Publicación:
Estudio eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del Caribe Colombiano

dc.audience
dc.contributor.advisorFaccini Martínez, Álvaro A.
dc.contributor.advisorMattar Velilla, Salim
dc.contributor.authorLópez Mejía, Yesica Paola
dc.date.accessioned2024-06-12T13:52:33Z
dc.date.available2025-06-11
dc.date.available2024-06-12T13:52:33Z
dc.date.issued2025-06-11
dc.description.abstractLas especies patógenas del género Borrelia son agentes zoonóticos que causan enfermedades infecciosas emergentes y reemergentes en todo el mundo y constituyen una amenaza para la salud pública. el objetivo de este trabajo fue estudiar la eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del caribe colombiano. Metodología. Se realizó un estudio es descriptivo, prospectivo y retrospectivo de corte transversal. Se realizaron salidas de campo para la captura de garrapatas y toma de muestras de animales en distintas áreas del Caribe Colombiano. Las muestras se analizaron mediante técnicas de PCR, secuenciación Sanger y NGS. Resultados. En este estudio se obtuvo resultados positivos para diferentes especies del género Borrelia en murciélagos, zarigüeyas, roedores, bovinos y garrapatas. Adicionalmente, este estudio demostró una diversidad de animales domésticos y silvestres como fuente alimentaria de Ornithodoros puertoricensis, vector implicado en transmisión de Borrelia en humanos. El estudio proporciona la primera evidencia molecular de Borrelia spp. en murciélagos, zarigüeyas, roedores, bovinos y garrapatas en el departamento de Córdoba. Se recomienda realizar más estudios para aislar y secuenciar genomas de Borrelia spp. en murciélagos y roedores, y considerar la Borreliosis bovina en el diagnóstico veterinario.spa
dc.description.abstractPathogenic species of the genus Borrelia are zoonotic agents that cause emerging and re-emerging infectious diseases worldwide and constitute a threat to public health. The objective of this work was to study the eco-epidemiological of infection by Borrelia spp. in pet, domestic, wild animals and ticks in some areas of the Colombian Caribbean. Methodology. A descriptive, prospective and retrospective cross-sectional study was carried out. Field trips were carried out to capture ticks and take animal samples in different areas of the Colombian Caribbean. The samples were analyzed using PCR, Sanger sequencing and NGS techniques. Results. In this study, positive results were obtained for different species of the genus Borrelia in bats, opossums, rodents, cattle and ticks. Additionally, this study demonstrated a diversity of domestic and wild animals as a food source of Ornithodoros Puertoricensis, a vector involved in the transmission of Borrelia in humans. The study provides the first molecular evidence of Borrelia spp. in bats, opossums, rodents, cattle and ticks in the department of Córdoba. Further studies are recommended to isolate and sequence genomes of Borrelia spp. in bats and rodents, and consider bovine borreliosis in veterinary diagnosis.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor(a) en Microbiología y Salud Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. INTRODUCCIÓN...10spa
dc.description.tableofcontents2. MARCO CONCEPTUAL...13
dc.description.tableofcontents3.1 Género Borrelia...16
dc.description.tableofcontents3.2 Vectores artrópodos...16
dc.description.tableofcontents3.2.1 Familia Ixodidae...17
dc.description.tableofcontents3.2.2 Familia Argasidae...17
dc.description.tableofcontents3.3 Borreliosis...17
dc.description.tableofcontents3.3.1 Borreliosis de Lyme...18
dc.description.tableofcontents3.3.2 Fiebre recurrente...20
dc.description.tableofcontents3.3.3 Borreliosis de importancia veterinarias...31
dc.description.tableofcontents3.4 Diagnóstico...32
dc.description.tableofcontents4. OBJETIVOS...34
dc.description.tableofcontents4.1 General...34
dc.description.tableofcontents4.2 Específicos...34
dc.description.tableofcontents5. CAPITULO I. IDENTIFICAR LA INFECCIÓN POR Borrelia spp. EN ANIMALES DE COMPAÑÍA, DOMÉSTICOS, SILVESTRES Y GARRAPATAS EN ALGUNAS ÁREAS DEL CARIBE COLOMBIANO Y ESTABLECER RELACIONES FILOGENÉTICAS DE LAS ESPECIES DE Borrelia spp. ENCONTRADAS...35
dc.description.tableofcontents5.1 Metodología...35
dc.description.tableofcontents5.1.1 Tipo de estudio...35
dc.description.tableofcontents5.1.2 Área de estudio...37
dc.description.tableofcontents5.1.3 Muestras de animales silvestres...38
dc.description.tableofcontents5.1.4 Animales domésticos y de compañía...38
dc.description.tableofcontents5.1.5 Captura de garrapatas...39
dc.description.tableofcontents5.1.5.1 Identificación taxonómica...39
dc.description.tableofcontents5.1.7 Visualización de espiroquetas en extendido de sangre periférica y gota gruesa...39
dc.description.tableofcontents5.1.8 Detección molecular de Borrelia spp...40
dc.description.tableofcontents5.2 Resultados...43
dc.description.tableofcontents5.2.1 Animales silvestres...46
dc.description.tableofcontents5.2.2 Animales domésticos y de compañía...60
dc.description.tableofcontents5.2.3 Garrapatas...64
dc.description.tableofcontents5.3 Discusión...68
dc.description.tableofcontents5.3.1 Animales silvestres...68
dc.description.tableofcontents5.3.2 Animales domésticos...74
dc.description.tableofcontents5.3.3 Garrapatas...76
dc.description.tableofcontents6. CAPITULO II. DETERMINAR LA PRESENCIA DE Ornithodoros sp. Y SU FUENTE ALIMENTARIA EN EL DEPARTAMENTO DE CÓRDOBA...78
dc.description.tableofcontents6.1 Metodología...78
dc.description.tableofcontents6.1.1 Área Geográfica y Sitios de Muestreo...78
dc.description.tableofcontents6.1.2 Recolección e identificación de garrapatas...80
dc.description.tableofcontents6.1.3 Análisis moleculares y filogenéticos...80
dc.description.tableofcontents6.1.4 Identificación de fuentes alimentarias sanguínea en Ornithodoros spp....81
dc.description.tableofcontents6.2 Resultados...82
dc.description.tableofcontents6.2.1 Colecta de garrapatas...82
dc.description.tableofcontents6.2.2 Identificación morfológica y genética de especímenes...84
dc.description.tableofcontents6.2.3 Detección de fuentes alimentarias sanguíneas en O. puertoricensis...87
dc.description.tableofcontents6.3 Discusión...94
dc.description.tableofcontents7. ARTICULOS CIENTÍFICOS RELACIONADOS Y PUBLICACIONES PRELIMINARES...98
dc.description.tableofcontents8. REFERENCIAS BIBLIOGRÁFICAS...99
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8309
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programDoctorado en Microbiología y Salud Tropical
dc.relation.referencesAdeolu, M., & Gupta, R. S. (2014). A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: The emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of. the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex), International Journal of General and Molecular Microbiology, 105(6), 1049–1072. https://doi.org/10.1007/s10482-014-0164-x
dc.relation.referencesAli, A., Numan, M., Khan, M., Aiman, O., Muñoz-Leal, S., Chitimia-Dobler, L., Labruna, M. B., & Nijhof, A. M. (2022). Ornithodoros (Pavlovskyella) ticks associated with a Rickettsia sp. in Pakistan. Parasites and Vectors, 15(1), 1–13. https://doi.org/10.1186/s13071-022-05248-0
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
dc.relation.referencesAndersson, M., Nordstrand, A., Shamaei-Tousi, A., Jansson, A., Bergström, S., & Guo, B. P. (2007). In situ immune response in brain and kidney during early relapsing fever borreliosis. Journal of Neuroimmunology, 183(1–2), 26–32. https://doi.org/10.1016/j.jneuroim.2006.11.004
dc.relation.referencesArdila, M. M., Carrillo-Bonilla, L., Pabón, A., & Robledo, S. M. (2019). Surveillance of phlebotomine fauna and Didelphis marsupialis (Didelphimorphia: Didelphidae) infection in an area highly endemic for visceral Leishmaniasis in Colombia. Biomedica, 39(2), 252–264. https://doi.org/10.7705/biomedica.v39i2.3905
dc.relation.referencesArias-Giraldo, L. M., Muñoz, M., Hernández, C., Herrera, G., Velásquez-Ortiz, N., Cantillo-Barraza, O., Urbano, P., Cuervo, A., & Ramírez, J. D. (2020). Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasites and Vectors, 13(1), 1–14. https://doi.org/10.1186/s13071-020-04310-z
dc.relation.referencesArroyave, E., Londoño, A. F., Quintero, J. C., Agudelo-Flórez, P., Arboleda, M., Díaz, F. J., & Rodas, J. D. (2013). Etiología y caracterización epidemiológica del síndrome febril no palúdico en tres municipios del Urabá antioqueño, Colombia. Biomedica, 33(1), 99–107. https://doi.org/10.7705/biomedica.v33i0.734
dc.relation.referencesBabraham Bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed May 4, 2023
dc.relation.referencesBalasubramanian, S., Busselman, R. E., Santos, N. F., Grunwald, A., Wolff, N., Hathaway, N., ... & Hamer, G. L. (2023). Bloodmeal metabarcoding of the argasid tick (Ornithodoros turicata Dugès) reveals extensive vector-host associations. bioRxiv, 2023-08. https://doi.org/10.1101/2023.08.07.552345
dc.relation.referencesBallados‐González, G. G., Bravo‐Ramos, J. L., Grostieta, E., Andrade‐López, A. N., Ramos‐Vázquez, J. R., Chong‐Guzmán, L. A., ... & Sánchez‐Montes, S. (2023). Confirmation of the presence of Rickettsia felis infecting Ornithodoros puertoricensis in Mexico. Medical and Veterinary Entomology, 37(2), 219-227. https://doi.org/10.1111/mve.12624
dc.relation.referencesBaneth, G., Dvorkin, A., Shitrit, B. Ben, Kleinerman, G., Salant, H., Straubinger, R. K., & Biala, Y. N. (2022). Infection and seroprevalence of Borrelia persica in domestic cats and dogs in Israel. Parasites & Vectors, 15(102), 1–11. https://doi.org/10.1186/s13071-022-05223-9
dc.relation.referencesBaneth, G., Nachum-Biala, Y., Halperin, T., Hershko, Y., Kleinerman, G., Anug, Y., Abdeen, Z., Lavy, E., Aroch, I., & Straubinger, R. K. (2016). Borrelia persica infection in dogs and cats: Clinical manifestations, clinicopathological findings and genetic characterization. Parasites and Vectors, 9(244), 1–10. https://doi.org/10.1186/s13071-016-1530-5
dc.relation.referencesBankole, A. A., Kumsa, B., Mamo, G., Ogo, N. I., Elelu, N., Morgan, W., & Cutler, S. J. (2023). Comparative Analysis of Tick-Borne Relapsing Fever Spirochaetes from Ethiopia and Nigeria. Pathogens, 12(81), 1–22. https://doi.org/doi.org/10.3390/pathogens12010081
dc.relation.referencesBarbour, A. G., & Hayes, S. F. (1986). Biology of Borrelia species. Microbiological Reviews, 50(4), 381–400. https://doi.org/10.1128/mmbr.50.4.381-400.1986
dc.relation.referencesBarbour, Alan G., Dai, Q., Restrepo, B. I., Stoenner, H. G., & Frank, S. A. (2006). Pathogen escape from host immunity by a genome program for antigenic variation. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18290–18295. https://doi.org/10.1073/pnas.0605302103
dc.relation.referencesBarbour, Alan G., Maupin, G. O., Teltow, G. J., Carter, C. J., & Piesman, J. (1996). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: Possible agent of a lyme disease-like illness. Journal of Infectious Diseases, 173(2), 403–409. https://doi.org/10.1093/infdis/173.2.403
dc.relation.referencesBarros-Battesti D, Arzua M, Bechara GH. Carrapatos de importancia Medico Veterinaria da Regiao Neotropical: um guia ilustrado para identificac, ao de especies. Sao Paulo; 2006.
dc.relation.referencesBenson, D, Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2004). GenBank: update. Nucleic Acids Research, 32(Database), D23-6. https://doi.org/doi: 10.1093/nar/gkh045
dc.relation.referencesBermúdez S., Félix M, Domínguez L, Kadoch N, Muñoz-Leal S, Venzal J. (2022). Molecular screening for tick-borne bacteria and hematozoa in Ixodes cf. boliviensis and Ixodes tapirus (Ixodida: Ixodidae) from western highlands of Panama. Current Research in Parasitology & Vector-Borne Diseases. 1, 100034. https://doi.org/10.1016/j.crpvbd.2021.100034
dc.relation.referencesBezerra-Santos, M. A., Ramos, R. A. N., Campos, A. K., Dantas-Torres, F., & Otranto, D. (2021). Didelphis spp. opossums and their parasites in the Americas: A One Health perspective. Parasitology Research, 1-21. https://doi.org/10.1007/s00436-021-07072-4
dc.relation.referencesBroom, B. M., Ryan, M. C., Brown, R. E., Ikeda, F., Stucky, M., Kane, D. W., ... & Weinstein, J. N. (2017). A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer research, 77(21), e23-e26. https://doi.org/10.1158/0008-5472.CAN-17-0318
dc.relation.referencesBermúdez C., S. E., Miranda C., R. J., & Smith C., D. (2010). Ticks species (Ixodida) in the Summit Municipal Park and adjacent areas, Panama City, Panama. Experimental and Applied Acarology, 52(4), 439–448. https://doi.org/10.1007/s10493-010-9374-8
dc.relation.referencesBermúdez, S. E., Armstrong, B. A., Domínguez, L., Krishnavajhala, A., Kneubehl, A. R., Gunter, S. M., Replogle, A., Petersen, J. M., & Lopez, J. E. (2021). Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros Puertoricensis collected in central Panama. PLoS Neglected Tropical Diseases, 15(8), 1–13. https://doi.org/10.1371/journal.pntd.0009642
dc.relation.referencesBermúdez, S. E., Castillo, E., Pohlenz, T. D., Kneubehl, A., Krishnavajhala, A., Domínguez, L., Suárez, A., & López, J. E. (2017). New records of Ornithodoros puertoricensis Fox 1947 (Ixodida: Argasidae) parasitizing humans in rural and urban dwellings, Panama. In Ticks and Tick-borne Diseases, 8(4) 466–469). https://doi.org/10.1016/j.ttbdis.2017.02.004
dc.relation.referencesBermúdez, S. E., Miranda, R. J., & Kadoch, S. N. (2013). Reporte de larvas de Ornithodoros puertoricensis Fox 1947 (Ixodida: Argasidae) parasitando a Rhinella marina (L. 1758) (Anura: Bufonidae) en David, Chiriquí, Panamá. Puente Biológico, 5(81), e85.
dc.relation.referencesBermúdez, S., Miranda, R. J., Cleghorn, J., & Venzal, J. M. (2015). Ornithodoros (Alectorobius) puertoricensis (Ixodida: Argasidae) parasitizing exotic reptile pets in Panamá. FAVE Sección Ciencias Veterinarias, 14(1/2), 1–5. https://doi.org/10.14409/favecv.v14i1/3.5095
dc.relation.referencesBetancourt, A. (1980). Ornithodoros talaje en Córdoba. Montería: Asociación Colombiana de Médicos Veterinarios y/o Zootecnistas, ACOVEZ-Córdoba.
dc.relation.referencesBonvicino, C. R., Oliveira, J. D., & D’Andrea, P. S. (2008). Guia dos roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Série de Manuais Técnicos; 11.
dc.relation.referencesBoyle, W. K., Wilder, H. K., Lawrence, A. M., & Lopez, J. E. (2014). Transmission Dynamics of Borrelia turicatae from the Arthropod Vector. PLoS Neglected Tropical Diseases, 8(4), 1–8. https://doi.org/10.1371/journal.pntd.0002767
dc.relation.referencesBroom, B. M., Ryan, M. C., Brown, R. E., Ikeda, F., Stucky, M., Kane, D. W., Melott, J., Wakefield, C., Casasent, T. D., Akbani, R., & Weinstein, J. N. (2017). A galaxy implementation of next-generation clustered heatmaps for interactive exploration of molecular profiling data. Cancer Research, 77(21), e23–e26. https://doi.org/10.1158/0008-5472.CAN-17-0318
dc.relation.referencesBurgdorfer, W. (1951). Analysis of the infection course in Ornithodorus moubata (Murray) and natural transmission of Spirochaeta duttoni. Acta Tropica, 8(3), 193–262.
dc.relation.referencesBurgdorfer, W. (1959). Zum organotropismus der Spirochaete B. duttoni gegenuber der ubertragenden zecke. Acta Trop, 16, 242–243.
dc.relation.referencesBurgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Gruwaldt, G., & Davis, J. (1982). Lyme Disease - A Tick-Borne Spirochetosis?. Science, 216, 1317–1319. https://doi.org/10.1126/science.7043737
dc.relation.referencesBurkot, T. R., Mullen, G. R., Anderson, R., Schneider, B. S., Happ, C. M., & Zeidner, N. S. (2001). Borrelia lonestari DNA in Adult Amblyomma americanum Ticks, Alabama. Emerging Infectious Diseases, 7(3), 471–473. https://doi.org/10.3201/eid0703.010323
dc.relation.referencesButler, J. F., & Gibbs, E. P. J. (1984). Distribution of potential soft tick vectors of African swine fever in the Caribbean region (Acari: Argasidae). Preventive Veterinary Medicine, 2, 63–70. https://doi.org/10.1016/0167-5877(84)90049-7
dc.relation.referencesCadavid, D., & Barbour, A. G. (1998). Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clinical Infectious Diseases, 26(1), 151–164. https://doi.org/10.1086/516276
dc.relation.referencesCallow, L. (1967). Observations on Tick-Transmitted Spirochaetes of Cattle in Australia and South Africa. British Veterinary Journal, 123(11), 492–497. https://doi.org/10.1016/S0007-1935(17)39704-X
dc.relation.referencesCastilla-guerra, L., Marín-martín, J., & Colmenero-camacho, M. A. (2016). Tick-Borne Relapsing Fever, Southern Spain, 2004–2015. Emerging Infectious Diseases, 22(12), 2217–2219. https://doi.org/http://dx.doi.org/10.3201/eid2212.160870 To
dc.relation.referencesChristensen, J., Fischer, R., McCoy, B., Raffel, S., & Schwan, T. (2015). Tickborne Relapsing Fever, Bitterroot Valley, Montana, USA. Emerging Infectious Diseases, 21(2), 217–223. https://doi.org/http://dx.doi.org/10.3201/eid2102.141276
dc.relation.referencesCikman, A., Aydin, M., Gulhan, B., Karakecili, F., Demirtas, L., & Arif Kesik, O. (2018). Geographical Features and Seroprevalence of Borrelia burgdorferi in Erzincan, Turkey. Journal of Arthropod-Borne Diseases, 12(4), 378–386. https://doi.org/10.18502/jad.v12i4.356
dc.relation.referencesChen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890.
dc.relation.referencesColunga-Salas, P., Betancur-Garcés, Y. C., Ochoa-Ochoa, L. M., Guzmán-Cornejo, C., Sánchez-Montes, S., & Becker, I. (2018). Borrelia spp. asociadas con anfibios y reptiles: hospederos y distribución mundial. Rev Latinoamericaca Herpetol, 1(1), 22-33. https://doi.org/10.22201/fc.25942158e.2018.1.6
dc.relation.referencesColunga-Salas, P., Sánchez-Montes, S., León-Paniagua, L., & Becker, I. (2021). Borrelia in neotropical bats: Detection of two new phylogenetic lineages. Ticks and Tick-Borne Diseases, 12(101642), 1–8. https://doi.org/10.1016/j.ttbdis.2020.101642
dc.relation.referencesCoulter, P., Lema, C., Flayhart, D., Linhardt, A. S., Aucott, J. N., Auwaerter, P. G., & Dumler, J. S. (2005). Two-Year Evaluation of Borrelia burgdorferi Culture and Supplemental Tests for Definitive Diagnosis of Lyme Disease. Journal of Clinical Microbiology, 43(10), 5080–5084. https://doi.org/10.1128/JCM.02239-06
dc.relation.referencesCrowder, C. D., Langeroudi, A. G., Estabragh, A. S., Lewis, E. R. G., Marcsisin, R. A., & Barbour, A. G. (2016). Pathogen and host response dynamics in a mouse model of Borrelia hermsii relapsing fever. Veterinary Sciences, 3(3), 19. https://doi.org/10.3390/vetsci3030019
dc.relation.referencesCutler, S J, Moss, J., Fukunaga, M., Wright, D. J. M., Fekade, D., & Warrells, D. (1997). Borrelia recurrentis Characterization and Comparison with Relapsing-Fever, Lyrne-Associated, and Other Borrelia spp. International Journal of Systematic Bacteriology, 47(4), 958–968. https://doi.org/https://doi.org/10.1099/00207713-47-4-958
dc.relation.referencesCutler, Sally J. (2015). Relapsing Fever Borreliae a Global Review. Clinics in Laboratory Medicine, 35(4), 847–865. https://doi.org/10.1016/j.cll.2015.07.001
dc.relation.referencesDantas, F., Fernendes, T., Muñoz-Leal, S., Castilho, V., & Barros-Battesti, D. (2019). Ticks (Ixodida:Argasidae, Ixodidae) of Brazil: Updated species check list and taxonomic keys. Ticks and Tick-Borne Diseases, 10(6), 1–45. https://doi.org/https://doi.org/10.1016/j.ttbdis.2019.06.012
dc.relation.referencesDean, D., Rothschild, J., Ruettger, A., Prasad, R., & Sachse, K. (2013). Zoonotic Chlamydiaceae Species Associated with Trachoma Nepal. Emerging Infectious Diseases, 19(12), 1948–1955. https://doi.org/10.3201/eid1912.130656
dc.relation.referencesDias, M., Bahia, M., Magalhães-Matos, P., Barizon Cepeda, M., Guterres, A., & Fonseca, A. (2018). Morphological, molecular and phylogenetic characterization of Borrelia theileri in Rhipicephalus microplus. Brazilian Journal Veterinay Parasitology, 27(4), 555–561. https://doi.org/10.1590/S1984-296120180083
dc.relation.referencesDiatta, G., Duplantier, J. M., Granjon, L., Bâ, K., Chauvancy, G., Ndiaye, M., & Trape, J. F. (2015). Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows. Acta Trópica, 152, 131–140. https://doi.org/10.1016/j.actatropica.2015.08.016
dc.relation.referencesDiaz-Martin, V., Manzano-Roman, R., Obolo-Mvoulouga, A., & Perez-Sanchez, R. (2015). Development of vaccines against Ornithodoros soft ticks: An update. Ticks and Tick-Borne Diseases, 6(3), 211–220. https://doi.org/10.1016/j.ttbdis.2015.03.006
dc.relation.referencesDíaz, M. M., Solari, S., Aguirre, L. F., Aguiar, L., & Barquez, R. M. (2016). Clave de identificación de los murciélagos de Sudamérica/Chave de identificação dos morcegos da América do Sul. Publicación Especial Nro, 2, 160.
dc.relation.referencesDiuk-Wasser, M. A., Hoen, A. G., Cislo, P., Brinkerhoff, R., Hamer, S. A., Rowland, M., Cortinas, R., Vourc’h, G., Melton, F., Hickling, G. J., Tsao, J. I., Bunikis, J., Barbour, A. G., Kitron, U., Piesman, J., & Fish, D. (2012). Human risk of infection with Borrelia burgdorferi, the lyme disease agent, in Eastern United States. American Journal of Tropical Medicine and Hygiene, 86(2), 320–327. https://doi.org/10.4269/ajtmh.2012.11-0395
dc.relation.referencesDünn, L. H., & Clark, H. C. (1933). Notes on Relapsing Fever in Panama with Special Reference to Animal Hosts. American Journal of Tropical Medicine, 13(2), 201–209.
dc.relation.referencesDunn, L. H. (1927). Studies on the South American Tick, Ornithodoros venezuelensis Brumpt, in Colombia. Its Prevalence, Distribution, and Importance as an Intermediate Host of Relapsing Fever. The Journal of Parasitology, 13(4), 249–255. https://doi.org/10.2307/3271661
dc.relation.referencesDupont, H. T., La Scola, B., Williams, R., & Raoult, D. (1997). A focus of tick-borne relapsing fever in southern Zaire. Clinical Infectious Diseases, 25(1), 139–144. https://doi.org/10.1086/514496
dc.relation.referencesDworkin, M., Schwan, T., Anderson, D., & Borchardt, S. (2008). Tick-Borne Relapsing Fever. Infectious Disease Clinics of North America, 22(3), 1–19. https://doi.org/10.1111/j.1751-9004.2009.00170.x.Experience
dc.relation.referencesEgan, S. L., Taylor, C. L., Banks, P. B., Northover, A. S., Ahlstrom, L. A., Ryan, U. M., Irwin, P. J., & Oskam, C. L. (2021). The bacterial biome of ticks and their wildlife hosts at the urban– wildland interface. Microbial Genomics, 7(12), 1–24. https://doi.org/10.1099/mgen.0.000730
dc.relation.referencesEhounoud, C. B., Yao, K. P., Dahmani, M., Achi, Y. L., Amanzougaghene, N., Kacou N’Douba, A., N’Guessan, J. D., Raoult, D., Fenollar, F., & Mediannikov, O. (2016). Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 10(1), 1–18. https://doi.org/10.1371/journal.pntd.0004367
dc.relation.referencesElelu, N. (2018). Tick-borne relapsing fever as a potential veterinary medical problem. Veterinary Medicine and Science, 4(4), 271–279. https://doi.org/10.1002/vms3.108
dc.relation.referencesEndris, R. G., Keirans, J. E., Robbins, R. G., & Hess, W. R. (1989). Ornithodoros (Alectorobius) puertoricensis (Acari: Argasidae): redescription by scanning electron microscopy. Journal of Medical Entomology, 26(3), 146–154. https://doi.org/10.1093/jmedent/26.3.146
dc.relation.referencesEsteve-gasent, M. D., Snell, C. B., Adetunji, S. A., & Piccione, J. (2017). Serological detection of Tick-Borne Relapsing Fever in Texan domestic dogs. PLoS ONE, 12(12), 1–16. https://doi.org/https://doi.org/10.1371/journal.pone.0189786
dc.relation.referencesEvans, N., K, B., Timofte, D., Simpson, V., & Birtles, R. (2009). Fatal Borreliosis in Bat Caused by Relapsing Fever Spirochete, United Kingdom. Emerging Infectious Diseases, 15(8), 1331–1333. https://doi.org/10.3201/eid1508.090475
dc.relation.referencesFaccini-Martínez, Á. A., Silva-Ramos, C. R., Santodomingo, A. M., Ramírez-Hernández, A., Costa, F. B., Labruna, M. B., & Muñoz-Leal, S. (2022). Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites and Vectors, 15(196), 1–20. https://doi.org/10.1186/s13071-022-05289-5
dc.relation.referencesFaccini M, Á., González Tous, M., & Mattar Velilla, S. (2018). Fiebre recurrente transmitida por garrapatas: ¿otra etiología subdiagnosticada en Latinoamérica tropical? Revista MVZ Córdoba, 23(1), 6399–6402. https://doi.org/10.21897/rmvz.1230
dc.relation.referencesFairchild, G., Kohls, G., & Tipton, V. (1966). The ticks of Panamá (Acarina: Ixodoidea). Field Museum of Natural History, 167–219.
dc.relation.referencesFedorova, N., Kleinjan, J. E., James, D., Hui, L. T., Peeters, H., & Lane, R. S. (2014). Remarkable diversity of tick or mammalian-associated Borreliae in the metropolitan San Francisco Bay Area, California. Ticks and Tick-Borne Diseases, 5(6), 951–961. https://doi.org/10.1016/j.ttbdis.2014.07.015
dc.relation.referencesFelsenfeld, O. (1965). Borreliae, Human Relapsing Fever, and Parasite-Vector-Host Relationships. Bacteriological Reviews, 29(1), 46–74. https://doi.org/10.1128/mmbr.29.1.46-74.1965
dc.relation.referencesField, E. N., Gehrke, E. J., Ruden, R. M., Adelman, J. S., & Smith, R. C. (2020). An Improved Multiplex Polymerase Chain Reaction (PCR) Assay for the Identification of Mosquito (Diptera: Culicidae) Blood Meals. Journal of Medical Entomology, 57(2), 557–562. https://doi.org/10.1093/jme/tjz182
dc.relation.referencesFox, I. (1947). Ornithodoros puertoricensis, a New Tick from Rats in Puerto Rico. The American Society of Parasitologists, 1924, 33(3), 253–259.
dc.relation.referencesFox, I. (1977). The Domestic, Felis Catus L., A New Host Record For The Tick Ornithodoros Puertoricensis. Department of Medical Zoology School of’ Medicine, University of Puerto Rico, 1, 509. https://doi.org/10.1080/0013191640160307
dc.relation.referencesFranco, R., Toro, G., & Martinez, J. (1911). Fiebre amarilla y fiebre espiroquetal. Sesiones Científicas Del Centenario. Academia Nacional de Medicina Bogota., 1, 169–227.
dc.relation.referencesFraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K., Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Venter, J. C. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390(6660), 580–586. https://doi.org/10.1038/37551
dc.relation.referencesFukunaga, M., & Koreki, Y. (1995). The flagellin gene of Borrelia miyamotoi sp. nov. and its phylogenetic relationship among Borrelia species. FEMS Microbiology Letters, 134(2–3), 255–258. https://doi.org/10.1016/0378-1097(95)00416-2
dc.relation.referencesGaber, M., Khalil, G., Hoogstraal, H., & Aboul-Nasr, A. (1984). Borrelia crocidurae localization and transmission in Ornithodoros erraticus and O. savignyi. Parasitology, 88(3), 403–413. https://doi.org/10.1017/S0031182000054676
dc.relation.referencesGettings, J. R., Lopez, J. E., Krishnavajhala, A., Armstrong, B. A., Thompson, A. T., & Yabsley, M. J. (2019a). Antibodies to Borrelia turicatae in experimentally infected dogs cross-react with Borrelia burgdorferi serologic assays. Journal of Clinical Microbiology, 57(9), 1–6. https://doi.org/10.1128/JCM.02123-19
dc.relation.referencesGil, H., Barral, M., Escudero, R., García-Pérez, A. L., & Anda, P. (2005). Identification of a new Borrelia species among small mammals in areas of Northern Spain where lyme disease is endemic. Applied and Environmental Microbiology, 71(3), 1336–1345. https://doi.org/10.1128/AEM.71.3.1336-1345.2005
dc.relation.referencesGonzález-Domínguez, M. S., Villegas, J. P., Carmona, S., & Castañeda, H. (2014). First report of canine borreliosis seroprevalence in a middle-altitude tropical urban area (Medellín-Colombia). CES Medicina Veterinaria y Zootecnia, 9(2), 348-354. https://revistas.ces.edu.co/index.php/mvz/article/view/3184
dc.relation.referencesGoodman, R. L., Arndt, K. A., & Steigbigel, N. H. (1969). Borrelia in Boston. JAMA: The Journal of the American Medical Association, 210(4), 722–724. https://doi.org/10.1001/jama.1969.03160300062020
dc.relation.referencesGray, J. S., Kahl, O., Lane, R. S., Levin, M. L., & Tsao, J. I. (2016). Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks and Tick-Borne Diseases, 5(7), 1–29. https://doi.org/10.1016/j.ttbdis.2016.05.006.Diapause
dc.relation.referencesGuglielmone, A. A., Nava, S., & Robbins, R. G. (2023). Geographic distribution of the hard ticks (Acari: Ixodida: Ixodidae) of the world by countries and territories. Zootaxa, 5251(1), 1–274. https://doi.org/10.11646/zootaxa.5251.1.1
dc.relation.referencesGuglielmone, A. A., Robbins, R. G., Apanaskevich, D. A., Petney, T. N., Estrada-Peña, A., & Horak, I. G. (2014). The Hard Ticks of the World: (Acari: Ixodida: Ixodidae). Springer Netherlands. https://doi.org/10.1007/978-94-007-7497-1
dc.relation.referencesGuglielmone, A, Estrada, A., Keirans, J., & Robbins, R. (2003). Ticks (Acari: Ixodida: Argasidae, Ixodidae) Of The Neotropical Zoogeographic Region. A Special Publication Sponsored by International Consortium on Ticks and Tick-Borne Diseases (ICTTD-2). Atalanta, Houten, The Netherlands., 1–174.
dc.relation.referencesGuglielmone, AA, Robbins, R., Apanaskevich, A., Petney, T., Estrada, A., Horak, I., Renfu, S., & Berker, S. (2010). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa, 2528(1), 1–28. https://doi.org/10.1007/978-3-319-23057-3_31
dc.relation.referencesGuillamet, L. J. V., Marx, G. E., Benjamin, W., Pappas, P., Lieberman, N. A., Bachiashvili, K., ... & Lieberman, J. A. (2023). Relapsing fever caused by Borrelia lonestari after tick bite in Alabama, USA. Emerging Infectious Diseases, 29(2), 441. https://doi.org/10.3201/eid2902.221281
dc.relation.referencesHan, S. W., Chae, J. B., Jo, Y. S., Cho, Y. K., Kang, J. G., Shin, N. S., Youn, H. J., Youn, H. Y., Nam, H. M., Kim, H. J., Kang, H. E., & Chae, J. S. (2020). First Report of Newly Identified Ornithodoros Species in the Republic of Korea. Journal of Parasitology, 106(5), 546–563. https://doi.org/10.1645/19-78
dc.relation.referencesHaouas, N., Pesson, B., Boudabous, R., Dedet, J. P., Babba, H., & Ravel, C. (2007). Development of a molecular tool for the identification of leishmania reservoir hosts by blood meal analysis in the insect vectors. American Journal of Tropical Medicine and Hygiene, 77(6), 1054–1059. https://doi.org/10.4269/ajtmh.2007.77.1054
dc.relation.referencesHoogstraal H. (1956). Faunal exploration as a basic approach for studying infections common to man and animals. East African Medical Journal, 33(11), 417–424.
dc.relation.referencesHoogstraal, Harry. (1985). Argasid and Nuttalliellid Ticks as Parasites and Vectors. Advances in Parasitology, 24, 135–238. https://doi.org/10.1016/S0065-308X(08)60563-1
dc.relation.referencesHorta, M. C., Moraes-Filho, J., Casagrande, R. A., Saito, T. B., Rosa, S. C., Ogrzewalska, M., ... & Labruna, M. B. (2009). Experimental infection of opossums Didelphis aurita by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vector-Borne and Zoonotic Diseases, 9(1), 109-118. https://doi.org/10.1089/vbz.2008.0114
dc.relation.referencesHui-Ju, H., Jian-Wei, L., & Hong-Ling, W. (2020). Pathogenic New World Relapsing Fever Borrelia in a Myotis Bat, Eastern China, 2015. Emerging Infectious Diseases, 26(12), 3083–3085. https://doi.org/10.3201/eid2612.191450
dc.relation.referencesHumair, P. F., Douet, V., Morán Cadenas, F., Schouls, L. M., Van De Pol, I., & Gern, L. (2007). Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. Journal of medical entomology, 44(5), 869–880. https://doi.org/10.1603/0022-2585(2007)44[869:miobsi]2.0.co;2
dc.relation.referencesIrving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L. F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature, 589, 363–370. https://doi.org/10.1038/s41586-020-03128-0
dc.relation.referencesJohnson, R. C. (1977). The spirochetes. Annual Review of Microbiology, 31, 89–106. https://doi.org/10.1146/annurev.mi.31.100177.000513
dc.relation.referencesJones, E. K., Clifford, C. M., Keirans, J. E., & Kohls, G. M. (1972). The ticks of Venezuela (Acarina: Ixodoidea) with a key to the species of Amblyomma in the Western Hemisphere. Brigham Young University Science Bulletin-Biological Series, 17(4), 1–40. https://scholarsarchive.byu.edu/byuscib/vol17/iss4/1
dc.relation.referencesJongejan, F., & Uilenberg, G. (2004). The Global Importance of Ticks. Parasitology, 129, S3–S14. https://doi.org/10.1017/S0031182004005967
dc.relation.referencesJorge, F. R., Muñoz-leal, S., Oliveira, G. M. B. De, Serpa, M. C. A., Magalhães, M. M. L., Oliveira, L. M. B., Moura, F., Teixeira, B., & Labruna, M. B. (2023). Novel Borrelia Genotypes from Brazil Indicate a New Group of Borrelia spp. Associated with South American Bats. Journal of Medical Entomology, 60(1), 213–217. https://doi.org/doi: 10.1093/jme/tjac160.
dc.relation.referencesKatoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. https://doi.org/10.1093/nar/gkf436
dc.relation.referencesKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
dc.relation.referencesKent, R. J., & Norris, D. E. (2005). Identification of Mammalian Blood Meals in Mosquitoes By a Multiplexed Polymerase Chain Reaction Targeting Cytochrome B. American Journal of Tropical Medicine and Hygiene, 73(2), 336–342.
dc.relation.referencesKingry, L. C., Anacker, M., Pritt, B., Bjork, J., Respicio-Kingry, L., Liu, G., Sheldon, S., Boxrud, D., Strain, A., Oatman, S., Berry, J., Sloan, L., Mead, P., Neitzel, D., Kleinerman, G., Eshed, T., Nachum-Biala, Y., King, R., & Baneth, G. (2021). Transmission of the human relapsing fever spirochete Borrelia persica by the argasid tick Ornithodoros tholozani involves blood meals from wildlife animal reservoirs and mainly transstadial transfer. Applied and Environmental Microbiology, 87(11), e03117-20. https://doi.org/10.1128/AEM.03117-20
dc.relation.referencesKugeler, K. J., & Petersen, J. M. (2018). Surveillance for and Discovery of Borrelia Species in US Patients Suspected of Tickborne Illness. Clinical Infectious Diseases, 66(12), 1864–1871. https://doi.org/10.1093/cid/cix1107
dc.relation.referencesKneubehl, A. R., Muñoz-Leal, S., Filatov, S., de Klerk, D. G., Pienaar, R., Lohmeyer, K. H., Bermúdez, S. E., Suriyamongkol, T., Mali, I., Kanduma, E., Latif, A. A., Sarih, M., Bouattour, A., de León, A. A. P., Teel, P. D., Labruna, M. B., Mans, B. J., & Lopez, J. E. (2022). Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-23393-5
dc.relation.referencesKrishnavajhala, A., Armstrong, B. A., Kneubehl, A. R., Gunter, S. M., Piccione, J., Kim, H. J., Ramirez, R., Castro-Arellano, I., Roachell, W., Teel, P. D., & Lopez, J. E. (2021). Diversity and distribution of the tick-borne relapsing fever spirochete Borrelia turicatae. PLoS Neglected Tropical Diseases, 15(11), 1–14. https://doi.org/10.1371/journal.pntd.0009868
dc.relation.referencesKohls, G., Sonenshine, D., & Clifford, C. (1965). The Systematics of the Subfamily Ornithodorinae (Acarina: Argasidae). II. Identification of the Larvae of the Western Hemisphere and Descriptions of Three New Species. Entomological Society of America, 58(3), 331–364. https://doi.org/10.1093/aesa/58.3.331
dc.relation.referencesKudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M. M., Wallich, R., & Frischknecht, F. (2009). Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Molecular Microbiology, 71(6), 1415–1434. https://doi.org/10.1111/j.1365-2958.2009.06613.x
dc.relation.referencesKurokawa, C., Lynn, G. E., Pedra, J. H. F., Pal, U., Narasimhan, S., & Fikrig, E. (2020). Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology, 18(10), 587–600. https://doi.org/10.1038/s41579-020-0400-5
dc.relation.referencesKurtenbach, K., Hanincová, K., Tsao, J. I., Margos, G., Fish, D., & Ogden, N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology, 4(9), 660–669. https://doi.org/10.1038/nrmicro1475
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923
dc.relation.referencesLarsson, C., Andersson, M., Guo, B. P., Nordstrand, A., Hägerstrand, I., Carlsson, S., & Bergström, S. (2006). Complications of pregnancy and transplacental transmission of relapsing-fever borreliosis. Journal of Infectious Diseases, 194(10), 1367–1374. https://doi.org/10.1086/508425
dc.relation.referencesLatif, A., Putterill, J., Klerk, D., Pienaar, R., & Mans, B. (2012). Nuttalliella Namaqua (Ixodoidea: Nuttalliellidae): First Description of the Male, Immature Stages and Re-Description of the Female. PLoS ONE, 7(7), 1–9. https://doi.org/10.1371/journal.pone.0041651
dc.relation.referencesLejal, E., Moutailler, S., Šimo, L., Vayssier-Taussat, M., & Pollet, T. (2019). Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites & Vectors, 12(152), 1–8. https://doi.org/10.1101/489328
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301
dc.relation.referencesLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
dc.relation.referencesLi, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. https://doi.org/10.1093/bioinformatics/btv033
dc.relation.referencesLi, Z. M., Xiao, X., Zhou, C. M., Liu, J. X., Gu, X. L., Fang, L. Z., Liu, B. Y., Wang, L. R., Yu, X. J., & Han, H. J. (2021). Human-pathogenic relapsing fever borrelia found in bats from central China phylogenetically clustered together with relapsing fever borreliae reported in the new world. PLoS Neglected Tropical Diseases, 15(3), 1–11. https://doi.org/10.1371/journal.pntd.0009113
dc.relation.referencesLiu, X. Y., & Bonnet, S. I. (2014). Hard tick factors implicated in pathogen transmission. PLoS neglected tropical diseases, 8(1), e2566. https://doi.org/10.1371/journal.pntd.0002566
dc.relation.referencesLin, T., Oliver, J., Gao, L., Kollars, J., & Clark, K. L. (2001). Genetic heterogeneity of Borrelia burgdorferi sensu lato in the Southern United States based on restriction fragment length polymorphism and sequence analysis. Journal of Clinical Microbiology, 39(7), 2500–2507. https://doi.org/10.1128/JCM.39.7.2500-2507.2001
dc.relation.referencesLoh, S. M., Gillett, A., Ryan, U., Irwin, P., & Oskam, C. (2017). Molecular characterization of Candidatus borrelia tachyglossi’ (Family spirochaetaceae) in echidna ticks, Bothriocroton concolor. International Journal of Systematic and Evolutionary Microbiology, 67(4), 1075–1080. https://doi.org/10.1099/ijsem.0.001929
dc.relation.referencesLondoño, A. F., Acevedo-Gutiérrez, Y., Marín, D., Contreras, V., Díaz, F. J., Valbuena, G., Labruna, M. B., Hidalgo, M., Arboleda, M., Mattar, S., Solari, S., & Rodas, J. D. (2017). Wild and domestic animals likely involved in rickettsial endemic zones of Northwestern Colombia. Ticks and Tick-Borne Diseases, 8(6), 887–894. https://doi.org/10.1016/j.ttbdis.2017.07.007
dc.relation.referencesLópez Y, Muñoz-Leal S, Martínez C, Guzmán C, Calderón A, Martínez J, Galeano K, Muñoz M, Ramírez JD, Faccini-Martínez A, Mattar S. (2023). Molecular Evidence of Borrelia Spp. in Bats from Córdoba Department, Northwest Colombia. Parasites and Vectors 16(1):1–7. https://doi.org/10.1186/s13071-022-05614-y
dc.relation.referencesLópez Y, Robayo-Sánchez LN, Muñoz-Leal S, Aleman A, Arroyave E, Ramírez-Hernández A, et al. (2021) Ornithodoros puertoricensis (Ixodida: Argasidae) Associated With Domestic Fowl in Rural Dwellings From Córdoba Department, Caribbean Colombia. Frontiers in Veterinary Science. 8:(704399), 1-8. https://doi.org/10.3389/fvets.2021.704399
dc.relation.referencesLópez, J. E., Krishnavahjala, A., García, M. N., & Bermúdez, S. (2016). Tick-Borne relapsing fever spirochetes in the Americas. Veterinary Sciences, 3(16), 1–18. https://doi.org/10.3390/vetsci3030016
dc.relation.referencesLópez, J. E., Wilder, H. K., Boyle, W., Drumheller, L. B., Thornton, J. A., Willeford, B., Morgan, T. W., & Varela-Stokes, A. (2013). Sequence Analysis and Serological Responses against Borrelia turicatae BipA, a Putative Species-Specific Antigen. PLoS Neglected Tropical Diseases, 7(9), 3–10. https://doi.org/10.1371/journal.pntd.0002454
dc.relation.referencesLopez, J., Hovius, J. W. R., & Bergström, S. (2021). Pathogenesis of Relapsing Fever. Curr Issues Mol Biol, 42, 415–445. https://doi.org/10.21775/cimb.042.267
dc.relation.referencesMagnarelli, L. A., Anderson, J. F., & Johnson, R. C. (1987). Cross-Reactivity in Serological Tests for Lyme Disease and other’ Spirochetal Infections. Journal of Infectious Diseases, 156(1), 183–188. https://doi.org/10.1093/infdis/156.1.183
dc.relation.referencesMancilla-agrono, L. Y., Banguero-micolta, L. F., Ossa-l, P. A., Ram, E., Castaño-villa, G. J., & Rivera-p, F. A. (2022). Is Borrelia burgdorferi Sensu Stricto in South America ?. First Molecular Evidence of Its Presence in Colombia. Tropical Medicine and Infectious Disease, 7(12), 1–14. https://doi.org/10.3390/tropicalmed7120428.
dc.relation.referencesMangold, A. J., Bargues, M. D., & Mas-Coma, S. (1998). Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research, 84(6), 478–484. https://doi.org/10.1007/s004360050433
dc.relation.referencesMannelli, A., Bertolotti, L., Gern, L., & Gray, J. (2012). Ecology of Borrelia burgdorferi sensu lato in Europe: Transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiology Reviews, 36(4), 837–861. https://doi.org/10.1111/j.1574-6976.2011.00312.x
dc.relation.referencesMans, B. J., & Neitz, A. W. H. (2004). Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochemistry and Molecular Biology, 34, 1–17. https://doi.org/10.1016/j.ibmb.2003.09.002
dc.relation.referencesMargos G, Henningsson AJ, Hepner S, Markowicz M, Sing A, Fingerle V. Borrelia Ecology, Evolution, and Human Disease: A Mosaic of Life. Zoonoses Infect Affect Humans Anim. 2023;1–66. https://doi.org/10.1007/978-3-030-85877-3_49-1
dc.relation.referencesMargos, G., Gatewood, A. G., Aanensen, D. M., Hanincová, K., Terekhova, D., Vollmer, S. A., ... & Kurtenbach, K. (2008). MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proceedings of the National Academy of Sciences, 105(25), 8730-8735. https://doi.org/10.1073/pnas.0800323105
dc.relation.referencesMargos, G., Fedorova, N., Kleinjan, J. E., Hartberger, C., Schwan, T. G., Sing, A., & Fingerle, V. (2017). Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3872. https://doi.org/10.1099/ijsem.0.002214
dc.relation.referencesMargos, G., Fingerle, V., Cutler, S., Gofton, A., Stevenson, B., & Estrada-Peña, A. (2020). Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks and Tick-Borne Diseases, 11(2), 1–23. https://doi.org/10.1016/j.ttbdis.2019.101335
dc.relation.referencesMargos, G., Gofton, A., Wibberg, D., Dangel, A., & Marosevic, D. (2018). The genus Borrelia reloaded. PLoS ONE, 13(12), 1–14. https://doi.org/https://doi.org/10.1371/journal.pone.0208432
dc.relation.referencesMargos, G., Pantchev, N., Globokar, M., Lopez, J., & Rodon, J. (2020). First Cases of Natural Infections with Borrelia hispanica in Two Dogs and a Cat from Europe. Microorganisms, 8(1251), 1–11. https://doi.org/doi:10.3390/microorganisms8081251
dc.relation.referencesMarinkelle, C. J., & Grose, E. S. (1968). Species of Borrelia from a Colombia Bat (Natalus Tumidirostris). Nature, 218(5140), 487. https://doi.org/10.1038/218487a0
dc.relation.referencesMarti Ras, N., Lascola, B., Postic, D., Cutler, S. J., Rodhain, F., Baranton, G., & Raoult, D. (1996). Phylogenesis of relapsing fever Borrelia spp. International Journal of Systematic Bacteriology, 46(4), 859–865. https://doi.org/10.1099/00207713-46-4-859
dc.relation.referencesMartins, J. R., Ceresér, V. H., Corrêa, B. L., & Smith, R. D. (1996). Borrelia theileri: observação em carrapatos do gênero Boophilus microplus no município de Guaíba, RS, Brasil. In Ciência Rural, 26(3), 447–450). https://doi.org/10.1590/s0103-84781996000300018
dc.relation.referencesMattar, S., Lopez, G., & Parra, M. (1998). Searching for Lyme disease in Colombia: a preliminary study on the vector. Journal of Medical Entomology, 35(3), 324–326. https://doi.org/10.1093/jmedent/35.3.324.
dc.relation.referencesMcCoy, B. N., Maïga, O., & Schwan, T. G. (2014). Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks and Tick-Borne Diseases, 5(4), 401–403. https://doi.org/10.1016/j.ttbdis.2014.01.007
dc.relation.referencesMichalski, M. M., Kubiak, K., Szczotko, M., Chajęcka, M., & Dmitryjuk, M. (2020). Molecular detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in ticks collected from dogs in urban areas of North-Eastern Poland. Pathogens, 9(6), 1–11. https://doi.org/10.3390/pathogens9060455
dc.relation.referencesMiranda, J., Mattar, S., Perdomo, K., & Palencia, L. (2009). Seroprevalence of Lyme borreliosis in workers from Cordoba, Colombia. Rev Salud Pública (Bogotá), 11(3), 480–489. https://doi.org/10.1590/S0124-00642009000300016
dc.relation.referencesMorel, N., Salvo, M. N. De, Cicuttin, G., Rossner, V., Thompson, C. S., Mangold, A. J., & Nava, S. (2019). The presence of Borrelia theileri in Argentina. Veterinary Parasitology: Regional Studies and Reports, 17, 1–3. https://doi.org/10.1016/j.vprsr.2019.100314
dc.relation.referencesMuñoz-Leal, S., Faccini-Martínez, Á. A., Pérez-Torres, J., Chala-Quintero, S. M., Herrera-Sepúlveda, M. T., Cuervo, C., & Labruna, M. B. (2021). Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses and Public Health, 68(1), 12–18. https://doi.org/10.1111/zph.12789
dc.relation.referencesMuñoz-Leal, S., Faccini-Martínez, Á. A., Teixeira, B. M., Martins, M. M., Serpa, M. C. A., Oliveira, G. M. B., Jorge, F. R., Pacheco, R. C., Costa, F. B., Luz, H. R., & Labruna, M. B. (2021). Relapsing fever group borreliae in human-biting soft ticks, Brazil. In Emerging Infectious Diseases, 27(1), 321–324. https://doi.org/10.3201/eid2701.200349
dc.relation.referencesMuñoz-Leal, S., Martins, M., Nava, S., Landulfo, G., Simons, S., Rodrigues, V., Ramos, V., Suzin, A., Szabó, M., & Labruna, M. (2020). Ornithodoros cerradoensis n. sp. (Acari: Argasidae), a member of the Ornithodoros talaje (Guérin-Méneville, 1849) group, parasite of rodents in the Brazilian Savannah. Ticks and Tick-Borne Diseases, 11(5), 1–17. https://doi.org/10.1016/j.ttbdis.2020.101497
dc.relation.referencesMuñoz-Leal S, Faccini-Martínez ÁA, Costa FB, Marcili A, Mesquita ETKC, Marques EP, et al. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis 2018;9(4):864–71. https://doi.org/10.1016/j.ttbdis.2018.03.008
dc.relation.referencesMühldorfer, K. (2013). Bats and Bacterial Pathogens: A Review. Zoonoses and Public Health, 60(1), 93–103. https://doi.org/10.1111/j.1863-2378.2012.01536.x
dc.relation.referencesNaddaf, S. R., Ghazinezhad, B., Sedaghat, M. M., Asl, H. M., & Cutler, S. J. (2015). Tickborne relapsing fever in Southern Iran, 2011–2013. Emerging Infectious Diseases, 21(6), 1078–1080. https://doi.org/10.3201/eid2106.141715
dc.relation.referencesNajera-Angulo, L. 1945. “Receptividad de Los Murciélagos Cavernícolas Españoles (Miniopterus Schreibersii, Myotis Myotis, Rhinolophus Euryale y Rh. Hipposideros Minimus) Al Virus de La Fiebre Recurrente Mediterránea.” Boletin De La Real Sociedad Española De Historia Natural 23:217–28.
dc.relation.referencesNieto, N. C., & Teglas, M. B. (2014). Relapsing fever group Borrelia in southern California rodents. Journal of Medical Entomology, 51(5), 1029–1034. https://doi.org/10.1603/ME14021
dc.relation.referencesNieto, N. C., Teglas, M. B., Stewart, K. M., Wasley, T., & Wolff, P. L. (2012). Detection of relapsing fever spirochetes (Borrelia hermsii and Borrelia coriaceae) in free-ranging mule deer (Odocoileus hemionus) from Nevada, United States. Vector-Borne and Zoonotic Diseases, 12(2), 99–105. https://doi.org/10.1089/vbz.2011.0716
dc.relation.referencesNicolle, C., and C. Comte. (1906). “Sur Une Spirollose d’un Chéiroptère (Vespertilio Kuhli).” Annales De L’institut Pasteur 20:311–20.
dc.relation.referencesNunes, M., Parreira, R., Maia, C., Lopes, N., Fingerle, V., & Vieira, M. L. (2016). Molecular identification of Borrelia genus in questing hard ticks from Portugal: Phylogenetic characterization of two novel Relapsing Fever-like Borrelia sp. Infection, Genetics and Evolution, 40, 266–274. https://doi.org/10.1016/j.meegid.2016.03.008
dc.relation.referencesOleaga, A., Perez, R., & Encinas, A. (1990). Distribution and biology of Ornithodoros erraticus in parts of Spain affected by African swine fever. The Veterinary Record, 126, 32–37.
dc.relation.referencesOppler, Z., Keeffe, K., McCoy, K., & Brisson, D. (2021). Evolutionary Genetics of Borrelia. Curr Issues Mol Biol, 42, 97–112. https://doi.org/10.21775/cimb.042.097
dc.relation.referencesOsorno, E. (1940). Las Garrapatas de la república de Colombia. R. Ac. Colomb. Cien. Exact. Fís. Nat, 26(3), 6–24. https://doi.org/https://doi.org/10.7705/biomedica.v26i3.351
dc.relation.referencesOsborne CJ, Crosbie PR, Van Laar TA. Borrelia parkeri in Ornithodoros parkeri (Ixodida: Argasidae) Collected Using Compact Dry Ice Traps in Madera County, California. J Med Entomol. 2019;56(2):579–83. https://doi.org/10.1093/jme/tjy213
dc.relation.referencesOuchene, N., Nebbak, A., Ouchene-Khelifi, N. A., Dahmani, A., Zeroual, F., Khelef, D., Bitam, I., Benakhla, A., & Parola, P. (2020). Molecular detection of avian spirochete Borrelia anserina in Argas persicus ticks in Algeria. Comparative Immunology, Microbiology and Infectious Diseases, 68, 1–4. https://doi.org/10.1016/j.cimid.2019.101408
dc.relation.referencesPalacios R, Osorio LE, Giraldo LE, Torres AJ, Philipp MT, O. M. (1999). Positive IgG Western blot for Borrelia burgdorferi in Colombia. Memorias, 4(94), 499–503. https://doi.org/doi: 10.1590/s0074-02761999000400013.
dc.relation.referencesPampana, E. (1928). Notes on colombian relapsing fever. Ransactions of The Royal Society of Tropical Medicine and Hygiene, 21(4), 315–328. https://doi.org/https://doi.org/10.1016/S0035-9203(28)90027-9
dc.relation.referencesPanetta, J. L., Šíma, R., Calvani, N. E., Hajdušek, O., Chandra, S., Panuccio, J., & Šlapeta, J. (2017). Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasites & vectors, 10(1), 1-13. doi.org/10.1371/journal.pone.0238496
dc.relation.referencesParola, P., Diatta, G., Socolovschi, C., Mediannikov, O., Tall, A., Bassene, H., Trape, J. F., & Raoult, D. (2011). Tick-borne relapsing fever borreliosis, rural senegal. Emerging Infectious Diseases, 17(5), 883–885. https://doi.org/10.3201/eid1705.100573
dc.relation.referencesPaster, B. J., & Dewhirst, F. E. (2000). Phylogenetic Foundation of Spirochetes. J. Mol. Microbiol. Biotechnol, 2(4), 341–344.
dc.relation.referencesPaternina, L. E., Díaz-Olmos, Y., Paternina-Gómez, M., & Bejarano, E. E. (2009). Canis familiaris, un nuevo hospedero de Ornithodoros (A.) puertoricensis fox, 1947 (Acari: Ixodida) en Colombia. Acta Biologica Colombiana, 14(1), 153–160.
dc.relation.referencesPeña-García, V. H., Gómez-Palacio, A. M., Triana-Chávez, O., & Mejía-Jaramillo, A. M. (2014). Eco-epidemiology of chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. American Journal of Tropical Medicine and Hygiene, 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112
dc.relation.referencesPifaano, F. (1941). Investigaciones para el estudio de la fiebre recurrente en Venezuela. Rev. de San. y Asist. Social, VI(6), 787-811.
dc.relation.referencesPrice, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3), 1–10. https://doi.org/10.1371/journal.pone.0009490
dc.relation.referencesQiu, Y., Nakao, R., Hangombe, B. M., Sato, K., Kajihara, M., Kanchela, S., Changula, K., Eto, Y., Ndebe, J., Sasaki, M., Thu, M. J., Takada, A., Sawa, H., Sugimoto, C., & Kawabata, H. (2019). Human borreliosis caused by a new world relapsing fever borrelia-like organism in the old world. Clinical Infectious Diseases, 69(1), 107–112. https://doi.org/10.1093/cid/ciy850
dc.relation.referencesQiu, Y., Squarre, D., Nakamura, Y., Lau, A. C. C., Moonga, L. C., Kawai, N., Ohnuma, A., Hayashida, K., Nakao, R., & Yamagishi, J. (2021). Evidence of Borrelia theileri in Wild and Domestic Animals in the Kafue Ecosystem of Zambia. Microorganisms, 9(11), 1–10. https://doi.org/https://doi.org/10.3390/microorganisms9112405
dc.relation.referencesQuintero, J. C., Mignone, J., Osorio Q, L., Cienfuegos-Gallet, A. V., & Rojas A, C. (2021). Housing conditions linked to tick (Ixodida: Ixodidae) infestation in rural areas of Colombia: A potential risk for rickettsial transmission. Journal of Medical Entomology, 58(1), 1–11. https://doi.org/10.1093/jme/tjaa159
dc.relation.referencesRaffel, S. J., Battisti, J. M., Fischer, R. J., & Schwan, T. G. (2014). Inactivation of Genes for Antigenic Variation in the Relapsing Fever Spirochete Borrelia hermsii Reduces Infectivity in Mice and Transmission by Ticks. PLoS Pathogens, 10(4), 1–17. https://doi.org/10.1371/journal.ppat.1004056
dc.relation.referencesRamírez-hernández, A., Arroyave, E., Faccini-martínez, Á. A., Martínez-diaz, H. C., Betancourt-ruiz, P., Forero-becerra, E. G., Hidalgo, M., Blanton, L. S., & Walker, D. H. (2022). Emerging Tickborne Bacteria in Cattle from Colombia. Emerging Infectious Diseases, 28(10), 2109–2111. https://doi.org/doi.org/10.3201/eid2810.220657
dc.relation.referencesRudenko, N., Golovchenko, M., Belfiore, N. M., Grubhoffer, L., & Oliver, J. H., Jr (2014). Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird. Parasites & vectors, 7, 4. https://doi.org/10.1186/1756-3305-7-4
dc.relation.referencesSánchez, R. S. T., Santodomingo, A. M. S., Muñoz-Leal, S., Silva-De la Fuente, M. C., Llanos-Soto, S., Salas, L. M., & González-Acuña, D. (2020). Rodents as potential reservoirs for Borrelia spp. In northern Chile. Revista Brasileira de Parasitología Veterinaria, 29(2), 1–10. https://doi.org/10.1590/S1984-29612020029
dc.relation.referencesSchröder, N. W. J., Eckert, J., Stübs, G., & Schumann, R. R. (2008). Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids. Immunobiology, 213(3–4), 329–340. https://doi.org/10.1016/j.imbio.2007.11.003
dc.relation.referencesSchwan, T. G., & Raffel, S. J. (2021). Transovarial transmission of Borrelia hermsii by its tick vector and reservoir host Ornithodoros hermsi. Microorganisms, 9(9), 1–18. https://doi.org/10.3390/microorganisms9091978
dc.relation.referencesSchwan, T. G., Raffel, S. J., Schrumpf, M. E., Policastro, P. F., Rawlings, J. A., Lane, R. S., Breitschwerdt, E. B., & Porcella, S. F. (2005). Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. Journal of Clinical Microbiology, 43(8), 3851–3859. https://doi.org/10.1128/JCM.43.8.3851-3859.2005
dc.relation.referencesScott, M. C., Rosen, M. E., Hamer, S. A., Baker, E., Edwards, H., Crowder, C., Tsao, J. I., & Hickling, G. J. (2010). High-prevalence Borrelia miyamotoi Infection Among wild turkeys (Meleagris gallopavo) in Tennessee. Journal of Medical Entomology, 47(6), 1238–1242. https://doi.org/10.1603/ME10075
dc.relation.referencesSeemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
dc.relation.referencesShi, J., Hu, Z., Deng, F., & Shen, S. (2018). Tick-Borne Viruses. Virologica Sinica, 33(1), 21–43. https://doi.org/10.1007/s12250-018-0019-0
dc.relation.referencesSievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1), 135–145. https://doi.org/10.1002/pro.3290
dc.relation.referencesSmith, R., Brener, J., Osorno, M., & Ristic, M. (1978). Pathobiology of Borrelia theileri in the Tropical Boophilus microplus Cattle Tick. Journal of Invertebrate Pathology, 32(2), 182–190. https://doi.org/https://doi.org/10.1016/0022-2011(78)90028-9
dc.relation.referencesSmith, R., Miranpuri, G., Adams, J., & Ahrens, E. (1985). Borrelia theileri: isolation from ticks (Boophilus microplus) and tick-borne transmission between splenectomized calves. American Journal of Veterinary Research, 4(46), 1396–1398.
dc.relation.referencesStanek, G., & Strle, F. (2003). Lyme borreliosis. Lancet, 362(9396), 1639–1647. https://doi.org/10.1016/S0140-6736(03)14798-8
dc.relation.referencesSteere, A. C., Coburn, J., & Glickstein, L. (2004). The emergence of Lyme disease. Journal of Clinical Investigation, 113(8), 1093–1101. https://doi.org/10.1172/JCI21681
dc.relation.referencesSteere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Hovius, J. W. R., Li, X., & Mead, P. S. (2016). Lyme borreliosis. Nature Reviews Disease Primers, 2(1), 1–18. https://doi.org/10.1038/nrdp.2016.90
dc.relation.referencesSteinbrink, A., Brugger, K., Margos, G., Kraiczy, P., & Klimpel, S. (2022). The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 121(3), 781–803. https://doi.org/10.1007/s00436-022-07445-3
dc.relation.referencesSupriyono, Takano, A., Kuwata, R., Shimoda, H., Hadi, U. K., Setiyono, A., Agungpriyono, S., & Maeda, K. (2019). Detection and isolation of tick-borne bacteria (Anaplasma spp., Rickettsia spp., and Borrelia spp.) in Amblyomma varanense ticks on lizard (Varanus salvator). In Microbiology and Immunology 63, (8), 328–333). https://doi.org/10.1111/1348-0421.12721
dc.relation.referencesTakayama, K., Rothenberg, R. J., & Barbour, A. G. (1987). Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infection and Immunity, 55(9), 2311–2313. https://doi.org/10.1128/iai.55.9.2311-2313.1987
dc.relation.referencesTalagrand-Reboul, E., Boyer, P. H., Bergström, S., Vial, L., & Boulanger, N. (2018). Relapsing Fevers: Neglected Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, 8(98), 1–21. https://doi.org/10.3389/fcimb.2018.00098
dc.relation.referencesTaylor, L. H., Latham, S. M., & Woolhouse, M. E. J. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1411), 983–989. https://doi.org/10.1098/rstb.2001.0888
dc.relation.referencesTelford III, S., & Goethert, H. (2021). Perpetuation of Borreliae. Curr Issues Mol Biol, 267–306. https://doi.org/https://doi.org/10.21775/9781913652616.10
dc.relation.referencesThomas, R. S., Santodomingo, A. M. S., Muñoz-Leal, S., Silva-De la Fuente, M. C., Llanos-Soto, S., Salas, L. M., & González-Acuña, D. (2020). Rodents as potential reservoirs for Borrelia spp. In northern Chile. Revista Brasileira de Parasitologia Veterinaria, 29(2), 1–10. https://doi.org/10.1590/S1984-29612020029
dc.relation.referencesTrevisan, G., Cinco, M., Trevisini, S., Di Meo, N., Chersi, K., Ruscio, M., Forgione, P., & Bonin, S. (2021). Borreliae part 1: Borrelia lyme group and echidna‐reptile group. Biology, 10(1036), 1–38. https://doi.org/10.3390/biology10101036
dc.relation.referencesVan Duijvendijk, G., Coipan, C., Wagemakers, A., Fonville, M., Ersöz, J., Oei, A., Földvári, G., Hovius, J., Takken, W., & Sprong, H. (2016). Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites and Vectors, 9(1), 1–7. https://doi.org/10.1186/s13071-016-1389-5
dc.relation.referencesVieira, W., Paula, D. F., Cardoso, L., Luiza, N., Ferreira, G., Carolina, M., Serpa, D. A., Peixoto, F., Filipe, D. O., & Torres, D. (2022). First molecular detection of Borrelia theileri subclinical infection in a cow from Brazil. Veterinary Research Communications. 47(2), 963–967. https://doi.org/10.1007/s11259-022-10020-x
dc.relation.referencesVon Haeseler, A., Schmidt, H. A., Bui, M. Q., & Nguyen, L. T. (2014). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies Molecular. Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
dc.relation.referencesVredevoe, L. K., Stevens, J. R., & Schneider, B. S. (2004). Detection and characterization of Borrelia bissettii in rodents from the central California coast. Journal of Medical Entomology, 41(4), 736–745. https://doi.org/10.1603/0022-2585-41.4.736
dc.relation.referencesWagemakers, A., Jahfari, S., de Wever, B., Spanjaard, L., Starink, M. V., de Vries, H. J. C., Sprong, H., & Hovius, J. W. (2017). Borrelia miyamotoi in vectors and hosts in The Netherlands. Ticks and Tick-Borne Diseases, 8(3), 370–374. https://doi.org/10.1016/j.ttbdis.2016.12.012
dc.relation.referencesWang, G., Van Dam, A. P., Schwartz, I., & Dankert, J. (1999). Molecular typing of Borrelia burgdorferi sensu lato: Taxonomic, epidemiological, and clinical implications. Clinical Microbiology Reviews, 12(4), 633–653. https://doi.org/10.1128/cmr.12.4.633
dc.relation.referencesWarrell, D. A., Perine, P. L., Krause, D. W., Bing, D. H., & MacDougal, S. J. (1983). Pathophysiology and immunology of the Jarisch-Herxheimer-like reaction in louse-borne relapsing fever: Comparison of tetracycline and slow-release penicillin. Journal of Infectious Diseases, 147(5), 898–909. https://doi.org/10.1093/infdis/147.5.898
dc.relation.referencesWebb, J. W. (1980). Parasites of small indian mongoose on St. Croix, Virgin Islands. The Journal of Parasitology, 66(1), 176–178. https://doi.org/10.2307/3280620
dc.relation.referencesWilder, H. K., Raffel, S. J., Barbour, A. G., Porcella, S. F., Sturdevant, D. E., Vaisvil, B., Kapatral, V., Schmitt, D. P., Schwan, T. G., & Lopez, J. E. (2016). Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection. PLoS ONE, 11(2), 1–17. https://doi.org/10.1371/journal.pone.0147707
dc.relation.referencesYparraguirre, L. A., Machado-ferreira, E., Ullmann, A. M. Y. J., Piesman, J., Zeidner, N. S., & Soares, C. A. G. (2007). A Hard Tick Relapsing Fever Group Spirochete in a Brazilian Rhipicephalus (Boophilus) microplus. Vector-Borne and Zoonotic Diseases, 7(4), 717–721. https://doi.org/10.1089/vbz.2007.0144
dc.relation.referencesYadav, N. I. D. H. I., & Upadhyay, R. (2021). Tick saliva toxins, host immune responses and its biological effects. Int J Pharm Pharm Sci, 13(8), 9-19. https://doi.org/10.22159/ijpps.2021v13i8.41444
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cb
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBorrelia
dc.subject.keywordsBats
dc.subject.keywordsTicks
dc.subject.keywordsCanine
dc.subject.keywordsBovine
dc.subject.keywordsRodents
dc.subject.keywordsOpssum
dc.subject.proposalBorrelia
dc.subject.proposalMurcielagos
dc.subject.proposalZarigüeyas
dc.subject.proposalBovinos
dc.subject.proposalCaninos
dc.subject.proposalGarrapatas
dc.subject.proposalRoedores
dc.titleEstudio eco-epidemiológico de infección por Borrelia spp. en animales de compañía, domésticos, silvestres y garrapatas de algunas áreas del Caribe Colombiano
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Documento tesis doctorado, Yesica Lopez, 2-febr-24.pdf
Tamaño:
3.48 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato_Autorización.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones