Publicación: Estudio eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del Caribe Colombiano
dc.audience | ||
dc.contributor.advisor | Faccini Martínez, Álvaro A. | |
dc.contributor.advisor | Mattar Velilla, Salim | |
dc.contributor.author | López Mejía, Yesica Paola | |
dc.date.accessioned | 2024-06-12T13:52:33Z | |
dc.date.available | 2025-06-11 | |
dc.date.available | 2024-06-12T13:52:33Z | |
dc.date.issued | 2025-06-11 | |
dc.description.abstract | Las especies patógenas del género Borrelia son agentes zoonóticos que causan enfermedades infecciosas emergentes y reemergentes en todo el mundo y constituyen una amenaza para la salud pública. el objetivo de este trabajo fue estudiar la eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del caribe colombiano. Metodología. Se realizó un estudio es descriptivo, prospectivo y retrospectivo de corte transversal. Se realizaron salidas de campo para la captura de garrapatas y toma de muestras de animales en distintas áreas del Caribe Colombiano. Las muestras se analizaron mediante técnicas de PCR, secuenciación Sanger y NGS. Resultados. En este estudio se obtuvo resultados positivos para diferentes especies del género Borrelia en murciélagos, zarigüeyas, roedores, bovinos y garrapatas. Adicionalmente, este estudio demostró una diversidad de animales domésticos y silvestres como fuente alimentaria de Ornithodoros puertoricensis, vector implicado en transmisión de Borrelia en humanos. El estudio proporciona la primera evidencia molecular de Borrelia spp. en murciélagos, zarigüeyas, roedores, bovinos y garrapatas en el departamento de Córdoba. Se recomienda realizar más estudios para aislar y secuenciar genomas de Borrelia spp. en murciélagos y roedores, y considerar la Borreliosis bovina en el diagnóstico veterinario. | spa |
dc.description.abstract | Pathogenic species of the genus Borrelia are zoonotic agents that cause emerging and re-emerging infectious diseases worldwide and constitute a threat to public health. The objective of this work was to study the eco-epidemiological of infection by Borrelia spp. in pet, domestic, wild animals and ticks in some areas of the Colombian Caribbean. Methodology. A descriptive, prospective and retrospective cross-sectional study was carried out. Field trips were carried out to capture ticks and take animal samples in different areas of the Colombian Caribbean. The samples were analyzed using PCR, Sanger sequencing and NGS techniques. Results. In this study, positive results were obtained for different species of the genus Borrelia in bats, opossums, rodents, cattle and ticks. Additionally, this study demonstrated a diversity of domestic and wild animals as a food source of Ornithodoros Puertoricensis, a vector involved in the transmission of Borrelia in humans. The study provides the first molecular evidence of Borrelia spp. in bats, opossums, rodents, cattle and ticks in the department of Córdoba. Further studies are recommended to isolate and sequence genomes of Borrelia spp. in bats and rodents, and consider bovine borreliosis in veterinary diagnosis. | eng |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor(a) en Microbiología y Salud Tropical | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. INTRODUCCIÓN...10 | spa |
dc.description.tableofcontents | 2. MARCO CONCEPTUAL...13 | |
dc.description.tableofcontents | 3.1 Género Borrelia...16 | |
dc.description.tableofcontents | 3.2 Vectores artrópodos...16 | |
dc.description.tableofcontents | 3.2.1 Familia Ixodidae...17 | |
dc.description.tableofcontents | 3.2.2 Familia Argasidae...17 | |
dc.description.tableofcontents | 3.3 Borreliosis...17 | |
dc.description.tableofcontents | 3.3.1 Borreliosis de Lyme...18 | |
dc.description.tableofcontents | 3.3.2 Fiebre recurrente...20 | |
dc.description.tableofcontents | 3.3.3 Borreliosis de importancia veterinarias...31 | |
dc.description.tableofcontents | 3.4 Diagnóstico...32 | |
dc.description.tableofcontents | 4. OBJETIVOS...34 | |
dc.description.tableofcontents | 4.1 General...34 | |
dc.description.tableofcontents | 4.2 Específicos...34 | |
dc.description.tableofcontents | 5. CAPITULO I. IDENTIFICAR LA INFECCIÓN POR Borrelia spp. EN ANIMALES DE COMPAÑÍA, DOMÉSTICOS, SILVESTRES Y GARRAPATAS EN ALGUNAS ÁREAS DEL CARIBE COLOMBIANO Y ESTABLECER RELACIONES FILOGENÉTICAS DE LAS ESPECIES DE Borrelia spp. ENCONTRADAS...35 | |
dc.description.tableofcontents | 5.1 Metodología...35 | |
dc.description.tableofcontents | 5.1.1 Tipo de estudio...35 | |
dc.description.tableofcontents | 5.1.2 Área de estudio...37 | |
dc.description.tableofcontents | 5.1.3 Muestras de animales silvestres...38 | |
dc.description.tableofcontents | 5.1.4 Animales domésticos y de compañía...38 | |
dc.description.tableofcontents | 5.1.5 Captura de garrapatas...39 | |
dc.description.tableofcontents | 5.1.5.1 Identificación taxonómica...39 | |
dc.description.tableofcontents | 5.1.7 Visualización de espiroquetas en extendido de sangre periférica y gota gruesa...39 | |
dc.description.tableofcontents | 5.1.8 Detección molecular de Borrelia spp...40 | |
dc.description.tableofcontents | 5.2 Resultados...43 | |
dc.description.tableofcontents | 5.2.1 Animales silvestres...46 | |
dc.description.tableofcontents | 5.2.2 Animales domésticos y de compañía...60 | |
dc.description.tableofcontents | 5.2.3 Garrapatas...64 | |
dc.description.tableofcontents | 5.3 Discusión...68 | |
dc.description.tableofcontents | 5.3.1 Animales silvestres...68 | |
dc.description.tableofcontents | 5.3.2 Animales domésticos...74 | |
dc.description.tableofcontents | 5.3.3 Garrapatas...76 | |
dc.description.tableofcontents | 6. CAPITULO II. DETERMINAR LA PRESENCIA DE Ornithodoros sp. Y SU FUENTE ALIMENTARIA EN EL DEPARTAMENTO DE CÓRDOBA...78 | |
dc.description.tableofcontents | 6.1 Metodología...78 | |
dc.description.tableofcontents | 6.1.1 Área Geográfica y Sitios de Muestreo...78 | |
dc.description.tableofcontents | 6.1.2 Recolección e identificación de garrapatas...80 | |
dc.description.tableofcontents | 6.1.3 Análisis moleculares y filogenéticos...80 | |
dc.description.tableofcontents | 6.1.4 Identificación de fuentes alimentarias sanguínea en Ornithodoros spp....81 | |
dc.description.tableofcontents | 6.2 Resultados...82 | |
dc.description.tableofcontents | 6.2.1 Colecta de garrapatas...82 | |
dc.description.tableofcontents | 6.2.2 Identificación morfológica y genética de especímenes...84 | |
dc.description.tableofcontents | 6.2.3 Detección de fuentes alimentarias sanguíneas en O. puertoricensis...87 | |
dc.description.tableofcontents | 6.3 Discusión...94 | |
dc.description.tableofcontents | 7. ARTICULOS CIENTÍFICOS RELACIONADOS Y PUBLICACIONES PRELIMINARES...98 | |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRÁFICAS...99 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8309 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Doctorado en Microbiología y Salud Tropical | |
dc.relation.references | Adeolu, M., & Gupta, R. S. (2014). A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: The emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of. the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex), International Journal of General and Molecular Microbiology, 105(6), 1049–1072. https://doi.org/10.1007/s10482-014-0164-x | |
dc.relation.references | Ali, A., Numan, M., Khan, M., Aiman, O., Muñoz-Leal, S., Chitimia-Dobler, L., Labruna, M. B., & Nijhof, A. M. (2022). Ornithodoros (Pavlovskyella) ticks associated with a Rickettsia sp. in Pakistan. Parasites and Vectors, 15(1), 1–13. https://doi.org/10.1186/s13071-022-05248-0 | |
dc.relation.references | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 | |
dc.relation.references | Andersson, M., Nordstrand, A., Shamaei-Tousi, A., Jansson, A., Bergström, S., & Guo, B. P. (2007). In situ immune response in brain and kidney during early relapsing fever borreliosis. Journal of Neuroimmunology, 183(1–2), 26–32. https://doi.org/10.1016/j.jneuroim.2006.11.004 | |
dc.relation.references | Ardila, M. M., Carrillo-Bonilla, L., Pabón, A., & Robledo, S. M. (2019). Surveillance of phlebotomine fauna and Didelphis marsupialis (Didelphimorphia: Didelphidae) infection in an area highly endemic for visceral Leishmaniasis in Colombia. Biomedica, 39(2), 252–264. https://doi.org/10.7705/biomedica.v39i2.3905 | |
dc.relation.references | Arias-Giraldo, L. M., Muñoz, M., Hernández, C., Herrera, G., Velásquez-Ortiz, N., Cantillo-Barraza, O., Urbano, P., Cuervo, A., & Ramírez, J. D. (2020). Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasites and Vectors, 13(1), 1–14. https://doi.org/10.1186/s13071-020-04310-z | |
dc.relation.references | Arroyave, E., Londoño, A. F., Quintero, J. C., Agudelo-Flórez, P., Arboleda, M., Díaz, F. J., & Rodas, J. D. (2013). Etiología y caracterización epidemiológica del síndrome febril no palúdico en tres municipios del Urabá antioqueño, Colombia. Biomedica, 33(1), 99–107. https://doi.org/10.7705/biomedica.v33i0.734 | |
dc.relation.references | Babraham Bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed May 4, 2023 | |
dc.relation.references | Balasubramanian, S., Busselman, R. E., Santos, N. F., Grunwald, A., Wolff, N., Hathaway, N., ... & Hamer, G. L. (2023). Bloodmeal metabarcoding of the argasid tick (Ornithodoros turicata Dugès) reveals extensive vector-host associations. bioRxiv, 2023-08. https://doi.org/10.1101/2023.08.07.552345 | |
dc.relation.references | Ballados‐González, G. G., Bravo‐Ramos, J. L., Grostieta, E., Andrade‐López, A. N., Ramos‐Vázquez, J. R., Chong‐Guzmán, L. A., ... & Sánchez‐Montes, S. (2023). Confirmation of the presence of Rickettsia felis infecting Ornithodoros puertoricensis in Mexico. Medical and Veterinary Entomology, 37(2), 219-227. https://doi.org/10.1111/mve.12624 | |
dc.relation.references | Baneth, G., Dvorkin, A., Shitrit, B. Ben, Kleinerman, G., Salant, H., Straubinger, R. K., & Biala, Y. N. (2022). Infection and seroprevalence of Borrelia persica in domestic cats and dogs in Israel. Parasites & Vectors, 15(102), 1–11. https://doi.org/10.1186/s13071-022-05223-9 | |
dc.relation.references | Baneth, G., Nachum-Biala, Y., Halperin, T., Hershko, Y., Kleinerman, G., Anug, Y., Abdeen, Z., Lavy, E., Aroch, I., & Straubinger, R. K. (2016). Borrelia persica infection in dogs and cats: Clinical manifestations, clinicopathological findings and genetic characterization. Parasites and Vectors, 9(244), 1–10. https://doi.org/10.1186/s13071-016-1530-5 | |
dc.relation.references | Bankole, A. A., Kumsa, B., Mamo, G., Ogo, N. I., Elelu, N., Morgan, W., & Cutler, S. J. (2023). Comparative Analysis of Tick-Borne Relapsing Fever Spirochaetes from Ethiopia and Nigeria. Pathogens, 12(81), 1–22. https://doi.org/doi.org/10.3390/pathogens12010081 | |
dc.relation.references | Barbour, A. G., & Hayes, S. F. (1986). Biology of Borrelia species. Microbiological Reviews, 50(4), 381–400. https://doi.org/10.1128/mmbr.50.4.381-400.1986 | |
dc.relation.references | Barbour, Alan G., Dai, Q., Restrepo, B. I., Stoenner, H. G., & Frank, S. A. (2006). Pathogen escape from host immunity by a genome program for antigenic variation. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18290–18295. https://doi.org/10.1073/pnas.0605302103 | |
dc.relation.references | Barbour, Alan G., Maupin, G. O., Teltow, G. J., Carter, C. J., & Piesman, J. (1996). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: Possible agent of a lyme disease-like illness. Journal of Infectious Diseases, 173(2), 403–409. https://doi.org/10.1093/infdis/173.2.403 | |
dc.relation.references | Barros-Battesti D, Arzua M, Bechara GH. Carrapatos de importancia Medico Veterinaria da Regiao Neotropical: um guia ilustrado para identificac, ao de especies. Sao Paulo; 2006. | |
dc.relation.references | Benson, D, Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2004). GenBank: update. Nucleic Acids Research, 32(Database), D23-6. https://doi.org/doi: 10.1093/nar/gkh045 | |
dc.relation.references | Bermúdez S., Félix M, Domínguez L, Kadoch N, Muñoz-Leal S, Venzal J. (2022). Molecular screening for tick-borne bacteria and hematozoa in Ixodes cf. boliviensis and Ixodes tapirus (Ixodida: Ixodidae) from western highlands of Panama. Current Research in Parasitology & Vector-Borne Diseases. 1, 100034. https://doi.org/10.1016/j.crpvbd.2021.100034 | |
dc.relation.references | Bezerra-Santos, M. A., Ramos, R. A. N., Campos, A. K., Dantas-Torres, F., & Otranto, D. (2021). Didelphis spp. opossums and their parasites in the Americas: A One Health perspective. Parasitology Research, 1-21. https://doi.org/10.1007/s00436-021-07072-4 | |
dc.relation.references | Broom, B. M., Ryan, M. C., Brown, R. E., Ikeda, F., Stucky, M., Kane, D. W., ... & Weinstein, J. N. (2017). A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer research, 77(21), e23-e26. https://doi.org/10.1158/0008-5472.CAN-17-0318 | |
dc.relation.references | Bermúdez C., S. E., Miranda C., R. J., & Smith C., D. (2010). Ticks species (Ixodida) in the Summit Municipal Park and adjacent areas, Panama City, Panama. Experimental and Applied Acarology, 52(4), 439–448. https://doi.org/10.1007/s10493-010-9374-8 | |
dc.relation.references | Bermúdez, S. E., Armstrong, B. A., Domínguez, L., Krishnavajhala, A., Kneubehl, A. R., Gunter, S. M., Replogle, A., Petersen, J. M., & Lopez, J. E. (2021). Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros Puertoricensis collected in central Panama. PLoS Neglected Tropical Diseases, 15(8), 1–13. https://doi.org/10.1371/journal.pntd.0009642 | |
dc.relation.references | Bermúdez, S. E., Castillo, E., Pohlenz, T. D., Kneubehl, A., Krishnavajhala, A., Domínguez, L., Suárez, A., & López, J. E. (2017). New records of Ornithodoros puertoricensis Fox 1947 (Ixodida: Argasidae) parasitizing humans in rural and urban dwellings, Panama. In Ticks and Tick-borne Diseases, 8(4) 466–469). https://doi.org/10.1016/j.ttbdis.2017.02.004 | |
dc.relation.references | Bermúdez, S. E., Miranda, R. J., & Kadoch, S. N. (2013). Reporte de larvas de Ornithodoros puertoricensis Fox 1947 (Ixodida: Argasidae) parasitando a Rhinella marina (L. 1758) (Anura: Bufonidae) en David, Chiriquí, Panamá. Puente Biológico, 5(81), e85. | |
dc.relation.references | Bermúdez, S., Miranda, R. J., Cleghorn, J., & Venzal, J. M. (2015). Ornithodoros (Alectorobius) puertoricensis (Ixodida: Argasidae) parasitizing exotic reptile pets in Panamá. FAVE Sección Ciencias Veterinarias, 14(1/2), 1–5. https://doi.org/10.14409/favecv.v14i1/3.5095 | |
dc.relation.references | Betancourt, A. (1980). Ornithodoros talaje en Córdoba. Montería: Asociación Colombiana de Médicos Veterinarios y/o Zootecnistas, ACOVEZ-Córdoba. | |
dc.relation.references | Bonvicino, C. R., Oliveira, J. D., & D’Andrea, P. S. (2008). Guia dos roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Série de Manuais Técnicos; 11. | |
dc.relation.references | Boyle, W. K., Wilder, H. K., Lawrence, A. M., & Lopez, J. E. (2014). Transmission Dynamics of Borrelia turicatae from the Arthropod Vector. PLoS Neglected Tropical Diseases, 8(4), 1–8. https://doi.org/10.1371/journal.pntd.0002767 | |
dc.relation.references | Broom, B. M., Ryan, M. C., Brown, R. E., Ikeda, F., Stucky, M., Kane, D. W., Melott, J., Wakefield, C., Casasent, T. D., Akbani, R., & Weinstein, J. N. (2017). A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer Research, 77(21), e23–e26. https://doi.org/10.1158/0008-5472.CAN-17-0318 | |
dc.relation.references | Burgdorfer, W. (1951). Analysis of the infection course in Ornithodorus moubata (Murray) and natural transmission of Spirochaeta duttoni. Acta Tropica, 8(3), 193–262. | |
dc.relation.references | Burgdorfer, W. (1959). Zum organotropismus der Spirochaete B. duttoni gegenuber der ubertragenden zecke. Acta Trop, 16, 242–243. | |
dc.relation.references | Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Gruwaldt, G., & Davis, J. (1982). Lyme Disease - A Tick-Borne Spirochetosis?. Science, 216, 1317–1319. https://doi.org/10.1126/science.7043737 | |
dc.relation.references | Burkot, T. R., Mullen, G. R., Anderson, R., Schneider, B. S., Happ, C. M., & Zeidner, N. S. (2001). Borrelia lonestari DNA in Adult Amblyomma americanum Ticks, Alabama. Emerging Infectious Diseases, 7(3), 471–473. https://doi.org/10.3201/eid0703.010323 | |
dc.relation.references | Butler, J. F., & Gibbs, E. P. J. (1984). Distribution of potential soft tick vectors of African swine fever in the Caribbean region (Acari: Argasidae). Preventive Veterinary Medicine, 2, 63–70. https://doi.org/10.1016/0167-5877(84)90049-7 | |
dc.relation.references | Cadavid, D., & Barbour, A. G. (1998). Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clinical Infectious Diseases, 26(1), 151–164. https://doi.org/10.1086/516276 | |
dc.relation.references | Callow, L. (1967). Observations on Tick-Transmitted Spirochaetes of Cattle in Australia and South Africa. British Veterinary Journal, 123(11), 492–497. https://doi.org/10.1016/S0007-1935(17)39704-X | |
dc.relation.references | Castilla-guerra, L., Marín-martín, J., & Colmenero-camacho, M. A. (2016). Tick-Borne Relapsing Fever, Southern Spain, 2004–2015. Emerging Infectious Diseases, 22(12), 2217–2219. https://doi.org/http://dx.doi.org/10.3201/eid2212.160870 To | |
dc.relation.references | Christensen, J., Fischer, R., McCoy, B., Raffel, S., & Schwan, T. (2015). Tickborne Relapsing Fever, Bitterroot Valley, Montana, USA. Emerging Infectious Diseases, 21(2), 217–223. https://doi.org/http://dx.doi.org/10.3201/eid2102.141276 | |
dc.relation.references | Cikman, A., Aydin, M., Gulhan, B., Karakecili, F., Demirtas, L., & Arif Kesik, O. (2018). Geographical Features and Seroprevalence of Borrelia burgdorferi in Erzincan, Turkey. Journal of Arthropod-Borne Diseases, 12(4), 378–386. https://doi.org/10.18502/jad.v12i4.356 | |
dc.relation.references | Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890. | |
dc.relation.references | Colunga-Salas, P., Betancur-Garcés, Y. C., Ochoa-Ochoa, L. M., Guzmán-Cornejo, C., Sánchez-Montes, S., & Becker, I. (2018). Borrelia spp. asociadas con anfibios y reptiles: hospederos y distribución mundial. Rev Latinoamericaca Herpetol, 1(1), 22-33. https://doi.org/10.22201/fc.25942158e.2018.1.6 | |
dc.relation.references | Colunga-Salas, P., Sánchez-Montes, S., León-Paniagua, L., & Becker, I. (2021). Borrelia in neotropical bats: Detection of two new phylogenetic lineages. Ticks and Tick-Borne Diseases, 12(101642), 1–8. https://doi.org/10.1016/j.ttbdis.2020.101642 | |
dc.relation.references | Coulter, P., Lema, C., Flayhart, D., Linhardt, A. S., Aucott, J. N., Auwaerter, P. G., & Dumler, J. S. (2005). Two-Year Evaluation of Borrelia burgdorferi Culture and Supplemental Tests for Definitive Diagnosis of Lyme Disease. Journal of Clinical Microbiology, 43(10), 5080–5084. https://doi.org/10.1128/JCM.02239-06 | |
dc.relation.references | Crowder, C. D., Langeroudi, A. G., Estabragh, A. S., Lewis, E. R. G., Marcsisin, R. A., & Barbour, A. G. (2016). Pathogen and host response dynamics in a mouse model of Borrelia hermsii relapsing fever. Veterinary Sciences, 3(3), 19. https://doi.org/10.3390/vetsci3030019 | |
dc.relation.references | Cutler, S J, Moss, J., Fukunaga, M., Wright, D. J. M., Fekade, D., & Warrells, D. (1997). Borrelia recurrentis Characterization and Comparison with Relapsing-Fever, Lyrne-Associated, and Other Borrelia spp. International Journal of Systematic Bacteriology, 47(4), 958–968. https://doi.org/https://doi.org/10.1099/00207713-47-4-958 | |
dc.relation.references | Cutler, Sally J. (2015). Relapsing Fever Borreliae a Global Review. Clinics in Laboratory Medicine, 35(4), 847–865. https://doi.org/10.1016/j.cll.2015.07.001 | |
dc.relation.references | Dantas, F., Fernendes, T., Muñoz-Leal, S., Castilho, V., & Barros-Battesti, D. (2019). Ticks (Ixodida:Argasidae, Ixodidae) of Brazil: Updated species check list and taxonomic keys. Ticks and Tick-Borne Diseases, 10(6), 1–45. https://doi.org/https://doi.org/10.1016/j.ttbdis.2019.06.012 | |
dc.relation.references | Dean, D., Rothschild, J., Ruettger, A., Prasad, R., & Sachse, K. (2013). Zoonotic Chlamydiaceae Species Associated with Trachoma Nepal. Emerging Infectious Diseases, 19(12), 1948–1955. https://doi.org/10.3201/eid1912.130656 | |
dc.relation.references | Dias, M., Bahia, M., Magalhães-Matos, P., Barizon Cepeda, M., Guterres, A., & Fonseca, A. (2018). Morphological, molecular and phylogenetic characterization of Borrelia theileri in Rhipicephalus microplus. Brazilian Journal Veterinay Parasitology, 27(4), 555–561. https://doi.org/10.1590/S1984-296120180083 | |
dc.relation.references | Diatta, G., Duplantier, J. M., Granjon, L., Bâ, K., Chauvancy, G., Ndiaye, M., & Trape, J. F. (2015). Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows. Acta Trópica, 152, 131–140. https://doi.org/10.1016/j.actatropica.2015.08.016 | |
dc.relation.references | Diaz-Martin, V., Manzano-Roman, R., Obolo-Mvoulouga, A., & Perez-Sanchez, R. (2015). Development of vaccines against Ornithodoros soft ticks: An update. Ticks and Tick-Borne Diseases, 6(3), 211–220. https://doi.org/10.1016/j.ttbdis.2015.03.006 | |
dc.relation.references | Díaz, M. M., Solari, S., Aguirre, L. F., Aguiar, L., & Barquez, R. M. (2016). Clave de identificación de los murciélagos de Sudamérica/Chave de identificação dos morcegos da América do Sul. Publicación Especial Nro, 2, 160. | |
dc.relation.references | Diuk-Wasser, M. A., Hoen, A. G., Cislo, P., Brinkerhoff, R., Hamer, S. A., Rowland, M., Cortinas, R., Vourc’h, G., Melton, F., Hickling, G. J., Tsao, J. I., Bunikis, J., Barbour, A. G., Kitron, U., Piesman, J., & Fish, D. (2012). Human risk of infection with Borrelia burgdorferi, the lyme disease agent, in Eastern United States. American Journal of Tropical Medicine and Hygiene, 86(2), 320–327. https://doi.org/10.4269/ajtmh.2012.11-0395 | |
dc.relation.references | Dünn, L. H., & Clark, H. C. (1933). Notes on Relapsing Fever in Panama with Special Reference to Animal Hosts. American Journal of Tropical Medicine, 13(2), 201–209. | |
dc.relation.references | Dunn, L. H. (1927). Studies on the South American Tick, Ornithodoros venezuelensis Brumpt, in Colombia. Its Prevalence, Distribution, and Importance as an Intermediate Host of Relapsing Fever. The Journal of Parasitology, 13(4), 249–255. https://doi.org/10.2307/3271661 | |
dc.relation.references | Dupont, H. T., La Scola, B., Williams, R., & Raoult, D. (1997). A focus of tick-borne relapsing fever in southern Zaire. Clinical Infectious Diseases, 25(1), 139–144. https://doi.org/10.1086/514496 | |
dc.relation.references | Dworkin, M., Schwan, T., Anderson, D., & Borchardt, S. (2008). Tick-Borne Relapsing Fever. Infectious Disease Clinics of North America, 22(3), 1–19. https://doi.org/10.1111/j.1751-9004.2009.00170.x.Experience | |
dc.relation.references | Egan, S. L., Taylor, C. L., Banks, P. B., Northover, A. S., Ahlstrom, L. A., Ryan, U. M., Irwin, P. J., & Oskam, C. L. (2021). The bacterial biome of ticks and their wildlife hosts at the urban– wildland interface. Microbial Genomics, 7(12), 1–24. https://doi.org/10.1099/mgen.0.000730 | |
dc.relation.references | Ehounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., Kacou N’Douba, A., N’Guessan, J. D., Raoult, D., Fenollar, F., & Mediannikov, O. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 10(1), 1–18. https://doi.org/10.1371/journal.pntd.0004367 | |
dc.relation.references | Elelu, N. (2018). Tick-borne relapsing fever as a potential veterinary medical problem. Veterinary Medicine and Science, 4(4), 271–279. https://doi.org/10.1002/vms3.108 | |
dc.relation.references | Endris, R. G., Keirans, J. E., Robbins, R. G., & Hess, W. R. (1989). Ornithodoros (Alectorobius) puertoricensis (Acari: Argasidae): redescription by scanning electron microscopy. Journal of Medical Entomology, 26(3), 146–154. https://doi.org/10.1093/jmedent/26.3.146 | |
dc.relation.references | Esteve-gasent, M. D., Snell, C. B., Adetunji, S. A., & Piccione, J. (2017). Serological detection of Tick-Borne Relapsing Fever in Texan domestic dogs. PLoS ONE, 12(12), 1–16. https://doi.org/https://doi.org/10.1371/journal.pone.0189786 | |
dc.relation.references | Evans, N., K, B., Timofte, D., Simpson, V., & Birtles, R. (2009). Fatal Borreliosis in Bat Caused by Relapsing Fever Spirochete, United Kingdom. Emerging Infectious Diseases, 15(8), 1331–1333. https://doi.org/10.3201/eid1508.090475 | |
dc.relation.references | Faccini-Martínez, Á. A., Silva-Ramos, C. R., Santodomingo, A. M., Ramírez-Hernández, A., Costa, F. B., Labruna, M. B., & Muñoz-Leal, S. (2022). Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites and Vectors, 15(196), 1–20. https://doi.org/10.1186/s13071-022-05289-5 | |
dc.relation.references | Faccini M, Á., González Tous, M., & Mattar Velilla, S. (2018). Fiebre recurrente transmitida por garrapatas: ¿otra etiología subdiagnosticada en Latinoamérica tropical? Revista MVZ Córdoba, 23(1), 6399–6402. https://doi.org/10.21897/rmvz.1230 | |
dc.relation.references | Fairchild, G., Kohls, G., & Tipton, V. (1966). The ticks of Panamá (Acarina: Ixodoidea). Field Museum of Natural History, 167–219. | |
dc.relation.references | Fedorova, N., Kleinjan, J. E., James, D., Hui, L. T., Peeters, H., & Lane, R. S. (2014). Remarkable diversity of tick or mammalian-associated Borreliae in the metropolitan San Francisco Bay Area, California. Ticks and Tick-Borne Diseases, 5(6), 951–961. https://doi.org/10.1016/j.ttbdis.2014.07.015 | |
dc.relation.references | Felsenfeld, O. (1965). Borreliae, Human Relapsing Fever, and Parasite-Vector-Host Relationships. Bacteriological Reviews, 29(1), 46–74. https://doi.org/10.1128/mmbr.29.1.46-74.1965 | |
dc.relation.references | Field, E. N., Gehrke, E. J., Ruden, R. M., Adelman, J. S., & Smith, R. C. (2020). An Improved Multiplex Polymerase Chain Reaction (PCR) Assay for the Identification of Mosquito (Diptera: Culicidae) Blood Meals. Journal of Medical Entomology, 57(2), 557–562. https://doi.org/10.1093/jme/tjz182 | |
dc.relation.references | Fox, I. (1947). Ornithodoros puertoricensis, a New Tick from Rats in Puerto Rico. The American Society of Parasitologists, 1924, 33(3), 253–259. | |
dc.relation.references | Fox, I. (1977). The Domestic, Felis Catus L., A New Host Record For The Tick Ornithodoros Puertoricensis. Department of Medical Zoology School of’ Medicine, University of Puerto Rico, 1, 509. https://doi.org/10.1080/0013191640160307 | |
dc.relation.references | Franco, R., Toro, G., & Martinez, J. (1911). Fiebre amarilla y fiebre espiroquetal. Sesiones Científicas Del Centenario. Academia Nacional de Medicina Bogota., 1, 169–227. | |
dc.relation.references | Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K., Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Venter, J. C. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390(6660), 580–586. https://doi.org/10.1038/37551 | |
dc.relation.references | Fukunaga, M., & Koreki, Y. (1995). The flagellin gene of Borrelia miyamotoi sp. nov. and its phylogenetic relationship among Borrelia species. FEMS Microbiology Letters, 134(2–3), 255–258. https://doi.org/10.1016/0378-1097(95)00416-2 | |
dc.relation.references | Gaber, M., Khalil, G., Hoogstraal, H., & Aboul-Nasr, A. (1984). Borrelia crocidurae localization and transmission in Ornithodoros erraticus and O. savignyi. Parasitology, 88(3), 403–413. https://doi.org/10.1017/S0031182000054676 | |
dc.relation.references | Gettings, J. R., Lopez, J. E., Krishnavajhala, A., Armstrong, B. A., Thompson, A. T., & Yabsley, M. J. (2019a). Antibodies to Borrelia turicatae in experimentally infected dogs cross-react with Borrelia burgdorferi serologic assays. Journal of Clinical Microbiology, 57(9), 1–6. https://doi.org/10.1128/JCM.02123-19 | |
dc.relation.references | Gil, H., Barral, M., Escudero, R., García-Pérez, A. L., & Anda, P. (2005). Identification of a new Borrelia species among small mammals in areas of Northern Spain where lyme disease is endemic. Applied and Environmental Microbiology, 71(3), 1336–1345. https://doi.org/10.1128/AEM.71.3.1336-1345.2005 | |
dc.relation.references | González-Domínguez, M. S., Villegas, J. P., Carmona, S., & Castañeda, H. (2014). First report of canine borreliosis seroprevalence in a middle-altitude tropical urban area (Medellín-Colombia). CES Medicina Veterinaria y Zootecnia, 9(2), 348-354. https://revistas.ces.edu.co/index.php/mvz/article/view/3184 | |
dc.relation.references | Goodman, R. L., Arndt, K. A., & Steigbigel, N. H. (1969). Borrelia in Boston. JAMA: The Journal of the American Medical Association, 210(4), 722–724. https://doi.org/10.1001/jama.1969.03160300062020 | |
dc.relation.references | Gray, J. S., Kahl, O., Lane, R. S., Levin, M. L., & Tsao, J. I. (2016). Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks and Tick-Borne Diseases, 5(7), 1–29. https://doi.org/10.1016/j.ttbdis.2016.05.006.Diapause | |
dc.relation.references | Guglielmone, A. A., Nava, S., & Robbins, R. G. (2023). Geographic distribution of the hard ticks (Acari: Ixodida: Ixodidae) of the world by countries and territories. Zootaxa, 5251(1), 1–274. https://doi.org/10.11646/zootaxa.5251.1.1 | |
dc.relation.references | Guglielmone, A. A., Robbins, R. G., Apanaskevich, D. A., Petney, T. N., Estrada-Peña, A., & Horak, I. G. (2014). The Hard Ticks of the World: (Acari: Ixodida: Ixodidae). Springer Netherlands. https://doi.org/10.1007/978-94-007-7497-1 | |
dc.relation.references | Guglielmone, A, Estrada, A., Keirans, J., & Robbins, R. (2003). Ticks (Acari: Ixodida: Argasidae, Ixodidae) Of The Neotropical Zoogeographic Region. A Special Publication Sponsored by International Consortium on Ticks and Tick-Borne Diseases (ICTTD-2). Atalanta, Houten, The Netherlands., 1–174. | |
dc.relation.references | Guglielmone, AA, Robbins, R., Apanaskevich, A., Petney, T., Estrada, A., Horak, I., Renfu, S., & Berker, S. (2010). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa, 2528(1), 1–28. https://doi.org/10.1007/978-3-319-23057-3_31 | |
dc.relation.references | Guillamet, L. J. V., Marx, G. E., Benjamin, W., Pappas, P., Lieberman, N. A., Bachiashvili, K., ... & Lieberman, J. A. (2023). Relapsing fever caused by Borrelia lonestari after tick bite in Alabama, USA. Emerging Infectious Diseases, 29(2), 441. https://doi.org/10.3201/eid2902.221281 | |
dc.relation.references | Han, S. W., Chae, J. B., Jo, Y. S., Cho, Y. K., Kang, J. G., Shin, N. S., Youn, H. J., Youn, H. Y., Nam, H. M., Kim, H. J., Kang, H. E., & Chae, J. S. (2020). First Report of Newly Identified Ornithodoros Species in the Republic of Korea. Journal of Parasitology, 106(5), 546–563. https://doi.org/10.1645/19-78 | |
dc.relation.references | Haouas, N., Pesson, B., Boudabous, R., Dedet, J. P., Babba, H., & Ravel, C. (2007). Development of a molecular tool for the identification of leishmania reservoir hosts by blood meal analysis in the insect vectors. American Journal of Tropical Medicine and Hygiene, 77(6), 1054–1059. https://doi.org/10.4269/ajtmh.2007.77.1054 | |
dc.relation.references | Hoogstraal H. (1956). Faunal exploration as a basic approach for studying infections common to man and animals. East African Medical Journal, 33(11), 417–424. | |
dc.relation.references | Hoogstraal, Harry. (1985). Argasid and Nuttalliellid Ticks as Parasites and Vectors. Advances in Parasitology, 24, 135–238. https://doi.org/10.1016/S0065-308X(08)60563-1 | |
dc.relation.references | Horta, M. C., Moraes-Filho, J., Casagrande, R. A., Saito, T. B., Rosa, S. C., Ogrzewalska, M., ... & Labruna, M. B. (2009). Experimental infection of opossums Didelphis aurita by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vector-Borne and Zoonotic Diseases, 9(1), 109-118. https://doi.org/10.1089/vbz.2008.0114 | |
dc.relation.references | Hui-Ju, H., Jian-Wei, L., & Hong-Ling, W. (2020). Pathogenic New World Relapsing Fever Borrelia in a Myotis Bat, Eastern China, 2015. Emerging Infectious Diseases, 26(12), 3083–3085. https://doi.org/10.3201/eid2612.191450 | |
dc.relation.references | Humair, P. F., Douet, V., Morán Cadenas, F., Schouls, L. M., Van De Pol, I., & Gern, L. (2007). Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. Journal of medical entomology, 44(5), 869–880. https://doi.org/10.1603/0022-2585(2007)44[869:miobsi]2.0.co;2 | |
dc.relation.references | Irving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L. F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature, 589, 363–370. https://doi.org/10.1038/s41586-020-03128-0 | |
dc.relation.references | Johnson, R. C. (1977). The spirochetes. Annual Review of Microbiology, 31, 89–106. https://doi.org/10.1146/annurev.mi.31.100177.000513 | |
dc.relation.references | Jones, E. K., Clifford, C. M., Keirans, J. E., & Kohls, G. M. (1972). The ticks of Venezuela (Acarina: Ixodoidea) with a key to the species of Amblyomma in the Western Hemisphere. Brigham Young University Science Bulletin-Biological Series, 17(4), 1–40. https://scholarsarchive.byu.edu/byuscib/vol17/iss4/1 | |
dc.relation.references | Jongejan, F., & Uilenberg, G. (2004). The Global Importance of Ticks. Parasitology, 129, S3–S14. https://doi.org/10.1017/S0031182004005967 | |
dc.relation.references | Jorge, F. R., Muñoz-leal, S., Oliveira, G. M. B. De, Serpa, M. C. A., Magalhães, M. M. L., Oliveira, L. M. B., Moura, F., Teixeira, B., & Labruna, M. B. (2023). Novel Borrelia Genotypes from Brazil Indicate a New Group of Borrelia spp. Associated with South American Bats. Journal of Medical Entomology, 60(1), 213–217. https://doi.org/doi: 10.1093/jme/tjac160. | |
dc.relation.references | Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. https://doi.org/10.1093/nar/gkf436 | |
dc.relation.references | Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 | |
dc.relation.references | Kent, R. J., & Norris, D. E. (2005). Identification of Mammalian Blood Meals in Mosquitoes By a Multiplexed Polymerase Chain Reaction Targeting Cytochrome B. American Journal of Tropical Medicine and Hygiene, 73(2), 336–342. | |
dc.relation.references | Kingry, L. C., Anacker, M., Pritt, B., Bjork, J., Respicio-Kingry, L., Liu, G., Sheldon, S., Boxrud, D., Strain, A., Oatman, S., Berry, J., Sloan, L., Mead, P., Neitzel, D., Kleinerman, G., Eshed, T., Nachum-Biala, Y., King, R., & Baneth, G. (2021). Transmission of the human relapsing fever spirochete Borrelia persica by the argasid tick Ornithodoros tholozani involves blood meals from wildlife animal reservoirs and mainly transstadial transfer. Applied and Environmental Microbiology, 87(11), e03117-20. https://doi.org/10.1128/AEM.03117-20 | |
dc.relation.references | Kugeler, K. J., & Petersen, J. M. (2018). Surveillance for and Discovery of Borrelia Species in US Patients Suspected of Tickborne Illness. Clinical Infectious Diseases, 66(12), 1864–1871. https://doi.org/10.1093/cid/cix1107 | |
dc.relation.references | Kneubehl, A. R., Muñoz-Leal, S., Filatov, S., de Klerk, D. G., Pienaar, R., Lohmeyer, K. H., Bermúdez, S. E., Suriyamongkol, T., Mali, I., Kanduma, E., Latif, A. A., Sarih, M., Bouattour, A., de León, A. A. P., Teel, P. D., Labruna, M. B., Mans, B. J., & Lopez, J. E. (2022). Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-23393-5 | |
dc.relation.references | Krishnavajhala, A., Armstrong, B. A., Kneubehl, A. R., Gunter, S. M., Piccione, J., Kim, H. J., Ramirez, R., Castro-Arellano, I., Roachell, W., Teel, P. D., & Lopez, J. E. (2021). Diversity and distribution of the tick-borne relapsing fever spirochete Borrelia turicatae. PLoS Neglected Tropical Diseases, 15(11), 1–14. https://doi.org/10.1371/journal.pntd.0009868 | |
dc.relation.references | Kohls, G., Sonenshine, D., & Clifford, C. (1965). The Systematics of the Subfamily Ornithodorinae (Acarina: Argasidae). II. Identification of the Larvae of the Western Hemisphere and Descriptions of Three New Species. Entomological Society of America, 58(3), 331–364. https://doi.org/10.1093/aesa/58.3.331 | |
dc.relation.references | Kudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M. M., Wallich, R., & Frischknecht, F. (2009). Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Molecular Microbiology, 71(6), 1415–1434. https://doi.org/10.1111/j.1365-2958.2009.06613.x | |
dc.relation.references | Kurokawa, C., Lynn, G. E., Pedra, J. H. F., Pal, U., Narasimhan, S., & Fikrig, E. (2020). Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology, 18(10), 587–600. https://doi.org/10.1038/s41579-020-0400-5 | |
dc.relation.references | Kurtenbach, K., Hanincová, K., Tsao, J. I., Margos, G., Fish, D., & Ogden, N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology, 4(9), 660–669. https://doi.org/10.1038/nrmicro1475 | |
dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923 | |
dc.relation.references | Larsson, C., Andersson, M., Guo, B. P., Nordstrand, A., Hägerstrand, I., Carlsson, S., & Bergström, S. (2006). Complications of pregnancy and transplacental transmission of relapsing-fever borreliosis. Journal of Infectious Diseases, 194(10), 1367–1374. https://doi.org/10.1086/508425 | |
dc.relation.references | Latif, A., Putterill, J., Klerk, D., Pienaar, R., & Mans, B. (2012). Nuttalliella Namaqua (Ixodoidea: Nuttalliellidae): First Description of the Male, Immature Stages and Re-Description of the Female. PLoS ONE, 7(7), 1–9. https://doi.org/10.1371/journal.pone.0041651 | |
dc.relation.references | Lejal, E., Moutailler, S., Šimo, L., Vayssier-Taussat, M., & Pollet, T. (2019). Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites & Vectors, 12(152), 1–8. https://doi.org/10.1101/489328 | |
dc.relation.references | Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 | |
dc.relation.references | Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352 | |
dc.relation.references | Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. https://doi.org/10.1093/bioinformatics/btv033 | |
dc.relation.references | Li, Z. M., Xiao, X., Zhou, C. M., Liu, J. X., Gu, X. L., Fang, L. Z., Liu, B. Y., Wang, L. R., Yu, X. J., & Han, H. J. (2021). Human-pathogenic relapsing fever borrelia found in bats from central China phylogenetically clustered together with relapsing fever borreliae reported in the new world. PLoS Neglected Tropical Diseases, 15(3), 1–11. https://doi.org/10.1371/journal.pntd.0009113 | |
dc.relation.references | Liu, X. Y., & Bonnet, S. I. (2014). Hard tick factors implicated in pathogen transmission. PLoS neglected tropical diseases, 8(1), e2566. https://doi.org/10.1371/journal.pntd.0002566 | |
dc.relation.references | Lin, T., Oliver, J., Gao, L., Kollars, J., & Clark, K. L. (2001). Genetic heterogeneity of Borrelia burgdorferi sensu lato in the Southern United States based on restriction fragment length polymorphism and sequence analysis. Journal of Clinical Microbiology, 39(7), 2500–2507. https://doi.org/10.1128/JCM.39.7.2500-2507.2001 | |
dc.relation.references | Loh, S. M., Gillett, A., Ryan, U., Irwin, P., & Oskam, C. (2017). Molecular characterization of Candidatus borrelia tachyglossi’ (Family spirochaetaceae) in echidna ticks, Bothriocroton concolor. International Journal of Systematic and Evolutionary Microbiology, 67(4), 1075–1080. https://doi.org/10.1099/ijsem.0.001929 | |
dc.relation.references | Londoño, A. F., Acevedo-Gutiérrez, Y., Marín, D., Contreras, V., Díaz, F. J., Valbuena, G., Labruna, M. B., Hidalgo, M., Arboleda, M., Mattar, S., Solari, S., & Rodas, J. D. (2017). Wild and domestic animals likely involved in rickettsial endemic zones of Northwestern Colombia. Ticks and Tick-Borne Diseases, 8(6), 887–894. https://doi.org/10.1016/j.ttbdis.2017.07.007 | |
dc.relation.references | López Y, Muñoz-Leal S, Martínez C, Guzmán C, Calderón A, Martínez J, Galeano K, Muñoz M, Ramírez JD, Faccini-Martínez A, Mattar S. (2023). Molecular Evidence of Borrelia Spp. in Bats from Córdoba Department, Northwest Colombia. Parasites and Vectors 16(1):1–7. https://doi.org/10.1186/s13071-022-05614-y | |
dc.relation.references | López Y, Robayo-Sánchez LN, Muñoz-Leal S, Aleman A, Arroyave E, Ramírez-Hernández A, et al. (2021) Ornithodoros puertoricensis (Ixodida: Argasidae) Associated With Domestic Fowl in Rural Dwellings From Córdoba Department, Caribbean Colombia. Frontiers in Veterinary Science. 8:(704399), 1-8. https://doi.org/10.3389/fvets.2021.704399 | |
dc.relation.references | López, J. E., Krishnavahjala, A., García, M. N., & Bermúdez, S. (2016). Tick-Borne relapsing fever spirochetes in the Americas. Veterinary Sciences, 3(16), 1–18. https://doi.org/10.3390/vetsci3030016 | |
dc.relation.references | López, J. E., Wilder, H. K., Boyle, W., Drumheller, L. B., Thornton, J. A., Willeford, B., Morgan, T. W., & Varela-Stokes, A. (2013). Sequence Analysis and Serological Responses against Borrelia turicatae BipA, a Putative Species-Specific Antigen. PLoS Neglected Tropical Diseases, 7(9), 3–10. https://doi.org/10.1371/journal.pntd.0002454 | |
dc.relation.references | Lopez, J., Hovius, J. W. R., & Bergström, S. (2021). Pathogenesis of Relapsing Fever. Curr Issues Mol Biol, 42, 415–445. https://doi.org/10.21775/cimb.042.267 | |
dc.relation.references | Magnarelli, L. A., Anderson, J. F., & Johnson, R. C. (1987). Cross-Reactivity in Serological Tests for Lyme Disease and other’ Spirochetal Infections. Journal of Infectious Diseases, 156(1), 183–188. https://doi.org/10.1093/infdis/156.1.183 | |
dc.relation.references | Mancilla-agrono, L. Y., Banguero-micolta, L. F., Ossa-l, P. A., Ram, E., Castaño-villa, G. J., & Rivera-p, F. A. (2022). Is Borrelia burgdorferi Sensu Stricto in South America ?. First Molecular Evidence of Its Presence in Colombia. Tropical Medicine and Infectious Disease, 7(12), 1–14. https://doi.org/10.3390/tropicalmed7120428. | |
dc.relation.references | Mangold, A. J., Bargues, M. D., & Mas-Coma, S. (1998). Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research, 84(6), 478–484. https://doi.org/10.1007/s004360050433 | |
dc.relation.references | Mannelli, A., Bertolotti, L., Gern, L., & Gray, J. (2012). Ecology of Borrelia burgdorferi sensu lato in Europe: Transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiology Reviews, 36(4), 837–861. https://doi.org/10.1111/j.1574-6976.2011.00312.x | |
dc.relation.references | Mans, B. J., & Neitz, A. W. H. (2004). Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochemistry and Molecular Biology, 34, 1–17. https://doi.org/10.1016/j.ibmb.2003.09.002 | |
dc.relation.references | Margos G, Henningsson AJ, Hepner S, Markowicz M, Sing A, Fingerle V. Borrelia Ecology, Evolution, and Human Disease: A Mosaic of Life. Zoonoses Infect Affect Humans Anim. 2023;1–66. https://doi.org/10.1007/978-3-030-85877-3_49-1 | |
dc.relation.references | Margos, G., Gatewood, A. G., Aanensen, D. M., Hanincová, K., Terekhova, D., Vollmer, S. A., ... & Kurtenbach, K. (2008). MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proceedings of the National Academy of Sciences, 105(25), 8730-8735. https://doi.org/10.1073/pnas.0800323105 | |
dc.relation.references | Margos, G., Fedorova, N., Kleinjan, J. E., Hartberger, C., Schwan, T. G., Sing, A., & Fingerle, V. (2017). Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3872. https://doi.org/10.1099/ijsem.0.002214 | |
dc.relation.references | Margos, G., Fingerle, V., Cutler, S., Gofton, A., Stevenson, B., & Estrada-Peña, A. (2020). Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks and Tick-Borne Diseases, 11(2), 1–23. https://doi.org/10.1016/j.ttbdis.2019.101335 | |
dc.relation.references | Margos, G., Gofton, A., Wibberg, D., Dangel, A., & Marosevic, D. (2018). The genus Borrelia reloaded. PLoS ONE, 13(12), 1–14. https://doi.org/https://doi.org/10.1371/journal.pone.0208432 | |
dc.relation.references | Margos, G., Pantchev, N., Globokar, M., Lopez, J., & Rodon, J. (2020). First Cases of Natural Infections with Borrelia hispanica in Two Dogs and a Cat from Europe. Microorganisms, 8(1251), 1–11. https://doi.org/doi:10.3390/microorganisms8081251 | |
dc.relation.references | Marinkelle, C. J., & Grose, E. S. (1968). Species of Borrelia from a Colombia Bat (Natalus Tumidirostris). Nature, 218(5140), 487. https://doi.org/10.1038/218487a0 | |
dc.relation.references | Marti Ras, N., Lascola, B., Postic, D., Cutler, S. J., Rodhain, F., Baranton, G., & Raoult, D. (1996). Phylogenesis of relapsing fever Borrelia spp. International Journal of Systematic Bacteriology, 46(4), 859–865. https://doi.org/10.1099/00207713-46-4-859 | |
dc.relation.references | Martins, J. R., Ceresér, V. H., Corrêa, B. L., & Smith, R. D. (1996). Borrelia theileri: observação em carrapatos do gênero Boophilus microplus no município de Guaíba, RS, Brasil. In Ciência Rural, 26(3), 447–450). https://doi.org/10.1590/s0103-84781996000300018 | |
dc.relation.references | Mattar, S., Lopez, G., & Parra, M. (1998). Searching for Lyme disease in Colombia: a preliminary study on the vector. Journal of Medical Entomology, 35(3), 324–326. https://doi.org/10.1093/jmedent/35.3.324. | |
dc.relation.references | McCoy, B. N., Maïga, O., & Schwan, T. G. (2014). Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks and Tick-Borne Diseases, 5(4), 401–403. https://doi.org/10.1016/j.ttbdis.2014.01.007 | |
dc.relation.references | Michalski, M. M., Kubiak, K., Szczotko, M., Chajęcka, M., & Dmitryjuk, M. (2020). Molecular detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in ticks collected from dogs in urban areas of North-Eastern Poland. Pathogens, 9(6), 1–11. https://doi.org/10.3390/pathogens9060455 | |
dc.relation.references | Miranda, J., Mattar, S., Perdomo, K., & Palencia, L. (2009). Seroprevalence of Lyme borreliosis in workers from Cordoba, Colombia. Rev Salud Pública (Bogotá), 11(3), 480–489. https://doi.org/10.1590/S0124-00642009000300016 | |
dc.relation.references | Morel, N., Salvo, M. N. De, Cicuttin, G., Rossner, V., Thompson, C. S., Mangold, A. J., & Nava, S. (2019). The presence of Borrelia theileri in Argentina. Veterinary Parasitology: Regional Studies and Reports, 17, 1–3. https://doi.org/10.1016/j.vprsr.2019.100314 | |
dc.relation.references | Muñoz-Leal, S., Faccini-Martínez, Á. A., Pérez-Torres, J., Chala-Quintero, S. M., Herrera-Sepúlveda, M. T., Cuervo, C., & Labruna, M. B. (2021). Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses and Public Health, 68(1), 12–18. https://doi.org/10.1111/zph.12789 | |
dc.relation.references | Muñoz-Leal, S., Faccini-Martínez, Á. A., Teixeira, B. M., Martins, M. M., Serpa, M. C. A., Oliveira, G. M. B., Jorge, F. R., Pacheco, R. C., Costa, F. B., Luz, H. R., & Labruna, M. B. (2021). Relapsing fever group borreliae in human-biting soft ticks, Brazil. In Emerging Infectious Diseases, 27(1), 321–324. https://doi.org/10.3201/eid2701.200349 | |
dc.relation.references | Muñoz-Leal, S., Martins, M., Nava, S., Landulfo, G., Simons, S., Rodrigues, V., Ramos, V., Suzin, A., Szabó, M., & Labruna, M. (2020). Ornithodoros cerradoensis n. sp. (Acari: Argasidae), a member of the Ornithodoros talaje (Guérin-Méneville, 1849) group, parasite of rodents in the Brazilian Savannah. Ticks and Tick-Borne Diseases, 11(5), 1–17. https://doi.org/10.1016/j.ttbdis.2020.101497 | |
dc.relation.references | Muñoz-Leal S, Faccini-Martínez ÁA, Costa FB, Marcili A, Mesquita ETKC, Marques EP, et al. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis 2018;9(4):864–71. https://doi.org/10.1016/j.ttbdis.2018.03.008 | |
dc.relation.references | Mühldorfer, K. (2013). Bats and Bacterial Pathogens: A Review. Zoonoses and Public Health, 60(1), 93–103. https://doi.org/10.1111/j.1863-2378.2012.01536.x | |
dc.relation.references | Naddaf, S. R., Ghazinezhad, B., Sedaghat, M. M., Asl, H. M., & Cutler, S. J. (2015). Tickborne relapsing fever in Southern Iran, 2011–2013. Emerging Infectious Diseases, 21(6), 1078–1080. https://doi.org/10.3201/eid2106.141715 | |
dc.relation.references | Najera-Angulo, L. 1945. “Receptividad de Los Murciélagos Cavernícolas Españoles (Miniopterus Schreibersii, Myotis Myotis, Rhinolophus Euryale y Rh. Hipposideros Minimus) Al Virus de La Fiebre Recurrente Mediterránea.” Boletin De La Real Sociedad Española De Historia Natural 23:217–28. | |
dc.relation.references | Nieto, N. C., & Teglas, M. B. (2014). Relapsing fever group Borrelia in southern California rodents. Journal of Medical Entomology, 51(5), 1029–1034. https://doi.org/10.1603/ME14021 | |
dc.relation.references | Nieto, N. C., Teglas, M. B., Stewart, K. M., Wasley, T., & Wolff, P. L. (2012). Detection of relapsing fever spirochetes (Borrelia hermsii and Borrelia coriaceae) in free-ranging mule deer (Odocoileus hemionus) from Nevada, United States. Vector-Borne and Zoonotic Diseases, 12(2), 99–105. https://doi.org/10.1089/vbz.2011.0716 | |
dc.relation.references | Nicolle, C., and C. Comte. (1906). “Sur Une Spirollose d’un Chéiroptère (Vespertilio Kuhli).” Annales De L’institut Pasteur 20:311–20. | |
dc.relation.references | Nunes, M., Parreira, R., Maia, C., Lopes, N., Fingerle, V., & Vieira, M. L. (2016). Molecular identification of Borrelia genus in questing hard ticks from Portugal: Phylogenetic characterization of two novel Relapsing Fever-like Borrelia sp. Infection, Genetics and Evolution, 40, 266–274. https://doi.org/10.1016/j.meegid.2016.03.008 | |
dc.relation.references | Oleaga, A., Perez, R., & Encinas, A. (1990). Distribution and biology of Ornithodoros erraticus in parts of Spain affected by African swine fever. The Veterinary Record, 126, 32–37. | |
dc.relation.references | Oppler, Z., Keeffe, K., McCoy, K., & Brisson, D. (2021). Evolutionary Genetics of Borrelia. Curr Issues Mol Biol, 42, 97–112. https://doi.org/10.21775/cimb.042.097 | |
dc.relation.references | Osorno, E. (1940). Las Garrapatas de la república de Colombia. R. Ac. Colomb. Cien. Exact. Fís. Nat, 26(3), 6–24. https://doi.org/https://doi.org/10.7705/biomedica.v26i3.351 | |
dc.relation.references | Osborne CJ, Crosbie PR, Van Laar TA. Borrelia parkeri in Ornithodoros parkeri (Ixodida: Argasidae) Collected Using Compact Dry Ice Traps in Madera County, California. J Med Entomol. 2019;56(2):579–83. https://doi.org/10.1093/jme/tjy213 | |
dc.relation.references | Ouchene, N., Nebbak, A., Ouchene-Khelifi, N. A., Dahmani, A., Zeroual, F., Khelef, D., Bitam, I., Benakhla, A., & Parola, P. (2020). Molecular detection of avian spirochete Borrelia anserina in Argas persicus ticks in Algeria. Comparative Immunology, Microbiology and Infectious Diseases, 68, 1–4. https://doi.org/10.1016/j.cimid.2019.101408 | |
dc.relation.references | Palacios R, Osorio LE, Giraldo LE, Torres AJ, Philipp MT, O. M. (1999). Positive IgG Western blot for Borrelia burgdorferi in Colombia. Memorias, 4(94), 499–503. https://doi.org/doi: 10.1590/s0074-02761999000400013. | |
dc.relation.references | Pampana, E. (1928). Notes on colombian relapsing fever. Ransactions of The Royal Society of Tropical Medicine and Hygiene, 21(4), 315–328. https://doi.org/https://doi.org/10.1016/S0035-9203(28)90027-9 | |
dc.relation.references | Panetta, J. L., Šíma, R., Calvani, N. E., Hajdušek, O., Chandra, S., Panuccio, J., & Šlapeta, J. (2017). Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasites & vectors, 10(1), 1-13. doi.org/10.1371/journal.pone.0238496 | |
dc.relation.references | Parola, P., Diatta, G., Socolovschi, C., Mediannikov, O., Tall, A., Bassene, H., Trape, J. F., & Raoult, D. (2011). Tick-borne relapsing fever borreliosis, rural senegal. Emerging Infectious Diseases, 17(5), 883–885. https://doi.org/10.3201/eid1705.100573 | |
dc.relation.references | Paster, B. J., & Dewhirst, F. E. (2000). Phylogenetic Foundation of Spirochetes. J. Mol. Microbiol. Biotechnol, 2(4), 341–344. | |
dc.relation.references | Paternina, L. E., Díaz-Olmos, Y., Paternina-Gómez, M., & Bejarano, E. E. (2009). Canis familiaris, un nuevo hospedero de Ornithodoros (A.) puertoricensis fox, 1947 (Acari: Ixodida) en Colombia. Acta Biologica Colombiana, 14(1), 153–160. | |
dc.relation.references | Peña-García, V. H., Gómez-Palacio, A. M., Triana-Chávez, O., & Mejía-Jaramillo, A. M. (2014). Eco-epidemiology of chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. American Journal of Tropical Medicine and Hygiene, 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 | |
dc.relation.references | Pifaano, F. (1941). Investigaciones para el estudio de la fiebre recurrente en Venezuela. Rev. de San. y Asist. Social, VI(6), 787-811. | |
dc.relation.references | Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3), 1–10. https://doi.org/10.1371/journal.pone.0009490 | |
dc.relation.references | Qiu, Y., Nakao, R., Hangombe, B. M., Sato, K., Kajihara, M., Kanchela, S., Changula, K., Eto, Y., Ndebe, J., Sasaki, M., Thu, M. J., Takada, A., Sawa, H., Sugimoto, C., & Kawabata, H. (2019). Human borreliosis caused by a new world relapsing fever borrelia-like organism in the old world. Clinical Infectious Diseases, 69(1), 107–112. https://doi.org/10.1093/cid/ciy850 | |
dc.relation.references | Qiu, Y., Squarre, D., Nakamura, Y., Lau, A. C. C., Moonga, L. C., Kawai, N., Ohnuma, A., Hayashida, K., Nakao, R., & Yamagishi, J. (2021). Evidence of Borrelia theileri in Wild and Domestic Animals in the Kafue Ecosystem of Zambia. Microorganisms, 9(11), 1–10. https://doi.org/https://doi.org/10.3390/microorganisms9112405 | |
dc.relation.references | Quintero, J. C., Mignone, J., Osorio Q, L., Cienfuegos-Gallet, A. V., & Rojas A, C. (2021). Housing conditions linked to tick (Ixodida: Ixodidae) infestation in rural areas of Colombia: A potential risk for rickettsial transmission. Journal of Medical Entomology, 58(1), 1–11. https://doi.org/10.1093/jme/tjaa159 | |
dc.relation.references | Raffel, S. J., Battisti, J. M., Fischer, R. J., & Schwan, T. G. (2014). Inactivation of Genes for Antigenic Variation in the Relapsing Fever Spirochete Borrelia hermsii Reduces Infectivity in Mice and Transmission by Ticks. PLoS Pathogens, 10(4), 1–17. https://doi.org/10.1371/journal.ppat.1004056 | |
dc.relation.references | Ramírez-hernández, A., Arroyave, E., Faccini-martínez, Á. A., Martínez-diaz, H. C., Betancourt-ruiz, P., Forero-becerra, E. G., Hidalgo, M., Blanton, L. S., & Walker, D. H. (2022). Emerging Tickborne Bacteria in Cattle from Colombia. Emerging Infectious Diseases, 28(10), 2109–2111. https://doi.org/doi.org/10.3201/eid2810.220657 | |
dc.relation.references | Rudenko, N., Golovchenko, M., Belfiore, N. M., Grubhoffer, L., & Oliver, J. H., Jr (2014). Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird. Parasites & vectors, 7, 4. https://doi.org/10.1186/1756-3305-7-4 | |
dc.relation.references | Sánchez, R. S. T., Santodomingo, A. M. S., Muñoz-Leal, S., Silva-De la Fuente, M. C., Llanos-Soto, S., Salas, L. M., & González-Acuña, D. (2020). Rodents as potential reservoirs for Borrelia spp. In northern Chile. Revista Brasileira de Parasitología Veterinaria, 29(2), 1–10. https://doi.org/10.1590/S1984-29612020029 | |
dc.relation.references | Schröder, N. W. J., Eckert, J., Stübs, G., & Schumann, R. R. (2008). Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids. Immunobiology, 213(3–4), 329–340. https://doi.org/10.1016/j.imbio.2007.11.003 | |
dc.relation.references | Schwan, T. G., & Raffel, S. J. (2021). Transovarial transmission of Borrelia hermsii by its tick vector and reservoir host Ornithodoros hermsi. Microorganisms, 9(9), 1–18. https://doi.org/10.3390/microorganisms9091978 | |
dc.relation.references | Schwan, T. G., Raffel, S. J., Schrumpf, M. E., Policastro, P. F., Rawlings, J. A., Lane, R. S., Breitschwerdt, E. B., & Porcella, S. F. (2005). Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. Journal of Clinical Microbiology, 43(8), 3851–3859. https://doi.org/10.1128/JCM.43.8.3851-3859.2005 | |
dc.relation.references | Scott, M. C., Rosen, M. E., Hamer, S. A., Baker, E., Edwards, H., Crowder, C., Tsao, J. I., & Hickling, G. J. (2010). High-prevalence Borrelia miyamotoi Infection Among wild turkeys (Meleagris gallopavo) in Tennessee. Journal of Medical Entomology, 47(6), 1238–1242. https://doi.org/10.1603/ME10075 | |
dc.relation.references | Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153 | |
dc.relation.references | Shi, J., Hu, Z., Deng, F., & Shen, S. (2018). Tick-Borne Viruses. Virologica Sinica, 33(1), 21–43. https://doi.org/10.1007/s12250-018-0019-0 | |
dc.relation.references | Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1), 135–145. https://doi.org/10.1002/pro.3290 | |
dc.relation.references | Smith, R., Brener, J., Osorno, M., & Ristic, M. (1978). Pathobiology of Borrelia theileri in the Tropical Boophilus microplus Cattle Tick. Journal of Invertebrate Pathology, 32(2), 182–190. https://doi.org/https://doi.org/10.1016/0022-2011(78)90028-9 | |
dc.relation.references | Smith, R., Miranpuri, G., Adams, J., & Ahrens, E. (1985). Borrelia theileri: isolation from ticks (Boophilus microplus) and tick-borne transmission between splenectomized calves. American Journal of Veterinary Research, 4(46), 1396–1398. | |
dc.relation.references | Stanek, G., & Strle, F. (2003). Lyme borreliosis. Lancet, 362(9396), 1639–1647. https://doi.org/10.1016/S0140-6736(03)14798-8 | |
dc.relation.references | Steere, A. C., Coburn, J., & Glickstein, L. (2004). The emergence of Lyme disease. Journal of Clinical Investigation, 113(8), 1093–1101. https://doi.org/10.1172/JCI21681 | |
dc.relation.references | Steere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Hovius, J. W. R., Li, X., & Mead, P. S. (2016). Lyme borreliosis. Nature Reviews Disease Primers, 2(1), 1–18. https://doi.org/10.1038/nrdp.2016.90 | |
dc.relation.references | Steinbrink, A., Brugger, K., Margos, G., Kraiczy, P., & Klimpel, S. (2022). The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 121(3), 781–803. https://doi.org/10.1007/s00436-022-07445-3 | |
dc.relation.references | Supriyono, Takano, A., Kuwata, R., Shimoda, H., Hadi, U. K., Setiyono, A., Agungpriyono, S., & Maeda, K. (2019). Detection and isolation of tick-borne bacteria (Anaplasma spp., Rickettsia spp., and Borrelia spp.) in Amblyomma varanense ticks on lizard (Varanus salvator). In Microbiology and Immunology 63, (8), 328–333). https://doi.org/10.1111/1348-0421.12721 | |
dc.relation.references | Takayama, K., Rothenberg, R. J., & Barbour, A. G. (1987). Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infection and Immunity, 55(9), 2311–2313. https://doi.org/10.1128/iai.55.9.2311-2313.1987 | |
dc.relation.references | Talagrand-Reboul, E., Boyer, P. H., Bergström, S., Vial, L., & Boulanger, N. (2018). Relapsing Fevers: Neglected Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, 8(98), 1–21. https://doi.org/10.3389/fcimb.2018.00098 | |
dc.relation.references | Taylor, L. H., Latham, S. M., & Woolhouse, M. E. J. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1411), 983–989. https://doi.org/10.1098/rstb.2001.0888 | |
dc.relation.references | Telford III, S., & Goethert, H. (2021). Perpetuation of Borreliae. Curr Issues Mol Biol, 267–306. https://doi.org/https://doi.org/10.21775/9781913652616.10 | |
dc.relation.references | Thomas, R. S., Santodomingo, A. M. S., Muñoz-Leal, S., Silva-De la Fuente, M. C., Llanos-Soto, S., Salas, L. M., & González-Acuña, D. (2020). Rodents as potential reservoirs for Borrelia spp. In northern Chile. Revista Brasileira de Parasitologia Veterinaria, 29(2), 1–10. https://doi.org/10.1590/S1984-29612020029 | |
dc.relation.references | Trevisan, G., Cinco, M., Trevisini, S., Di Meo, N., Chersi, K., Ruscio, M., Forgione, P., & Bonin, S. (2021). Borreliae part 1: Borrelia lyme group and echidna‐reptile group. Biology, 10(1036), 1–38. https://doi.org/10.3390/biology10101036 | |
dc.relation.references | Van Duijvendijk, G., Coipan, C., Wagemakers, A., Fonville, M., Ersöz, J., Oei, A., Földvári, G., Hovius, J., Takken, W., & Sprong, H. (2016). Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites and Vectors, 9(1), 1–7. https://doi.org/10.1186/s13071-016-1389-5 | |
dc.relation.references | Vieira, W., Paula, D. F., Cardoso, L., Luiza, N., Ferreira, G., Carolina, M., Serpa, D. A., Peixoto, F., Filipe, D. O., & Torres, D. (2022). First molecular detection of Borrelia theileri subclinical infection in a cow from Brazil. Veterinary Research Communications. 47(2), 963–967. https://doi.org/10.1007/s11259-022-10020-x | |
dc.relation.references | Von Haeseler, A., Schmidt, H. A., Bui, M. Q., & Nguyen, L. T. (2014). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies Molecular. Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 | |
dc.relation.references | Vredevoe, L. K., Stevens, J. R., & Schneider, B. S. (2004). Detection and characterization of Borrelia bissettii in rodents from the central California coast. Journal of Medical Entomology, 41(4), 736–745. https://doi.org/10.1603/0022-2585-41.4.736 | |
dc.relation.references | Wagemakers, A., Jahfari, S., de Wever, B., Spanjaard, L., Starink, M. V., de Vries, H. J. C., Sprong, H., & Hovius, J. W. (2017). Borrelia miyamotoi in vectors and hosts in The Netherlands. Ticks and Tick-Borne Diseases, 8(3), 370–374. https://doi.org/10.1016/j.ttbdis.2016.12.012 | |
dc.relation.references | Wang, G., Van Dam, A. P., Schwartz, I., & Dankert, J. (1999). Molecular typing of Borrelia burgdorferi sensu lato: Taxonomic, epidemiological, and clinical implications. Clinical Microbiology Reviews, 12(4), 633–653. https://doi.org/10.1128/cmr.12.4.633 | |
dc.relation.references | Warrell, D. A., Perine, P. L., Krause, D. W., Bing, D. H., & MacDougal, S. J. (1983). Pathophysiology and immunology of the Jarisch-Herxheimer-like reaction in louse-borne relapsing fever: Comparison of tetracycline and slow-release penicillin. Journal of Infectious Diseases, 147(5), 898–909. https://doi.org/10.1093/infdis/147.5.898 | |
dc.relation.references | Webb, J. W. (1980). Parasites of small indian mongoose on St. Croix, Virgin Islands. The Journal of Parasitology, 66(1), 176–178. https://doi.org/10.2307/3280620 | |
dc.relation.references | Wilder, H. K., Raffel, S. J., Barbour, A. G., Porcella, S. F., Sturdevant, D. E., Vaisvil, B., Kapatral, V., Schmitt, D. P., Schwan, T. G., & Lopez, J. E. (2016). Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection. PLoS ONE, 11(2), 1–17. https://doi.org/10.1371/journal.pone.0147707 | |
dc.relation.references | Yparraguirre, L. A., Machado-ferreira, E., Ullmann, A. M. Y. J., Piesman, J., Zeidner, N. S., & Soares, C. A. G. (2007). A Hard Tick Relapsing Fever Group Spirochete in a Brazilian Rhipicephalus (Boophilus) microplus. Vector-Borne and Zoonotic Diseases, 7(4), 717–721. https://doi.org/10.1089/vbz.2007.0144 | |
dc.relation.references | Yadav, N. I. D. H. I., & Upadhyay, R. (2021). Tick saliva toxins, host immune responses and its biological effects. Int J Pharm Pharm Sci, 13(8), 9-19. https://doi.org/10.22159/ijpps.2021v13i8.41444 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Borrelia | |
dc.subject.keywords | Bats | |
dc.subject.keywords | Ticks | |
dc.subject.keywords | Canine | |
dc.subject.keywords | Bovine | |
dc.subject.keywords | Rodents | |
dc.subject.keywords | Opssum | |
dc.subject.proposal | Borrelia | |
dc.subject.proposal | Murcielagos | |
dc.subject.proposal | Zarigüeyas | |
dc.subject.proposal | Bovinos | |
dc.subject.proposal | Caninos | |
dc.subject.proposal | Garrapatas | |
dc.subject.proposal | Roedores | |
dc.title | Estudio eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del Caribe Colombiano | |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: