Publicación:
Development of cognitive models for the metacognitive architecture CARINA

dc.contributor.advisorGómez Salgado, Adán Albertospa
dc.contributor.authorJerónimo Montiel, Alba Judithspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-06-11T21:05:59Zspa
dc.date.available2020-06-11T21:05:59Zspa
dc.date.issued2020spa
dc.description.abstractCognitive modeling is a methodology of cognitive sciences that allows the simulation of human cognitive processes in a variety forms, commonly in a computational and mathematical way. The cognitive modeling aims at understanding cognition basis by designing cognitive models based on mathematical or computational processes, mechanisms and representations. A cognitive model is a verbal-conceptual computational and mathematical description of some mental processes, whose main purpose is to understand and/or predict human or animal behavior. Cognitive models developed for a cognitive architecture are characterized by being executables and producing a set of specific behaviors. CARINA is a metacognitive architecture to create artificial intelligent agents derived from Metacognitive Metamodel MISM. CARINA is a metacognitive architecture structured by two cognitive levels called object-level and meta-level. The object-level has the model of the world to solve problems. The meta-level represents the reasoning of an artificial intelligent agent. Furthermore, the meta-level has the components, the knowledge and the mechanisms for an intelligent system to monitor and control its own learning and reasoning processes. The main objective of this research project is to develop cognitive models as knowledge acquisition mechanisms for the metacognitive architecture CARINA, through the following specific objectives: i) to represent formal, semantic and computationally cognitive models for the CARINA metacognitive architecture, ii) to build a functional prototype of a framework for the creation of cognitive models in the metacognitive architecture CARINA and iii) to create cognitive models in several knowledge domains using CARINA based intelligent systems. The methodology used for this research project was part of the research methods (R+D) used in computer science, called modeling, structured by five steps: i) Formal representation, ii) Semantic representation, iii) Computational representation of a cognitive model, iv) Creation of a functional prototype for build cognitive models and v) Prototype testing and maintenance. The developed research project allows simplifying the developing intelligent agents process and the easiness to enable any programmer to uses CARINA to solve cognitive tasks, focusing only on descriptions of cognition and relationships with algorithms and programs based on computer science and technology, using a functional prototype (MetaThink version 2.0). As a result, an open standard file format, simplifying the complexities of detailed descriptions of cognitive mechanisms of brain functioning was created.spa
dc.description.degreelevelPregradospa
dc.description.degreenameLicenciado(a) en Informáticaspa
dc.description.tableofcontents1. Chapter I Introduction 16eng
dc.description.tableofcontents1.1. Motivation 19eng
dc.description.tableofcontents1.2. Thesis Project 20eng
dc.description.tableofcontents1.2.1. Research Project 20eng
dc.description.tableofcontents1.2.2. Research Problem 20eng
dc.description.tableofcontents1.3. Research Question 22eng
dc.description.tableofcontents1.4. Objectives 23eng
dc.description.tableofcontents1.4.1. General Objective 23eng
dc.description.tableofcontents1.4.2. Specific Objectives 23eng
dc.description.tableofcontents1.5. Methodology 23eng
dc.description.tableofcontents1.6. Document Organization 25eng
dc.description.tableofcontents2. Chapter II Theoretical Background 27eng
dc.description.tableofcontents3. Chapter III Theoretical Framework 51eng
dc.description.tableofcontents3.1. Cognitive Modeling 51eng
dc.description.tableofcontents3.2. Cognitive Models 53eng
dc.description.tableofcontents3.3. Cognitive Architectures 56eng
dc.description.tableofcontents3.4. Metacognitive Architectures 57eng
dc.description.tableofcontents3.5. Knowledge Representation 59eng
dc.description.tableofcontents3.6. Denotational Mathematics 60eng
dc.description.tableofcontents4. Chapter IV The Metacognitive Architecture CARINA 61eng
dc.description.tableofcontents5. Chapter V Cognitive Models for the Metacognitive Architecture CARINA 66eng
dc.description.tableofcontents5.1. Formal Representation of Cognitive Models in CARINA 66eng
dc.description.tableofcontents5.1.1. Comparison with other Cognitive Architectures 73eng
dc.description.tableofcontents5.1.2. Similarities 74eng
dc.description.tableofcontents5.1.3. Differences 74eng
dc.description.tableofcontents5.2. Semantic Representation of Cognitive Models in CARINA 75eng
dc.description.tableofcontents5.2.1. Semantic Knowledge Representation of a Cognitive Model in CARINA 76eng
dc.description.tableofcontents5.2.2. Formal Specification of Semantic Memory Units (SMU) in CARINA 78eng
dc.description.tableofcontents5.3. Computational Representation of Cognitive Models for the CARINA Metacognitive Architecture. 80eng
dc.description.tableofcontents5.4. MetaThink Version 2.0 83eng
dc.description.tableofcontents5.4.1. MetaThink Version 2.0 Validation 88eng
dc.description.tableofcontents5.5. Illustrative Examples of Cognitive Models in CARINA 93eng
dc.description.tableofcontents6. Chapter VI Conclusions 105eng
dc.description.tableofcontents6.1. Recommendations 106eng
dc.description.tableofcontents7. Chapter VII References 108eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/2888spa
dc.language.isoengspa
dc.publisher.facultyFacultad de Educación y Ciencias Humanasspa
dc.publisher.programLicenciatura en Informáticaspa
dc.relation.referencesAamodt, A. (1995). Knowledge acquisition and learning by experience--the role of case-specific knowledge. Machine Learning and Knowledge Acquisition, 197–245.spa
dc.relation.referencesAnderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.spa
dc.relation.referencesApt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). Elsevier.spa
dc.relation.referencesArevalillo-Herráez, M., Arnau, D., & Marco-Giménez, L. (2013). Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowledge-Based Systems, 49, 97–105.spa
dc.relation.referencesAtkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.spa
dc.relation.referencesAvery, E., Kelley, T. D., & Davani, D. (2006). Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. 15th Annual Conference on Behavioral Representation in Modeling and Simulation (BRIMS).spa
dc.relation.referencesBarchini, G. E., Sosa, M., & Herrera, S. (2004). La informática como disciplina científica. Ensayo de mapeo disciplinar. Revista de Informática Educativa y Medios Audiovisuales, 1(2), 1-11.spa
dc.relation.referencesBechtel, W. (2012). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psychology Press.spa
dc.relation.referencesBoley, H., Paschke, A., & Shafiq, O. (2010). RuleML 1.0: the overarching specification of web rules. International Workshop on Rules and Rule Markup Languages for the Semantic Web, 162–178.spa
dc.relation.referencesBorst, J. P., & Anderson, J. R. (2015). Using the ACT-R Cognitive Architecture in combination with fMRI data. In An introduction to model-based cognitive neuroscience (pp. 339–352). Springer.spa
dc.relation.referencesCaro, Manuel F., Josvula, D. P., Gomez, A. A., & Kennedy, C. M. (2018). Introduction to the CARINA Metacognitive Architecture. Proceedings of 2018 IEEE 17th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2018, 530–540. https://doi.org/10.1109/ICCI-CC.2018.8482051spa
dc.relation.referencesCaro, Manuel F, & Jiménez, J. A. (2014). MOF-based metamodel for pedagogical strategy modeling in Intelligent Tutoring Systems. 2014 9th Computing Colombian Conference (9CCC), 1–6.spa
dc.relation.referencesCaro, Manuel F, Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82–104.spa
dc.relation.referencesCaro, Manuel F, Josyula, D. P., Jiménez, J. A., Kennedy, C. M., & Cox, M. T. (2015). A domain-specific visual language for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architectures, 13, 75–90.spa
dc.relation.referencesCaro, Manuel Fernando, Josyula, D. P., Madera, D. P., Kennedy, C. M., & Gómez, A. A. (2019). The CARINA Metacognitive Architecture. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 13(4), 71–90.spa
dc.relation.referencesCox, M. T. (2005). Field review: Metacognition in computation: A selected research review. Artificial Intelligence, 169(2), 104–141.spa
dc.relation.referencesCox, M. T., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Architecture. AAAI Fall Symposium: Advances in Cognitive Systems.spa
dc.relation.referencesFlórez, Y. P., Jerónimo, A. J., Castillo, M. E., & Gómez, A. A. (2019). User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA. The International Conference on Advances in Emerging Trends and Technologies, 473–484.spa
dc.relation.referencesFord, K. M., & Bradshaw, J. M. (1993). Introduction: Knowledge acquisition as modeling. International Journal of Intelligent Systems, 8(1), 1–7.spa
dc.relation.referencesGeorgeff, M. (1988). A theory of action for multiagent planning. In Readings in Distributed Artificial Intelligence (pp. 205–209). Elsevier.spa
dc.relation.referencesGerasimou, S., Vogel, T., & Diaconescu, A. (2019). Software Engineering for Intelligent and Autonomous Systems: Report from the GI Dagstuhl Seminar 18343. ArXiv Preprint ArXiv:1904.01518.spa
dc.relation.referencesGhasemzadeh, M. (2010). Constructing Semantic Knowledge Model based on Children Dictionary.spa
dc.relation.referencesGlass, J. M. (2008). Fibromyalgia and cognition. The Journal of Clinical Psychiatry, 69, 20–24.spa
dc.relation.referencesGobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236–243.spa
dc.relation.referencesGoela, V., Pullara, D., & Grafman, J. (2001). A computational model of frontal lobe dysfunction: Working memory and the Tower of Hanoi task. Cognitive Science, 25(2), 287–313.spa
dc.relation.referencesGonzalez, C., & Gonzalez, C. (2002). The Role of Cognitive Modeling in Enhancing Dynamic Decisions. Retrieved April 2, 2018, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.5953spa
dc.relation.referencesHatzilygeroudis, I., & Prentzas, J. (2006). Knowledge representation in intelligent educational systems. In Web-based intelligent e-learning systems: Technologies and applications (pp. 175–192). IGI Global.spa
dc.relation.referencesHatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements for intelligent tutoring systems. International Conference on Intelligent Tutoring Systems, 87–97.spa
dc.relation.referencesIsern, D., Gómez-Alonso, C., & Moreno, A. (2008). Methodological development of a multi-agent system in the healthcare domain. Communications of SIWN, 3, 65–68.spa
dc.relation.referencesJensen, R., de Moraes Lopes, M. H. B., Silveira, P. S. P., Ortega, N. R. S., & others. (2012). The development and evaluation of software to verify diagnostic accuracy. Revista Da Escola de Enfermagem Da USP.spa
dc.relation.referencesJerónimo, A. J., Acosta, K., Caro, M. F., & Rodríguez, R. (2017). Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática.spa
dc.relation.referencesJerónimo, A. J., Caro, M. F., & Gómez, A. A. (2018). Formal Specification of cognitive models in CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 614–619.spa
dc.relation.referencesJohn, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction (TOCHI), 3(4), 320–351.spa
dc.relation.referencesJohns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M., Kareken, D. A., Unverzagt, F. W., & Jones, M. N. (2018). Cognitive modeling as an interface between brain and behavior: Measuring the semantic decline in mild cognitive impairment. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 72(2), 117.spa
dc.relation.referencesKieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and GLEAN3. University of Michigan, 313.spa
dc.relation.referencesKopp, S., & Bergmann, K. (2017). Using cognitive models to understand multimodal processes: The case for speech and gesture production. The Handbook of Multimodal-Multisensor Interfaces, 239–276.spa
dc.relation.referencesKotseruba, I., Gonzalez, O. J. A., & Tsotsos, J. K. (2016). A review of 40 years of cognitive architecture research: focus on perception, attention, learning and applications. CoRR Abs/1610.08602.spa
dc.relation.referencesKronenfeld, D. B. (1978). Scripts, plans, goals, and understanding: an inquiry into human knowledge structures By Roger C. Schank and Robert P. Abelson. Language, 54(3), 779.spa
dc.relation.referencesKwasnik, B. H. (1999). The role of classification in knowledge representation and discovery.spa
dc.relation.referencesLebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic. Kognitionswissenschaft, 8(1), 5–19.spa
dc.relation.referencesLevesque, H. J. (1986). Knowledge Representation and Reasoning. Annual Review of Computer Science, 1(1), 255–287. https://doi.org/10.1146/annurev.cs.01.060186.001351spa
dc.relation.referencesLieder, F., & Griffiths, T. L. (2019). Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 1–85.spa
dc.relation.referencesLieto, A., Bhatt, M., Oltramari, A., & Vernon, D. (2018, May 1). The role of cognitive architectures in general artificial intelligence. Cognitive Systems Research, 48, 1–3. https://doi.org/10.1016/j.cogsys.2017.08.003spa
dc.relation.referencesLópez, A. L. E., Calao, Y. M. V., Salgado, A. A. G., & Piñeres, M. F. C. (2018). Validación de un modelo cognitivo basado en M++ para la generación de preguntas Factoid-Wh. Teknos Revista Científica, 18(2), 11–20.spa
dc.relation.referencesMadera-Doval, D. P., Caro-Piñeres, M. F., Gómez-Salgado, A. A., Cardozo-Soto, A. M., & Jiménez-Builes, J. A. (2018). Design of metacognitive expectations of cognitive functions through ontological representations. Dyna, 85(206), 194–201.spa
dc.relation.referencesMatta, N., Corby, O., & Prasad, B. (1998). A generic library of knowledge components to manage conflicts in CE tasks. Concurrent Engineering, 6(4), 274–287.spa
dc.relation.referencesMiller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.spa
dc.relation.referencesMinsky, M. (1974). A Framework for Representing Knowledge.spa
dc.relation.referencesMuller, T. J., & Heuvelink, A. (2008). Implementing a Cognitive Model in Soar and ACT - R : A Comparison. Retrieved April 2, 2018, from https://www.researchgate.net/profile/Annerieke_Heuvelink/publication/228415515_Implementing_a_Cognitive_Model_in_Soar_and_ACT-R_A_Comparison/links/0fcfd50885793794e5000000.pdfspa
dc.relation.referencesMurray, D. (1985). Review of Elements of episodic memory.spa
dc.relation.referencesNewell, A., & Simon, H. A. (2007). Computer science as empirical inquiry: Symbols and search. In ACM Turing award lectures (p. 1975).spa
dc.relation.referencesNwana, H. S., & Ndumu, D. T. (1999). Perspective on software agents research. Knowledge Engineering Review, 14(2), 125–142. https://doi.org/10.1017/S0269888999142012spa
dc.relation.referencesO’Leary, D. E. (1998). Using AI in knowledge management: Knowledge bases and ontologies. IEEE Intelligent Systems and Their Applications, 13(3), 34–39.spa
dc.relation.referencesOlier, A. J., Gómez, A. A., & Caro, M. F. (2018). Cognitive Modeling Process in Metacognitive Architecture CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 579–585.spa
dc.relation.referencesPaisner, M., Cox, M., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for cognitive systems. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36).spa
dc.relation.referencesPeters, S., & Shrobe, H. E. (2003). Using semantic networks for knowledge representation in an intelligent environment. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003)., 323–329.spa
dc.relation.referencesPew, R. W., & Mavor, A. S. (1998). Modeling Human and Organizational Behavior-Application to Military Simulations.spa
dc.relation.referencesPezzulo, G., & Calvi, G. (2004). A Pandemonium Can Have Goals. ICCM, 237–242.spa
dc.relation.referencesPolk, T. A., & Seifert, C. M. (2002). Cognitive modeling. MIT Press.spa
dc.relation.referencesPrezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling approach to strategy formation in dynamic decision making. Frontiers in Psychology, 8(AUG). DOI://doi.org/10.3389/fpsyg.2017.01335spa
dc.relation.referencesProctor, R. W., & Capaldi, E. J. (2012). Psychology of science: Implicit and explicit processes. Oxford University Press.spa
dc.relation.referencesRao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. KR, 91, 473–484.spa
dc.relation.referencesRitter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.spa
dc.relation.referencesRus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., & Moldovan, C. (2012). A detailed account of the first question generation shared task evaluation challenge. Dialogue & Discourse, 3(2), 177–204.spa
dc.relation.referencesRussell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.spa
dc.relation.referencesScheutz, M. (2001). Computational versus causal complexity. Minds and Machines, 11(4), 543–566.spa
dc.relation.referencesSchmid, U., Ragni, M., Gonzalez, C., & Funke, J. (2011). The challenge of complexity for cognitive systems. Elsevier.spa
dc.relation.referencesShi, Z., Zhou, H., & Wang, J. (1997). Applying case-based reasoning to engine oil design. Artificial Intelligence in Engineering, 11(2), 167–172. https://doi.org/10.1016/S0954-1810(96)00029-5spa
dc.relation.referencesStrube, G. (2000). Generative theories in cognitive psychology. Theory & Psychology, 10(1), 117–125.spa
dc.relation.referencesSun, R. (2007). The motivational and metacognitive control in CLARION. Modeling Integrated Cognitive Systems, 63–75.spa
dc.relation.referencesSun, R. (2008a). Introduction to computational cognitive modeling. Cambridge Handbook of Computational Psychology, 3–19.spa
dc.relation.referencesSun, R. (2008b). The Cambridge handbook of computational psychology. Cambridge University Press.spa
dc.relation.referencesSun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124–140.spa
dc.relation.referencesSun, R., & Helie, S. (2015). Accounting for creativity within a psychologically realistic cognitive architecture. In Computational Creativity Research: Towards Creative Machines (pp. 151–165). Springer.spa
dc.relation.referencesSun, R., & Naveh, I. (2004). Simulating organizational decision-making using a cognitively realistic agent model. Journal of Artificial Societies and Social Simulation, 7(3).spa
dc.relation.referencesSun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive Systems Research, 7(4), 327–338.spa
dc.relation.referencesTanaka, M., Aoyama, N., Sugiura, A., & Koseki, Y. (1995). Integration of multiple knowledge representation for classification problems. Artificial Intelligence in Engineering, 9(4), 243–251. https://doi.org/10.1016/0954-1810(95)00006-5spa
dc.relation.referencesTulving, E., & others. (1972). Episodic and semantic memory. Organization of Memory, 1, 381–403.spa
dc.relation.referencesTuring, I. B. Y. A. M. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.spa
dc.relation.referencesUnsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16–28.spa
dc.relation.referencesVan Lamsweerde, A. (n.d.). Goal-Oriented Requirements Engineering: A Guided Tour. Retrieved April 2, 2018, from http://www.panda.sys.t.u-tokyo.ac.jp/kushiro/ReferencePaper/Requirements engineering/00948567.pdfspa
dc.relation.referencesVanPatten, B., & Williams, J. (2014). Introduction: The nature of theories. In Theories in second language acquisition (pp. 13–28). Routledge.spa
dc.relation.referencesWang, Y. (2008a). On concept algebra: A denotational mathematical structure for knowledge and software modeling. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2(2), 1–19.spa
dc.relation.referencesWang, Y. (2008b). On contemporary denotational mathematics for computational intelligence. In Transactions on computational science II (pp. 6–29). Springer.spa
dc.relation.referencesWong, J. H., Kirschenbaum, S. S., & Peters, S. (2010). Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system.spa
dc.relation.referencesZhou, G., Zhou, Y., He, T., & Wu, W. (2016). Learning semantic representation with neural networks for community question answering retrieval. Knowledge-Based Systems, 93, 75–83.spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsCognitive Modelingeng
dc.subject.keywordsCognitive Modelseng
dc.subject.keywordsCognitive Architectureseng
dc.subject.keywordsMetacognitive Architectureseng
dc.subject.keywordsCARINAeng
dc.subject.proposalModelado cognitivospa
dc.subject.proposalModelos cognitivosspa
dc.subject.proposalArquitecturas Cognitivasspa
dc.subject.proposalArquitecturas metacognitivasspa
dc.subject.proposalCARINAspa
dc.titleDevelopment of cognitive models for the metacognitive architecture CARINAspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
jeronimomontielalbajudith.pdf
Tamaño:
4.35 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Thesis_AutorizaciónPublicación colecciones digitales UNICOR.pdf
Tamaño:
250.43 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: