Publicación:
Moléculas asociadas a anemia y trombocitopenia en pacientes con malaria por Plasmodium vivax

dc.contributor.advisorCodirector: Cantero Guevara, Miriamspa
dc.contributor.advisorDirector: Yasnot Acosta, María Fernandaspa
dc.contributor.advisorAsesor internacional: Rodríguez, Anaspa
dc.contributor.advisorUniversidad de Córdobaspa
dc.contributor.authorVelasco Pareja, María Camilaspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-07-07T16:03:41Zspa
dc.date.available2020-07-07T16:03:41Zspa
dc.date.issued2021-12-30spa
dc.description.abstractPlasmodium vivax es el agente etiológico causal de la malaria con mayor distribución en el mundo. Su curso clínico es variable, tradicionalmente se asoció a enfermedad benigna, sin embargo en la última década se ha demostrado que puede llegar a producir formas complicadas de la enfermedad e incluso la muerte, siendo la anemia y la trombocitopenia las complicaciones más frecuentes. En el departamento de Córdoba la situación no es diferente, la malaria es endémica y la mayoría de casos son atribuidos a P. vivax; es el tercer departamento que más casos reporta en Colombia y las complicaciones hematológicas son frecuentes. Los principales mecanismos fisiopatológicos asociados a la disminución de la hemoglobina y recuentos plaquetarios son las alteraciones en la médula ósea, la respuesta inmune proinflamatoria y autoinmune, así como el secuestro esplénico. Este estudio tuvo como objetivo evaluar el efecto de la infección por Plasmodium vivax sobre las concentraciones plasmáticas de citoquinas, quemoquinas y autoanticuerpos e identificar su rol en la anemia y trombocitopenia asociadas a la infección. Para tal fin, se seleccionaron 165 pacientes con monoinfección por P. vivax sin y con anemia, trombocitopenia o ambas, además de individuos sanos e individuos con malaria sin anemia ni trombocitopenia. A todos los participantes se les diligenció una ficha clínica. La cuantificación plasmática de citoquinas (IL-2, IL-4, IL-1β, TNF-α, IL-17A, IL-6, IL-10, INFγ, IL-12p70, y TGF-β1) y quemoquinas (IP-10, MCP-1 y IL-8), se realizó por citometría de flujo. La evaluación de la autoinmunidad se realizó mediante un Ensayo de Inmunoabsorción Ligado a Enzima (ELISA), empleando como antígeno fosfatidilserina (FS), lisado de glóbulos rojos (LGR) y ácido desoxirribonucleico (ADN). Los análisis estadísticos se realizaron mediante GraphPad Prism versión 7.0. La población se caracterizó por ser en su mayoría adolescentes y adultos jóvenes. Clínicamente esta población de caracterizó por tener una media de 5107 parásitos/µL (DS= 12634p/µL), describieron síntomas correspondientes a la tríada clásica de malaria; el 13% de los pacientes requirió de hospitalización. El 49% de los pacientes con malaria vivax desarrollaron anemia y trombocitopenia concomitante, el 28% trombocitopenia y el 13.9% anemia. Se identificó además que el 9% de los pacientes no desarrollaron ningún tipo de alteración hematológica a pesar de tener un episodio activo de malaria. Se demostró que las citoquinas y quemoquinas proinflamatorias, INFγ, IL-6, MCP-1 e IP-10 tuvieron concentraciones significativamente altas (P<0.005) en pacientes con malaria y trombocitopenia. En cuanto a las citoquinas antiiflamatorias, la IL-10 fue significativamente elevada (P = XXX) en los grupos que cursaron con malaria y anemia y trombocitopenia, mientras que la concentración del TGF-β1 (41pg/mL) se encontró significativamente aumentada en pacientes infectados pero que no desarrollaron ninguna alteración hematológica (P<0.0001). Los anticuerpos anti-FS se encontraron aumentados en pacientes con malaria que desarrollaron anemia y trombocitopenia, con una correlación negativa entre anticuerpos anti-FS vs la hemoglobina y las plaquetas (P<0.05). Se concluye que la trombocitopenia puede estar dada por mecanismos multifactoriales, tales como la fagocitosis potenciada por la inflamación causada por el INFγ y la IL-6, así como también por el desarrollo de autoanticuerpos contra fosfatidilserina, los cuales pueden influir en la destrucción de plaquetas ya sea por la fagocitosis o la activación de la vía clásica del complemento. Así mismo, la anemia puede ser una consecuencia de la opsonización de glóbulos rojos parasitados como no parasitados por anticuerpos anti-FS que pueden generar un mecanismo de destrucción por fagocitosis o por la vía clásica del complemento. Finalmente, se demostró que los pacientes con malaria que no desarrollaron alteraciones hematológicas tenían altas concentraciones de TGF-β1 respecto a aquellos que tuvieron anemia o trombocitopenia (P<0.05), sugiriendo esto un efecto antiinflamatorio eficaz.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiología Tropicalspa
dc.description.tableofcontentsINTRODUCCIÓN.................................................................................................................................................................................18spa
dc.description.tableofcontentsOBJETIVO.................................................................................................................................................................................20spa
dc.description.tableofcontentsCapítulo I: Marco Teórico ..............................................................................................................................................................................21spa
dc.description.tableofcontentsCapítulo II: Aspectos epidemiológicos y clínicos de la malaria por P. vivax en el sur de Córdoba...................................................31spa
dc.description.tableofcontentsIntroducción............................................................................................................................................................................................31spa
dc.description.tableofcontentsObjetivo...................................................................................................................................................................................................32spa
dc.description.tableofcontentsMetodología......................................................................................................................................................................................32spa
dc.description.tableofcontentsResultados.............................................................................................................................................................................................35spa
dc.description.tableofcontentsCAPÍTULO III: Citoquinas y quemoquinas involucradas en la anemia y la trombocitopenia en pacientes con malaria por P. vivax...................................................................................................................................................................................................................42spa
dc.description.tableofcontentsIntroducción.....................................................................................................................................................................................................42spa
dc.description.tableofcontentsObjetivo.............................................................................................................................................................................................................43spa
dc.description.tableofcontentsMetodología....................................................................................................................................................................................................43spa
dc.description.tableofcontentsResultados......................................................................................................................................................................................................46spa
dc.description.tableofcontentsDiscusión...................................................................................................................................................................................................61spa
dc.description.tableofcontentsCAPÍTULO IV: Autoanticuerpos asociados a la anemia y la trombocitopenia en pacientes con malaria por P. vivax...................67spa
dc.description.tableofcontentsIntroducción.....................................................................................................................................................................................................67spa
dc.description.tableofcontentsObjetivo............................................................................................................................................................................................................68spa
dc.description.tableofcontentsResultados........................................................................................................................................................................................................70spa
dc.description.tableofcontentsDiscusión..........................................................................................................................................................................................................76spa
dc.description.tableofcontentsConclusiones generales.................................................................................................................................................................................80spa
dc.description.tableofcontentsPerspectivas......................................................................................................................................................................................................81spa
dc.description.tableofcontentsReferencias......................................................................................................................................................................................................82spa
dc.format.mimetypeApplication/pdfspa
dc.identifier.uriHttps://repositorio.unicordoba.edu.co/handle/ucordoba/3106spa
dc.language.isospaspa
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecniaspa
dc.publisher.programMaestría en Microbiología Tropicalspa
dc.relation.references1. Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. The Lancet. 2018;391(10130):1608-21.spa
dc.relation.references2. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383(9918):723-35.spa
dc.relation.references3. WHO. World malaria report 2019. 2019.spa
dc.relation.references4. Aashish A, Manigandan G. Complicated vivax malaria, an often underestimated condition - Case Report. J Family Community Med. 2015;22(3):180-2.spa
dc.relation.references6. Ramirez AP, Buitrago JI, Gonzalez JP, Morales AH, Carrasquilla G. Frequency and tendency of malaria in Colombia, 1990 to 2011: a descriptive study. Malar J. 2014;13:202.spa
dc.relation.references7. INS. Informe de evento, Malaria Colombia, Primer semestre de 2019. 2019.spa
dc.relation.references8. INS. Informe De Evento Malaria, Colombia, Semana Epidemiológica 24, 2019. 2019.spa
dc.relation.references9. INS. Boletin epidemiológico Semanal 52 del 2018. 2019.spa
dc.relation.references10. INS. Informe de Evento: MALARIA. Período epidemiológico XIII. Colombia, 2019. 2020.spa
dc.relation.references11. Carmona-Fonseca J, Sánchez YL, Yasnot MFJAMC. Malaria por Plasmodium vivax o P. falciparum en hospital de tercer nivel en la región más endémica de Colombia. 2015;40(4):294-304.spa
dc.relation.references12. INS. Boletin epidemiológico Semanal 17 del 2020. 2019.spa
dc.relation.references13. Llanos C, Flórez MH, Herrera MA, Herrera SJCM. Mecanismos de generación de anemia en malaria. 2004;35(4):205-14.spa
dc.relation.references14. Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, et al. The anaemia of Plasmodium vivax malaria. Malar J. 2012;11:135.spa
dc.relation.references15. Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg B, Zimmerman PA, et al. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J. 2006;20(6):747-9.spa
dc.relation.references16. Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematology Am Soc Hematol Educ Program. 2009:87-93.spa
dc.relation.references17. Rivera-Correa J, Rodriguez A. Autoimmune Anemia in Malaria. Trends Parasitol. 2020;36(2):91-7.spa
dc.relation.references18. Lacerda MVG, Mourão MPG, Coelho HCC, Santos JB. Thrombocytopenia in malaria: who cares? . Memórias do Instituto Oswaldo Cruz. 2011;106:52-63.spa
dc.relation.references19. CABRERA RAG, NAVARRO CPD. Alteraciones hematológicas en pacientes con malaria por Plasmodium vivax en un brote de malaria en Manaure, La Guajira, 2011-2012.spa
dc.relation.references20. Prevention CFDCa. 2019 [Available from: https://www.cdc.gov/malaria/about/faqs.html.spa
dc.relation.references21. Menard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11(10):701-12.spa
dc.relation.references22. Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol. 2018;9:3006.spa
dc.relation.references23. Lo AC, Faye B, Gyan BA, Amoah LE. Plasmodium and intestinal parasite perturbations of the infected host's inflammatory responses: a systematic review. Parasit Vectors. 2018;11(1):387.spa
dc.relation.references24. Long CA, Zavala F. Immune Responses in Malaria. Cold Spring Harb Perspect Med. 2017;7(8).spa
dc.relation.references25. Salud Md. Malaria en Colombia 2020 [Available from: https://www.minsalud.gov.co/salud/publica/PET/Paginas/malaria.aspx.spa
dc.relation.references26. Colombia PM. Logros, retos y lecciones aprendidas. Proyecto Malaria Colombia (PMC): Uso de la inteligencia epidemiológica con participación social para fortalecer la gestión del programa, mejorar el acceso al diagnóstico y tratamiento y ejecutar intervenciones eficaces para la prevención y control de la malaria, Colombia, 2010-2015. In: Córdoba, editor. Bogotá, Colombia2015.spa
dc.relation.references27. Botero Salas D. Informe De Evento Malaria, Colombia, 2017.spa
dc.relation.references28. Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol. 2018;8:34.spa
dc.relation.references29. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis. 2018;55(1):1-8.spa
dc.relation.references30. Gabriel Ferraz Campos Basílio LFS, Matheus Moreira. Qual o papel do sistema imune nas mortes por malária? Revista de Patologia do Tocantins. 2019;6(1):58-62.spa
dc.relation.references31. Castro-Gomes T, Mourao LC, Melo GC, Monteiro WM, Lacerda MV, Braga EM. Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: a puzzling question. Infect Immun. 2014;82(10):3990-4000.spa
dc.relation.references32. Oyegue-Liabagui SL, Bouopda-Tuedom AG, Kouna LC, Maghendji-Nzondo S, Nzoughe H, Tchitoula-Makaya N, et al. Pro- and anti-inflammatory cytokines in children with malaria in Franceville, Gabon. Am J Clin Exp Immunol. 2017;6(2):9-20.spa
dc.relation.references33. Ghosh K, Ghosh K. Pathogenesis of anemia in malaria: a concise review. Parasitol Res. 2007;101(6):1463-9.spa
dc.relation.references34. Langhorne J. Immunology and immunopathogenesis of Malaria: Springer Science & Business Media; 2006.spa
dc.relation.references35. Dinarello CA. Blocking IL-1 in systemic inflammation. J Exp Med. 2005;201(9):1355-9.spa
dc.relation.references36. Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong'echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7(9):1427-42.spa
dc.relation.references37. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.spa
dc.relation.references38. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170-81.spa
dc.relation.references39. Kurtzhals JA, Adabayeri V, Goka BQ, Akanmori BD, Oliver-Commey JO, Nkrumah FK, et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet. 1998;351(9118):1768-72.spa
dc.relation.references40. Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol. 2019;10:229.spa
dc.relation.references41. Niikura M, Inoue S, Kobayashi F. Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol. 2011;2011:383962.spa
dc.relation.references42. Omer FM, de Souza JB, Riley EM. Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J Immunol. 2003;171(10):5430-6.spa
dc.relation.references43. Drewry LL, Harty JT. Balancing in a black box: Potential immunomodulatory roles for TGF-beta signaling during blood-stage malaria. Virulence. 2020;11(1):159-69.spa
dc.relation.references44. Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TMJArob. What do structures tell us about chemokine receptor function and antagonism? 2017;46:175-98.spa
dc.relation.references45. Hojo-Souza NS, Pereira DB, de Souza FS, de Oliveira Mendes TA, Cardoso MS, Tada MS, et al. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J. 2017;16(1):42.spa
dc.relation.references46. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313-26.spa
dc.relation.references47. Vásquez A, Tobón A. Mecanismos de patogenia en la malaria por Plasmodium falciparum. Biomédica [Internet]. 2012 Mar [citado 2 sep 2017]; 2 (Suppl 1): 106-120.spa
dc.relation.references48. Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Trends Parasitol. 2009;25(5):220-7.spa
dc.relation.references49. Punnath K, Dayanand KK, Chandrashekar VN, Achur RN, Kakkilaya SB, Ghosh SK, et al. Association between inflammatory cytokine levels and thrombocytopenia during Plasmodium falciparum and P. vivax infections in south-western coastal region of India. 2019;2019.spa
dc.relation.references50. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, et al. Is anemia in Plasmodium vivax malaria more frequent and severe than in Plasmodium falciparum? Am J Med. 2006;119(11):e9-10.spa
dc.relation.references51. Akinosoglou KS, Solomou EE, Gogos CA. Malaria: a haematological disease. Hematology. 2012;17(2):106-14.spa
dc.relation.references52. Coelho HCC, Lopes SC, Pimentel JPD, Nogueira PA, Costa FT, Siqueira AM, et al. Thrombocytopenia in Plasmodium vivax malaria is related to platelets phagocytosis. 2013;8(5).spa
dc.relation.references53. Ghosh K, Shetty S. Blood coagulation in falciparum malaria--a review. Parasitol Res. 2008;102(4):571-6.spa
dc.relation.references54. Corbett Y, D’Alessandro S, Parapini S, Scaccabarozzi D, Kalantari P, Zava S, et al. Interplay between Plasmodium falciparum haemozoin and l-arginine: implication for nitric oxide production. 2018;17(1):1-13.spa
dc.relation.references55. McFadyen JD, Kaplan ZSJTMR. Platelets are not just for clots. 2015;29(2):110-9.spa
dc.relation.references56. Hottz ED, Monteiro AP, Bozza FA, Bozza PT. Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediators Inflamm. 2015;2015:435783.spa
dc.relation.references57. Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med. 1995;1(9):932-7.spa
dc.relation.references58. Hanisch BR, Bangirana P, Opoka RO, Park GS, John CCJTPidj. Thrombocytopenia May Mediate Disease Severity in Plasmodium Falciparum Malaria Through Reduced Transforming Growth Factor Beta-1 Regulation of Pro-and Anti-Inflammatory Cytokines. 2015;34(7):783.spa
dc.relation.references59. Sosman JA, Verma A, Moss S, Sorokin P, Blend M, Bradlow B, et al. Interleukin 10-induced thrombocytopenia in normal healthy adult volunteers: evidence for decreased platelet production. Br J Haematol. 2000;111(1):104-11.spa
dc.relation.references60. Coelho HCC, Monteiro, W. M., & de Lacerda, M. V. G. Platelets and Their Role in Malaria Infections. . Encyclopedia of Malaria. 2014:1–14.spa
dc.relation.references61. Foote S, Burgio G, McMorran B. Platelets in Malarial Infection: Protective or Pathological? Platelets in Thrombotic and Non-Thrombotic Disorders: Springer; 2017. p. 1103-9.spa
dc.relation.references62. Rivera-Correa J, Guthmiller JJ, Vijay R, Fernandez-Arias C, Pardo-Ruge MA, Gonzalez S, et al. Plasmodium DNA-mediated TLR9 activation of T-bet(+) B cells contributes to autoimmune anaemia during malaria. Nat Commun. 2017;8(1):1282.spa
dc.relation.references63. INS. Informe De Evento Malaria, Colombia, 2018. 2018.spa
dc.relation.references64. PAHO W. Actualización Epidemiológica Malaria en las Américas. 2019; 2019.spa
dc.relation.references65. Arevalo-Herrera M, Lopez-Perez M, Medina L, Moreno A, Gutierrez JB, Herrera S. . Malar J. 2015;14:154.spa
dc.relation.references66. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15-34.spa
dc.relation.references67. Carmona-Fonseca JJI. La malaria en Colombia, Antioquia y las zonas de Urabá y Bajo Cauca: panorama para interpretar la falla terapéutica antimalárica. Parte 2. 2019;32(1).spa
dc.relation.references68. Angélica Knudson-Ospina RS-P, Manuel Alberto Pérez-Mazorra, Liliana Jazmín Cortés-Cortés, Ángela Patricia Guerra-Vega, Rubén Santiago Nicholls-Orejuela. Perfil clínico y parasitológico de la malaria por Plasmodium falciparum y Plasmodium vivax no complicada en Córdoba, Colombia. Rev Fac Med. 2015;63(4):595 - 607.spa
dc.relation.references69. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61(2):315-20.spa
dc.relation.references70. Reyes H, Laser H, Fundora Sarraff TAJRCdH, Inmunología y Hemoterapia. Hemogram: new classification and perspectives. 2014;30(1):89-92.spa
dc.relation.references71. Fernández SA. A contribution of the economic analysis to improving access to effective infectious diseases interventions in low and middle income countries: evidenc e from northern and sub-saharan africa: Universitat de Barcelona; 2018.spa
dc.relation.references72. Uscátegui RM, Correa AMJB. Estado nutricional de niños palúdicos residentes en El Bagre y Turbo, Antioquia, Colombia, 2004-2005. 2007;27(4):559-70.spa
dc.relation.references73. Molineros-Gallon LF, Hernandez-Carrillo M, Castro-Espinosa J, Trujillo de Cisneros E. [Knowledge, attitudes, perceptions and community practices for urban malaria. Tumaco, Colombia]. Rev Salud Publica (Bogota). 2018;20(1):82-8.spa
dc.relation.references74. Knudson-Ospina A, Barreto-Zorza YM, Castillo CF, Y.Mosquera L, Apráez-Ippolito G, Olaya-Másmela LA, et al. Estrategias para la eliminación de malaria: una perspectiva afro-colombiana %J Revista de Salud Pública. 2019;21:9-16.spa
dc.relation.references75. Espitia Y, Castro C, Rodríguez V, Causil L, Velasco MC, Quintero G, et al. Genotipificación del gen MSP3 en pacientes con Malaria complicada. 2018:16-25.spa
dc.relation.references76. Fallone G, Saveri Y, Aurenty LJBvi. Malaria: aspectos clínicos y epidemiológicos en el paciente pediátrico. 2019:102-10.spa
dc.relation.references77. Nkumama IN, O'Meara WP, Osier FHA. Changes in Malaria Epidemiology in Africa and New Challenges for Elimination. Trends Parasitol. 2017;33(2):128-40.spa
dc.relation.references78. Murillo-Palacios OL, Pedroza C, Bolaños C, Toro ED, Cubillos J, Chaparro P, et al. Malaria complicada en el Chocó: hallazgos clínicos y comparación de datos con el sistema de vigilancia %J Revista de Salud Pública. 2018;20:73-81.spa
dc.relation.references79. Arboleda M, Pérez MF, Fernández D, Usuga LY, Meza MJB. Perfil clínico y de laboratorio de pacientes con malaria por Plasmodium vivax, hospitalizados en Apartadó, Colombia. 2012;32(1):58-67.spa
dc.relation.references80. Antinori S, Corona A, Ridolfo AL, Galimberti L, Ricaboni D, Milazzo L, et al. Imported Plasmodium vivax malaria with severe thrombocytopaenia: can it be severe malaria or not? Malar J. 2016;15:105.spa
dc.relation.references81. Akhtar S, Gumashta R, Mahore S, Maimoon SJI-J. Hematological changes in malaria: a comparative study. 2012;2:15-9.spa
dc.relation.references82. Lima-Junior JdC, Rodrigues-da-Silva RN, Pereira VA, Storer FL, Perce-da-Silva DdS, Fabrino DL, et al. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of uncomplicated Plasmodium vivax and Plasmodium falciparum infection %J Memórias do Instituto Oswaldo Cruz. 2012;107:1035-41.spa
dc.relation.references83. Muley A, Lakhani J, Bhirud S, Patel A. Thrombocytopenia in Plasmodium vivax Malaria: How Significant? J Trop Med. 2014;2014:567469.spa
dc.relation.references84. Bendigeri M, Panchakshare A, Attar N, Jaladhar PJAJoM, Health. A Study on Relationship of Thrombocytopenia and Likelihood of Severe Malaria in Patients Admitted With Malaria in a Tertiary Care Hospital of Dakshina Kannada. 2019:1-7.spa
dc.relation.references85. Koupenova M, Clancy L, Corkrey HA, Freedman JEJCr. Circulating platelets as mediators of immunity, inflammation, and thrombosis. 2018;122(2):337-51.spa
dc.relation.references86. Kho S, Barber BE, Johar E, Andries B, Poespoprodjo JR, Kenangalem E, et al. Platelets kill circulating parasites of all major Plasmodium species in human malaria. 2018;132(12):1332-44.spa
dc.relation.references87. Baliga S, D'Souza J, Suresh SJI. Comparative hematological changes in malarial infection by P. vivax and P. falciparum: Observations from the endemic region. 2017;3(6):179-83.spa
dc.relation.references88. Carmona Fonseca J, Sánchez YL, Yasnot MFJAMC. Malaria por Plasmodium vivax o P. falciparum en hospital de tercer nivel en la región más endémica de Colombia. 2015;40(4):294-304.spa
dc.relation.references89. Prasasty GD, Prameswarie T, Ramdja M, Handayani DJBMJoB, Research T. Hematologic profiles of Plasmodium vivax Malaria patients. 2018;2(2):8-15.spa
dc.relation.references90. Halim N, Ajayi O, Oluwafemi FJNJoCP. Monocytosis in acute malaria infection. 2002;5(2):106-8.spa
dc.relation.references91. KhaingSwe K. Approach to the patients with monocytosis. Journal of Dental. 2015;14(5):81-6.spa
dc.relation.references92. Douglas NM, Kenangalem E, Hasanuddin A, Anstey NM, Sugiarto P, Price RN, et al. Malaria-related hospitalization during childhood in Papua, Indonesia: A retrospective cohort study. PLoS One. 2020;15(1):e0228018.spa
dc.relation.references93. White M, Watson J. Malaria: Age, exposure and immunity. Elife. 2018;7:e40150.spa
dc.relation.references94. Stevenson MM, Riley EM. Innate immunity to malaria. J Nature Reviews Immunology. 2004;4(3):169-80.spa
dc.relation.references95. Sohail M, Kaul A, Bali P, Raziuddin M, Singh MP, Singh OP, et al. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Mol Immunol. 2008;45(6):1682-92.spa
dc.relation.references96. Gonçalves RM, Salmazi KC, Santos BA, Bastos MS, Rocha SC, Boscardin SB, et al. CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses? 2010;78(11):4763-72.spa
dc.relation.references97. Mota MM, Rodriguez A. Malaria: Immune Response to Infection and Vaccination: Springer; 2017.spa
dc.relation.references98. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, et al. Occurrence of thrombocytopenia in Plasmodium vivax malaria. Clin Infect Dis. 2005;41(1):130-1.spa
dc.relation.references99. Salud OMdl. Concentraciones de hemoglobina para diagnosticar la anemia y evaluar su gravedad. OMS Ginebra; 2011.spa
dc.relation.references100. Umang Patel GG, Sandor Friedman, Selvanayagam Niranjan. Thrombocytopenia in Malaria. JOURNAL OF THE NATIONAL MEDICAL ASSOCIATION 2004;96(9):1212 - 4.spa
dc.relation.references101. Raza A, Khan MS, Ghanchi NK, Raheem A, Beg MA. Tumour necrosis factor, interleukin-6 and interleukin-10 are possibly involved in Plasmodium vivax-associated thrombocytopaenia in southern Pakistani population. Malar J. 2014;13:323.spa
dc.relation.references102. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M. Anemia and thrombocytopenia in children with Plasmodium vivax malaria. J Trop Pediatr. 2006;52(1):49-51.spa
dc.relation.references103. Oh MD, Shin H, Shin D, Kim U, Lee S, Kim N, et al. Clinical features of vivax malaria. Am J Trop Med Hyg. 2001;65(2):143-6.spa
dc.relation.references104. Echeverri M, Tobón A, Álvarez G, Carmona J, Blair S. Clinical and laboratory findings of Plasmodium vivax malaria in Colombia, 2001. evista do Instituto de Medicina Tropical de São Paulo. 2003;45:29-34.spa
dc.relation.references105. Fernandes AA, Carvalho LJ, Zanini GM, Ventura AM, Souza JM, Cotias PM, et al. Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. Clin Vaccine Immunol. 2008;15(4):650-8.spa
dc.relation.references106. Boeuf PS, Loizon S, Awandare GA, Tetteh JK, Addae MM, Adjei GO, et al. Insights into deregulated TNF and IL-10 production in malaria: implications for understanding severe malarial anaemia. 2012;11(1):253.spa
dc.relation.references107. Perera MK, Herath NP, Pathirana SL, Phone-Kyaw M, Alles HK, Mendis KN, et al. Association of high plasma TNF-alpha levels and TNF-alpha/IL-10 ratios with TNF2 allele in severe P. falciparum malaria patients in Sri Lanka. Pathog Glob Health. 2013;107(1):21-9.spa
dc.relation.references108. Wang CQ, Udupa KB, Lipschitz DA. Evidence suggesting a stimulatory role for interleukin-10 in erythropoiesis in vitro. J Cell Physiol. 1996;166(2):305-10.spa
dc.relation.references109. Chaves YO, da Costa AG, Pereira ML, de Lacerda MV, Coelho-Dos-Reis JG, Martins-Filho OA, et al. Immune response pattern in recurrent Plasmodium vivax malaria. Malar J. 2016;15(1):445.spa
dc.relation.references110. Mandala WL, Msefula CL, Gondwe EN, Drayson MT, Molyneux ME, MacLennan CA. Cytokine Profiles in Malawian Children Presenting with Uncomplicated Malaria, Severe Malarial Anemia, and Cerebral Malaria. Clin Vaccine Immunol. 2017;24(4).spa
dc.relation.references111. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun. 2004;72(10):5630-7.spa
dc.relation.references112. Mbengue B, Niang B, Niang MS, Varela ML, Fall B, Fall MM, et al. Inflammatory cytokine and humoral responses to Plasmodium falciparum glycosylphosphatidylinositols correlates with malaria immunity and pathogenesis. Immun Inflamm Dis. 2016;4(1):24-34.spa
dc.relation.references113. Clark MA, Goheen MM, Cerami C. Influence of host iron status on Plasmodium falciparum infection. Front Pharmacol. 2014;5:84.spa
dc.relation.references114. de Mast Q, Syafruddin D, Keijmel S, Riekerink TO, Deky O, Asih PB, et al. Increased serum hepcidin and alterations in blood iron parameters associated with asymptomatic P. falciparum and P. vivax malaria. Haematologica. 2010;95(7):1068-74.spa
dc.relation.references115. Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets: Elsevier; 2019. p. 505-22.spa
dc.relation.references116. Sorensen EW, Lian J, Ozga AJ, Miyabe Y, Ji SW, Bromley SK, et al. CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI insight. 2018;3(8).spa
dc.relation.references117. Loannidis LJ, Nie CQ, Ly A, Ryg-Cornejo V, Chiu CY, Hansen DS. Monocyte-and neutrophil-derived CXCL10 impairs efficient control of blood-stage malaria infection and promotes severe disease. The Journal of Immunology. 2016;196(3):1227-38.spa
dc.relation.references118. Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, et al. Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proceedings of the National Academy of Sciences. 2008;105(12):4814-9.spa
dc.relation.references119. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22(3):121-30.spa
dc.relation.references120. Park J-W, Park S-H, Yeom J-S, Huh A-J, Cho Y-K, Ahn J-Y, et al. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. 2003;97(4):339-44.spa
dc.relation.references121. Goncalves RM, Scopel KK, Bastos MS, Ferreira MUJPO. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum? 2012;7(9).spa
dc.relation.references122. Gronda MV, Risio D. Regulacion de la hematopoyesis. Medicina (B Aires). 1993;53(2):167-75.spa
dc.relation.references123. King T, Lamb T. Interferon-gamma: The Jekyll and Hyde of Malaria. PLoS Pathog. 2015;11(10):e1005118.spa
dc.relation.references124. Keller CC, Yamo O, Ouma C, Ong'echa JM, Ounah D, Hittner JB, et al. Acquisition of hemozoin by monocytes down-regulates interleukin-12 p40 (IL-12p40) transcripts and circulating IL-12p70 through an IL-10-dependent mechanism: in vivo and in vitro findings in severe malarial anemia. Infect Immun. 2006;74(9):5249-60.spa
dc.relation.references125. Mendonca VR, Queiroz AT, Lopes FM, Andrade BB, Barral-Netto M. Networking the host immune response in Plasmodium vivax malaria. Malar J. 2013;12:69.spa
dc.relation.references126. Da Costa AG, Antonelli LR, Costa PA, Pimentel JP, Garcia NP, Tarrago AM, et al. The robust and modulated biomarker network elicited by the Plasmodium vivax infection is mainly mediated by the IL-6/IL-10 axis and is associated with the parasite load. J Immunol Res. 2014;2014:318250.spa
dc.relation.references127. Page MJ, Bester J, Pretorius E. Interleukin-12 and its procoagulant effect on erythrocytes, platelets and fibrin(ogen): the lesser known side of inflammation. Br J Haematol. 2018;180(1):110-7.spa
dc.relation.references128. Sarangi A, Mohapatra PC, Dalai RK, Sarangi AK. Serum IL-4, IL-12 and TNF-alpha in malaria: a comparative study associating cytokine responses with severity of disease from the Coastal Districts of Odisha. J Parasit Dis. 2014;38(2):143-7.spa
dc.relation.references129. Culic S, Salamunic I, Konjevoda P, Dajak S, Pavelic J. Immune thrombocytopenia: serum cytokine levels in children and adults. Med Sci Monit. 2013;19:797-801.spa
dc.relation.references130. Omer FM, de Souza JB, Corran PH, Sultan AA, Riley EM. Activation of transforming growth factor beta by malaria parasite-derived metalloproteinases and a thrombospondin-like molecule. J Exp Med. 2003;198(12):1817-27.spa
dc.relation.references131. Semple JW, Italiano JE, Jr., Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264-74.spa
dc.relation.references132. Omer FM, Kurtzhals JA, Riley EM. Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitol Today. 2000;16(1):18-23.spa
dc.relation.references133. Rivera-Correa J, Mackroth MS, Jacobs T, zur Wiesch JS, Rolling T, Rodriguez AJe. Atypical memory B-cells are associated with Plasmodium falciparum anemia through anti-phosphatidylserine antibodies. 2019;8.spa
dc.relation.references134. Mourao LC, Baptista RP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, et al. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep. 2018;8(1):8762.spa
dc.relation.references135. Fernandez-Arias C, Rivera-Correa J, Gallego-Delgado J, Rudlaff R, Fernandez C, Roussel C, et al. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia. Cell Host Microbe. 2016;19(2):194-203.spa
dc.relation.references136. Ritter K, Kuhlencord A, Thomssen R, Bommer W. Prolonged haemolytic anaemia in malaria and autoantibodies against triosephosphate isomerase. Lancet. 1993;342(8883):1333-4.spa
dc.relation.references137. Bevers EM, Williamson PLJPr. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. 2016;96(2):605-45.spa
dc.relation.references138. Totino PR, Lopes SC. Insights into the cytoadherence phenomenon of Plasmodium vivax: the putative role of phosphatidylserine. J Frontiers in immunology. 2017;8:1148.spa
dc.relation.references139. Rosenberg EB, Strickland GT, Yang SL, Whalen GE. IgM antibodies to red cells and autoimmune anemia in patients with malaria. Am J Trop Med Hyg. 1973;22(2):146-52.spa
dc.relation.references140. Berzins K, Wahlgren M, Perlmann P. Studies on the specificity of anti-erythrocyte antibodies in the serum of patients with malaria. Clin Exp Immunol. 1983;54(2):313-8.spa
dc.relation.references141. Mourão LC, da Silva Roma PM, Aboobacar JdSS, Medeiros CMP, de Almeida ZB, Fontes CJF, et al. Anti-erythrocyte antibodies may contribute to anaemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erythrophagocytosis. 2016;15(1):397.spa
dc.relation.references142. Jakobsen PH, Morris-Jones SD, Hviid L, Theander TG, Hoier-Madsen M, Bayoumi RA, et al. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria. Immunology. 1993;79(4):653-7.spa
dc.relation.references143. Ma R, Xie R, Yu C, Si Y, Wu X, Zhao L, et al. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep. 2017;7(1):4978.spa
dc.relation.references144. Panasiuk A. [Autoimmune thrombocytopenia in recurrent polietiological malaria (Plasmodium falciparum, Plasmodium vivax)]. Wiad Parazytol. 2001;47(1):85-9.spa
dc.relation.references145. Conte R, Tassi C, Belletti D, Ricci F, Tazzari PL. Autoimmune thrombocytopenia in malaria. Vox Sang. 2003;85(3):221.spa
dc.relation.references146. Zouali M, Druilhe P, Eyquem A. IgG-subclass expression of anti-DNA and anti-ribonucleoprotein autoantibodies in human malaria. Clin Exp Immunol. 1986;66(2):273-8.spa
dc.relation.references147. Wozencraft AO, Lloyd CM, Staines NA, Griffiths VJ. Role of DNA-binding antibodies in kidney pathology associated with murine malaria infections. Infect Immun. 1990;58(7):2156-64.spa
dc.rightsCopyright Universidad de Córdoba, 2019spa
dc.rights.accessrightsInfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsPlasmodium vivax, anemia, thrombocytopenia, proinflammatory cytokines, anti-inflammatory cytokinesspa
dc.subject.proposalPlasmodium vivax, anemia, trombocitopenia, citoquinas proinflamatorias, citoquinas antiiflamatorias.spa
dc.titleMoléculas asociadas a anemia y trombocitopenia en pacientes con malaria por Plasmodium vivaxspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverInfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versionInfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Velasco Pareja Maria Camila.pdf
Tamaño:
3.46 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato_Autorización diligenciado velasco pareja maria Camila.pdf
Tamaño:
494.86 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones