Publicación:
Evaluación del potencial de bacterias promotoras de crecimiento vegetal (PGPB) en Stevia rebaudiana bajo condiciones semicontroladas en Montería, Córdoba

dc.contributor.advisorOssa Henao, Diana Marcela
dc.contributor.authorMartínez Pinto, Luisa María
dc.contributor.juryCombatt Caballero, Enrique Miguel
dc.contributor.juryPastrana Franco, Orlando José
dc.date.accessioned2025-07-14T20:15:16Z
dc.date.available2025-07-14T20:15:16Z
dc.date.issued2025-07-11
dc.description.abstractLas bacterias promotoras de crecimiento vegetal abarcan un papel importante en la agricultura sostenible, permitiendo mejorar el rendimiento de cultivos sin afectar la salud del suelo, mediante procesos como la fijación biológica de nitrógeno, solubilización de fosfatos, producción de sideróforos y producción de auxinas (ácido indolacético). Este estudió evaluó el potencial promotor de crecimiento vegetal de dos cepas bacterianas en Stevia rebaudiana sobre diferentes sustratos bajo condiciones semicontroladas en Montería, Córdoba. Para esto, se realizó una selección e identificación de las cepas estudiadas mediante pruebas bioquímicas y se evaluaron utilizando un diseño experimental completamente al azar (DCA) con dos factores (sustrato y dosis de inoculo), donde se midieron índices de crecimiento, producción de biomasa y algunos parámetros fotosintéticos como fotosíntesis neta (AN) y contenido de clorofila foliar. Los resultados mostraron una influencia significativa de la interacción de los sustratos y las dosis de inoculación sobre las variables evaluadas. Teniendo en cuenta la dependencia de la dosis al tipo de sustrato, los mayores incrementos presentados para cada variable fueron los siguientes: altura de la planta (AP, 25,12%), número de hojas (NH, 74,89%), grosor de tallo (GT, 36,30%), área foliar (AF, 30,57%), peso seco de raíz (PSR, 60%), peso seco de tallo (PST, 70,43%), peso seco de hojas (PSH, 120,31%), masa fresca de hojas (MFH, 127,69%), fotosíntesis neta (AN, 80,79%) y contenido de clorofila foliar (LCC, 6,76% ) en comparación a los tratamientos control. En conclusión, la aplicación de PGPB, evidencia efectos positivos sobre los parámetros de crecimiento y distribución de biomasa de Stevia rebaudiana, dependiendo directamente de la interacción positiva de las cepas bacterianas y los diferentes sustratos evaluados. Por ende, teniendo en cuenta las características del suelo y una dosis de inoculación adecuada, las PGPB pueden representar una alternativa prometedora para la promoción de la agricultura sostenible y remediación de suelos infértiles por minería.spa
dc.description.degreelevelPregrado
dc.description.degreenameQuímico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsINTRODUCCIÓN ............................... 18spa
dc.description.tableofcontents1. PLANTEAMIENTO DEL PROBLEMA ................... 21spa
dc.description.tableofcontents2. OBJETIVOS ................................... 22spa
dc.description.tableofcontents2.1 Objetivo general .................................... 22spa
dc.description.tableofcontents2.2 Objetivos específicos........................ 22spa
dc.description.tableofcontents3. JUSTIFICACIÓN ............................................. 23spa
dc.description.tableofcontents4. ESTADO DEL ARTE ....................................... 25spa
dc.description.tableofcontents5. MARCO TEÓRICO .............................................. 28spa
dc.description.tableofcontents5.1. Generalidades de la planta Stevia rebaudiana B ................. 28spa
dc.description.tableofcontents5.1.1. Descripción taxonómica .................................. 29spa
dc.description.tableofcontents5.2. Compost ............................................. 29spa
dc.description.tableofcontents5.3. Suelo minero ........................ 30spa
dc.description.tableofcontents5.3.1. Metales pesados .............................. 30spa
dc.description.tableofcontents5.3.1.1. Mercurio (Hg) .............................. 31spa
dc.description.tableofcontents5.3.1.2. Cadmio (Cd)..................................... 31spa
dc.description.tableofcontents5.3.1.3. Arsénico (As) ...................................... 32spa
dc.description.tableofcontents5.3.1.4. Plomo (Pb) .................................................... 33spa
dc.description.tableofcontents5.4. Bacterias promotoras de crecimiento vegetal (PGPB) ............. 34spa
dc.description.tableofcontents5.4.1. Mecanismos de acción directos ........................... 34spa
dc.description.tableofcontents5.4.1.1. Fijación biológica de nitrógeno ...................... 34spa
dc.description.tableofcontents5.4.1.2. Solubilización de fosfato............................ 35spa
dc.description.tableofcontents5.4.1.3. Producción de sideróforos................................. 36spa
dc.description.tableofcontents5.4.1.4. Producción de auxinas: ácido indolacético (AIA) ............. 36spa
dc.description.tableofcontents5.4.2. Mecanismos de acción indirectos ............................... 37spa
dc.description.tableofcontents6. METODOLOGÍA ................................ 40spa
dc.description.tableofcontents6.1. Localización .................................................... 40spa
dc.description.tableofcontents6.2. Selección de microorganismos con potencial promotor de crecimiento vegetal... 40spa
dc.description.tableofcontents6.3. Preparación y conservación del bioinoculante PGPB ................... 43spa
dc.description.tableofcontents6.4. Evaluación del bioinoculante PGPB en Stevia rebaudiana ................. 44spa
dc.description.tableofcontents6.4.1. Mezcla y adecuación de sustratos ................ 44spa
dc.description.tableofcontents6.4.2. Montaje del ensayo bajo condiciones semicontroladas .................... 44spa
dc.description.tableofcontents6.5. Diseño experimental ..................................... 45spa
dc.description.tableofcontents6.6. Variables ....................................................... 46spa
dc.description.tableofcontents6.6.1. Variables independientes: ...................................... 46spa
dc.description.tableofcontents6.6.2. Variables dependientes: ................................................ 46spa
dc.description.tableofcontents6.7. ANÁLISIS ESTADÍSTICO ............................................... 47spa
dc.description.tableofcontents7. RESULTADOS Y DISCUSIÓN ............................. 48spa
dc.description.tableofcontents7.1. Selección de bacterias con potencial promotor de crecimiento vegetal (PGP) ..... 48spa
dc.description.tableofcontents7.1.1. Evaluación de la capacidad solubilizadora de fosfatos .............. 49spa
dc.description.tableofcontents7.1.2. Determinación de la capacidad fijadora de nitrógeno ................. 49spa
dc.description.tableofcontents7.1.3. Cuantificación de la producción de ácido indolacético ................. 50spa
dc.description.tableofcontents7.1.4. Determinación de la producción de sideróforos .................. 50spa
dc.description.tableofcontents7.3. Principales caracteres de crecimiento vegetal .................. 51spa
dc.description.tableofcontents7.3.1. Caracteres biométricos ...................... 51spa
dc.description.tableofcontents8. CONCLUSIONES ............................. 64spa
dc.description.tableofcontents9. RECOMENDACIONES ...................................... 65spa
dc.description.tableofcontents10. REFERENCIAS BIBLIOGRÁFICAS.......................... 66spa
dc.description.tableofcontents11. ANEXOS .................................. 79spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9328
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programQuímica
dc.relation.referencesAbbagoni Abubakar, M., Gutti, B., & Musa Abubakar, A. (2023). A Review: Natural Sweetener from Stevia (Rebaudiana bertoni) Leave. https://journals.e-palli.com/home/index.php/ari
dc.relation.referencesAbdelmonem, B. H., Kamal, L. T., Elbaz, R. M., Khalifa, M. R., & Abdelnaser, A. (2025). From contamination to detection: The growing threat of heavy metals. Heliyon, 11(1), e41713. https://doi.org/10.1016/j.heliyon.2025.e41713
dc.relation.referencesAdedeji, A. A., Häggblom, M. M., & Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African, 9, e00492. https://doi.org/10.1016/j.sciaf.2020.e00492
dc.relation.referencesAfshari, F., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2022). Physiological and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming and foliar nutrition under water supply restrictions. Industrial Crops and Products, 176, 114399. https://doi.org/10.1016/j.indcrop.2021.114399
dc.relation.referencesAguilar Borja, M. B. (2015). Selección de bacterias de vida libre eficientes en fijación biológica de nitrógeno como alternativa sustentable para ecosistemas terrestres. Universidad Técnica de Ambato, Ecuador. https://repositorio.uta.edu.ec/handle/123456789/12943
dc.relation.referencesAhmad, J., Khan, I., Blundell, R., Azzopardi, J., & Mahomoodally, M. F. (2020). Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology, 100, 177–189. https://doi.org/10.1016/j.tifs.2020.04.030
dc.relation.referencesAlani, M. A. R., Elkaaby, E. A. J., Alani, J. A. Y., Alaubaidy, A. A., & Alshimmary, L. A. M. (2023). Employment of In Vitro Technique to Propagate Stevia (Stevia rebaudiana) Plant. IOP Conference Series: Earth and Environmental Science, 1225(1), 012025. https://doi.org/10.1088/1755-1315/1225/1/012025
dc.relation.referencesAli, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., Iqbal, R., & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances, 4, 100091. https://doi.org/10.1016/j.hybadv.2023.100091
dc.relation.referencesAlotaibi, M. O., Alotibi, M. M., Eissa, M. A., & Ghoneim, A. M. (2022). Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. South African Journal of Botany, 151, 306–314. https://doi.org/10.1016/j.sajb.2022.10.010
dc.relation.referencesAransiola, S. A., Josiah, I. U. J., Abioye, O. P., Bala, J. D., Rivadeneira-Mendoza, B. F., Prasad, R., Luque, R., Rodríguez-Díaz, J. M., & Maddela, N. R. (2024). Micro and vermicompost assisted remediation of heavy metal contaminated soils using phytoextractors. Case Studies in Chemical and Environmental Engineering, 9, 100755. https://doi.org/10.1016/j.cscee.2024.100755
dc.relation.referencesAshraf, A., Bhardwaj, S., Ishtiaq, H., K. Devi, Y., & Kapoor, D. (2021). LEAD UPTAKE, TOXICITY AND MITIGATION STRATEGIES IN PLANTS. PLANT ARCHIVES, 21(No 1). https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.099
dc.relation.referencesBai, X., Bol, R., Chen, H., Cui, Q., Qiu, T., Zhao, S., & Fang, L. (2024). A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. Journal of Hazardous Materials, 471, 134370. https://doi.org/10.1016/j.jhazmat.2024.134370
dc.relation.referencesBarkhordari, M. S., & Qi, C. (2025). Prediction of soil arsenic concentration in European soils: A dimensionality reduction and ensemble learning approach. Journal of Hazardous Materials Advances, 17, 100604. https://doi.org/10.1016/j.hazadv.2025.100604
dc.relation.referencesBarzallo, D., Lazo, R., Yugsan, F. J., & Sevilla, J. D. (2025). Enhancing turnip cultivation with plant growth-promoting bacteria in organic fertilizer. Revista Caatinga, 38. https://doi.org/10.1590/1983-21252025v3812843rc
dc.relation.referencesBecit-Kizilkaya, M., Oncu, S., Bilir, A., Koca, H. B., Firat, F., Arikan Soylemez, E. S., & Albas Kurt, G. (2024). Effect of Stevia rebaudiana Bertoni aqueous extract on steroid-induced cataract in chick embryo model. Food Bioscience, 58, 103685. https://doi.org/10.1016/j.fbio.2024.103685
dc.relation.referencesBhanse, P., Kumar, M., Singh, L., Awasthi, M. K., & Qureshi, A. (2022). Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere, 303, 134954. https://doi.org/10.1016/j.chemosphere.2022.134954
dc.relation.referencesBlanco Crivelli, X., Cundon, C., Bonino, M. P., Sanin, M. S., & Bentancor, A. (2024). The Complex and Changing Genus Bacillus: A Diverse Bacterial Powerhouse for Many Applications. Bacteria, 3(3), 256–270. https://doi.org/10.3390/bacteria3030017
dc.relation.referencesCampillo-Cora, C., Rodríguez-Seijo, A., Pérez-Rodríguez, P., Fernández-Calviño, D., & Santás-Miguel, V. (2025). Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A systematic review. European Journal of Soil Biology, 124, 103706. https://doi.org/10.1016/j.ejsobi.2024.103706
dc.relation.referencesCharkiewicz, A. E., & Backstrand, J. R. (2020). Lead Toxicity and Pollution in Poland. International Journal of Environmental Research and Public Health, 17(12), 4385. https://doi.org/10.3390/ijerph17124385
dc.relation.referencesChukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 100178. https://doi.org/10.1016/j.soisec.2025.100178
dc.relation.referencesCollin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3, 100064. https://doi.org/10.1016/j.hazl.2022.100064
dc.relation.referencesDávila Polo, L y Guerra Mesquida, D. (2024). Evaluación de microorganismos fijadores de nitrógeno a partir de biomasa vegetal contaminada con Hg en un proceso de compostaje. Universidad de Córdoba.
dc.relation.referencesDevroy, P., Chatterjee, S. K., Singh, R., Mohapatra, S., Haldar, S., Mukherjee, A. K., & Bala, A. (2024). Candy leaf - Stevia rebaudiana (Bertoni) Bertoni attenuated LPS-induced protein kinase C phosphorylation in mouse macrophages cells: Target search by network pharmacology and 69 validation using ex vivo and in vivo assays. Food Bioscience, 61, 104809. https://doi.org/10.1016/j.fbio.2024.104809
dc.relation.referencesDing, S., Liang, Y., Wang, M., Hu, R., Song, Z., Xu, X., Zheng, L., Shen, Z., & Chen, C. (2024). Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. Journal of Hazardous Materials, 469, 134110. https://doi.org/10.1016/j.jhazmat.2024.134110
dc.relation.referencesĐukić-Ćosić, D., Baralić, K., Javorac, D., Djordjevic, A. B., & Bulat, Z. (2020). An overview of molecular mechanisms in cadmium toxicity. Current Opinion in Toxicology, 19, 56–62. https://doi.org/10.1016/j.cotox.2019.12.002
dc.relation.referencesEcheverria, M., Izzi, Y. S., Criado, M. V., & Caputo, C. (2024). Isolation and characterization of dematiaceous endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their potential use as phosphate solubilizers. The Microbe, 3, 100058. https://doi.org/10.1016/j.microb.2024.100058
dc.relation.referencesEfthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10(1), 21060. https://doi.org/10.1038/s41598-020-78034-6
dc.relation.referencesElsayed, A., Abdelsattar, A. M., Heikal, Y. M., & El-Esawi, M. A. (2022). Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. Plant Physiology and Biochemistry, 189, 24–34. https://doi.org/10.1016/j.plaphy.2022.08.016
dc.relation.referencesEl-Solimany, E. A., Abdelhamid, A. A., Thabet, M. A., & Gad, M. A. (2024). Effective and eco-friendly botanical insecticidal agents against Spodoptera frugiperda (Noctuidae: Lepidoptera) using the essential oil of Stevia rebaudiana. Journal of Natural Pesticide Research, 10, 100103. https://doi.org/10.1016/j.napere.2024.100103
dc.relation.referencesFernandes Domingues Duarte, C., Cecato, U., Biserra, T. T., Mamédio, D., & Galbeiro, S. (2020). Azospirillum spp. en gramíneas y forrajeras. Revisión. Revista Mexicana de Ciencias Pecuarias, 11(1), 223–240. https://doi.org/10.22319/rmcp.v11i1.4951
dc.relation.referencesFerreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of The Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
dc.relation.referencesForouzi, A., Ghasemnezhad, A., & Nasrabad, R. G. (2020). Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. South African Journal of Botany, 134, 109–118. https://doi.org/10.1016/j.sajb.2020.04.001
dc.relation.referencesGabai, M., Sumayku, B. R. A., Tulungen, A. G., Tilaar, W., Rogi, J. E. X., & Walingkas, S. A. F. (2024). PENGARUH PEMBERIAN PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) PADA PERTUMBUHAN BIBIT STEK STEVIA (Stevia rebaudiana Bertoni). EUGENIA, 30(3), 1–8. https://doi.org/10.35791/eug.v30i3.58773
dc.relation.referencesGaravaglia, M., Muzlera, A., & Valverde, C. (2023). Comparative genomics and informational content analysis uncovered internal regions of the core genes rpoD, pepN and gltX for an MLSA with genome-level resolving power within the genus Pseudomonas. Molecular Phylogenetics and Evolution, 179, 107663. https://doi.org/10.1016/j.ympev.2022.107663
dc.relation.referencesGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
dc.relation.referencesGhaneei-Bafghi, M.-J., Feiznia, S., Mokhtari, A. R., Jaafari, M., Tavili, A., & Khodaeian, Z. (2024). Agricultural soil contamination and degradation near a mining area in an arid region. Journal of Geochemical Exploration, 256, 107349. https://doi.org/10.1016/j.gexplo.2023.107349
dc.relation.referencesGirard, L., Lood, C., Höfte, M., Vandamme, P., Rokni-Zadeh, H., van Noort, V., Lavigne, R., & de Mot, R. (2021). The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group. Microorganisms, 9(8), 1766. https://doi.org/10.3390/microorganisms9081766
dc.relation.referencesGlickmann, E. y Deessaux, Y. 1995. Acritical examination of the specificity of the Salkosky reagent for indolic compounds produced by phytopathogenetic bacteria. Soil Biology and Biochemistry 45:631- 640.
dc.relation.referencesGonzález Henao, S., & Ghneim-Herrera, T. (2021). Heavy Metals in Soils and the Remediation Potential of Bacteria Associated With the Plant Microbiome. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.604216
dc.relation.referencesGupta, R., Kumar, R., Al-Qahtani, W. H., & Abdel-Maksoud, M. A. (2024). Exploring the uncharted: Zinc and phosphate solubilization in Zn-P isolates from wheat rhizosphere inceptisols. Journal of King Saud University - Science, 36(11), 103509. https://doi.org/10.1016/j.jksus.2024.103509
dc.relation.referencesGureeva, M. v., & Gureev, A. P. (2023). Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. International Journal of Molecular Sciences, 24(11), 9122. https://doi.org/10.3390/ijms24119122
dc.relation.referencesGusmaini, Kartikawati, A., Nurhayati, H., Permadi, R. A., & Syakir, M. (2022). The utilization of plant growth-promoting bacteria to enhance stevia (Stevia rebaudiana) herb yield at low land. IOP Conference Series: Earth and Environmental Science, 974(1), 012028. https://doi.org/10.1088/1755-1315/974/1/012028
dc.relation.referencesHamow, K. Á., Benczúr, K., Németh, E., Éva, C., Balla, K., Pál, M., Janda, T., & Majláth, I. (2024). Drought is a lesser evil than cold for photosynthesis and assimilation metabolism of maize. Plant Stress, 14, 100669. https://doi.org/10.1016/j.stress.2024.100669
dc.relation.referencesHan, Y.-H., Cui, X.-W., Wang, H.-Y., Lai, X.-B., Zhu, Y., Li, J.-B., Xie, R.-R., Zhang, Y., Zhang, H., & Chen, Z. (2025). Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites. Journal of Hazardous Materials, 488, 137351. https://doi.org/10.1016/j.jhazmat.2025.137351
dc.relation.referencesHu, Y., Li, J., Lou, B., Wu, R., Wang, G., Lu, C., Wang, H., Pi, J., & Xu, Y. (2020). The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules, 10(2), 240. https://doi.org/10.3390/biom10020240
dc.relation.referencesHuang, C., Wang, Y., Zhou, C., Fan, X., Sun, Q., Han, J., Hua, C., Li, Y., Niu, Y., Emeka Okonkwo, C., Yao, D., Song, L., & Otu, P. (2024). Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chemistry, 453, 139622. https://doi.org/10.1016/j.foodchem.2024.139622
dc.relation.referencesJarma-Orozco, A., Combatt-Caballero, E., & Jaraba-Navas, J. (2020). Growth and development of Stevia rebaudiana Bert., in high and low levels of radiation. Current Plant Biology, 22, 100144. https://doi.org/10.1016/j.cpb.2020.100144
dc.relation.referencesJia, W., McCreanor, C., Carey, M., Holland, J., Meharg, C., & Meharg, A. A. (2024). Mobilization of grassland soil arsenic stores due to agronomic management. Science of The Total Environment, 957, 177702. https://doi.org/10.1016/j.scitotenv.2024.177702
dc.relation.referencesKhan, M. A., Asaf, S., Khan, A. L., Adhikari, A., Jan, R., Ali, S., Imran, M., Kim, K. ‐M., & Lee, I. ‐J. (2020). Plant growth‐promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biology, 22(5), 850–862. https://doi.org/10.1111/plb.13124
dc.relation.referencesKhatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, 111118. https://doi.org/10.1016/j.jenvman.2020.111118
dc.relation.referencesKouam, I. D., Mabah, J., Germain Ntsoli, P., Tchamani, L., Yaouba, A., Katte, B., & Bitom, D. (2023). Growth promotion potential of Bacillus spp. isolates on two tomato ( Solanum lycopersicum L.) varieties in the West region of Cameroon. Open Agriculture, 8(1). https://doi.org/10.1515/opag-2022-0154
dc.relation.referencesKouas, S., Djedidi, S., ben Slimene Debez, I., Sbissi, I., Alyami, N. M., & Hirsch, A. M. (2024). Halotolerant phosphate solubilizing bacteria isolated from arid area in Tunisia improve P status and photosynthetic activity of cultivated barley under P shortage. Heliyon, 10(19), e38653. https://doi.org/10.1016/j.heliyon.2024.e38653
dc.relation.referencesKumar, S., Choudhary, A. K., Suyal, D. C., Makarana, G., & Goel, R. (2022). Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. Journal of Hazardous Materials, 425, 127965. https://doi.org/10.1016/j.jhazmat.2021.127965
dc.relation.referencesLara C, Sanes S y Oviedo L. 2013. Impacto de bacterias nativas solubilizadoras de fosfato en el crecimiento y desarrollo de plantas de rábano (Raphanus sativus L.). Biotecnol Apl. 30(4):271-275.
dc.relation.referencesLara, C., Oviedo, L., Betancur C. 2011b. Bacterias nativas con potencial en la producción de ácido indolacético para mejorar los pastos. Revista Zootecnia Tropical. 29(2): 1-10.
dc.relation.referencesLi, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.-L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375
dc.relation.referencesLiu, S., Pan, Y., Jin, X., Zhao, S., Xu, X., Chen, Y., Shen, Z., & Chen, C. (2024). A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. Environmental Pollution, 356, 124254. https://doi.org/10.1016/j.envpol.2024.124254
dc.relation.referencesLiu, Y.-Q., Chen, Y., Li, Y.-Y., Ding, C.-Y., Li, B.-L., Han, H., & Chen, Z.-J. (2024). Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. Journal of Hazardous Materials, 469, 134085. https://doi.org/10.1016/j.jhazmat.2024.134085
dc.relation.referencesMahajan, M., Naveen, P., & Pal, P. K. (2024). Agronomical and biotechnological strategies for modulating biosynthesis of steviol glycosides of Stevia rebaudiana Bertoni. Journal of Applied Research on Medicinal and Aromatic Plants, 43, 100580. https://doi.org/10.1016/j.jarmap.2024.100580
dc.relation.referencesMartínez Cruz, M., (2015). Stevia rebaudiana (Bert.) Bertoni. UNA REVISIÓN. Cultivos Tropicales, 36(), 5-15. http://www.redalyc.org/articulo.oa?id=193243640001
dc.relation.referencesMartínez-Castillo, J. I., Saldaña-Robles, A., & Ozuna, C. (2022). Arsenic stress in plants: A metabolomic perspective. Plant Stress, 3, 100055. https://doi.org/10.1016/j.stress.2022.100055
dc.relation.referencesMateos-Naranjo, E., García-López, J. v., Flores-Duarte, N. J., Romano-Rodríguez, E., Rodríguez-Llorente, I. D., Pérez-Romero, J. A., Pajuelo, E., & Redondo-Gómez, S. (2025). Development of a PGPB-based biofertilizer to optimize strawberry cultivation in semiarid regions: Screening, validation and scaling up to commercial production. Scientia Horticulturae, 340, 113929. https://doi.org/10.1016/j.scienta.2024.113929
dc.relation.referencesMeng, F., Liu, D., Bu, T., Zhang, M., Peng, J., & Ma, J. (2025). Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. Journal of Environmental Management, 376, 124448. https://doi.org/10.1016/j.jenvman.2025.124448
dc.relation.referencesMiladinova-Georgieva, K., Geneva, M., Stancheva, I., Petrova, M., Sichanova, M., & Kirova, E. (2022). Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants, 12(1), 153. https://doi.org/10.3390/plants12010153
dc.relation.referencesMontreemuk, J., Stewart, T. N., & Prapagdee, B. (2024). Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environmental Technology & Innovation, 33, 103488. https://doi.org/10.1016/j.eti.2023.103488
dc.relation.referencesMoreno Benavides, D. A., & Moreno Londoño, M. F. (2020). Evaluación del potencial de bacterias promotoras de Crecimiento vegetal PGPR, aplicadas a cultivos de papa en Condiciones de invernadero.
dc.relation.referencesMourinha, C., Palma, P., Alexandre, C., Cruz, N., Rodrigues, S. M., & Alvarenga, P. (2022). Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments, 9(1), 11. https://doi.org/10.3390/environments9010011
dc.relation.referencesMowafy, A. M., Khalifa, S., & Elsayed, A. (2023). Brevibacillus DesertYSK and Rhizobium MAP7 stimulate the growth and pigmentation of Lactuca sativa L. Journal of Genetic Engineering and Biotechnology, 21(1), 17. https://doi.org/10.1186/s43141-023-00465-1
dc.relation.referencesMunir, N., Jahangeer, M., Bouyahya, A., el Omari, N., Ghchime, R., Balahbib, A., Aboulaghras, S., Mahmood, Z., Akram, M., Ali Shah, S. M., Mikolaychik, I. N., Derkho, M., Rebezov, M., Venkidasamy, B., Thiruvengadam, M., & Shariati, M. A. (2021). Heavy Metal Contamination of 75 Natural Foods Is a Serious Health Issue: A Review. Sustainability, 14(1), 161. https://doi.org/10.3390/su14010161
dc.relation.referencesNaveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018
dc.relation.referencesNaveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018
dc.relation.referencesPalma-Ramos, J. A., Gayosso-Rodríguez, S., & Estrada-Botello, M. A. (2022). Rizobacterias y fertilización química en crecimiento y producción de Stevia rebaudiana Bertoni (Asteraceae) en Tabasco, México. Acta Agrícola y Pecuaria, 8(1). https://doi.org/10.30973/aap/2022.8.0081004
dc.relation.referencesPatel, M., Islam, S., Glick, B. R., Vimal, S. R., Bhor, S. A., Bernardi, M., Johora, F. T., Patel, A., & de los Santos Villalobos, S. (2024). Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiological Research, 289, 127895. https://doi.org/10.1016/j.micres.2024.127895
dc.relation.referencesQian, L., Shi, Y., Zheng, L., Xu, X., Xu, Q., Zhou, X., Li, X., Shao, X., & Wang, J. (2025). Assessing ecological risks of soil heavy metal contamination around diverse metal mining areas in China: From criteria derivation to risk attribution. Journal of Cleaner Production, 486, 144536. https://doi.org/10.1016/j.jclepro.2024.144536
dc.relation.referencesRahman, S., Rahmani, A. A., Abdul Aziz, M., Ahmad, M., Sivasankaran, S. K., Hirt, H., & Masmoudi, K. (2025). The Enterobacter sp. SA187 stimulates stress-responsive genes and promotes salt and heat stress tolerance in tomato plants. Scientia Horticulturae, 342, 114038. https://doi.org/10.1016/j.scienta.2025.114038
dc.relation.referencesRasin, P., V, A. A., Basheer, S. M., Haribabu, J., Santibanez, J. F., Garrote, C. A., Arulraj, A., & Mangalaraja, R. V. (2025). Exposure to Cadmium and its Impacts on Human Health: A Short Review. Journal of Hazardous Materials Advances, 100608. https://doi.org/10.1016/j.hazadv.2025.100608
dc.relation.referencesRobas Mora, M., Fernández Pastrana, V. M., Oliva, L. L. G., Lobo, A. P., & Jiménez Gómez, P. A. (2023). Plant growth promotion of the forage plant Lupinus albus Var. Orden Dorado using Pseudomonas agronomica sp. nov. and Bacillus pretiosus sp. nov. added over a valorized agricultural biowaste. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1046201
dc.relation.referencesRodriguez-Paez, L. A., Jaraba-Navas, J. de D., Pineda-Rodriguez, Y. Y., Begambre-Hernandez, M., Pompelli, M. F., Jimenez-Ramirez, A. M., Gil-Rocha, A., Jarma-Orozco, A., Combatt-Caballero, E., Aviña-Padilla, K., Jamal, A., Oloriz-Ortega, M. I., & Rodríguez, N. V. (2023). Natural Biocontrol of <em>Athelia rolfsii</em> isolate INVEPAR-05 in <em>Stevia rebaudiana</em> Bertoni: Exploring the Biocontrol Potential of Native <em>Trichoderma </em>spp. Strains. https://doi.org/10.20944/preprints202308.1062.v1
dc.relation.referencesSánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692
dc.relation.referencesSchwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
dc.relation.referencesSharma, N., Kaur, R., Sharma, Y. P., Vittal, H., Sharma, N., & Raina, R. (2024). Identification of quantitative trait loci for sweetening genes of Stevia rebaudiana Bertoni with multiple marker system. South African Journal of Botany, 171, 536–545. https://doi.org/10.1016/j.sajb.2024.06.024
dc.relation.referencesSingh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022). Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.898979
dc.relation.referencesSousa, G. P. B. de, Bellinaso, H., Rosas, J. T. F., Mello, D. C. de, Rosin, N. A., Amorim, M. T. A., dos Anjos Bartsch, B., Cardoso, M. C., Mallah, S., Francelino, M. R., Falcioni, R., Alves, M. 77 R., & Demattê, J. A. M. (2024). Assessing soil degradation in Brazilian agriculture by a remote sensing approach to monitor bare soil frequency: impact on soil carbon. Soil Advances, 2, 100011. https://doi.org/10.1016/j.soilad.2024.100011
dc.relation.referencesSouza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Pereira, M. C. T., & Santos, M. A. (2016). Triple combinations with PGPB stimulate plant growth in micropropagated banana plantlets. Applied Soil Ecology, 103, 31–35. https://doi.org/10.1016/j.apsoil.2016.03.001
dc.relation.referencesStegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The Use of PGPB to Promote Plant Hydroponic Growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783
dc.relation.referencesSwayambhu, G., Moscatello, N., Atilla-Gokcumen, G. E., & Pfeifer, B. A. (2020). Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production. IScience, 23(4), 101016. https://doi.org/10.1016/j.isci.2020.101016
dc.relation.referencesTakahashi, W. Y., Galvão, C. W., Cassán, F. D., Urrea-Valencia, S., Stremel, A. C., Stets, M. I., Stroka Kremer, M. A., Jesus, E. da C., & Etto, R. M. (2024). Tracking maize colonization and growth promotion by Azospirillum reveals strain-specific behavior and the influence of inoculation method. Plant Physiology and Biochemistry, 215, 108979. https://doi.org/10.1016/j.plaphy.2024.108979
dc.relation.referencesTang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077
dc.relation.referencesTang, Y., Che, Y.-J., Bai, X.-Y., Wang, Z.-Y., & Gu, S.-Y. (2023). Effects of application of phosphate and phosphate-solubilizing bacteria on bacterial diversity and phosphorus fractions in a Phaeozems. Heliyon, 9(12), e22937. https://doi.org/10.1016/j.heliyon.2023.e22937
dc.relation.referencesWróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964. https://doi.org/10.3390/ijerph20064964
dc.relation.referencesXu, X., Wei, Q., Guo, J., Zhang, J., Yang, Y., Wang, L., Huang, Z., & Dong, C. (2024). Identification of geographic, climatic, and soil factors dominating Stevia rebaudiana yield and 78 quality. Industrial Crops and Products, 214, 118556. https://doi.org/10.1016/j.indcrop.2024.118556
dc.relation.referencesYang, E., Wang, Q., Zhang, Z., Shao, W., Luo, H., Xiao, X., Ni, F., Mi, J., Sun, X., & Guan, Q. (2024). Source-oriented health risk assessment of heavy metals in a soil-river continuum in northwest China. International Journal of Sediment Research, 39(6), 916–928. https://doi.org/10.1016/j.ijsrc.2024.09.001
dc.relation.referencesZhang, Y., Zhao, S., Liu, S., Peng, J., Zhang, H., Zhao, Q., Zheng, L., Chen, Y., Shen, Z., Xu, X., & Chen, C. (2022). Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.912350
dc.relation.referencesZhen, J., Jiang, X., Xu, Y., Miao, J., Zhao, D., Wang, J., Wang, J., & Wu, G. (2021). Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. International Journal of Applied Earth Observation and Geoinformation, 102, 102387. https://doi.org/10.1016/j.jag.2021.102387
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsPlant Growth-Promoting Bacteria (PGPB)eng
dc.subject.keywordsSubstrateseng
dc.subject.keywordsStevia rebaudianaeng
dc.subject.keywordsComposteng
dc.subject.keywordsHeavy metalseng
dc.subject.keywordsGrowth indiceseng
dc.subject.keywordsNet photosynthesiseng
dc.subject.keywordsChlorophylleng
dc.subject.proposalBacterias promotoras de crecimiento vegetal (PGPB)spa
dc.subject.proposalSustratosspa
dc.subject.proposalStevia rebaudianaspa
dc.subject.proposalCompostspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalÍndices de crecimientospa
dc.subject.proposalFotosíntesis netaspa
dc.subject.proposalClorofilaspa
dc.titleEvaluación del potencial de bacterias promotoras de crecimiento vegetal (PGPB) en Stevia rebaudiana bajo condiciones semicontroladas en Montería, Córdobaspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
MartínezPintoLuisaMaría.pdf
Tamaño:
3.85 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
274.66 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: