Publicación: Evaluación del potencial de bacterias promotoras de crecimiento vegetal (PGPB) en Stevia rebaudiana bajo condiciones semicontroladas en Montería, Córdoba
dc.contributor.advisor | Ossa Henao, Diana Marcela | |
dc.contributor.author | Martínez Pinto, Luisa María | |
dc.contributor.jury | Combatt Caballero, Enrique Miguel | |
dc.contributor.jury | Pastrana Franco, Orlando José | |
dc.date.accessioned | 2025-07-14T20:15:16Z | |
dc.date.available | 2025-07-14T20:15:16Z | |
dc.date.issued | 2025-07-11 | |
dc.description.abstract | Las bacterias promotoras de crecimiento vegetal abarcan un papel importante en la agricultura sostenible, permitiendo mejorar el rendimiento de cultivos sin afectar la salud del suelo, mediante procesos como la fijación biológica de nitrógeno, solubilización de fosfatos, producción de sideróforos y producción de auxinas (ácido indolacético). Este estudió evaluó el potencial promotor de crecimiento vegetal de dos cepas bacterianas en Stevia rebaudiana sobre diferentes sustratos bajo condiciones semicontroladas en Montería, Córdoba. Para esto, se realizó una selección e identificación de las cepas estudiadas mediante pruebas bioquímicas y se evaluaron utilizando un diseño experimental completamente al azar (DCA) con dos factores (sustrato y dosis de inoculo), donde se midieron índices de crecimiento, producción de biomasa y algunos parámetros fotosintéticos como fotosíntesis neta (AN) y contenido de clorofila foliar. Los resultados mostraron una influencia significativa de la interacción de los sustratos y las dosis de inoculación sobre las variables evaluadas. Teniendo en cuenta la dependencia de la dosis al tipo de sustrato, los mayores incrementos presentados para cada variable fueron los siguientes: altura de la planta (AP, 25,12%), número de hojas (NH, 74,89%), grosor de tallo (GT, 36,30%), área foliar (AF, 30,57%), peso seco de raíz (PSR, 60%), peso seco de tallo (PST, 70,43%), peso seco de hojas (PSH, 120,31%), masa fresca de hojas (MFH, 127,69%), fotosíntesis neta (AN, 80,79%) y contenido de clorofila foliar (LCC, 6,76% ) en comparación a los tratamientos control. En conclusión, la aplicación de PGPB, evidencia efectos positivos sobre los parámetros de crecimiento y distribución de biomasa de Stevia rebaudiana, dependiendo directamente de la interacción positiva de las cepas bacterianas y los diferentes sustratos evaluados. Por ende, teniendo en cuenta las características del suelo y una dosis de inoculación adecuada, las PGPB pueden representar una alternativa prometedora para la promoción de la agricultura sostenible y remediación de suelos infértiles por minería. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | INTRODUCCIÓN ............................... 18 | spa |
dc.description.tableofcontents | 1. PLANTEAMIENTO DEL PROBLEMA ................... 21 | spa |
dc.description.tableofcontents | 2. OBJETIVOS ................................... 22 | spa |
dc.description.tableofcontents | 2.1 Objetivo general .................................... 22 | spa |
dc.description.tableofcontents | 2.2 Objetivos específicos........................ 22 | spa |
dc.description.tableofcontents | 3. JUSTIFICACIÓN ............................................. 23 | spa |
dc.description.tableofcontents | 4. ESTADO DEL ARTE ....................................... 25 | spa |
dc.description.tableofcontents | 5. MARCO TEÓRICO .............................................. 28 | spa |
dc.description.tableofcontents | 5.1. Generalidades de la planta Stevia rebaudiana B ................. 28 | spa |
dc.description.tableofcontents | 5.1.1. Descripción taxonómica .................................. 29 | spa |
dc.description.tableofcontents | 5.2. Compost ............................................. 29 | spa |
dc.description.tableofcontents | 5.3. Suelo minero ........................ 30 | spa |
dc.description.tableofcontents | 5.3.1. Metales pesados .............................. 30 | spa |
dc.description.tableofcontents | 5.3.1.1. Mercurio (Hg) .............................. 31 | spa |
dc.description.tableofcontents | 5.3.1.2. Cadmio (Cd)..................................... 31 | spa |
dc.description.tableofcontents | 5.3.1.3. Arsénico (As) ...................................... 32 | spa |
dc.description.tableofcontents | 5.3.1.4. Plomo (Pb) .................................................... 33 | spa |
dc.description.tableofcontents | 5.4. Bacterias promotoras de crecimiento vegetal (PGPB) ............. 34 | spa |
dc.description.tableofcontents | 5.4.1. Mecanismos de acción directos ........................... 34 | spa |
dc.description.tableofcontents | 5.4.1.1. Fijación biológica de nitrógeno ...................... 34 | spa |
dc.description.tableofcontents | 5.4.1.2. Solubilización de fosfato............................ 35 | spa |
dc.description.tableofcontents | 5.4.1.3. Producción de sideróforos................................. 36 | spa |
dc.description.tableofcontents | 5.4.1.4. Producción de auxinas: ácido indolacético (AIA) ............. 36 | spa |
dc.description.tableofcontents | 5.4.2. Mecanismos de acción indirectos ............................... 37 | spa |
dc.description.tableofcontents | 6. METODOLOGÍA ................................ 40 | spa |
dc.description.tableofcontents | 6.1. Localización .................................................... 40 | spa |
dc.description.tableofcontents | 6.2. Selección de microorganismos con potencial promotor de crecimiento vegetal... 40 | spa |
dc.description.tableofcontents | 6.3. Preparación y conservación del bioinoculante PGPB ................... 43 | spa |
dc.description.tableofcontents | 6.4. Evaluación del bioinoculante PGPB en Stevia rebaudiana ................. 44 | spa |
dc.description.tableofcontents | 6.4.1. Mezcla y adecuación de sustratos ................ 44 | spa |
dc.description.tableofcontents | 6.4.2. Montaje del ensayo bajo condiciones semicontroladas .................... 44 | spa |
dc.description.tableofcontents | 6.5. Diseño experimental ..................................... 45 | spa |
dc.description.tableofcontents | 6.6. Variables ....................................................... 46 | spa |
dc.description.tableofcontents | 6.6.1. Variables independientes: ...................................... 46 | spa |
dc.description.tableofcontents | 6.6.2. Variables dependientes: ................................................ 46 | spa |
dc.description.tableofcontents | 6.7. ANÁLISIS ESTADÍSTICO ............................................... 47 | spa |
dc.description.tableofcontents | 7. RESULTADOS Y DISCUSIÓN ............................. 48 | spa |
dc.description.tableofcontents | 7.1. Selección de bacterias con potencial promotor de crecimiento vegetal (PGP) ..... 48 | spa |
dc.description.tableofcontents | 7.1.1. Evaluación de la capacidad solubilizadora de fosfatos .............. 49 | spa |
dc.description.tableofcontents | 7.1.2. Determinación de la capacidad fijadora de nitrógeno ................. 49 | spa |
dc.description.tableofcontents | 7.1.3. Cuantificación de la producción de ácido indolacético ................. 50 | spa |
dc.description.tableofcontents | 7.1.4. Determinación de la producción de sideróforos .................. 50 | spa |
dc.description.tableofcontents | 7.3. Principales caracteres de crecimiento vegetal .................. 51 | spa |
dc.description.tableofcontents | 7.3.1. Caracteres biométricos ...................... 51 | spa |
dc.description.tableofcontents | 8. CONCLUSIONES ............................. 64 | spa |
dc.description.tableofcontents | 9. RECOMENDACIONES ...................................... 65 | spa |
dc.description.tableofcontents | 10. REFERENCIAS BIBLIOGRÁFICAS.......................... 66 | spa |
dc.description.tableofcontents | 11. ANEXOS .................................. 79 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9328 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Abbagoni Abubakar, M., Gutti, B., & Musa Abubakar, A. (2023). A Review: Natural Sweetener from Stevia (Rebaudiana bertoni) Leave. https://journals.e-palli.com/home/index.php/ari | |
dc.relation.references | Abdelmonem, B. H., Kamal, L. T., Elbaz, R. M., Khalifa, M. R., & Abdelnaser, A. (2025). From contamination to detection: The growing threat of heavy metals. Heliyon, 11(1), e41713. https://doi.org/10.1016/j.heliyon.2025.e41713 | |
dc.relation.references | Adedeji, A. A., Häggblom, M. M., & Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African, 9, e00492. https://doi.org/10.1016/j.sciaf.2020.e00492 | |
dc.relation.references | Afshari, F., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2022). Physiological and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming and foliar nutrition under water supply restrictions. Industrial Crops and Products, 176, 114399. https://doi.org/10.1016/j.indcrop.2021.114399 | |
dc.relation.references | Aguilar Borja, M. B. (2015). Selección de bacterias de vida libre eficientes en fijación biológica de nitrógeno como alternativa sustentable para ecosistemas terrestres. Universidad Técnica de Ambato, Ecuador. https://repositorio.uta.edu.ec/handle/123456789/12943 | |
dc.relation.references | Ahmad, J., Khan, I., Blundell, R., Azzopardi, J., & Mahomoodally, M. F. (2020). Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology, 100, 177–189. https://doi.org/10.1016/j.tifs.2020.04.030 | |
dc.relation.references | Alani, M. A. R., Elkaaby, E. A. J., Alani, J. A. Y., Alaubaidy, A. A., & Alshimmary, L. A. M. (2023). Employment of In Vitro Technique to Propagate Stevia (Stevia rebaudiana) Plant. IOP Conference Series: Earth and Environmental Science, 1225(1), 012025. https://doi.org/10.1088/1755-1315/1225/1/012025 | |
dc.relation.references | Ali, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., Iqbal, R., & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances, 4, 100091. https://doi.org/10.1016/j.hybadv.2023.100091 | |
dc.relation.references | Alotaibi, M. O., Alotibi, M. M., Eissa, M. A., & Ghoneim, A. M. (2022). Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. South African Journal of Botany, 151, 306–314. https://doi.org/10.1016/j.sajb.2022.10.010 | |
dc.relation.references | Aransiola, S. A., Josiah, I. U. J., Abioye, O. P., Bala, J. D., Rivadeneira-Mendoza, B. F., Prasad, R., Luque, R., Rodríguez-Díaz, J. M., & Maddela, N. R. (2024). Micro and vermicompost assisted remediation of heavy metal contaminated soils using phytoextractors. Case Studies in Chemical and Environmental Engineering, 9, 100755. https://doi.org/10.1016/j.cscee.2024.100755 | |
dc.relation.references | Ashraf, A., Bhardwaj, S., Ishtiaq, H., K. Devi, Y., & Kapoor, D. (2021). LEAD UPTAKE, TOXICITY AND MITIGATION STRATEGIES IN PLANTS. PLANT ARCHIVES, 21(No 1). https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.099 | |
dc.relation.references | Bai, X., Bol, R., Chen, H., Cui, Q., Qiu, T., Zhao, S., & Fang, L. (2024). A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. Journal of Hazardous Materials, 471, 134370. https://doi.org/10.1016/j.jhazmat.2024.134370 | |
dc.relation.references | Barkhordari, M. S., & Qi, C. (2025). Prediction of soil arsenic concentration in European soils: A dimensionality reduction and ensemble learning approach. Journal of Hazardous Materials Advances, 17, 100604. https://doi.org/10.1016/j.hazadv.2025.100604 | |
dc.relation.references | Barzallo, D., Lazo, R., Yugsan, F. J., & Sevilla, J. D. (2025). Enhancing turnip cultivation with plant growth-promoting bacteria in organic fertilizer. Revista Caatinga, 38. https://doi.org/10.1590/1983-21252025v3812843rc | |
dc.relation.references | Becit-Kizilkaya, M., Oncu, S., Bilir, A., Koca, H. B., Firat, F., Arikan Soylemez, E. S., & Albas Kurt, G. (2024). Effect of Stevia rebaudiana Bertoni aqueous extract on steroid-induced cataract in chick embryo model. Food Bioscience, 58, 103685. https://doi.org/10.1016/j.fbio.2024.103685 | |
dc.relation.references | Bhanse, P., Kumar, M., Singh, L., Awasthi, M. K., & Qureshi, A. (2022). Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere, 303, 134954. https://doi.org/10.1016/j.chemosphere.2022.134954 | |
dc.relation.references | Blanco Crivelli, X., Cundon, C., Bonino, M. P., Sanin, M. S., & Bentancor, A. (2024). The Complex and Changing Genus Bacillus: A Diverse Bacterial Powerhouse for Many Applications. Bacteria, 3(3), 256–270. https://doi.org/10.3390/bacteria3030017 | |
dc.relation.references | Campillo-Cora, C., Rodríguez-Seijo, A., Pérez-Rodríguez, P., Fernández-Calviño, D., & Santás-Miguel, V. (2025). Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A systematic review. European Journal of Soil Biology, 124, 103706. https://doi.org/10.1016/j.ejsobi.2024.103706 | |
dc.relation.references | Charkiewicz, A. E., & Backstrand, J. R. (2020). Lead Toxicity and Pollution in Poland. International Journal of Environmental Research and Public Health, 17(12), 4385. https://doi.org/10.3390/ijerph17124385 | |
dc.relation.references | Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 100178. https://doi.org/10.1016/j.soisec.2025.100178 | |
dc.relation.references | Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3, 100064. https://doi.org/10.1016/j.hazl.2022.100064 | |
dc.relation.references | Dávila Polo, L y Guerra Mesquida, D. (2024). Evaluación de microorganismos fijadores de nitrógeno a partir de biomasa vegetal contaminada con Hg en un proceso de compostaje. Universidad de Córdoba. | |
dc.relation.references | Devroy, P., Chatterjee, S. K., Singh, R., Mohapatra, S., Haldar, S., Mukherjee, A. K., & Bala, A. (2024). Candy leaf - Stevia rebaudiana (Bertoni) Bertoni attenuated LPS-induced protein kinase C phosphorylation in mouse macrophages cells: Target search by network pharmacology and 69 validation using ex vivo and in vivo assays. Food Bioscience, 61, 104809. https://doi.org/10.1016/j.fbio.2024.104809 | |
dc.relation.references | Ding, S., Liang, Y., Wang, M., Hu, R., Song, Z., Xu, X., Zheng, L., Shen, Z., & Chen, C. (2024). Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil. Journal of Hazardous Materials, 469, 134110. https://doi.org/10.1016/j.jhazmat.2024.134110 | |
dc.relation.references | Đukić-Ćosić, D., Baralić, K., Javorac, D., Djordjevic, A. B., & Bulat, Z. (2020). An overview of molecular mechanisms in cadmium toxicity. Current Opinion in Toxicology, 19, 56–62. https://doi.org/10.1016/j.cotox.2019.12.002 | |
dc.relation.references | Echeverria, M., Izzi, Y. S., Criado, M. V., & Caputo, C. (2024). Isolation and characterization of dematiaceous endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their potential use as phosphate solubilizers. The Microbe, 3, 100058. https://doi.org/10.1016/j.microb.2024.100058 | |
dc.relation.references | Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10(1), 21060. https://doi.org/10.1038/s41598-020-78034-6 | |
dc.relation.references | Elsayed, A., Abdelsattar, A. M., Heikal, Y. M., & El-Esawi, M. A. (2022). Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. Plant Physiology and Biochemistry, 189, 24–34. https://doi.org/10.1016/j.plaphy.2022.08.016 | |
dc.relation.references | El-Solimany, E. A., Abdelhamid, A. A., Thabet, M. A., & Gad, M. A. (2024). Effective and eco-friendly botanical insecticidal agents against Spodoptera frugiperda (Noctuidae: Lepidoptera) using the essential oil of Stevia rebaudiana. Journal of Natural Pesticide Research, 10, 100103. https://doi.org/10.1016/j.napere.2024.100103 | |
dc.relation.references | Fernandes Domingues Duarte, C., Cecato, U., Biserra, T. T., Mamédio, D., & Galbeiro, S. (2020). Azospirillum spp. en gramíneas y forrajeras. Revisión. Revista Mexicana de Ciencias Pecuarias, 11(1), 223–240. https://doi.org/10.22319/rmcp.v11i1.4951 | |
dc.relation.references | Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of The Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106 | |
dc.relation.references | Forouzi, A., Ghasemnezhad, A., & Nasrabad, R. G. (2020). Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. South African Journal of Botany, 134, 109–118. https://doi.org/10.1016/j.sajb.2020.04.001 | |
dc.relation.references | Gabai, M., Sumayku, B. R. A., Tulungen, A. G., Tilaar, W., Rogi, J. E. X., & Walingkas, S. A. F. (2024). PENGARUH PEMBERIAN PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) PADA PERTUMBUHAN BIBIT STEK STEVIA (Stevia rebaudiana Bertoni). EUGENIA, 30(3), 1–8. https://doi.org/10.35791/eug.v30i3.58773 | |
dc.relation.references | Garavaglia, M., Muzlera, A., & Valverde, C. (2023). Comparative genomics and informational content analysis uncovered internal regions of the core genes rpoD, pepN and gltX for an MLSA with genome-level resolving power within the genus Pseudomonas. Molecular Phylogenetics and Evolution, 179, 107663. https://doi.org/10.1016/j.ympev.2022.107663 | |
dc.relation.references | Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 | |
dc.relation.references | Ghaneei-Bafghi, M.-J., Feiznia, S., Mokhtari, A. R., Jaafari, M., Tavili, A., & Khodaeian, Z. (2024). Agricultural soil contamination and degradation near a mining area in an arid region. Journal of Geochemical Exploration, 256, 107349. https://doi.org/10.1016/j.gexplo.2023.107349 | |
dc.relation.references | Girard, L., Lood, C., Höfte, M., Vandamme, P., Rokni-Zadeh, H., van Noort, V., Lavigne, R., & de Mot, R. (2021). The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group. Microorganisms, 9(8), 1766. https://doi.org/10.3390/microorganisms9081766 | |
dc.relation.references | Glickmann, E. y Deessaux, Y. 1995. Acritical examination of the specificity of the Salkosky reagent for indolic compounds produced by phytopathogenetic bacteria. Soil Biology and Biochemistry 45:631- 640. | |
dc.relation.references | González Henao, S., & Ghneim-Herrera, T. (2021). Heavy Metals in Soils and the Remediation Potential of Bacteria Associated With the Plant Microbiome. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.604216 | |
dc.relation.references | Gupta, R., Kumar, R., Al-Qahtani, W. H., & Abdel-Maksoud, M. A. (2024). Exploring the uncharted: Zinc and phosphate solubilization in Zn-P isolates from wheat rhizosphere inceptisols. Journal of King Saud University - Science, 36(11), 103509. https://doi.org/10.1016/j.jksus.2024.103509 | |
dc.relation.references | Gureeva, M. v., & Gureev, A. P. (2023). Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. International Journal of Molecular Sciences, 24(11), 9122. https://doi.org/10.3390/ijms24119122 | |
dc.relation.references | Gusmaini, Kartikawati, A., Nurhayati, H., Permadi, R. A., & Syakir, M. (2022). The utilization of plant growth-promoting bacteria to enhance stevia (Stevia rebaudiana) herb yield at low land. IOP Conference Series: Earth and Environmental Science, 974(1), 012028. https://doi.org/10.1088/1755-1315/974/1/012028 | |
dc.relation.references | Hamow, K. Á., Benczúr, K., Németh, E., Éva, C., Balla, K., Pál, M., Janda, T., & Majláth, I. (2024). Drought is a lesser evil than cold for photosynthesis and assimilation metabolism of maize. Plant Stress, 14, 100669. https://doi.org/10.1016/j.stress.2024.100669 | |
dc.relation.references | Han, Y.-H., Cui, X.-W., Wang, H.-Y., Lai, X.-B., Zhu, Y., Li, J.-B., Xie, R.-R., Zhang, Y., Zhang, H., & Chen, Z. (2025). Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites. Journal of Hazardous Materials, 488, 137351. https://doi.org/10.1016/j.jhazmat.2025.137351 | |
dc.relation.references | Hu, Y., Li, J., Lou, B., Wu, R., Wang, G., Lu, C., Wang, H., Pi, J., & Xu, Y. (2020). The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules, 10(2), 240. https://doi.org/10.3390/biom10020240 | |
dc.relation.references | Huang, C., Wang, Y., Zhou, C., Fan, X., Sun, Q., Han, J., Hua, C., Li, Y., Niu, Y., Emeka Okonkwo, C., Yao, D., Song, L., & Otu, P. (2024). Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chemistry, 453, 139622. https://doi.org/10.1016/j.foodchem.2024.139622 | |
dc.relation.references | Jarma-Orozco, A., Combatt-Caballero, E., & Jaraba-Navas, J. (2020). Growth and development of Stevia rebaudiana Bert., in high and low levels of radiation. Current Plant Biology, 22, 100144. https://doi.org/10.1016/j.cpb.2020.100144 | |
dc.relation.references | Jia, W., McCreanor, C., Carey, M., Holland, J., Meharg, C., & Meharg, A. A. (2024). Mobilization of grassland soil arsenic stores due to agronomic management. Science of The Total Environment, 957, 177702. https://doi.org/10.1016/j.scitotenv.2024.177702 | |
dc.relation.references | Khan, M. A., Asaf, S., Khan, A. L., Adhikari, A., Jan, R., Ali, S., Imran, M., Kim, K. ‐M., & Lee, I. ‐J. (2020). Plant growth‐promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biology, 22(5), 850–862. https://doi.org/10.1111/plb.13124 | |
dc.relation.references | Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, 111118. https://doi.org/10.1016/j.jenvman.2020.111118 | |
dc.relation.references | Kouam, I. D., Mabah, J., Germain Ntsoli, P., Tchamani, L., Yaouba, A., Katte, B., & Bitom, D. (2023). Growth promotion potential of Bacillus spp. isolates on two tomato ( Solanum lycopersicum L.) varieties in the West region of Cameroon. Open Agriculture, 8(1). https://doi.org/10.1515/opag-2022-0154 | |
dc.relation.references | Kouas, S., Djedidi, S., ben Slimene Debez, I., Sbissi, I., Alyami, N. M., & Hirsch, A. M. (2024). Halotolerant phosphate solubilizing bacteria isolated from arid area in Tunisia improve P status and photosynthetic activity of cultivated barley under P shortage. Heliyon, 10(19), e38653. https://doi.org/10.1016/j.heliyon.2024.e38653 | |
dc.relation.references | Kumar, S., Choudhary, A. K., Suyal, D. C., Makarana, G., & Goel, R. (2022). Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. Journal of Hazardous Materials, 425, 127965. https://doi.org/10.1016/j.jhazmat.2021.127965 | |
dc.relation.references | Lara C, Sanes S y Oviedo L. 2013. Impacto de bacterias nativas solubilizadoras de fosfato en el crecimiento y desarrollo de plantas de rábano (Raphanus sativus L.). Biotecnol Apl. 30(4):271-275. | |
dc.relation.references | Lara, C., Oviedo, L., Betancur C. 2011b. Bacterias nativas con potencial en la producción de ácido indolacético para mejorar los pastos. Revista Zootecnia Tropical. 29(2): 1-10. | |
dc.relation.references | Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.-L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375 | |
dc.relation.references | Liu, S., Pan, Y., Jin, X., Zhao, S., Xu, X., Chen, Y., Shen, Z., & Chen, C. (2024). A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. Environmental Pollution, 356, 124254. https://doi.org/10.1016/j.envpol.2024.124254 | |
dc.relation.references | Liu, Y.-Q., Chen, Y., Li, Y.-Y., Ding, C.-Y., Li, B.-L., Han, H., & Chen, Z.-J. (2024). Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. Journal of Hazardous Materials, 469, 134085. https://doi.org/10.1016/j.jhazmat.2024.134085 | |
dc.relation.references | Mahajan, M., Naveen, P., & Pal, P. K. (2024). Agronomical and biotechnological strategies for modulating biosynthesis of steviol glycosides of Stevia rebaudiana Bertoni. Journal of Applied Research on Medicinal and Aromatic Plants, 43, 100580. https://doi.org/10.1016/j.jarmap.2024.100580 | |
dc.relation.references | Martínez Cruz, M., (2015). Stevia rebaudiana (Bert.) Bertoni. UNA REVISIÓN. Cultivos Tropicales, 36(), 5-15. http://www.redalyc.org/articulo.oa?id=193243640001 | |
dc.relation.references | Martínez-Castillo, J. I., Saldaña-Robles, A., & Ozuna, C. (2022). Arsenic stress in plants: A metabolomic perspective. Plant Stress, 3, 100055. https://doi.org/10.1016/j.stress.2022.100055 | |
dc.relation.references | Mateos-Naranjo, E., García-López, J. v., Flores-Duarte, N. J., Romano-Rodríguez, E., Rodríguez-Llorente, I. D., Pérez-Romero, J. A., Pajuelo, E., & Redondo-Gómez, S. (2025). Development of a PGPB-based biofertilizer to optimize strawberry cultivation in semiarid regions: Screening, validation and scaling up to commercial production. Scientia Horticulturae, 340, 113929. https://doi.org/10.1016/j.scienta.2024.113929 | |
dc.relation.references | Meng, F., Liu, D., Bu, T., Zhang, M., Peng, J., & Ma, J. (2025). Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. Journal of Environmental Management, 376, 124448. https://doi.org/10.1016/j.jenvman.2025.124448 | |
dc.relation.references | Miladinova-Georgieva, K., Geneva, M., Stancheva, I., Petrova, M., Sichanova, M., & Kirova, E. (2022). Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants, 12(1), 153. https://doi.org/10.3390/plants12010153 | |
dc.relation.references | Montreemuk, J., Stewart, T. N., & Prapagdee, B. (2024). Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environmental Technology & Innovation, 33, 103488. https://doi.org/10.1016/j.eti.2023.103488 | |
dc.relation.references | Moreno Benavides, D. A., & Moreno Londoño, M. F. (2020). Evaluación del potencial de bacterias promotoras de Crecimiento vegetal PGPR, aplicadas a cultivos de papa en Condiciones de invernadero. | |
dc.relation.references | Mourinha, C., Palma, P., Alexandre, C., Cruz, N., Rodrigues, S. M., & Alvarenga, P. (2022). Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments, 9(1), 11. https://doi.org/10.3390/environments9010011 | |
dc.relation.references | Mowafy, A. M., Khalifa, S., & Elsayed, A. (2023). Brevibacillus DesertYSK and Rhizobium MAP7 stimulate the growth and pigmentation of Lactuca sativa L. Journal of Genetic Engineering and Biotechnology, 21(1), 17. https://doi.org/10.1186/s43141-023-00465-1 | |
dc.relation.references | Munir, N., Jahangeer, M., Bouyahya, A., el Omari, N., Ghchime, R., Balahbib, A., Aboulaghras, S., Mahmood, Z., Akram, M., Ali Shah, S. M., Mikolaychik, I. N., Derkho, M., Rebezov, M., Venkidasamy, B., Thiruvengadam, M., & Shariati, M. A. (2021). Heavy Metal Contamination of 75 Natural Foods Is a Serious Health Issue: A Review. Sustainability, 14(1), 161. https://doi.org/10.3390/su14010161 | |
dc.relation.references | Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 | |
dc.relation.references | Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 | |
dc.relation.references | Palma-Ramos, J. A., Gayosso-Rodríguez, S., & Estrada-Botello, M. A. (2022). Rizobacterias y fertilización química en crecimiento y producción de Stevia rebaudiana Bertoni (Asteraceae) en Tabasco, México. Acta Agrícola y Pecuaria, 8(1). https://doi.org/10.30973/aap/2022.8.0081004 | |
dc.relation.references | Patel, M., Islam, S., Glick, B. R., Vimal, S. R., Bhor, S. A., Bernardi, M., Johora, F. T., Patel, A., & de los Santos Villalobos, S. (2024). Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiological Research, 289, 127895. https://doi.org/10.1016/j.micres.2024.127895 | |
dc.relation.references | Qian, L., Shi, Y., Zheng, L., Xu, X., Xu, Q., Zhou, X., Li, X., Shao, X., & Wang, J. (2025). Assessing ecological risks of soil heavy metal contamination around diverse metal mining areas in China: From criteria derivation to risk attribution. Journal of Cleaner Production, 486, 144536. https://doi.org/10.1016/j.jclepro.2024.144536 | |
dc.relation.references | Rahman, S., Rahmani, A. A., Abdul Aziz, M., Ahmad, M., Sivasankaran, S. K., Hirt, H., & Masmoudi, K. (2025). The Enterobacter sp. SA187 stimulates stress-responsive genes and promotes salt and heat stress tolerance in tomato plants. Scientia Horticulturae, 342, 114038. https://doi.org/10.1016/j.scienta.2025.114038 | |
dc.relation.references | Rasin, P., V, A. A., Basheer, S. M., Haribabu, J., Santibanez, J. F., Garrote, C. A., Arulraj, A., & Mangalaraja, R. V. (2025). Exposure to Cadmium and its Impacts on Human Health: A Short Review. Journal of Hazardous Materials Advances, 100608. https://doi.org/10.1016/j.hazadv.2025.100608 | |
dc.relation.references | Robas Mora, M., Fernández Pastrana, V. M., Oliva, L. L. G., Lobo, A. P., & Jiménez Gómez, P. A. (2023). Plant growth promotion of the forage plant Lupinus albus Var. Orden Dorado using Pseudomonas agronomica sp. nov. and Bacillus pretiosus sp. nov. added over a valorized agricultural biowaste. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1046201 | |
dc.relation.references | Rodriguez-Paez, L. A., Jaraba-Navas, J. de D., Pineda-Rodriguez, Y. Y., Begambre-Hernandez, M., Pompelli, M. F., Jimenez-Ramirez, A. M., Gil-Rocha, A., Jarma-Orozco, A., Combatt-Caballero, E., Aviña-Padilla, K., Jamal, A., Oloriz-Ortega, M. I., & Rodríguez, N. V. (2023). Natural Biocontrol of <em>Athelia rolfsii</em> isolate INVEPAR-05 in <em>Stevia rebaudiana</em> Bertoni: Exploring the Biocontrol Potential of Native <em>Trichoderma </em>spp. Strains. https://doi.org/10.20944/preprints202308.1062.v1 | |
dc.relation.references | Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 | |
dc.relation.references | Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9 | |
dc.relation.references | Sharma, N., Kaur, R., Sharma, Y. P., Vittal, H., Sharma, N., & Raina, R. (2024). Identification of quantitative trait loci for sweetening genes of Stevia rebaudiana Bertoni with multiple marker system. South African Journal of Botany, 171, 536–545. https://doi.org/10.1016/j.sajb.2024.06.024 | |
dc.relation.references | Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022). Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.898979 | |
dc.relation.references | Sousa, G. P. B. de, Bellinaso, H., Rosas, J. T. F., Mello, D. C. de, Rosin, N. A., Amorim, M. T. A., dos Anjos Bartsch, B., Cardoso, M. C., Mallah, S., Francelino, M. R., Falcioni, R., Alves, M. 77 R., & Demattê, J. A. M. (2024). Assessing soil degradation in Brazilian agriculture by a remote sensing approach to monitor bare soil frequency: impact on soil carbon. Soil Advances, 2, 100011. https://doi.org/10.1016/j.soilad.2024.100011 | |
dc.relation.references | Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Pereira, M. C. T., & Santos, M. A. (2016). Triple combinations with PGPB stimulate plant growth in micropropagated banana plantlets. Applied Soil Ecology, 103, 31–35. https://doi.org/10.1016/j.apsoil.2016.03.001 | |
dc.relation.references | Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The Use of PGPB to Promote Plant Hydroponic Growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783 | |
dc.relation.references | Swayambhu, G., Moscatello, N., Atilla-Gokcumen, G. E., & Pfeifer, B. A. (2020). Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production. IScience, 23(4), 101016. https://doi.org/10.1016/j.isci.2020.101016 | |
dc.relation.references | Takahashi, W. Y., Galvão, C. W., Cassán, F. D., Urrea-Valencia, S., Stremel, A. C., Stets, M. I., Stroka Kremer, M. A., Jesus, E. da C., & Etto, R. M. (2024). Tracking maize colonization and growth promotion by Azospirillum reveals strain-specific behavior and the influence of inoculation method. Plant Physiology and Biochemistry, 215, 108979. https://doi.org/10.1016/j.plaphy.2024.108979 | |
dc.relation.references | Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077 | |
dc.relation.references | Tang, Y., Che, Y.-J., Bai, X.-Y., Wang, Z.-Y., & Gu, S.-Y. (2023). Effects of application of phosphate and phosphate-solubilizing bacteria on bacterial diversity and phosphorus fractions in a Phaeozems. Heliyon, 9(12), e22937. https://doi.org/10.1016/j.heliyon.2023.e22937 | |
dc.relation.references | Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964. https://doi.org/10.3390/ijerph20064964 | |
dc.relation.references | Xu, X., Wei, Q., Guo, J., Zhang, J., Yang, Y., Wang, L., Huang, Z., & Dong, C. (2024). Identification of geographic, climatic, and soil factors dominating Stevia rebaudiana yield and 78 quality. Industrial Crops and Products, 214, 118556. https://doi.org/10.1016/j.indcrop.2024.118556 | |
dc.relation.references | Yang, E., Wang, Q., Zhang, Z., Shao, W., Luo, H., Xiao, X., Ni, F., Mi, J., Sun, X., & Guan, Q. (2024). Source-oriented health risk assessment of heavy metals in a soil-river continuum in northwest China. International Journal of Sediment Research, 39(6), 916–928. https://doi.org/10.1016/j.ijsrc.2024.09.001 | |
dc.relation.references | Zhang, Y., Zhao, S., Liu, S., Peng, J., Zhang, H., Zhao, Q., Zheng, L., Chen, Y., Shen, Z., Xu, X., & Chen, C. (2022). Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.912350 | |
dc.relation.references | Zhen, J., Jiang, X., Xu, Y., Miao, J., Zhao, D., Wang, J., Wang, J., & Wu, G. (2021). Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. International Journal of Applied Earth Observation and Geoinformation, 102, 102387. https://doi.org/10.1016/j.jag.2021.102387 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Plant Growth-Promoting Bacteria (PGPB) | eng |
dc.subject.keywords | Substrates | eng |
dc.subject.keywords | Stevia rebaudiana | eng |
dc.subject.keywords | Compost | eng |
dc.subject.keywords | Heavy metals | eng |
dc.subject.keywords | Growth indices | eng |
dc.subject.keywords | Net photosynthesis | eng |
dc.subject.keywords | Chlorophyll | eng |
dc.subject.proposal | Bacterias promotoras de crecimiento vegetal (PGPB) | spa |
dc.subject.proposal | Sustratos | spa |
dc.subject.proposal | Stevia rebaudiana | spa |
dc.subject.proposal | Compost | spa |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Índices de crecimiento | spa |
dc.subject.proposal | Fotosíntesis neta | spa |
dc.subject.proposal | Clorofila | spa |
dc.title | Evaluación del potencial de bacterias promotoras de crecimiento vegetal (PGPB) en Stevia rebaudiana bajo condiciones semicontroladas en Montería, Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: