 2264–2280). Cambridge University Press. https://doi.org/10.1557/jmr.2018.215 | |
dc.relation.references | Xu, J. F., Ji, W., Shen, Z. X., Li, W. S., Tang, S. H., Ye, X. R., Jia, D. Z., & Xin, X. Q. (1999). Raman Spectra of CuO Nanocrystals (Vol. 30). | |
dc.relation.references | Xu, Z. P., & Zeng, H. C. (1999). Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chemistry of Materials, 11(1), 67–74. https://doi.org/10.1021/cm980420b | |
dc.relation.references | Yakout, S. M., & El-Sayed, A. M. (2016). Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. Journal of Superconductivity and Novel Magnetism, 29(11), 2961–2968. https://doi.org/10.1007/s10948-016-3641-9 | |
dc.relation.references | Yakout, S. M. (2020). Spintronics: Future technology for new data storage and communication devices. Journal of Superconductivity and Novel Magnetism, 33(9), 2557–2580. https://doi.org/10.1007/s10948-020-05545-8 | |
dc.relation.references | Zhang, Y., Ji, Y., Li, J., Liu, H., Hu, X., Zhong, Z., & Su, F. (2018). Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 11(2), 804–819. https://doi.org/10.1007/s12274-017-1689-x | |
dc.relation.references | Zhao, Y., Li, Z., Lv, Z., Liang, X., Min, J., Wang, L., & Shi, Y. (2010). A new phase and optical properties of the N-doped ZnO film. Materials Research Bulletin, 45(9), 1046–1050. https://doi.org/10.1016/j.materresbull.2010.06.008 | |
dc.relation.references | Zhao, Y., Zhao, J., Li, Y., Ma, D., Hou, S., Li, L., Hao, X., & Wang, Z. (2011). Room temperature synthesis of 2D CuO nanoleaves in aqueous solution. Nanotechnology, 22(11), 115604. https://doi.org/10.1088/0957-4484/22/11/115604 | |
dc.relation.references | Zhu, Y. J., & Chen, F. (2014). Microwave-assisted preparation of inorganic nanostructures in liquid phase. In Chemical Reviews (Vol. 114, Issue 12, pp. 6462–6555). American Chemical Society. https://doi.org/10.1021/cr400366s | |
dc.relation.references | Zimbovskii, D. S., & Churagulov, B. R. (2018). Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorganic Materials, 54(7), 660–666. https://doi.org/10.1134/S0020168518070208 | |
dc.relation.references | Zoolfakar, A. S., Rani, R. A., Morfa, A. J., O’Mullane, A. P., & Kalantar-Zadeh, K. (2014a). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2(27), 5247–5270. https://doi.org/10.1039/c4tc00345d | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Cu1-xCoxO (0.00<x<0.08) | |
dc.subject.keywords | Microwave assisted synthesis | |
dc.subject.keywords | Cobalt doping influence | |
dc.subject.keywords | Band gap | |
dc.subject.keywords | Ferromagnetism at room temperature | |
dc.subject.proposal | Cu1-xCoxO (0.00<x<0.08) | |
dc.subject.proposal | Síntesis asistida por microondas | |
dc.subject.proposal | Influencia del dopaje con Co | |
dc.subject.proposal | Nanoláminas | |
dc.subject.proposal | Brecha de banda | |
dc.subject.proposal | Ferromagnetismo a temperatura ambiente | |
dc.title | CuO dopado con cobalto: caracterización morfológica, vibracional, estructural, óptica y magnética | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: