Publicación: Efecto de pretratamientos térmicos y temperaturas de proceso sobre las propiedades termofísicas, el coeficiente de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina sometidas a fritura por inmersión
dc.contributor.advisor | Romero Barragán, Pedro Elías | spa |
dc.contributor.author | Díaz Ávila, William Yesid | |
dc.date.accessioned | 2023-07-13T14:06:11Z | |
dc.date.available | 2024-06-30 | |
dc.date.available | 2023-07-13T14:06:11Z | |
dc.date.issued | 2023-06-30 | |
dc.description.abstract | Los procesos de fritura por inmersión han sufrido modificaciones durante los últimos años. Se ha realizado modificaciones a las materias primas, el proceso y los equipamientos. Generalmente, esto trae consigo cambios a nivel de eficiencia energética. El objetivo de este trabajo fue determinar el efecto de los pretratamientos térmicos (precocción y prefritura) y las temperaturas del aceite (140-180°C) en las propiedades termofísicas, los coeficientes de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina. Para la determinación de las propiedades termofísicas se tomó la composición próximal de las hamburguesas y la temperatura inicial, y se realizó el cálculo mediante las fórmulas de choi y okos. Los coeficientes de transferencia de calor y transferencia de masa se hallaron a partir de la ley de Fourier y la segunda ley de Fick, respectivamente, con una geometría de placa circular. La absorción de aceite se calculó comparando el contenido de aceite antes de proceso de fritura y luego de este. Los parámetros de color se midieron mediante el uso de espectrofotocolorímetro. Se utilizó un texturómetro para la medición de la dureza. Se tomaron 85 consumidores no entrenados para determinar la preferencia entre las hamburguesas pretratadas y control. La rancidez oxidativa se expresó a través de la medición de la concentración de malonaldehído en un intervalo de 25 días. Las propiedades termofísicas de las hamburguesas estuvieron influenciadas por los pretratamientos aplicados a estas. La precocción mejoró la difusividad térmica de las hamburguesas, presentando una mayor capacidad calorífica y conductividad térmica. La interacción de los pretratamientos con las temperaturas del aceite afectó significativamente los parámetros de transferencia de calor y masa y parámetros de calidad como la absorción de aceite, el color (a* y b*) y la dureza de las hamburguesas. El mayor coeficiente de transferencia de calor se reportó en las hamburguesas precocidas a una temperatura de 140°C. Mientras que los mayores coeficientes transferencia de masa se presentaron cuando se trabajó con las hamburguesas precocidas y prefritas a 180°C. La mayor absorción de aceite se presentó en las hamburguesas precocidas a 180°C. La luminosidad disminuyó con el incremento de la temperaturas y la prueba de Tukey mostró que la media global de las hamburguesas precocidas evidenció un mayor grado de luminosidad al compararlas con las muestras de control y prefritas. Los pretratamientos de precocción y prefrita mostraron la menor dureza al compararlas con el control, para todas las temperaturas de fritura. Los consumidores no establecieron preferencias entre las hamburguesas. Los pretratamientos de precocción y prefritura pueden mejorar la estabilidad oxidativa en almacenamiento al haber presentado menor contenido de malonaldehido en los días evaluados. La precocción puede mejorar las propiedades térmicas de las hamburguesas sin embargo, puede aumentar la absorción de aceite en el producto final. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agroalimentarias | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN ....................................................................................................................... 14 | spa |
dc.description.tableofcontents | ABSTRACT ...................................................................................................................... 16 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ..................................................................................................... 18 | spa |
dc.description.tableofcontents | 2. REVISIÓN DE LITERATURA .................................................................................. 21 | spa |
dc.description.tableofcontents | 2.1. Generalidades de la carne................................................................................. 21 | spa |
dc.description.tableofcontents | 2.2. Hamburguesa..................................................................................................... 22 | spa |
dc.description.tableofcontents | 2.2.1. Formulación ................................................................................................... 23 | spa |
dc.description.tableofcontents | 2.2.2. Proceso de elaboración ................................................................................ 24 | spa |
dc.description.tableofcontents | 2.3. Precocción ......................................................................................................... 25 | spa |
dc.description.tableofcontents | 2.4. Fritura ................................................................................................................. 26 | spa |
dc.description.tableofcontents | 2.4.1. Factores que influyen en la absorción de aceite durante el freído .............. 27 | spa |
dc.description.tableofcontents | 2.4.2. Transferencia de calor .................................................................................. 28 | spa |
dc.description.tableofcontents | 2.4.3. Transferencia de masa ................................................................................. 32 | spa |
dc.description.tableofcontents | 2.5. Propiedades termofísicas .................................................................................. 34 | spa |
dc.description.tableofcontents | 2.6. Parámetros de calidad de la hamburguesa ...................................................... 35 | spa |
dc.description.tableofcontents | 2.6.1. Textura de los productos cárnicos ................................................................ 36 | spa |
dc.description.tableofcontents | 2.6.2. Color de los productos cárnicos.................................................................... 36 | spa |
dc.description.tableofcontents | 2.7. Rancidez oxidativa en productos cárnicos ........................................................ 37 | spa |
dc.description.tableofcontents | 3. OBJETIVOS ............................................................................................................. 39 | spa |
dc.description.tableofcontents | 3.1. Objetivo general ................................................................................................. 39 | spa |
dc.description.tableofcontents | 3.2. Objetivos específicos ......................................................................................... 39 | spa |
dc.description.tableofcontents | 4. MATERIALES Y MÉTODOS ................................................................................... 40 | spa |
dc.description.tableofcontents | 4.1. Adecuación de la materia prima ........................................................................ 40 | spa |
dc.description.tableofcontents | 4.2. Aplicación de los pretratamientos a la carne de hamburguesa ........................ 41 | spa |
dc.description.tableofcontents | 4.3. Determinación de la composición proximal de las hamburguesas ................... 41 | spa |
dc.description.tableofcontents | 4.4. Determinación de las propiedades termofísicas ............................................... 42 | spa |
dc.description.tableofcontents | 4.5. Determinación de los coeficientes de transferencia de calor y masa .............. 42 | spa |
dc.description.tableofcontents | 4.6. Evaluación de las características de calidad de las hamburguesas crudas, precocidas y prefritas ................................................... 43 | spa |
dc.description.tableofcontents | 4.6.1. Absorción de aceite ......................................................................................... 43 | spa |
dc.description.tableofcontents | 4.6.2. Color ................................................................................................................ 43 | spa |
dc.description.tableofcontents | 4.6.3. Textura ............................................................................................................. 44 | spa |
dc.description.tableofcontents | 4.7. Análisis sensorial ............................................................................................... 44 | spa |
dc.description.tableofcontents | 4.7.1. Prueba de preferencia categorizada ............................................................... 44 | spa |
dc.description.tableofcontents | 4.7.2. Prueba de aceptabilidad .................................................................................. 45 | spa |
dc.description.tableofcontents | 4.8. Determinación de la rancidez oxidativa de las hamburguesas ........................ 45 | spa |
dc.description.tableofcontents | 4.9. Análisis estadístico ............................................................................................ 46 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIONES ........................................................................... 47 | spa |
dc.description.tableofcontents | 5.1. Caracterización proximal y determinación de las propiedades termofísicas de la hamburguesa y sus pretratamientos ......................... 47 | spa |
dc.description.tableofcontents | 5.2. Determinación de los coeficientes de transferencia de calor y masa .............. 50 | spa |
dc.description.tableofcontents | 5.2.1. Cinéticas de penetración de calor – Coeficiente convectivo de transferencia de calor ................................................................................................. 51 | spa |
dc.description.tableofcontents | 5.2.2. Cinéticas de transferencia de masa – Pérdidas de humedad ..................... 54 | spa |
dc.description.tableofcontents | 5.3. Influencia de los pretratamientos sobre los parámetros de calidad en las hamburguesas ................................................................................................. 57 | spa |
dc.description.tableofcontents | 5.3.1. Absorción de aceite ....................................................................................... 57 | spa |
dc.description.tableofcontents | 5.3.2. Color de las hamburguesas .......................................................................... 59 | spa |
dc.description.tableofcontents | 5.3.3. Textura .......................................................................................................... 61 | spa |
dc.description.tableofcontents | 5.3.4. Análisis sensorial........................................................................................... 63 | spa |
dc.description.tableofcontents | 5.3.4.1. Prueba de preferencia categorizada ..................................................... 63 | spa |
dc.description.tableofcontents | 5.3.4.2. Prueba de aceptabilidad ........................................................................ 64 | spa |
dc.description.tableofcontents | 5.4. Rancidez oxidativa ............................................................................................. 67 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES .................................................................................................... 70 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES ............................................................................................ 72 | spa |
dc.description.tableofcontents | 8. ANEXOS .................................................................................................................. 73 | spa |
dc.description.tableofcontents | 9. REFERENCIAS BIBLIOGRÁFICAS ...................................................................... 117 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7421 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Agroalimentarias | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Pre-frying | spa |
dc.subject.keywords | Precooking | spa |
dc.subject.keywords | Deep frying | spa |
dc.subject.keywords | Heat transfer | spa |
dc.subject.keywords | Mass transfer | spa |
dc.subject.keywords | Quality parameters | spa |
dc.subject.keywords | Oxidative rancidity | spa |
dc.subject.proposal | Prefritura | spa |
dc.subject.proposal | Precocción | spa |
dc.subject.proposal | Fritura por inmersión | spa |
dc.subject.proposal | Transferencia de calor | spa |
dc.subject.proposal | Transferencia de masa | spa |
dc.subject.proposal | Parámetros de calidad | spa |
dc.subject.proposal | Rancidez oxidativa | spa |
dc.title | Efecto de pretratamientos térmicos y temperaturas de proceso sobre las propiedades termofísicas, el coeficiente de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina sometidas a fritura por inmersión | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abdel-Naeem H.H.S., Sallam K.I., Zaki H.M.B.A. (2021). Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat Science, 181: 108612. | spa |
dcterms.references | Agarwal S., Fulgoni V.L. (2022). Contribution of beef to key nutrient intakes in American adults: an updated analysis with NHANES 2011-2018. Nutrition Research, 105: 105-112. | spa |
dcterms.references | Ağçam E. (2022). Modeling of the changes in some physical and chemical quality attributes of potato chips during frying process. Applied Food Research, 2(1): 100064. | spa |
dcterms.references | Agregán R., Pateiro M., Kumar M., Franco D., Capanoglu E., Dhama K., Lorenzo J.M. (2023). The potential of proteomics in the study of processed meat products. Journal of Proteomics, 270: 104744. | spa |
dcterms.references | Ahromrit A., Nema P.K. (2010). Heat and mass transfer in deep-frying of pumpkin, sweet potato and taro. Journal of Food Science and Technology, 47(6): 632-637. | spa |
dcterms.references | Al-Khusaibi M., Rahman M.S. (2021). Quality Assessment of Frying Oil Degradation. En: Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory. Khan M.S., Shafiur Rahman M. (Eds.). Springer International Publishing: Cham. pp. 329-344. | spa |
dcterms.references | Al Faruq A., Khatun M.H.A., Azam S.M.R., Sarker M.S.H., Mahomud M.S., Jin X. (2022). Recent advances in frying processes for plant-based foods. Food Chemistry Advances, 1: 100086. | spa |
dcterms.references | Almoraie N.M., Saqaan R., Alharthi R., Alamoudi A., Badh L., Shatwan I.M. (2021). Snacking patterns throughout the life span: potential implications on health. Nutrition Research, 91: 81-94. | spa |
dcterms.references | Alugwu S.U., Okonkwo T.M., Ngadi M.O. (2022). Effect of different frying methods on cooking yield, tenderness and sensory properties of chicken breast meat. Asian Food Science Journal, 21(10): 1-14. | spa |
dcterms.references | Alvis A., Vélez C., Arrázola G. (2010). Efecto de las condiciones de freído sobre la pérdida de humedad y ganancia de aceite en trozos de ñame (Dioscorea alata). Ingeniería e Investigación, 30(1): 41-44. | spa |
dcterms.references | Alvis A., Romero P., Arrázola G. (2016). Pérdida de humedad y absorción de aceite durante fritura de tajadas de plátano. Rev.Bio.Agro, 14(2): 119-124. | spa |
dcterms.references | Alvis A., Romero P., Granados C., Torrenegra M., Pajaro-Castro N. (2017). Evaluación del color, las propiedades texturales y sensoriales de salchicha elaborada con carne de babilla (Caiman Crocodilus Fuscus). Revista chilena de nutrición, 44: 89-94. | spa |
dcterms.references | Amiryousefi M.R., Mohebbi M., Khodaiyan F. (2012). Kinetics of Mass Transfer in Microwave Precooked and Deep-Fat Fried Ostrich Meat Plates. Food and Bioprocess Technology, 5(3): 939-946. | spa |
dcterms.references | Ananey-Obiri D., Matthews L., Azahrani M.H., Ibrahim S.A., Galanakis C.M., Tahergorabi R. (2018). Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science & Technology, 80: 167-174. | spa |
dcterms.references | Ananey-Obiri D., Matthews L., Tahergorabi R. (2020). Chicken processing by-product: A source of protein for fat uptake reduction in deep-fried chicken. Food Hydrocolloids, 101: 105500. | spa |
dcterms.references | AOAC. (2003). Official Methods of Analysis of AOAC International. 17th edition. Association of Official Analytical Chemists (AOAC): Maryland, EE.UU. | spa |
dcterms.references | Bagheri R., Ariaii P., Motamedzadegan A. (2021). Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. Journal of Food Measurement and Characterization, 15(1): 256-264. | spa |
dcterms.references | Bahmanyar F., Hosseini S.M., Mirmoghtadaie L., Shojaee-Aliabadi S. (2021). Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Science, 172: 108305. | spa |
dcterms.references | Baraibar M. (2020). Agrofood Globalization: The Global Soybean and Beef Commodity Chains. En: The Political Economy of Agrarian Change in Latin America: Argentina, Paraguay and Uruguay. Baraibar Norberg M. (Ed.). Springer International Publishing: Cham. pp. 117-163. | spa |
dcterms.references | Barros J.C., Munekata P.E.S., de Carvalho F.A.L., Domínguez R., Trindade M.A., Pateiro M., Lorenzo J.M. (2021). Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Science, 173: 108396. | spa |
dcterms.references | Berk Z. (2018). Chapter 24 - Frying, baking, and roasting. En: Food Process Engineering and Technology (Third Edition). Berk Z. (Ed.). Academic Press. pp. 583-590. | spa |
dcterms.references | Bertolo A.P., Kempka A.P., Rigo E., Sehn G.A.R., Cavalheiro D. (2022). Incorporation of natural and mechanically ruptured brewing yeast cells in beef burger to replace textured soy protein. Journal of Food Science and Technology, 59(3): 935-943. | spa |
dcterms.references | Botella-Martínez C., Gea-Quesada A., Sayas-Barberá E., Pérez-Álvarez J.Á., Fernández-López J., Viuda-Martos M. (2022). Improving the lipid profile of beef burgers added with chia oil (Salvia hispanica L.) or hemp oil (Cannabis sativa L.) gelled emulsions as partial animal fat replacers. LWT, 161: 113416. | spa |
dcterms.references | Bouchon P., Dueik V. (2018). Frying of Foods. En: Fruit Preservation: Novel and Conventional Technologies. Rosenthal A., Deliza R., Welti-Chanes J., Barbosa-Cánovas G.V. (Eds.). Springer New York: New York, NY. pp. 275-309. | spa |
dcterms.references | Carballo-Casla A., García-Esquinas E., Lopez-Garcia E., Sotos-Prieto M., Struijk E.A., Caballero F.F., Rodríguez-Artalejo F., Ortolá R. (2021). Consumption of food fried in olive oil and unhealthy aging in a Mediterranean country. Clinical Nutrition, 40(1): 277-285. | spa |
dcterms.references | Carson J.K., Hoang D.K., Lovatt S.J. (2022). Thermophysical properties of meat. En: Reference Module in Food Science. Elsevier. | spa |
dcterms.references | Castillo P.M.M., Díaz L.T., Díaz S.T., Correa D.A., Martelo Gómez R.J. (2021). Mass Transfer during Atmospheric and Vacuum Frying of Chorizo. International Journal of Food Science, 2021: 1-9. | spa |
dcterms.references | Cepeda J.F., Weller C.L., Negahban M., Subbiah J., Thippareddi H. (2013). Heat and Mass Transfer Modeling for Microbial Food Safety Applications in the Meat Industry: A Review. Food Engineering Reviews, 5(2): 57-76. | spa |
dcterms.references | Choi Y., Okos M.R. (1986). Effects of temperature and composition on the thermal properties of food. Food Engineering and Process Aplications, Transport Phenomena, 1: 93-101. | spa |
dcterms.references | Christian M., Gereffi G. (2018). Fast-Food Value Chains and Childhood Obesity: A Global Perspective. En: Pediatric Obesity: Etiology, Pathogenesis and Treatment. Freemark M.S. (Ed.). Springer International Publishing: Cham. pp. 717-730. | spa |
dcterms.references | Clinquart A., Ellies-Oury M.P., Hocquette J.F., Guillier L., Santé-Lhoutellier V., Prache S. (2022). Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal, 16: 100426. | spa |
dcterms.references | Costa H.C.B., Silva D.O., Vieira L.G.M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239: 104-113. | spa |
dcterms.references | Costa R.M., Oliveira F.A.R., Delaney O., Gekas V. (1999). Analysis of the heat transfer coefficient during potato frying. Journal of Food Engineering, 39(3): 293-299. | spa |
dcterms.references | Crank J. (1975). The Mathematics of Diffusion. ed. 2da. Editorial Oxford University Press: Londres. 414 p. | spa |
dcterms.references | Cunha L.C.M., Monteiro M.L.G., Lorenzo J.M., Munekata P.E.S., Muchenje V., de Carvalho F.A.L., Conte-Junior C.A. (2018). Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Research International, 111: 379-390. | spa |
dcterms.references | Das A.K., Nanda P.K., Madane P., Biswas S., Das A., Zhang W., Lorenzo J.M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99: 323-336. | spa |
dcterms.references | Dehghannya J., Ngadi M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116: 786-801. | spa |
dcterms.references | Delgado-Adámez J., Martín-Vertedor D., Ramírez-Bernabé M.d.R., Rocha-Pimienta J. (2019). Tecnología alimentaria. 1era ed. Editorial Síntesis, S.A.: Madrid, España. 230 p. | spa |
dcterms.references | Delgado J., Ansorena D., Van Hecke T., Astiasarán I., De Smet S., Estévez M. (2021). Meat lipids, NaCl and carnitine: Do they unveil the conundrum of the association between red and processed meat intake and cardiovascular diseases?_Invited Review. Meat Science, 171: 108278. | spa |
dcterms.references | Deng S., Bai X., Li Y., Wang B., Kong B., Liu Q., Xia X. (2021). Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Science, 181: 108604. | spa |
dcterms.references | Díaz-Ávila A.L. (2020). Efecto de la deshidratación osmótica y ultrasonido como pretratamiento en el secado de batata morada (Ipomoea batatas L.) en un secador tipo túnel. Tesis de Maestría. Facultad de Ingeniería, Universidad de Córdoba: Córdoba, Colombia. 68 p. | spa |
dcterms.references | Dominguez-Hernandez E., Salaseviciene A., Ertbjerg P. (2018). Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 143: 104-113. | spa |
dcterms.references | FAO. (2020). Perspectivas alimentarias. Resumenes de mercado. Documento de Junio de 2020. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Roma, Italia. 12 p. Disponible en: https://www.fao.org/3/cb0606es/cb0606es.pdf. | spa |
dcterms.references | Farid M. (2019). Chapter 17 - Heat and Mass Transfer in Food Processing. En: Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition). Kutz M. (Ed.). Academic Press. pp. 439-460. | spa |
dcterms.references | Forrest J., Aberle E., Hedrick H., Judge M., Merkel R. (1979). Propiedades de la carne. Fundamentos de Ciencias de la Carne. 1era ed. Editorial Acribia: Zaragoza, España. 364 p. | spa |
dcterms.references | Frakolaki G., Kekes T., Bizymis A.-P., Giannou V., Tzia C. (2023). 9 - Fundamentals of food frying processes. En: High-Temperature Processing of Food Products. Jafari S.M. (Ed.). Woodhead Publishing. pp. 227-291. | spa |
dcterms.references | Gao J., Su Y., Zhu C., Li J., Zheng T., Chitrakar B. (2021a). Reduction of oil uptake in deep-fried apple slices by the combined ultrasonic and ethanol pre-treatment. LWT, 152: 112274. | spa |
dcterms.references | Gao Y., Li M., Zhang L., Wang Z., Yu Q., Han L. (2021b). Preparation of rapeseed oil oleogels based on beeswax and its application in beef heart patties to replace animal fat. LWT, 149: 111986. | spa |
dcterms.references | Gargari A.N., Asefi N., Roufegarinejad L. (2022). Simulation of Heat Transfer in Deep Fat Frying of Foods: an Appropriate Method for Predicting the Temperature Distribution in a Potato Model. Potato Research, 65(4): 933-957. | spa |
dcterms.references | Ghaderi A., Dehghannya J., Ghanbarzadeh B. (2018). Momentum, heat and mass transfer enhancement during deep-fat frying process of potato strips: Influence of convective oil temperature. International Journal of Thermal Sciences, 134: 485-499. | spa |
dcterms.references | Ghimire A., Paudel N., Poudel R. (2022). Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis) meat. LWT, 154: 112690. | spa |
dcterms.references | Gibis M., Schuh V., Weiss J. (2015). Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloids, 45: 236-246. | spa |
dcterms.references | Greenwood P.L. (2021). Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal, 15: 100295. | spa |
dcterms.references | Gruffat D., Bauchart D., Thomas A., Parafita E., Durand D. (2021). Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chemistry, 343: 128476. | spa |
dcterms.references | Habeebrakuman R., Kaki S.S., Bethala Lakshmi Anu P.D., Maloo S., Vellanki B., Mallampalli Sri Lakshmi K. (2019). Influence of flour type on physico-chemical characteristics during deep frying. Journal of Food Science and Technology, 56(7): 3471-3480. | spa |
dcterms.references | Håkansson A. (2019). An investigation of uncertainties in determining convective heat transfer during immersion frying using the general uncertainty management framework. Journal of Food Engineering, 263: 424-436. | spa |
dcterms.references | Hautrive T.P., Piccolo J., Rodrigues A.S., Campagnol P.C.B., Kubota E.H. (2019). Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT, 102: 403-410. | spa |
dcterms.references | Hosseini H., Ghorbani M., Meshginfar N., Mahoonak A.S. (2016). A Review on Frying: Procedure, Fat, Deterioration Progress and Health Hazards. Journal of the American Oil Chemists' Society, 93(4): 445-466. | spa |
dcterms.references | ICONTEC. (2008). Productos cárnicos procesados no enlatados. NTC-1325. Instituto Colombiano de Normas Técnicas (ICONTEC): Colombia. 32 p. Disponible en: https://tienda.icontec.org/gp-industrias-alimentarias-productos-carnicos-procesados-no-enlatados-ntc1325-2008.html. | spa |
dcterms.references | Isleroglu H., Kemerlı-Kalbaran T., Özdestan-Ocak Ö., Üren A., Kaymak-Ertekin F. (2016). Steam Assisted Hybrid Cooking Behavior of Semitendinosus Muscle: Heterocyclic Amines Formation, Soluble Protein Degradation, Fat Retention, Surface Color, and Cooking Value. International Journal of Food Properties, 19(5): 1139-1153. | spa |
dcterms.references | Ismail I., Hwang Y.H., Bakhsh A., Joo S.T. (2019). The alternative approach of low temperature-long time cooking on bovine semitendinosus meat quality. Asian-Australasian Journal of Animal Sciences, 32(2): 282-289. | spa |
dcterms.references | Joardder M.U.H., Masud M.H. (2019). Food Preservation Techniques in Developing Countries. En: Food Preservation in Developing Countries: Challenges and Solutions. Joardder M.U.H., Hasan Masud M. (Eds.). Springer International Publishing: Cham. pp. 67-125. | spa |
dcterms.references | Joshy C.G., Ratheesh G., Ninan G., Ashok Kumar K., Ravishankar C.N. (2020). Optimizing air-frying process conditions for the development of healthy fish snack using response surface methodology under correlated observations. Journal of Food Science and Technology, 57(7): 2651-2658. | spa |
dcterms.references | Jouki M., Shakouri M.J., Khazaei N. (2021). Effects of deep-fat frying and active pretreatments of tomato pectin and paste on physical, textural and nutritional properties of fried frankfurter-type chicken sausage. Journal of Food Measurement and Characterization, 15(6): 5485-5494. | spa |
dcterms.references | Kalschne D., Corso M., Canan C. (2020). Advances in Meat Processing Technologies: Modern Approaches to Meet Consumer Demand. Editorial Bentham Science Publishers: Singapur, Turquía. 148 p. | spa |
dcterms.references | Kang N., Panzone L., Kuznesof S. (2022). The role of cooking in consumers' quality formation: An exploratory study of beef steaks. Meat Science, 186: 108730. | spa |
dcterms.references | Karki R., Bremer P., Silcock P., Oey I. (2022). Effect of Sous vide Processing on Quality Parameters of Beef Short Ribs and Optimisation of Sous vide Time and Temperature Using Third-Order Multiple Regression. Food and Bioprocess Technology, 15(7): 1629-1646. | spa |
dcterms.references | Karwa R. (2020). Mass Transfer. En: Heat and Mass Transfer. Karwa R. (Ed.). Springer Singapore: Singapore. pp. 1041-1066. | spa |
dcterms.references | Kaur P., Singh M., Birwal P. (2021). Differential Scanning Calorimetry (DSC) for the Measurement of Food Thermal Characteristics and Its Relation to Composition and Structure. En: Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory. Khan M.S., Shafiur Rahman M. (Eds.). Springer International Publishing: Cham. pp. 283-328. | spa |
dcterms.references | Kılıç B., Şimşek A., Claus J.R., Karaca E., Bilecen D. (2018). Improving lipid oxidation inhibition in cooked beef hamburger patties during refrigerated storage with encapsulated polyphosphate incorporation. LWT, 92: 290-296. | spa |
dcterms.references | Kim D.N., Lim J., Bae I.Y., Lee H.G., Lee S. (2011). Effect of hydrocolloid coatings on the heat transfer and oil uptake during frying of potato strips. Journal of Food Engineering, 102(4): 317-320. | spa |
dcterms.references | Kim D.N., Min B., Lee S.H., Lee S. (2012). Influence of surface coating with xanthan gum on heat transfer during deep-fat frying of potato strips. Journal of Food Process Engineering, 35(6): 898-904. | spa |
dcterms.references | Kim H.-M., Park M.-K., Mun S.-J., Jung M.-Y., Lee S.-M., Kim Y.-S. (2022). Study on Volatile Profiles, Polycyclic Aromatic Hydrocarbons, and Acrylamide Formed in Welsh Onion (Allium fistulosum L.) Fried in Vegetable Oils at Different Temperatures. Foods 11, 10.3390/foods11091335: 10.3390/foods11091335 | spa |
dcterms.references | Kondjoyan A., Oillic S., Portanguen S., Gros J.-B. (2013). Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Science, 95(2): 336-344. | spa |
dcterms.references | Kovácsné-Oroszvári B., Sjöholm I., Tornberg E. (2005). The mechanisms controlling heat and mass transfer on frying of beefburgers. I. The influence of the composition and comminution of meat raw material. Journal of Food Engineering, 67(4): 499-506. | spa |
dcterms.references | Kozłowicz K., Góral D., Kluza F., Góral M., Andrejko D. (2018). Experimental determination of thermophysical properties by line heat pulse method. Journal of Food Measurement and Characterization, 12(4): 2524-2534. | spa |
dcterms.references | Krepper G., Romeo F., Fernandes D.D.d.S., Diniz P.H.G.D., de Araújo M.C.U., Di Nezio M.S., Pistonesi M.F., Centurión M.E. (2018). Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189: 300-306. | spa |
dcterms.references | Kuffi K.D., Lescouhier S., Nicolai B.M., De Smet S., Geeraerd A., Verboven P. (2018). Modelling postmortem evolution of pH in beef M. biceps femoris under two different cooling regimes. Journal of Food Science and Technology, 55(1): 233-243. | spa |
dcterms.references | Kumar S., Chandra A., Nema P.K., Sharanagat V.S., Kumar S., Gaibimei P. (2022). Optimization of the frying process in relation to quality characteristics of Khaja (A traditional sweet). Journal of Food Science and Technology, 59(11): 4352-4361. | spa |
dcterms.references | Kumar Y., Mehta N., Anurag R.K., Sethi S., Bashir A.A., Kumar V., Narsaiah K. (2019). Improving Meat Safety Through Reformulation Strategies: Natural Antioxidants and Antimicrobials. En: Reformulation as a Strategy for Developing Healthier Food Products: Challenges, Recent Developments and Future Prospects. Raikos V., Ranawana V. (Eds.). Springer International Publishing: Cham. pp. 251-289. | spa |
dcterms.references | Li J., Deng Y., Xu W., Zhao R., Chen T., Wang M., Xu E., Zhou J., Wang W., Liu D. (2023). Multiscale modeling of food thermal processing for insight, comprehension, and utilization of heat and mass transfer: A state-of-the-art review. Trends in Food Science & Technology, 131: 31-45. | spa |
dcterms.references | Li Y., Quan W., Wang J., He Z., Qin F., Wang Z., Zeng M., Chen J. (2021). Effects of ten vegetable oils on heterocyclic amine profiles in roasted beef patties using UPLC-MS/MS combined with principal component analysis. Food Chemistry, 347: 128996. | spa |
dcterms.references | Li Y., Guo Q., Wang K., Nverjiang M., Wu K., Wang X., Xia X. (2022). Monitoring the Changes in Heat Transfer and Water Evaporation of French Fries during Frying to Analyze Its Oil Uptake and Quality. Foods 11, 10.3390/foods11213473: 10.3390/foods11213473 | spa |
dcterms.references | Liberty J.T., Dehghannya J., Ngadi M.O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92: 172-183. | spa |
dcterms.references | Liu J., Han L., Han W., Gui L., Yuan Z., Hou S., Wang Z., Yang B., Raza S.H., et al. (2023). Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis. Molecules 28, 10.3390/molecules28010165: 10.3390/molecules28010165 | spa |
dcterms.references | Liu Y., Tian J., Zhang T., Fan L. (2021). Effects of frying temperature and pore profile on the oil absorption behavior of fried potato chips. Food Chemistry, 345: 128832. | spa |
dcterms.references | Lorenzo J.M., Batlle R., Gómez M. (2014). Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT - Food Science and Technology, 59(1): 181-188. | spa |
dcterms.references | Macharáčková B., Bogdanovičová K., Ježek F., Bednář J., Haruštiaková D., Kameník J. (2021). Cooking loss in retail beef cuts: The effect of muscle type, sex, ageing, pH, salt and cooking method. Meat Science, 171: 108270. | spa |
dcterms.references | Manjunatha S.S., Mathews A.T., Patki P.E. (2019). Modelling the kinetics of mass transfer and change in colour during deep fat frying of green peas (Pisum sativum L.) at different frying temperatures. Heat and Mass Transfer, 55(11): 3087-3102. | spa |
dcterms.references | Marcotte M., Taherian A.R., Karimi Y. (2008). Thermophysical properties of processed meat and poultry products. Journal of Food Engineering, 88(3): 315-322. | spa |
dcterms.references | Martín-Mateos M.J., Ortiz A., Curbelo P., Barraso C., León L., López-Parra M.M., Tejerina D., García-Torres S. (2022). New beef burger formulation with added cherry (pico negro variety) as a potential functional ingredient. Applied Food Research, 2(2): 100132. | spa |
dcterms.references | Mehta B.M. (2015). Nutritional and Toxicological Aspects of the Chemical Changes of Food Components and Nutrients During Heating and Cooking. En: Handbook of Food Chemistry. Cheung P.C.K., Mehta B.M. (Eds.). Springer Berlin Heidelberg: Berlin, Heidelberg. pp. 897-936. | spa |
dcterms.references | Miller K.S., Singh R.P., Farkas B.E. (1994). VISCOSITY and HEAT TRANSFER COEFFICIENTS FOR CANOLA, CORN, PALM, and SOYBEAN OIL. Journal of Food Processing and Preservation, 18(6): 461-472. | spa |
dcterms.references | Moghtadaei M., Soltanizadeh N., Goli S.A.H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108: 368-377. | spa |
dcterms.references | Movahhed S., Ahmadi Chenarbon H. (2018). Moisture Content and Oil Uptake in Potatoes (Cultivar Satina) During Deep-Fat Frying. Potato Research, 61(3): 261-272. | spa |
dcterms.references | Moya J., Lorente-Bailo S., Salvador M.L., Ferrer-Mairal A., Martínez M.A., Calvo B., Grasa J. (2021). Development and validation of a computational model for steak double-sided pan cooking. Journal of Food Engineering, 298: 110498. | spa |
dcterms.references | Mukama M., Ambaw A., Opara U.L. (2020). Thermophysical properties of fruit—a review with reference to postharvest handling. Journal of Food Measurement and Characterization, 14(5): 2917-2937. | spa |
dcterms.references | Munekata P.E.S., Domínguez R., Pateiro M., Andrés S.C., Santos E.M., Fraqueza M.J., Campagnol P.C.B., Lorenzo J.M. (2023). Chapter 3 - Meat and meat products: animal species, products, processing, quality, and shelf life. En: Meat and Meat Replacements. Meiselman H.L., Manuel Lorenzo J. (Eds.). Woodhead Publishing. pp. 45-76. | spa |
dcterms.references | Mykhailov V., Onyshchenko V., Pak A., Bredykhin V., Zahorulko O. (2021). Investigation of frying process of meat sausages in glued casings from intestinal raw materials. Ukrainian Food Journal, 10(2): 387-398. | spa |
dcterms.references | Naghavi E.-A., Dehghannya J., Ghanbarzadeh B. (2018). 3D computational simulation for the prediction of coupled momentum, heat and mass transfer during deep-fat frying of potato strips coated with different concentrations of alginate. Journal of Food Engineering, 235: 64-78. | spa |
dcterms.references | Nestel P.J., Beilin L.J., Clifton P.M., Watts G.F., Mori T.A. (2021). Practical Guidance for Food Consumption to Prevent Cardiovascular Disease. Heart, Lung and Circulation, 30(2): 163-179. | spa |
dcterms.references | Ngadi M.O., Hwang D.K. (2007). Modelling heat transfer and heterocyclic amines formation in meat patties during frying. Agricultural Engineering International, 9: 1-18. | spa |
dcterms.references | Nikmaram N., Budaraju S., Barba F.J., Lorenzo J.M., Cox R.B., Mallikarjunan K., Roohinejad S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Science, 145: 245-255. | spa |
dcterms.references | Niranjan K. (2022). Elements of Mass Transfer. En: Engineering Principles for Food Process and Product Realization. Niranjan K. (Ed.). Springer International Publishing: Cham. pp. 81-102. | spa |
dcterms.references | O'Neill C.M., Cruz-Romero M.C., Duffy G., Kerry J.P. (2019). Comparative effect of different cooking methods on the physicochemical and sensory characteristics of high pressure processed marinated pork chops. Innovative Food Science & Emerging Technologies, 54: 19-27. | spa |
dcterms.references | Owusu-Apenten R., Vieira E. (2023). Meat. En: Elementary Food Science. Owusu-Apenten R., Vieira E.R. (Eds.). Springer International Publishing: Cham. pp. 377-397. | spa |
dcterms.references | Paluri S., Phinney D.M., Heldman D.R. (2018). Recent advances in thermophysical properties—measurements, prediction, and importance. Current Opinion in Food Science, 23: 142-148. | spa |
dcterms.references | Patel N., Toledo-Alvarado H., Bittante G. (2021). Performance of different portable and hand-held near-infrared spectrometers for predicting beef composition and quality characteristics in the abattoir without meat sampling. Meat Science, 178: 108518. | spa |
dcterms.references | Pathare P.B., Roskilly A.P. (2016). Quality and Energy Evaluation in Meat Cooking. Food Engineering Reviews, 8(4): 435-447. | spa |
dcterms.references | Patinho I., Selani M.M., Saldaña E., Bortoluzzi A.C.T., Rios-Mera J.D., da Silva C.M., Kushida M.M., Contreras-Castillo C.J. (2021). Agaricus bisporus mushroom as partial fat replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Science, 172: 108307. | spa |
dcterms.references | Patra A., Prasath V.A., Sutar P.P., Pandian N.K.S., Pandiselvam R. (2022). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162: 112074. | spa |
dcterms.references | Peñaranda I., Garrido M.D., García-Segovia P., Martínez-Monzó J., Igual M. (2023). Enriched Pea Protein Texturing: Physicochemical Characteristics and Application as a Substitute for Meat in Hamburgers. Foods 12, 10.3390/foods12061303: 10.3390/foods12061303 | spa |
dcterms.references | Pethick D.W., Hocquette J.F., Scollan N.D., Dunshea F.R. (2021). Review: Improving the nutritional, sensory and market value of meat products from sheep and cattle. Animal, 15: 100356. | spa |
dcterms.references | Pistón M., Suárez A., Bühl V., Tissot F., Silva J., Panizzolo L. (2020). Influence of cooking processes on Cu, Fe, Mn, Ni, and Zn levels in beef cuts. Journal of Food Composition and Analysis, 94: 103624. | spa |
dcterms.references | Prías L., Díaz R., Mera C. (2017). Formulación de hamburguesa gourmet precocida-congelada, usando carne caprina, perejil (Petroselinum crispum) y albahaca (Ocimum basilicum). Revista Cumbres, 3(2): 9-16. | spa |
dcterms.references | Pujol A., Ospina-E J.C., Alvarez H., Muñoz D.A. (2023). Myoglobin content and oxidative status to understand meat products’ color: Phenomenological based model. Journal of Food Engineering, 348: 111439. | spa |
dcterms.references | Quevedo R., Pedreschi F., Valencia E., Díaz O., Bastías J., Muñoz O. (2018). Kinetic modeling of deterioration of frozen industrial burgers based on oxidative rancidity and color. Journal of Food Processing and Preservation, 42(7): e13655. | spa |
dcterms.references | Raeisi S., Ojagh S.M., Pourashouri P., Salaün F., Quek S.Y. (2021). Shelf-life and quality of chicken nuggets fortified with encapsulated fish oil and garlic essential oil during refrigerated storage. Journal of Food Science and Technology, 58(1): 121-128. | spa |
dcterms.references | Rahimi D., Kashaninejad M., Ziaiifar A.M., Mahoonak A.S. (2018). Effect of infrared final cooking on some physico-chemical and engineering properties of partially fried chicken nugget. Innovative Food Science & Emerging Technologies, 47: 1-8. | spa |
dcterms.references | Ribeiro J.S., Santos M.J.M.C., Silva L.K.R., Pereira L.C.L., Santos I.A., da Silva Lannes S.C., da Silva M.V. (2019). Natural antioxidants used in meat products: A brief review. Meat Science, 148: 181-188. | spa |
dcterms.references | Ribeiro W.O., Ozaki M.M., dos Santos M., Rodríguez A.P., Pflanzer S.B., Pollonio M.A.R. (2021). Interaction between papain and transglutaminase enzymes on the textural softening of burgers. Meat Science, 174: 108421. | spa |
dcterms.references | Romero M.C., Fogar R.A., Doval M.M., Romero A.M., Judis M.A. (2019). Optimisation of cooking properties of healthier beef patties and quality evaluation during frozen storage. Journal of Food Measurement and Characterization, 13(3): 1907-1916. | spa |
dcterms.references | Safari A., Salamat R., Baik O.-D. (2018). A review on heat and mass transfer coefficients during deep-fat frying: Determination methods and influencing factors. Journal of Food Engineering, 230: 114-123. | spa |
dcterms.references | Sahasrabudhe S.N., Staton J.A., Farkas B.E. (2019). Effect of frying oil degradation on surface tension and wettability. LWT, 99: 519-524. | spa |
dcterms.references | Saldanha do Carmo C., Rieder A., Varela P., Zobel H., Dessev T., Nersten S., Gaber S.M., Sahlstrøm S., Knutsen S.H. (2023). Texturized vegetable protein from a faba bean protein concentrate and an oat fraction: Impact on physicochemical, nutritional, textural and sensory properties. Future Foods, 7: 100228. | spa |
dcterms.references | Sandhu J., Parikh A., Takhar P.S. (2016). Experimental determination of convective heat transfer coefficient during controlled frying of potato discs. LWT - Food Science and Technology, 65: 180-184. | spa |
dcterms.references | Sanz-Serrano J., Garayoa R., Vitas A.I., Azqueta A., López de Cerain A. (2021). In vitro mutagenicity assessment of fried meat-based food from mass catering companies. Food and Chemical Toxicology, 156: 112494. | spa |
dcterms.references | Schilling M.W. (2019). Emulsifier Applications in Meat Products. En: Food Emulsifiers and Their Applications. Hasenhuettl G.L., Hartel R.W. (Eds.). Springer International Publishing: Cham. pp. 347-377. | spa |
dcterms.references | Schmid S., Gombert A. (2018). McDonald’s: Is the Fast Food Icon Reaching the Limits of Growth? En: Internationalization of Business: Cases on Strategy Formulation and Implementation. Schmid S. (Ed.). Springer International Publishing: Cham. pp. 155-171. | spa |
dcterms.references | Seo J.-K., Parvin R., Yim D.-G., Zahid M.A., Yang H.-S. (2019). Effects on quality properties of cooked pork sausages with Caesalpinia sappan L. extract during cold storage. Journal of Food Science and Technology, 56(11): 4946-4955. | spa |
dcterms.references | Shahidi F., Hossain A., Pegg R.B. (2022). Cooking of meat | Maillard reaction and browning. En: Reference Module in Food Science. Elsevier. | spa |
dcterms.references | Shen J., Zhang M., Zhao L., Mujumdar A.S., Wang H. (2021). Schemes for enhanced antioxidant stability in frying meat: a review of frying process using single oil and blended oils. Critical Reviews in Food Science and Nutrition: 1-16. | spa |
dcterms.references | Sosa-Morales M.E., Orzuna-Espíritu R., Vélez-Ruiz J.F. (2006). Mass, thermal and quality aspects of deep-fat frying of pork meat. Journal of Food Engineering, 77(3): 731-738. | spa |
dcterms.references | Soto-Jover S., Boluda-Aguilar M., Esnoz-Nicuesa A., Iguaz-Gainza A., López-Gómez A. (2016). Texture, Oil Adsorption and Safety of the European Style Croquettes Manufactured at Industrial Scale. Food Engineering Reviews, 8(2): 181-200. | spa |
dcterms.references | Su Y., Gao J., Tang S., Feng L., Azam S.M.R., Zheng T. (2022). Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes. Critical Reviews in Food Science and Nutrition, 62(19): 5183-5202. | spa |
dcterms.references | Sun A., Wu W., Soladoye O.P., Aluko R.E., Bak K.H., Fu Y., Zhang Y. (2022a). Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Research International, 151: 110823. | spa |
dcterms.references | Sun P., Lin J., Ren X., Zhang B., Liu J., Zhao Y., Li D. (2022b). Effect of Heating on Protein Denaturation, Water State, Microstructure, and Textural Properties of Antarctic Krill (Euphausia superba) Meat. Food and Bioprocess Technology, 15(10): 2313-2326. | spa |
dcterms.references | Tatiyaborworntham N., Oz F., Richards M.P., Wu H. (2022). Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chemistry: X, 14: 100317. | spa |
dcterms.references | Teixeira A., Rodrigues S. (2021). Consumer perceptions towards healthier meat products. Current Opinion in Food Science, 38: 147-154. | spa |
dcterms.references | Thangavelu K.P., Hyland J.J., Henchion M., Kerry J.P., Álvarez C. (2022). Consumer intention towards the phosphate-reduced processed meat products using the extended theory of planned behaviour. Meat Science, 193: 108947. | spa |
dcterms.references | Toledo R.T., Singh R.K., Kong F. (2018). Heat Transfer. En: Fundamentals of Food Process Engineering. Toledo R.T., Singh R.K., Kong F. (Eds.). Springer International Publishing: Cham. pp. 135-182. | spa |
dcterms.references | Torres-Gonzalez J.D., Alvis A., Gallo-García L.A., Acevedo D., Castellanos F., Bouchon P. (2018). Effect of deep fat frying on the mass transfer and color changes of arepa con huevo. Indian Journal of Science and Technology, 11(6): 1-13. | spa |
dcterms.references | Tovar A. (2003). Guía de procesos para la elaboración de productos cárnicos. Editorial Convenio Andrés Bello: Bogotá. 32 p. | spa |
dcterms.references | Trevisan A.J.B., de Almeida Lima D., Sampaio G.R., Soares R.A.M., Markowicz Bastos D.H. (2016). Influence of home cooking conditions on Maillard reaction products in beef. Food Chemistry, 196: 161-169. | spa |
dcterms.references | Udomkun P., Innawong B., Masso C., Klaikreuh D., Swennen R., Fotso A., Alakonya A., Vanlauwe B. (2021). Effects of pressure and temperature on the physico-chemical properties and acrylamide formation of starchy banana chips during the post-frying centrifuge step. Journal of Food Measurement and Characterization, 15(6): 5637-5647. | spa |
dcterms.references | Unruh D.A., Kastner J.J., Jenott J.R., Gragg S.E. (2016). Chapter 7 - Handling of hamburgers and cooking practices. En: Food Hygiene and Toxicology in Ready-to-Eat Foods. Kotzekidou P. (Ed.). Academic Press: San Diego. pp. 107-122. | spa |
dcterms.references | Vaclavik V.A., Christian E.W., Campbell T. (2021). Food Preservation. En: Essentials of Food Science. Vaclavik V.A., Christian E.W., Campbell T. (Eds.). Springer International Publishing: Cham. pp. 327-346. | spa |
dcterms.references | Valdidieso V. (2010). Estudio del efecto de diferentes niveles de carragenato en la jugosidad de la hamburguesa de carne de res. Tesis de Grado para optar a la Licenciatura en Gestión Gastronómica. Escuela Superior Politécnica de Chimborazo: Riobamba, Ecuador. 117 p. | spa |
dcterms.references | van Koerten K.N., Somsen D., Boom R.M., Schutyser M.A.I. (2017). Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient. Journal of Food Engineering, 197: 60-67. | spa |
dcterms.references | Venkateshan S.P. (2021). Special Topics in Heat Transfer. En: Heat Transfer. Venkateshan S.P. (Ed.). Springer International Publishing: Cham. pp. 815-913. | spa |
dcterms.references | Vu G., Zhou H., McClements D.J. (2022). Impact of cooking method on properties of beef and plant-based burgers: Appearance, texture, thermal properties, and shrinkage. Journal of Agriculture and Food Research, 9: 100355. | spa |
dcterms.references | Wang B., Li H., Huang Z., Kong B., Liu Q., Wang H., Xu M., Xia X. (2021). Dynamic changes in the qualities and heterocyclic aromatic amines of roasted pork induced by frying temperature and time. Meat Science, 176: 108457. | spa |
dcterms.references | Witting E. (2001). Evaluación sensorial, una metodología actual para tecnología de alimentos. Vol. 1. Biblioteca digital de la Universidad de Chile: Santiago de Chile. 126 p. | spa |
dcterms.references | Xie Y.-K., Li X.-Y., Chen C., Zhang W.-P., Yu X.-L., Xiao H.-W., Lu F.-Y. (2023). Effects of Steam and Water Blanching on Drying Characteristics, Water Distribution, Microstructure, and Bioactive Components of Gastrodia Elata. Plants 12, 10.3390/plants12061372: 10.3390/plants12061372 | spa |
dcterms.references | Yang D., Wu G., Lu Y., Li P., Qi X., Zhang H., Wang X., Jin Q. (2021). Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control, 128: 108195. | spa |
dcterms.references | Yang X.-y., Xu B.-c., Lei H.-m., Luo X., Zhu L.-x., Zhang Y.-m., Mao Y.-w., Liang R.-r. (2022). Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging. Journal of Integrative Agriculture, 21(8): 2445-2455. | spa |
dcterms.references | Yıldız A., Koray Palazoğlu T., Erdoğdu F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1): 11-17. | spa |
dcterms.references | Younis K., Yousuf O., Qadri O.S., Jahan K., Osama K., Islam R.U. (2022). Incorporation of soluble dietary fiber in comminuted meat products: Special emphasis on changes in textural properties. Bioactive Carbohydrates and Dietary Fibre, 27: 100288. | spa |
dcterms.references | Yu X.-L., Ju H.-Y., Mujumdar A.S., Zheng Z.-A., Wang J., Deng L.-Z., Gao Z.-J., Xiao H.-W. (2019). Experimental and simulation studies of heat transfer in high-humidity hot air impingement blanching (HHAIB) of carrot. Food and Bioproducts Processing, 114: 196-204. | spa |
dcterms.references | Zając M., Zając K., Dybaś J. (2022). The effect of nitric oxide synthase and arginine on the color of cooked meat. Food Chemistry, 373: 131503. | spa |
dcterms.references | Zhang J., Zhang Y., Wang Y., Xing L., Zhang W. (2020a). Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. Innovative Food Science & Emerging Technologies, 62: 102365. | spa |
dcterms.references | Zhang W., Naveena B.M., Jo C., Sakata R., Zhou G., Banerjee R., Nishiumi T. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132: 35-44. | spa |
dcterms.references | Zhang X., Zhang M., Adhikari B. (2020b). Recent developments in frying technologies applied to fresh foods. Trends in Food Science & Technology, 98: 68-81. | spa |
dcterms.references | Ziaiifar A.M., Ranjbar Nedamani A., Aghajanzadeh S. (2021). Chapter 9 - Conductive heat transfer in food processing. En: Engineering Principles of Unit Operations in Food Processing. Jafari S.M. (Ed.). Woodhead Publishing. pp. 281-313. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- diazavilawilliamyesid.pdf
- Tamaño:
- 3.68 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Corrección nombre de trabajo de grado
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación.(0).pdf
- Tamaño:
- 256 KB
- Formato:
- Adobe Portable Document Format
- Descripción: