Publicación:
Utilizando biogeografía histórica y modelos de nicho ecológico para analizar la diversificación del grupo de especies Craugastor Fitzingeri

dc.audience
dc.contributor.advisorBracho Altamiranda, Faidithspa
dc.contributor.advisorOrtega León, Ángelaspa
dc.contributor.authorBracho Altamiranda, Cesia Nelaspa
dc.date.accessioned2023-01-27T21:43:41Z
dc.date.available2023-01-27T21:43:41Z
dc.date.issued2023-01-27
dc.description.abstractHistorical biogeography in essence is the study of the geographic distribution of organisms in terms of their evolutionary history. Studying the relationship between geographic space and species diversity provides an important tool to understand at least in part the speciation process, especially in very diverse and widely distributed groups, such as the species of the genus Craugastor; which, not only present particular characteristics of life history, but also of evolutionary history. This introduces great tension when trying to understand how the northsouth recolonization events occurred above oceanic waters. The group of species Craugastor fitzingeri, which includes eight species distributed from northern Central America to northern South America, is of Central American origin; Therefore, six hypotheses related to the biogeographic history of this species (I,II,III,IV), a phylogeographic analysis (V) and environmental comparisons of the niche of said species (VI) were tested. To analyze the phylogenetic relationships and the divergence times of the species of the group, a phylogeny was carried out under Bayesian inference with estimated divergence times. In order to identify the most important events in the diversification of the east and its relationship with the geological and/or biogeographical history of the continent, a ancestral ranges reconstruction was carried out using the S-DIVA method, and the biogeographical regions established by Morrone (2014). Once these two points were analyzed, different paraphyletic groups were observed eventhough the C. fitzingeri clade was monophyletic (Pp=1); therefore, C. longirostris was taken as a case study to review how much molecular variation could be recorded in a widely distributed species. For this, the calculation of genetic distances (Tamura-Nei), a phylogenetic tree under Bayesian inference for the species and an analysis of genetic structure (Fst) were performed. Finally, the environmental niches of the species of the group were compared, using a niche equ ivalence test and a niche similarity test. Hypotheses I and II were fulfilled, since the dispersion was the most important event to explain the diversification of the group, in addition to having correspondence with the geological events of the continent. The phylogenetic relationships of the group were not very clear, but three independent lineages could be distinguished in the Colombian Chocó for C. longirostris, so it is possible that adaptations are taking place at the local level. The Fst values were close to 1, thus confirming that a case of directional selection may be occurring, at least for the Colombian C. longirostris populations. The comparisons in the environmental space, although they were not conclusive, allow us to infer that ecological 10 studies should not be separated from the genetic processes and the phylogeographic patterns of the species. It is also recommended to include more genetic information that covers a greater range of distribution for each species, added to a greater diversity of genes.spa
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogo(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenLa biogeografía histórica en esencia es el estudio de la distribución geográfica de los organismos en términos de su historia evolutiva. Estudiar la relación que existe entre el espacio geográfico y la diversidad de especies proporciona una herramienta importante para comprender al menos en parte el proceso de especiación, sobre todo en grupos muy diversos y ampliamente distribuidos cómo son las especies del género Craugastor, que no sólo presentan características particulares de historia de vida, sino también de historia evolutiva; lo cual, introduce gran tensión al intentar entender cómo ocurrieron los eventos de recolonización norte-sur por encima de las aguas oceánicas. El grupo de especies Craugastor fitzingeri, que comprende ocho especies distribuidas desde el norte de América Central hasta el norte de América del Sur, es de origen Centroamericano; por lo cual, se pusieron a prueba seis hipótesis relacionadas con la historia biogeográfica de éste (I,II,III,IV), un análisis filogeográfico (V) y comparaciones ambientales del nicho de dichas especies (VI). Para analizar las relaciones filogenéticas y los tiempos de divergencia de las especies del grupo se realizó una filogenia bajo inferencia Bayesiana con tiempos de divergencia estimados. Para identificar los eventos más importantes en la diversificación del este y su relación con la historia geológica y/o biogeográfica del continente, se realizó una reconstrucción de áreas ancestrales utilizando el método S-DIVA, y las regiones biogeográficas establecidas por Morrone (2014). Una vez analizados estos dos puntos, se observaron diferentes grupos parafiléticos aun cuando el clado C. fitzingeri fue monofilético (Pp=1); por lo cual, se tomó a C. longirostris como caso de estudio para revisar cuánta variación molecular podría registrarse en una especie de amplia distribución. Para esto, se realizó el cálculo de distancias genéticas (Tamura-Nei), un árbol filogenético bajo inferencia Bayesiana para la especie y un análisis de estructura genética (Fst). Finalmente se compararon los nichos ambientales de las especies del grupo, utilizando un test de equivalencia de nicho y un test de similaridad de nicho. Las hipótesis I y II se cumplieron, ya que la dispersión fue el evento más importante para explicar la diversificación del grupo, además de que tuvo correspondencia con los eventos geológicos del continente. Las relaciones filogenéticas del grupo no fueron muy claras, pero se pudieron diferenciar tres linajes independientes en el Chocó Colombiano para C. longirostris, por lo que es posible que se estén dando adaptaciones a nivel local. Los valores de Fst fueron cercanos a 1, por lo que confirmaron que es posible se esté presentando un caso de selección direccional, por lo menos 10 para las poblaciones de C. longirostris colombianas. Las comparaciones en el espacio ambiental, si bien, no fueron concluyentes, permiten inferir que no se deben desligar los estudios ecológicos de los procesos genéticos y los patrones filogeográficos de las especies. Se recomienda, además, incluir más información genética que cubra un mayor rango de distribución para cada especie, sumado a una mayor diversidad de genes.spa
dc.description.tableofcontents1. INTRODUCCIÓN .............................................................................................. 15spa
dc.description.tableofcontents2. OBJETIVOS ...................................................................................................... 21spa
dc.description.tableofcontents2.1 OBJETIVO GENERAL ................................................................................ 21spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECÍFICOS ........................................................................ 21spa
dc.description.tableofcontents3. MARCO TEÓRICO Y ESTADO DEL ARTE ..................................................... 22spa
dc.description.tableofcontents3.1 sobre el grupo de estudio ............................................................................ 22spa
dc.description.tableofcontents3.2 Biogeografía ................................................................................................ 16spa
dc.description.tableofcontents3.2.1 Biogeografía histórica………………………………………………………. 23spa
dc.description.tableofcontents3.3 Biogeografía histórica aplicada a anfibios en el neotrópico ......................... 24spa
dc.description.tableofcontents3.4 El nicho ecológico ....................................................................................... 25spa
dc.description.tableofcontents3.4.1 Conservadurismo de nicho ecológico .................................................... 25spa
dc.description.tableofcontents3.4.2 Similaridad y equivalencia de nicho ....................................................... 26spa
dc.description.tableofcontents4. DISEÑO METODOLOGICO .............................................................................. 27spa
dc.description.tableofcontents4.1 GRUPO DE ESTUDIO………………………………………………………….. 27spa
dc.description.tableofcontents4.2 AREA DE ESTUDIO ................................................................................... 27spa
dc.description.tableofcontents4.3 METODOLOGÍA ......................................................................................... 28spa
dc.description.tableofcontents4.3.1 Obtención de secuencias ...................................................................... 28spa
dc.description.tableofcontents4.3.2 Reconstrucción Filogenética y estimación de tiempos de divergencia . 30spa
dc.description.tableofcontents4.3.3 Reconstrucción de áreas ancestrales ................................................... 30spa
dc.description.tableofcontents4.3.4 Análisis filogeográfico preliminar de especies de amplia distribución en el grupo de especies C. fitzingeri: Craugastor longirostris un estudio de caso….32spa
dc.description.tableofcontents4.3.5 Modelos de nicho…………………………………………………………….33spa
dc.description.tableofcontents4.3.5.1 Registros de presencia y variables ambientales…………………33spa
dc.description.tableofcontents4.3.5.2 Test de similaridad y equivalencia de nicho………………………33spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN ......................................................................... 35spa
dc.description.tableofcontents5.1 Análisis filogenético y tiempos de divergencia ................................... 35spa
dc.description.tableofcontents5.2 Biogeografía histórica ............................................................................ 37spa
dc.description.tableofcontents5.3 Craugastor longirostris: un estudio de caso ....................................... 41spa
dc.description.tableofcontents5.4 Test de similaridad y equivalencia de nicho ........................................ 44spa
dc.description.tableofcontents6. CONCLUSIONES ........................................................................................... 41spa
dc.description.tableofcontents7. RECOMENDACIONES ..................................................................................... 49spa
dc.description.tableofcontents8. BIBLIOGRAFIA ................................................................................................ 50spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6955
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programBiologíaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsDiversificationeng
dc.subject.keywordsBiogeographyeng
dc.subject.keywordsPhylogenyeng
dc.subject.keywordsAmphibianseng
dc.subject.keywordsNicheeng
dc.subject.proposalDiversificaciónspa
dc.subject.proposalBiogeografíaspa
dc.subject.proposalFilogeniaspa
dc.subject.proposalAnfibiosspa
dc.subject.proposalNichospa
dc.titleUtilizando biogeografía histórica y modelos de nicho ecológico para analizar la diversificación del grupo de especies Craugastor Fitzingerispa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAlbert, JS, Lovejoy, TR , Crampton, WGR. “Miocene Tectonism and the Separation of Cis- and Trans-Andean River Basins: Evidence from Neotropical Fishes. J. S. Am. Earth Sci. . 2006; 21(1):14- 27.spa
dcterms.referencesAmphibiaWeb. (2021). <https://amphibiaweb.org> University of California, Berkeley, CA, USA. Accessed 27 Apr 2021.spa
dcterms.referencesAmezquita A, Lima AP, Jehle R, Castellanos L, Ramos O, Crawford AJ, Hoedl W. Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol. J. Linn. Soc. Lond. 2009; 98(4): 826-838.spa
dcterms.referencesBeaumont MA. Adaptation and speciation: what can Fst tell us?. Trends Ecol. Evol. 2005; 20(8): 435-440.spa
dcterms.referencesBeaulieu JM, Tank DC, Donoghue M. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. BMC Evol Biol. 2013; 13: 80.spa
dcterms.referencesBouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard M, Rambaut A, Drummond AJ, Prlic A. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology. 2014; 10(4): e1003537.spa
dcterms.referencesBrooks DR. and McLennan DA. Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. University of Chicago Press. 1991.spa
dcterms.referencesBrown J L, Carnaval AC. A tale of two niches: methods, concepts, and evolution. Frontiers of Biogeography. 2019; 11(4): e44158.spa
dcterms.referencesBrumfield RT, Capparella AP. Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution. 1996; 50(4), 1607-1624.spa
dcterms.referencesCastroviejo-Fisher S, Guayasamin J, González-Voyer A, Vilá C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 2013; 41(1): 66-80.spa
dcterms.referencesCavalli-Sforza LL. Population structure and human evolution. Proceedings of the Royal Society of London. Series B. Biological Sciences. 1966; 164(995): 362-379.spa
dcterms.referencesCox CB, Moore PD. Biogeography: an ecological and evolutionary approach. 8th ed. Hoboken, NJ: Wiley; 2010.spa
dcterms.referencesCrawford AJ, Bermingham E, Carolina PS. The role of tropical dry forest as a long‐term barrier to dispersal: a comparative phylogeographical analysis of dry forest tolerant and intolerant frogs. Molecular Ecology. 2007; 16(22): 4789-4807.spa
dcterms.referencesCrawford A, Smith E. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution. 2005; 35(3): 536–555.spa
dcterms.referencesDobzhansky T. Evolution in the tropics. Am. Sci. 1950; 38: 208-22.spa
dcterms.referencesD’Angiolella AB, Gamble T, Avila-Pires TCS, Colli GC, Noonan BP, Vitt L. Anolis chrysolepis dumeril and bibron, 1837 (Squamata: Iguanidae), revisited: molecular phylogeny and taxonomy of the Anolis chrysolepis species group. Bulletin Museum Comparative Zoology. 2011; 160(2): 35-63.spa
dcterms.referencesDonoghue MJ, Moore BR. Toward an integrative historical biogeography. Integrative and comparative biology. 2003; 43(2), 261-270.spa
dcterms.referencesDuellman WE. The hylid frogs of Middle America, vol. 2. Contrib. Herp. 2001; 18(2): 695–1158. Frost D. Amphibian Species of the World: an Online Reference. Version 6.1. at https://amphibiansoftheworld.amnh.org/index.php. 2021. American Museum of Natural History, New York, USA.spa
dcterms.referencesDrummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006; 4: e88.spa
dcterms.referencesFarris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Valencia V. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology. 2011; 39(11): 1007-1010.spa
dcterms.referencesGraham CH, Ron SR, Santos JC, Schneider CJ, Moritz C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution. 2004; 58:1781– 1793.spa
dcterms.referencesGregory-Wodzicki KM. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 2000; 112(7): 1091-1105.spa
dcterms.referencesHaffer J. Some allopatric species pairs of birds in north-western Colombia. The Auk. 1967; 84(3): 343-365.spa
dcterms.referencesHaffer J. Speciation in Amazonian Forest Birds: Most species probably originated in forest refuges during dry climatic periods. Science. 1969; 165(3889): 131-137.spa
dcterms.referencesHaffer J. General aspects of the refuge theory. Biological diversification in the tropics. 1982; 6-24.spa
dcterms.referencesHernandez A, Escoriza D, Hou M. Patterns of niche diversification in south-east Asian crocodile newts. Zool. Anz. 2018; 276: 86-93.spa
dcterms.referencesHarvey PH, Pagel MD. The comparative method in evolutionary biology. Vol. 239. Oxford: Oxford university press; 1991.spa
dcterms.referencesHedges B. Caribbean Biogeography: Implications of Recent Plate Tectonic Studies. Systematic Zoology. 1982; 31(4): 518–522.spa
dcterms.referencesHedges B, Duellman W, Heinicke M. New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa. 2008; 1737(1): 1-182.spa
dcterms.referencesHelfrich P, Rieb E, Abrami G, Lücking A, & Mehler A. TreeAnnotator: versatile visual annotation of hierarchical text relations. In Proceedings of the eleventh international conference on language resources and evaluation. LREC. 2018.spa
dcterms.referencesHedges SB, Kumar S. The timetree of life. Ed. 1. Oxford: OUP Oxford; 2009.spa
dcterms.referencesHeinicke MP, Duellman WE, Hedges SB. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. PNAS. 2007; 104(24): 10092-10097.spa
dcterms.referencesHebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS biology.2004; 2(10): e312.spa
dcterms.referencesHebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003; 270:S96–S99.spa
dcterms.referencesHoorn C, van der Hammer R, de la Parra F, Salamanca S, ter Steege H, Banks H, Lagomarsino LP. Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Review of Palaeobotany and Palynology. 2019; 264, 90-109.spa
dcterms.referencesHorton BK, Parra M, Saylor JE, Nie J, Mora A, Torres V, Strecker MR. Resolving uplift of the northern Andes using detrital zircon age signatures. GSA today. 2010; 20(7): 4-10.spa
dcterms.referencesHumphries CJ, Parenti LR. Cladistic Biogeography: Interpreting Patterns of Plant and Animal Distributions. Ed. 2. Oxford: Oxford University Press; 1999.spa
dcterms.referencesLamm KS, Redelings BD. Reconstructing ancestral ranges in historical biogeography: properties and prospects. JSE. 2009; 47(5): 369-382.spa
dcterms.referencesHudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992; 132(2): 583-589.spa
dcterms.referencesHutchinson GE. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957; 22: 415–427.spa
dcterms.referencesKöhler G, Sunyer J. A new species of rain frog (genus Craugastor) of the fitzingeri group from Rio San Juan, southeastern Nicaragua (Amphibia, Anura, Leptodactylidae). Senckenb. Biol. 2006; 86: 261–266.spa
dcterms.referencesLewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973; 74(1): 175-195.spa
dcterms.referencesLeyden BW, Brenner M, Hodell DA, Curtis JH. Late Pleistocene climate in the Central American lowlands. Climate change in continental isotopic records. 1993; 78: 165-178.spa
dcterms.referencesLöwenberg-Neto P. Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa. 2014; 3802(2): 300-300.spa
dcterms.referencesLynch J.D. Two new species of the Eleutherodactylus conspicillatus group (Amphibia: Leptodactylidae) from the Cordillera de Oriental of Colombia.ACCEFYN. 1994; 19:187–193.spa
dcterms.referencesLynch JD, Duellman WE. Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador: systematics, ecology, and biogeography. The University of Kansas, Natural History Museum, Special Publication. 1997; 23:1–236.spa
dcterms.referencesLynch JD, Myers CW. Frogs of the fitzingeri group of Eleutherodactylus in eastern Panama and Chocoan South America (Leptodactylidae). Bulletin of the American Museum of Natural History. 1983; 175:481–572.spa
dcterms.referencesMartínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Schmidt DN. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature. 2015; 518(7537): 49-54.spa
dcterms.referencesMendoza ÁM, Ospina OE, Cárdenas-Henao H, García-R JC. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 2015; 85: 50-58.spa
dcterms.referencesMendoza AM, Bolívar-García W, Vázquez-Domínguez E, Ibáñez R, Parra-Olea G. The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). 2019; PeerJ 7:e6115.spa
dcterms.referencesMontes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V. Middle Miocene closure of the Central American seaway. Science. 2015; 348(6231):226-229.spa
dcterms.referencesMontes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, Ramírez DA, Hoyos N, Wilson J, Farris D. Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Bulletin. 2012; 124(5–6):780-799.spa
dcterms.referencesMorrone JJ. Biogeografía de América Latina y el Caribe. M&T–Manuales & Tesis SEA. vol. 3. Zaragoza, 148 pp; 2001.spa
dcterms.referencesMorrone JJ, Crisci JV. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Syst. 1995; 36: 373–401.spa
dcterms.referencesNavas CA. Patterns of distribution of anurans in high Andean tropical elevations: insights from integrating biogeography and evolutionary physiology. ICB. 2006; 46(1): 82-91.spa
dcterms.referencesNagy ZT, Sonet G, Glaw F, Vences M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. Plos one. 2012. 7(3): e34506.spa
dcterms.referencesNicholson KE, Mijares-Urrutia A, Larson A. Molecular phylogenetics of the Anolis onca serie. A case history in retrograde evolution revisited. Journal of Experimental Zoology. Mol. Dev. Evol. 2006; 306B: 450-459.spa
dcterms.referencesPage RDM. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 1994; 43: 58–77.spa
dcterms.referencesPearman PB, D'Amen M, Graham CH, Thuiller W, Zimmermann NE. Within‐taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography. 2010; 33(6): 990-1003.spa
dcterms.referencesPeterson AT, Soberón J, Sánchez-Cordero V. Conservatism of ecological niches in evolutionary time. Science. 1999; 285(5431): 1265-1267.spa
dcterms.referencesPianka ER. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 1966; 100: 33-46.spa
dcterms.referencesPianka E. R. Evolutionary ecology. 4th ed. New York: Harper & Row; 1988.spa
dcterms.referencesPianka ER. Latitudinal gradients in species diversity. Trends Ecol. Evol. 1989; 4: 223.spa
dcterms.referencesPielou EC. Ecological diversity. Wiley, New York: Biogeography; 1975. Pinto-Sánchez N, Ibáñez R, Madriñán S, Sanjur O, Bermingham E, Crawford A. The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 2012; 62(3): 954–972.spa
dcterms.referencesPosso‐Terranova A, Andrés JA. Complex niche divergence underlies lineage diversification in Oophaga poison frogs. Journal of Biogeography. 2016; 43(10): 2002-2015.spa
dcterms.referencesR Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/; 2022.spa
dcterms.referencesReal LA, Levin SA. Theoretical advances: the role of theory in the rise of modern ecology. Pages 177-191 in L. A. Real and J. H. Brown, editors. Foundations of ecology: classic papers with commentaries. Chicago, Illinois, USA: University of Chicago Press; 1991.spa
dcterms.referencesRee RH, Moore BR, Webb CO, Donoghue MJ. A likelihood framework for inferring the evolution of geographic range of phylogenetic trees. Evolution. 2005; 59: 2299–2311.spa
dcterms.referencesRee RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal local extinction and cladogenesis. Syst. Biol. 2008; 57: 4–14.spa
dcterms.referencesRichard FK, Richard HM. Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). J. Hum. Evol. 1997; 32(2-3): 161-199.spa
dcterms.referencesRödder D, Lötters S. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography. 2009; 18(6): 674-687.spa
dcterms.referencesRodríguez-Muñoz E, Montes C, Crawford AJ. Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. bioRxiv. 2020.spa
dcterms.referencesRohde K. Latitudinal Gradients in Species Diversity: The Search for the Primary Cause. Oikos. 1992; 65(3): 514.spa
dcterms.referencesRonquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 1997; 46: 195-203.spa
dcterms.referencesRozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017; 34(12): 3299-3302.spa
dcterms.referencesSavage JM. The Amphibians and Reptiles of Costa Rica. Chicago: University of Chicago Press; 2002.spa
dcterms.referencesSavage JM, DeWeese JE. A new species of Leptodactylidae frog, genus Eleutherodactylus, from the Cordillera de Talamanca, Costa Rica. Bull. S. Calif. Acad. Sci. 1979; 78: 107-115.spa
dcterms.referencesSavage J, Hollingsworth B, Lips K, Jaslow A. A new species of rainfrog (genus Eleutherodactylus) from the Serranía de Tabasará, West–Central Panamá and reanalysis of the Fitzingeri species group. Herpetologica. 2004; 60(4): 519–529.spa
dcterms.referencesSavage JM, Myers CW. Frogs of the Eleutherodactylus biporcatus group (Leptodactylidae) of Central America and northern South America, including rediscovered, resurrected, and new taxa. Am. Mus. Novit. 2002; 2002(3357): 1-48.spa
dcterms.referencesSoberón J, Osorio-Olvera L, Peterson T. Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev. Mex. Biodivers.. 2017; 88(2): 437-441. Schoener TW. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 1968; 49: 704-726.spa
dcterms.referencesSoberón J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett.. 2007; 10(12): 1115-1123.spa
dcterms.referencesStamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9): 1312–1313.spa
dcterms.references59 Stephen S. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 2009; 36(12): 2324–2337.spa
dcterms.referencesStuart BL, Schoen SN, Nelson EE, Maher H, Neang T, Rowley JJ, McLeod DS. A new fanged frog in the Limnonectes kuhlii complex (Anura: Dicroglossidae) from northeastern Cambodia. Zootaxa. 2020; 4894(3): 4894.spa
dcterms.referencesTamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993; 10(3): 512-526. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2011; 38:3022-3027.spa
dcterms.referencesVan Veller MG, Kornet DJ, Zandee M. A posteriori and a priori methodologies for testing hypotheses of causal processes in vicariance biogeography. Cladistics. 2002; 18(2): 207-217.spa
dcterms.referencesWarren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol.; int. j. org. evol. 2008; 62(11): 2868-2883.spa
dcterms.referencesWarren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010; 33(3), 607-611.spa
dcterms.referencesWebb S. The Great American Biotic Interchange: patterns and processes. Annals of the Missouri Botanical Garden. 2006; 93(2): 245-257.spa
dcterms.referencesWiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Stephens PR. Niche conservatism as an emerging principle in ecology and conservation biology.Ecol. Lett. 2010; 13(10): 1310-1324.spa
dcterms.referencesWeir J, Bermingham E, Schluter D. The great American biotic interchange in birds. Proceedings of the National Academy of Sciences. 2009; 106(51): 21737-21742.spa
dcterms.referencesWiley EO. Vicariance biogeography. Annu. Rev. Ecol. Syst. 1988; 19: 513–542.spa
dcterms.referencesYu Y, Harris AJ, He XJ. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. 2010; 56(2), 848–850.spa
dcterms.referencesYu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phyl. Evol. 2015; 87: 46–49.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CesiaBracho_InformeFinalTesis.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Informe final trabajo de grado
No hay miniatura disponible
Nombre:
AutorizaciónPublicación. (3).pdf
Tamaño:
362.4 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: