Publicación: Utilizando biogeografía histórica y modelos de nicho ecológico para analizar la diversificación del grupo de especies Craugastor Fitzingeri
dc.audience | ||
dc.contributor.advisor | Bracho Altamiranda, Faidith | spa |
dc.contributor.advisor | Ortega León, Ángela | spa |
dc.contributor.author | Bracho Altamiranda, Cesia Nela | spa |
dc.date.accessioned | 2023-01-27T21:43:41Z | |
dc.date.available | 2023-01-27T21:43:41Z | |
dc.date.issued | 2023-01-27 | |
dc.description.abstract | Historical biogeography in essence is the study of the geographic distribution of organisms in terms of their evolutionary history. Studying the relationship between geographic space and species diversity provides an important tool to understand at least in part the speciation process, especially in very diverse and widely distributed groups, such as the species of the genus Craugastor; which, not only present particular characteristics of life history, but also of evolutionary history. This introduces great tension when trying to understand how the northsouth recolonization events occurred above oceanic waters. The group of species Craugastor fitzingeri, which includes eight species distributed from northern Central America to northern South America, is of Central American origin; Therefore, six hypotheses related to the biogeographic history of this species (I,II,III,IV), a phylogeographic analysis (V) and environmental comparisons of the niche of said species (VI) were tested. To analyze the phylogenetic relationships and the divergence times of the species of the group, a phylogeny was carried out under Bayesian inference with estimated divergence times. In order to identify the most important events in the diversification of the east and its relationship with the geological and/or biogeographical history of the continent, a ancestral ranges reconstruction was carried out using the S-DIVA method, and the biogeographical regions established by Morrone (2014). Once these two points were analyzed, different paraphyletic groups were observed eventhough the C. fitzingeri clade was monophyletic (Pp=1); therefore, C. longirostris was taken as a case study to review how much molecular variation could be recorded in a widely distributed species. For this, the calculation of genetic distances (Tamura-Nei), a phylogenetic tree under Bayesian inference for the species and an analysis of genetic structure (Fst) were performed. Finally, the environmental niches of the species of the group were compared, using a niche equ ivalence test and a niche similarity test. Hypotheses I and II were fulfilled, since the dispersion was the most important event to explain the diversification of the group, in addition to having correspondence with the geological events of the continent. The phylogenetic relationships of the group were not very clear, but three independent lineages could be distinguished in the Colombian Chocó for C. longirostris, so it is possible that adaptations are taking place at the local level. The Fst values were close to 1, thus confirming that a case of directional selection may be occurring, at least for the Colombian C. longirostris populations. The comparisons in the environmental space, although they were not conclusive, allow us to infer that ecological 10 studies should not be separated from the genetic processes and the phylogeographic patterns of the species. It is also recommended to include more genetic information that covers a greater range of distribution for each species, added to a greater diversity of genes. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Biólogo(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | La biogeografía histórica en esencia es el estudio de la distribución geográfica de los organismos en términos de su historia evolutiva. Estudiar la relación que existe entre el espacio geográfico y la diversidad de especies proporciona una herramienta importante para comprender al menos en parte el proceso de especiación, sobre todo en grupos muy diversos y ampliamente distribuidos cómo son las especies del género Craugastor, que no sólo presentan características particulares de historia de vida, sino también de historia evolutiva; lo cual, introduce gran tensión al intentar entender cómo ocurrieron los eventos de recolonización norte-sur por encima de las aguas oceánicas. El grupo de especies Craugastor fitzingeri, que comprende ocho especies distribuidas desde el norte de América Central hasta el norte de América del Sur, es de origen Centroamericano; por lo cual, se pusieron a prueba seis hipótesis relacionadas con la historia biogeográfica de éste (I,II,III,IV), un análisis filogeográfico (V) y comparaciones ambientales del nicho de dichas especies (VI). Para analizar las relaciones filogenéticas y los tiempos de divergencia de las especies del grupo se realizó una filogenia bajo inferencia Bayesiana con tiempos de divergencia estimados. Para identificar los eventos más importantes en la diversificación del este y su relación con la historia geológica y/o biogeográfica del continente, se realizó una reconstrucción de áreas ancestrales utilizando el método S-DIVA, y las regiones biogeográficas establecidas por Morrone (2014). Una vez analizados estos dos puntos, se observaron diferentes grupos parafiléticos aun cuando el clado C. fitzingeri fue monofilético (Pp=1); por lo cual, se tomó a C. longirostris como caso de estudio para revisar cuánta variación molecular podría registrarse en una especie de amplia distribución. Para esto, se realizó el cálculo de distancias genéticas (Tamura-Nei), un árbol filogenético bajo inferencia Bayesiana para la especie y un análisis de estructura genética (Fst). Finalmente se compararon los nichos ambientales de las especies del grupo, utilizando un test de equivalencia de nicho y un test de similaridad de nicho. Las hipótesis I y II se cumplieron, ya que la dispersión fue el evento más importante para explicar la diversificación del grupo, además de que tuvo correspondencia con los eventos geológicos del continente. Las relaciones filogenéticas del grupo no fueron muy claras, pero se pudieron diferenciar tres linajes independientes en el Chocó Colombiano para C. longirostris, por lo que es posible que se estén dando adaptaciones a nivel local. Los valores de Fst fueron cercanos a 1, por lo que confirmaron que es posible se esté presentando un caso de selección direccional, por lo menos 10 para las poblaciones de C. longirostris colombianas. Las comparaciones en el espacio ambiental, si bien, no fueron concluyentes, permiten inferir que no se deben desligar los estudios ecológicos de los procesos genéticos y los patrones filogeográficos de las especies. Se recomienda, además, incluir más información genética que cubra un mayor rango de distribución para cada especie, sumado a una mayor diversidad de genes. | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN .............................................................................................. 15 | spa |
dc.description.tableofcontents | 2. OBJETIVOS ...................................................................................................... 21 | spa |
dc.description.tableofcontents | 2.1 OBJETIVO GENERAL ................................................................................ 21 | spa |
dc.description.tableofcontents | 2.2 OBJETIVOS ESPECÍFICOS ........................................................................ 21 | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO Y ESTADO DEL ARTE ..................................................... 22 | spa |
dc.description.tableofcontents | 3.1 sobre el grupo de estudio ............................................................................ 22 | spa |
dc.description.tableofcontents | 3.2 Biogeografía ................................................................................................ 16 | spa |
dc.description.tableofcontents | 3.2.1 Biogeografía histórica………………………………………………………. 23 | spa |
dc.description.tableofcontents | 3.3 Biogeografía histórica aplicada a anfibios en el neotrópico ......................... 24 | spa |
dc.description.tableofcontents | 3.4 El nicho ecológico ....................................................................................... 25 | spa |
dc.description.tableofcontents | 3.4.1 Conservadurismo de nicho ecológico .................................................... 25 | spa |
dc.description.tableofcontents | 3.4.2 Similaridad y equivalencia de nicho ....................................................... 26 | spa |
dc.description.tableofcontents | 4. DISEÑO METODOLOGICO .............................................................................. 27 | spa |
dc.description.tableofcontents | 4.1 GRUPO DE ESTUDIO………………………………………………………….. 27 | spa |
dc.description.tableofcontents | 4.2 AREA DE ESTUDIO ................................................................................... 27 | spa |
dc.description.tableofcontents | 4.3 METODOLOGÍA ......................................................................................... 28 | spa |
dc.description.tableofcontents | 4.3.1 Obtención de secuencias ...................................................................... 28 | spa |
dc.description.tableofcontents | 4.3.2 Reconstrucción Filogenética y estimación de tiempos de divergencia . 30 | spa |
dc.description.tableofcontents | 4.3.3 Reconstrucción de áreas ancestrales ................................................... 30 | spa |
dc.description.tableofcontents | 4.3.4 Análisis filogeográfico preliminar de especies de amplia distribución en el grupo de especies C. fitzingeri: Craugastor longirostris un estudio de caso….32 | spa |
dc.description.tableofcontents | 4.3.5 Modelos de nicho…………………………………………………………….33 | spa |
dc.description.tableofcontents | 4.3.5.1 Registros de presencia y variables ambientales…………………33 | spa |
dc.description.tableofcontents | 4.3.5.2 Test de similaridad y equivalencia de nicho………………………33 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN ......................................................................... 35 | spa |
dc.description.tableofcontents | 5.1 Análisis filogenético y tiempos de divergencia ................................... 35 | spa |
dc.description.tableofcontents | 5.2 Biogeografía histórica ............................................................................ 37 | spa |
dc.description.tableofcontents | 5.3 Craugastor longirostris: un estudio de caso ....................................... 41 | spa |
dc.description.tableofcontents | 5.4 Test de similaridad y equivalencia de nicho ........................................ 44 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES ........................................................................................... 41 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES ..................................................................................... 49 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFIA ................................................................................................ 50 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6955 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Biología | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Diversification | eng |
dc.subject.keywords | Biogeography | eng |
dc.subject.keywords | Phylogeny | eng |
dc.subject.keywords | Amphibians | eng |
dc.subject.keywords | Niche | eng |
dc.subject.proposal | Diversificación | spa |
dc.subject.proposal | Biogeografía | spa |
dc.subject.proposal | Filogenia | spa |
dc.subject.proposal | Anfibios | spa |
dc.subject.proposal | Nicho | spa |
dc.title | Utilizando biogeografía histórica y modelos de nicho ecológico para analizar la diversificación del grupo de especies Craugastor Fitzingeri | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Albert, JS, Lovejoy, TR , Crampton, WGR. “Miocene Tectonism and the Separation of Cis- and Trans-Andean River Basins: Evidence from Neotropical Fishes. J. S. Am. Earth Sci. . 2006; 21(1):14- 27. | spa |
dcterms.references | AmphibiaWeb. (2021). <https://amphibiaweb.org> University of California, Berkeley, CA, USA. Accessed 27 Apr 2021. | spa |
dcterms.references | Amezquita A, Lima AP, Jehle R, Castellanos L, Ramos O, Crawford AJ, Hoedl W. Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol. J. Linn. Soc. Lond. 2009; 98(4): 826-838. | spa |
dcterms.references | Beaumont MA. Adaptation and speciation: what can Fst tell us?. Trends Ecol. Evol. 2005; 20(8): 435-440. | spa |
dcterms.references | Beaulieu JM, Tank DC, Donoghue M. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. BMC Evol Biol. 2013; 13: 80. | spa |
dcterms.references | Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard M, Rambaut A, Drummond AJ, Prlic A. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology. 2014; 10(4): e1003537. | spa |
dcterms.references | Brooks DR. and McLennan DA. Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. University of Chicago Press. 1991. | spa |
dcterms.references | Brown J L, Carnaval AC. A tale of two niches: methods, concepts, and evolution. Frontiers of Biogeography. 2019; 11(4): e44158. | spa |
dcterms.references | Brumfield RT, Capparella AP. Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution. 1996; 50(4), 1607-1624. | spa |
dcterms.references | Castroviejo-Fisher S, Guayasamin J, González-Voyer A, Vilá C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 2013; 41(1): 66-80. | spa |
dcterms.references | Cavalli-Sforza LL. Population structure and human evolution. Proceedings of the Royal Society of London. Series B. Biological Sciences. 1966; 164(995): 362-379. | spa |
dcterms.references | Cox CB, Moore PD. Biogeography: an ecological and evolutionary approach. 8th ed. Hoboken, NJ: Wiley; 2010. | spa |
dcterms.references | Crawford AJ, Bermingham E, Carolina PS. The role of tropical dry forest as a long‐term barrier to dispersal: a comparative phylogeographical analysis of dry forest tolerant and intolerant frogs. Molecular Ecology. 2007; 16(22): 4789-4807. | spa |
dcterms.references | Crawford A, Smith E. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution. 2005; 35(3): 536–555. | spa |
dcterms.references | Dobzhansky T. Evolution in the tropics. Am. Sci. 1950; 38: 208-22. | spa |
dcterms.references | D’Angiolella AB, Gamble T, Avila-Pires TCS, Colli GC, Noonan BP, Vitt L. Anolis chrysolepis dumeril and bibron, 1837 (Squamata: Iguanidae), revisited: molecular phylogeny and taxonomy of the Anolis chrysolepis species group. Bulletin Museum Comparative Zoology. 2011; 160(2): 35-63. | spa |
dcterms.references | Donoghue MJ, Moore BR. Toward an integrative historical biogeography. Integrative and comparative biology. 2003; 43(2), 261-270. | spa |
dcterms.references | Duellman WE. The hylid frogs of Middle America, vol. 2. Contrib. Herp. 2001; 18(2): 695–1158. Frost D. Amphibian Species of the World: an Online Reference. Version 6.1. at https://amphibiansoftheworld.amnh.org/index.php. 2021. American Museum of Natural History, New York, USA. | spa |
dcterms.references | Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006; 4: e88. | spa |
dcterms.references | Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Valencia V. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology. 2011; 39(11): 1007-1010. | spa |
dcterms.references | Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution. 2004; 58:1781– 1793. | spa |
dcterms.references | Gregory-Wodzicki KM. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 2000; 112(7): 1091-1105. | spa |
dcterms.references | Haffer J. Some allopatric species pairs of birds in north-western Colombia. The Auk. 1967; 84(3): 343-365. | spa |
dcterms.references | Haffer J. Speciation in Amazonian Forest Birds: Most species probably originated in forest refuges during dry climatic periods. Science. 1969; 165(3889): 131-137. | spa |
dcterms.references | Haffer J. General aspects of the refuge theory. Biological diversification in the tropics. 1982; 6-24. | spa |
dcterms.references | Hernandez A, Escoriza D, Hou M. Patterns of niche diversification in south-east Asian crocodile newts. Zool. Anz. 2018; 276: 86-93. | spa |
dcterms.references | Harvey PH, Pagel MD. The comparative method in evolutionary biology. Vol. 239. Oxford: Oxford university press; 1991. | spa |
dcterms.references | Hedges B. Caribbean Biogeography: Implications of Recent Plate Tectonic Studies. Systematic Zoology. 1982; 31(4): 518–522. | spa |
dcterms.references | Hedges B, Duellman W, Heinicke M. New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa. 2008; 1737(1): 1-182. | spa |
dcterms.references | Helfrich P, Rieb E, Abrami G, Lücking A, & Mehler A. TreeAnnotator: versatile visual annotation of hierarchical text relations. In Proceedings of the eleventh international conference on language resources and evaluation. LREC. 2018. | spa |
dcterms.references | Hedges SB, Kumar S. The timetree of life. Ed. 1. Oxford: OUP Oxford; 2009. | spa |
dcterms.references | Heinicke MP, Duellman WE, Hedges SB. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. PNAS. 2007; 104(24): 10092-10097. | spa |
dcterms.references | Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS biology.2004; 2(10): e312. | spa |
dcterms.references | Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003; 270:S96–S99. | spa |
dcterms.references | Hoorn C, van der Hammer R, de la Parra F, Salamanca S, ter Steege H, Banks H, Lagomarsino LP. Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Review of Palaeobotany and Palynology. 2019; 264, 90-109. | spa |
dcterms.references | Horton BK, Parra M, Saylor JE, Nie J, Mora A, Torres V, Strecker MR. Resolving uplift of the northern Andes using detrital zircon age signatures. GSA today. 2010; 20(7): 4-10. | spa |
dcterms.references | Humphries CJ, Parenti LR. Cladistic Biogeography: Interpreting Patterns of Plant and Animal Distributions. Ed. 2. Oxford: Oxford University Press; 1999. | spa |
dcterms.references | Lamm KS, Redelings BD. Reconstructing ancestral ranges in historical biogeography: properties and prospects. JSE. 2009; 47(5): 369-382. | spa |
dcterms.references | Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992; 132(2): 583-589. | spa |
dcterms.references | Hutchinson GE. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957; 22: 415–427. | spa |
dcterms.references | Köhler G, Sunyer J. A new species of rain frog (genus Craugastor) of the fitzingeri group from Rio San Juan, southeastern Nicaragua (Amphibia, Anura, Leptodactylidae). Senckenb. Biol. 2006; 86: 261–266. | spa |
dcterms.references | Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973; 74(1): 175-195. | spa |
dcterms.references | Leyden BW, Brenner M, Hodell DA, Curtis JH. Late Pleistocene climate in the Central American lowlands. Climate change in continental isotopic records. 1993; 78: 165-178. | spa |
dcterms.references | Löwenberg-Neto P. Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa. 2014; 3802(2): 300-300. | spa |
dcterms.references | Lynch J.D. Two new species of the Eleutherodactylus conspicillatus group (Amphibia: Leptodactylidae) from the Cordillera de Oriental of Colombia.ACCEFYN. 1994; 19:187–193. | spa |
dcterms.references | Lynch JD, Duellman WE. Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador: systematics, ecology, and biogeography. The University of Kansas, Natural History Museum, Special Publication. 1997; 23:1–236. | spa |
dcterms.references | Lynch JD, Myers CW. Frogs of the fitzingeri group of Eleutherodactylus in eastern Panama and Chocoan South America (Leptodactylidae). Bulletin of the American Museum of Natural History. 1983; 175:481–572. | spa |
dcterms.references | Martínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Schmidt DN. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature. 2015; 518(7537): 49-54. | spa |
dcterms.references | Mendoza ÁM, Ospina OE, Cárdenas-Henao H, García-R JC. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 2015; 85: 50-58. | spa |
dcterms.references | Mendoza AM, Bolívar-García W, Vázquez-Domínguez E, Ibáñez R, Parra-Olea G. The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). 2019; PeerJ 7:e6115. | spa |
dcterms.references | Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V. Middle Miocene closure of the Central American seaway. Science. 2015; 348(6231):226-229. | spa |
dcterms.references | Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, Ramírez DA, Hoyos N, Wilson J, Farris D. Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Bulletin. 2012; 124(5–6):780-799. | spa |
dcterms.references | Morrone JJ. Biogeografía de América Latina y el Caribe. M&T–Manuales & Tesis SEA. vol. 3. Zaragoza, 148 pp; 2001. | spa |
dcterms.references | Morrone JJ, Crisci JV. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Syst. 1995; 36: 373–401. | spa |
dcterms.references | Navas CA. Patterns of distribution of anurans in high Andean tropical elevations: insights from integrating biogeography and evolutionary physiology. ICB. 2006; 46(1): 82-91. | spa |
dcterms.references | Nagy ZT, Sonet G, Glaw F, Vences M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. Plos one. 2012. 7(3): e34506. | spa |
dcterms.references | Nicholson KE, Mijares-Urrutia A, Larson A. Molecular phylogenetics of the Anolis onca serie. A case history in retrograde evolution revisited. Journal of Experimental Zoology. Mol. Dev. Evol. 2006; 306B: 450-459. | spa |
dcterms.references | Page RDM. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 1994; 43: 58–77. | spa |
dcterms.references | Pearman PB, D'Amen M, Graham CH, Thuiller W, Zimmermann NE. Within‐taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography. 2010; 33(6): 990-1003. | spa |
dcterms.references | Peterson AT, Soberón J, Sánchez-Cordero V. Conservatism of ecological niches in evolutionary time. Science. 1999; 285(5431): 1265-1267. | spa |
dcterms.references | Pianka ER. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 1966; 100: 33-46. | spa |
dcterms.references | Pianka E. R. Evolutionary ecology. 4th ed. New York: Harper & Row; 1988. | spa |
dcterms.references | Pianka ER. Latitudinal gradients in species diversity. Trends Ecol. Evol. 1989; 4: 223. | spa |
dcterms.references | Pielou EC. Ecological diversity. Wiley, New York: Biogeography; 1975. Pinto-Sánchez N, Ibáñez R, Madriñán S, Sanjur O, Bermingham E, Crawford A. The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 2012; 62(3): 954–972. | spa |
dcterms.references | Posso‐Terranova A, Andrés JA. Complex niche divergence underlies lineage diversification in Oophaga poison frogs. Journal of Biogeography. 2016; 43(10): 2002-2015. | spa |
dcterms.references | R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/; 2022. | spa |
dcterms.references | Real LA, Levin SA. Theoretical advances: the role of theory in the rise of modern ecology. Pages 177-191 in L. A. Real and J. H. Brown, editors. Foundations of ecology: classic papers with commentaries. Chicago, Illinois, USA: University of Chicago Press; 1991. | spa |
dcterms.references | Ree RH, Moore BR, Webb CO, Donoghue MJ. A likelihood framework for inferring the evolution of geographic range of phylogenetic trees. Evolution. 2005; 59: 2299–2311. | spa |
dcterms.references | Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal local extinction and cladogenesis. Syst. Biol. 2008; 57: 4–14. | spa |
dcterms.references | Richard FK, Richard HM. Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). J. Hum. Evol. 1997; 32(2-3): 161-199. | spa |
dcterms.references | Rödder D, Lötters S. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography. 2009; 18(6): 674-687. | spa |
dcterms.references | Rodríguez-Muñoz E, Montes C, Crawford AJ. Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. bioRxiv. 2020. | spa |
dcterms.references | Rohde K. Latitudinal Gradients in Species Diversity: The Search for the Primary Cause. Oikos. 1992; 65(3): 514. | spa |
dcterms.references | Ronquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 1997; 46: 195-203. | spa |
dcterms.references | Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017; 34(12): 3299-3302. | spa |
dcterms.references | Savage JM. The Amphibians and Reptiles of Costa Rica. Chicago: University of Chicago Press; 2002. | spa |
dcterms.references | Savage JM, DeWeese JE. A new species of Leptodactylidae frog, genus Eleutherodactylus, from the Cordillera de Talamanca, Costa Rica. Bull. S. Calif. Acad. Sci. 1979; 78: 107-115. | spa |
dcterms.references | Savage J, Hollingsworth B, Lips K, Jaslow A. A new species of rainfrog (genus Eleutherodactylus) from the Serranía de Tabasará, West–Central Panamá and reanalysis of the Fitzingeri species group. Herpetologica. 2004; 60(4): 519–529. | spa |
dcterms.references | Savage JM, Myers CW. Frogs of the Eleutherodactylus biporcatus group (Leptodactylidae) of Central America and northern South America, including rediscovered, resurrected, and new taxa. Am. Mus. Novit. 2002; 2002(3357): 1-48. | spa |
dcterms.references | Soberón J, Osorio-Olvera L, Peterson T. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev. Mex. Biodivers.. 2017; 88(2): 437-441. Schoener TW. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 1968; 49: 704-726. | spa |
dcterms.references | Soberón J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett.. 2007; 10(12): 1115-1123. | spa |
dcterms.references | Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9): 1312–1313. | spa |
dcterms.references | 59 Stephen S. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 2009; 36(12): 2324–2337. | spa |
dcterms.references | Stuart BL, Schoen SN, Nelson EE, Maher H, Neang T, Rowley JJ, McLeod DS. A new fanged frog in the Limnonectes kuhlii complex (Anura: Dicroglossidae) from northeastern Cambodia. Zootaxa. 2020; 4894(3): 4894. | spa |
dcterms.references | Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993; 10(3): 512-526. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2011; 38:3022-3027. | spa |
dcterms.references | Van Veller MG, Kornet DJ, Zandee M. A posteriori and a priori methodologies for testing hypotheses of causal processes in vicariance biogeography. Cladistics. 2002; 18(2): 207-217. | spa |
dcterms.references | Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol.; int. j. org. evol. 2008; 62(11): 2868-2883. | spa |
dcterms.references | Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010; 33(3), 607-611. | spa |
dcterms.references | Webb S. The Great American Biotic Interchange: patterns and processes. Annals of the Missouri Botanical Garden. 2006; 93(2): 245-257. | spa |
dcterms.references | Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Stephens PR. Niche conservatism as an emerging principle in ecology and conservation biology.Ecol. Lett. 2010; 13(10): 1310-1324. | spa |
dcterms.references | Weir J, Bermingham E, Schluter D. The great American biotic interchange in birds. Proceedings of the National Academy of Sciences. 2009; 106(51): 21737-21742. | spa |
dcterms.references | Wiley EO. Vicariance biogeography. Annu. Rev. Ecol. Syst. 1988; 19: 513–542. | spa |
dcterms.references | Yu Y, Harris AJ, He XJ. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. 2010; 56(2), 848–850. | spa |
dcterms.references | Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phyl. Evol. 2015; 87: 46–49. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- CesiaBracho_InformeFinalTesis.pdf
- Tamaño:
- 1.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Informe final trabajo de grado
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación. (3).pdf
- Tamaño:
- 362.4 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: