Publicación:
Efecto de pretratamientos térmicos y temperaturas de proceso sobre las propiedades termofísicas, el coeficiente de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina sometidas a fritura por inmersión

dc.contributor.advisorRomero Barragán, Pedro Elíasspa
dc.contributor.authorDíaz Ávila, William Yesid
dc.date.accessioned2023-07-13T14:06:11Z
dc.date.available2024-06-30
dc.date.available2023-07-13T14:06:11Z
dc.date.issued2023-06-30
dc.description.abstractLos procesos de fritura por inmersión han sufrido modificaciones durante los últimos años. Se ha realizado modificaciones a las materias primas, el proceso y los equipamientos. Generalmente, esto trae consigo cambios a nivel de eficiencia energética. El objetivo de este trabajo fue determinar el efecto de los pretratamientos térmicos (precocción y prefritura) y las temperaturas del aceite (140-180°C) en las propiedades termofísicas, los coeficientes de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina. Para la determinación de las propiedades termofísicas se tomó la composición próximal de las hamburguesas y la temperatura inicial, y se realizó el cálculo mediante las fórmulas de choi y okos. Los coeficientes de transferencia de calor y transferencia de masa se hallaron a partir de la ley de Fourier y la segunda ley de Fick, respectivamente, con una geometría de placa circular. La absorción de aceite se calculó comparando el contenido de aceite antes de proceso de fritura y luego de este. Los parámetros de color se midieron mediante el uso de espectrofotocolorímetro. Se utilizó un texturómetro para la medición de la dureza. Se tomaron 85 consumidores no entrenados para determinar la preferencia entre las hamburguesas pretratadas y control. La rancidez oxidativa se expresó a través de la medición de la concentración de malonaldehído en un intervalo de 25 días. Las propiedades termofísicas de las hamburguesas estuvieron influenciadas por los pretratamientos aplicados a estas. La precocción mejoró la difusividad térmica de las hamburguesas, presentando una mayor capacidad calorífica y conductividad térmica. La interacción de los pretratamientos con las temperaturas del aceite afectó significativamente los parámetros de transferencia de calor y masa y parámetros de calidad como la absorción de aceite, el color (a* y b*) y la dureza de las hamburguesas. El mayor coeficiente de transferencia de calor se reportó en las hamburguesas precocidas a una temperatura de 140°C. Mientras que los mayores coeficientes transferencia de masa se presentaron cuando se trabajó con las hamburguesas precocidas y prefritas a 180°C. La mayor absorción de aceite se presentó en las hamburguesas precocidas a 180°C. La luminosidad disminuyó con el incremento de la temperaturas y la prueba de Tukey mostró que la media global de las hamburguesas precocidas evidenció un mayor grado de luminosidad al compararlas con las muestras de control y prefritas. Los pretratamientos de precocción y prefrita mostraron la menor dureza al compararlas con el control, para todas las temperaturas de fritura. Los consumidores no establecieron preferencias entre las hamburguesas. Los pretratamientos de precocción y prefritura pueden mejorar la estabilidad oxidativa en almacenamiento al haber presentado menor contenido de malonaldehido en los días evaluados. La precocción puede mejorar las propiedades térmicas de las hamburguesas sin embargo, puede aumentar la absorción de aceite en el producto final.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agroalimentariasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN ....................................................................................................................... 14spa
dc.description.tableofcontentsABSTRACT ...................................................................................................................... 16spa
dc.description.tableofcontents1. INTRODUCCIÓN ..................................................................................................... 18spa
dc.description.tableofcontents2. REVISIÓN DE LITERATURA .................................................................................. 21spa
dc.description.tableofcontents2.1. Generalidades de la carne................................................................................. 21spa
dc.description.tableofcontents2.2. Hamburguesa..................................................................................................... 22spa
dc.description.tableofcontents2.2.1. Formulación ................................................................................................... 23spa
dc.description.tableofcontents2.2.2. Proceso de elaboración ................................................................................ 24spa
dc.description.tableofcontents2.3. Precocción ......................................................................................................... 25spa
dc.description.tableofcontents2.4. Fritura ................................................................................................................. 26spa
dc.description.tableofcontents2.4.1. Factores que influyen en la absorción de aceite durante el freído .............. 27spa
dc.description.tableofcontents2.4.2. Transferencia de calor .................................................................................. 28spa
dc.description.tableofcontents2.4.3. Transferencia de masa ................................................................................. 32spa
dc.description.tableofcontents2.5. Propiedades termofísicas .................................................................................. 34spa
dc.description.tableofcontents2.6. Parámetros de calidad de la hamburguesa ...................................................... 35spa
dc.description.tableofcontents2.6.1. Textura de los productos cárnicos ................................................................ 36spa
dc.description.tableofcontents2.6.2. Color de los productos cárnicos.................................................................... 36spa
dc.description.tableofcontents2.7. Rancidez oxidativa en productos cárnicos ........................................................ 37spa
dc.description.tableofcontents3. OBJETIVOS ............................................................................................................. 39spa
dc.description.tableofcontents3.1. Objetivo general ................................................................................................. 39spa
dc.description.tableofcontents3.2. Objetivos específicos ......................................................................................... 39spa
dc.description.tableofcontents4. MATERIALES Y MÉTODOS ................................................................................... 40spa
dc.description.tableofcontents4.1. Adecuación de la materia prima ........................................................................ 40spa
dc.description.tableofcontents4.2. Aplicación de los pretratamientos a la carne de hamburguesa ........................ 41spa
dc.description.tableofcontents4.3. Determinación de la composición proximal de las hamburguesas ................... 41spa
dc.description.tableofcontents4.4. Determinación de las propiedades termofísicas ............................................... 42spa
dc.description.tableofcontents4.5. Determinación de los coeficientes de transferencia de calor y masa .............. 42spa
dc.description.tableofcontents4.6. Evaluación de las características de calidad de las hamburguesas crudas, precocidas y prefritas ................................................... 43spa
dc.description.tableofcontents4.6.1. Absorción de aceite ......................................................................................... 43spa
dc.description.tableofcontents4.6.2. Color ................................................................................................................ 43spa
dc.description.tableofcontents4.6.3. Textura ............................................................................................................. 44spa
dc.description.tableofcontents4.7. Análisis sensorial ............................................................................................... 44spa
dc.description.tableofcontents4.7.1. Prueba de preferencia categorizada ............................................................... 44spa
dc.description.tableofcontents4.7.2. Prueba de aceptabilidad .................................................................................. 45spa
dc.description.tableofcontents4.8. Determinación de la rancidez oxidativa de las hamburguesas ........................ 45spa
dc.description.tableofcontents4.9. Análisis estadístico ............................................................................................ 46spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIONES ........................................................................... 47spa
dc.description.tableofcontents5.1. Caracterización proximal y determinación de las propiedades termofísicas de la hamburguesa y sus pretratamientos ......................... 47spa
dc.description.tableofcontents5.2. Determinación de los coeficientes de transferencia de calor y masa .............. 50spa
dc.description.tableofcontents5.2.1. Cinéticas de penetración de calor – Coeficiente convectivo de transferencia de calor ................................................................................................. 51spa
dc.description.tableofcontents5.2.2. Cinéticas de transferencia de masa – Pérdidas de humedad ..................... 54spa
dc.description.tableofcontents5.3. Influencia de los pretratamientos sobre los parámetros de calidad en las hamburguesas ................................................................................................. 57spa
dc.description.tableofcontents5.3.1. Absorción de aceite ....................................................................................... 57spa
dc.description.tableofcontents5.3.2. Color de las hamburguesas .......................................................................... 59spa
dc.description.tableofcontents5.3.3. Textura .......................................................................................................... 61spa
dc.description.tableofcontents5.3.4. Análisis sensorial........................................................................................... 63spa
dc.description.tableofcontents5.3.4.1. Prueba de preferencia categorizada ..................................................... 63spa
dc.description.tableofcontents5.3.4.2. Prueba de aceptabilidad ........................................................................ 64spa
dc.description.tableofcontents5.4. Rancidez oxidativa ............................................................................................. 67spa
dc.description.tableofcontents6. CONCLUSIONES .................................................................................................... 70spa
dc.description.tableofcontents7. RECOMENDACIONES ............................................................................................ 72spa
dc.description.tableofcontents8. ANEXOS .................................................................................................................. 73spa
dc.description.tableofcontents9. REFERENCIAS BIBLIOGRÁFICAS ...................................................................... 117spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7421
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Agroalimentariasspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPre-fryingspa
dc.subject.keywordsPrecookingspa
dc.subject.keywordsDeep fryingspa
dc.subject.keywordsHeat transferspa
dc.subject.keywordsMass transferspa
dc.subject.keywordsQuality parametersspa
dc.subject.keywordsOxidative rancidityspa
dc.subject.proposalPrefrituraspa
dc.subject.proposalPrecocciónspa
dc.subject.proposalFritura por inmersiónspa
dc.subject.proposalTransferencia de calorspa
dc.subject.proposalTransferencia de masaspa
dc.subject.proposalParámetros de calidadspa
dc.subject.proposalRancidez oxidativaspa
dc.titleEfecto de pretratamientos térmicos y temperaturas de proceso sobre las propiedades termofísicas, el coeficiente de transferencia de calor y masa y la calidad final en hamburguesas de pasta fina sometidas a fritura por inmersiónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbdel-Naeem H.H.S., Sallam K.I., Zaki H.M.B.A. (2021). Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat Science, 181: 108612.spa
dcterms.referencesAgarwal S., Fulgoni V.L. (2022). Contribution of beef to key nutrient intakes in American adults: an updated analysis with NHANES 2011-2018. Nutrition Research, 105: 105-112.spa
dcterms.referencesAğçam E. (2022). Modeling of the changes in some physical and chemical quality attributes of potato chips during frying process. Applied Food Research, 2(1): 100064.spa
dcterms.referencesAgregán R., Pateiro M., Kumar M., Franco D., Capanoglu E., Dhama K., Lorenzo J.M. (2023). The potential of proteomics in the study of processed meat products. Journal of Proteomics, 270: 104744.spa
dcterms.referencesAhromrit A., Nema P.K. (2010). Heat and mass transfer in deep-frying of pumpkin, sweet potato and taro. Journal of Food Science and Technology, 47(6): 632-637.spa
dcterms.referencesAl-Khusaibi M., Rahman M.S. (2021). Quality Assessment of Frying Oil Degradation. En: Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory. Khan M.S., Shafiur Rahman M. (Eds.). Springer International Publishing: Cham. pp. 329-344.spa
dcterms.referencesAl Faruq A., Khatun M.H.A., Azam S.M.R., Sarker M.S.H., Mahomud M.S., Jin X. (2022). Recent advances in frying processes for plant-based foods. Food Chemistry Advances, 1: 100086.spa
dcterms.referencesAlmoraie N.M., Saqaan R., Alharthi R., Alamoudi A., Badh L., Shatwan I.M. (2021). Snacking patterns throughout the life span: potential implications on health. Nutrition Research, 91: 81-94.spa
dcterms.referencesAlugwu S.U., Okonkwo T.M., Ngadi M.O. (2022). Effect of different frying methods on cooking yield, tenderness and sensory properties of chicken breast meat. Asian Food Science Journal, 21(10): 1-14.spa
dcterms.referencesAlvis A., Vélez C., Arrázola G. (2010). Efecto de las condiciones de freído sobre la pérdida de humedad y ganancia de aceite en trozos de ñame (Dioscorea alata). Ingeniería e Investigación, 30(1): 41-44.spa
dcterms.referencesAlvis A., Romero P., Arrázola G. (2016). Pérdida de humedad y absorción de aceite durante fritura de tajadas de plátano. Rev.Bio.Agro, 14(2): 119-124.spa
dcterms.referencesAlvis A., Romero P., Granados C., Torrenegra M., Pajaro-Castro N. (2017). Evaluación del color, las propiedades texturales y sensoriales de salchicha elaborada con carne de babilla (Caiman Crocodilus Fuscus). Revista chilena de nutrición, 44: 89-94.spa
dcterms.referencesAmiryousefi M.R., Mohebbi M., Khodaiyan F. (2012). Kinetics of Mass Transfer in Microwave Precooked and Deep-Fat Fried Ostrich Meat Plates. Food and Bioprocess Technology, 5(3): 939-946.spa
dcterms.referencesAnaney-Obiri D., Matthews L., Azahrani M.H., Ibrahim S.A., Galanakis C.M., Tahergorabi R. (2018). Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science & Technology, 80: 167-174.spa
dcterms.referencesAnaney-Obiri D., Matthews L., Tahergorabi R. (2020). Chicken processing by-product: A source of protein for fat uptake reduction in deep-fried chicken. Food Hydrocolloids, 101: 105500.spa
dcterms.referencesAOAC. (2003). Official Methods of Analysis of AOAC International. 17th edition. Association of Official Analytical Chemists (AOAC): Maryland, EE.UU.spa
dcterms.referencesBagheri R., Ariaii P., Motamedzadegan A. (2021). Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. Journal of Food Measurement and Characterization, 15(1): 256-264.spa
dcterms.referencesBahmanyar F., Hosseini S.M., Mirmoghtadaie L., Shojaee-Aliabadi S. (2021). Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Science, 172: 108305.spa
dcterms.referencesBaraibar M. (2020). Agrofood Globalization: The Global Soybean and Beef Commodity Chains. En: The Political Economy of Agrarian Change in Latin America: Argentina, Paraguay and Uruguay. Baraibar Norberg M. (Ed.). Springer International Publishing: Cham. pp. 117-163.spa
dcterms.referencesBarros J.C., Munekata P.E.S., de Carvalho F.A.L., Domínguez R., Trindade M.A., Pateiro M., Lorenzo J.M. (2021). Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Science, 173: 108396.spa
dcterms.referencesBerk Z. (2018). Chapter 24 - Frying, baking, and roasting. En: Food Process Engineering and Technology (Third Edition). Berk Z. (Ed.). Academic Press. pp. 583-590.spa
dcterms.referencesBertolo A.P., Kempka A.P., Rigo E., Sehn G.A.R., Cavalheiro D. (2022). Incorporation of natural and mechanically ruptured brewing yeast cells in beef burger to replace textured soy protein. Journal of Food Science and Technology, 59(3): 935-943.spa
dcterms.referencesBotella-Martínez C., Gea-Quesada A., Sayas-Barberá E., Pérez-Álvarez J.Á., Fernández-López J., Viuda-Martos M. (2022). Improving the lipid profile of beef burgers added with chia oil (Salvia hispanica L.) or hemp oil (Cannabis sativa L.) gelled emulsions as partial animal fat replacers. LWT, 161: 113416.spa
dcterms.referencesBouchon P., Dueik V. (2018). Frying of Foods. En: Fruit Preservation: Novel and Conventional Technologies. Rosenthal A., Deliza R., Welti-Chanes J., Barbosa-Cánovas G.V. (Eds.). Springer New York: New York, NY. pp. 275-309.spa
dcterms.referencesCarballo-Casla A., García-Esquinas E., Lopez-Garcia E., Sotos-Prieto M., Struijk E.A., Caballero F.F., Rodríguez-Artalejo F., Ortolá R. (2021). Consumption of food fried in olive oil and unhealthy aging in a Mediterranean country. Clinical Nutrition, 40(1): 277-285.spa
dcterms.referencesCarson J.K., Hoang D.K., Lovatt S.J. (2022). Thermophysical properties of meat. En: Reference Module in Food Science. Elsevier.spa
dcterms.referencesCastillo P.M.M., Díaz L.T., Díaz S.T., Correa D.A., Martelo Gómez R.J. (2021). Mass Transfer during Atmospheric and Vacuum Frying of Chorizo. International Journal of Food Science, 2021: 1-9.spa
dcterms.referencesCepeda J.F., Weller C.L., Negahban M., Subbiah J., Thippareddi H. (2013). Heat and Mass Transfer Modeling for Microbial Food Safety Applications in the Meat Industry: A Review. Food Engineering Reviews, 5(2): 57-76.spa
dcterms.referencesChoi Y., Okos M.R. (1986). Effects of temperature and composition on the thermal properties of food. Food Engineering and Process Aplications, Transport Phenomena, 1: 93-101.spa
dcterms.referencesChristian M., Gereffi G. (2018). Fast-Food Value Chains and Childhood Obesity: A Global Perspective. En: Pediatric Obesity: Etiology, Pathogenesis and Treatment. Freemark M.S. (Ed.). Springer International Publishing: Cham. pp. 717-730.spa
dcterms.referencesClinquart A., Ellies-Oury M.P., Hocquette J.F., Guillier L., Santé-Lhoutellier V., Prache S. (2022). Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal, 16: 100426.spa
dcterms.referencesCosta H.C.B., Silva D.O., Vieira L.G.M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239: 104-113.spa
dcterms.referencesCosta R.M., Oliveira F.A.R., Delaney O., Gekas V. (1999). Analysis of the heat transfer coefficient during potato frying. Journal of Food Engineering, 39(3): 293-299.spa
dcterms.referencesCrank J. (1975). The Mathematics of Diffusion. ed. 2da. Editorial Oxford University Press: Londres. 414 p.spa
dcterms.referencesCunha L.C.M., Monteiro M.L.G., Lorenzo J.M., Munekata P.E.S., Muchenje V., de Carvalho F.A.L., Conte-Junior C.A. (2018). Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Research International, 111: 379-390.spa
dcterms.referencesDas A.K., Nanda P.K., Madane P., Biswas S., Das A., Zhang W., Lorenzo J.M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99: 323-336.spa
dcterms.referencesDehghannya J., Ngadi M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116: 786-801.spa
dcterms.referencesDelgado-Adámez J., Martín-Vertedor D., Ramírez-Bernabé M.d.R., Rocha-Pimienta J. (2019). Tecnología alimentaria. 1era ed. Editorial Síntesis, S.A.: Madrid, España. 230 p.spa
dcterms.referencesDelgado J., Ansorena D., Van Hecke T., Astiasarán I., De Smet S., Estévez M. (2021). Meat lipids, NaCl and carnitine: Do they unveil the conundrum of the association between red and processed meat intake and cardiovascular diseases?_Invited Review. Meat Science, 171: 108278.spa
dcterms.referencesDeng S., Bai X., Li Y., Wang B., Kong B., Liu Q., Xia X. (2021). Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Science, 181: 108604.spa
dcterms.referencesDíaz-Ávila A.L. (2020). Efecto de la deshidratación osmótica y ultrasonido como pretratamiento en el secado de batata morada (Ipomoea batatas L.) en un secador tipo túnel. Tesis de Maestría. Facultad de Ingeniería, Universidad de Córdoba: Córdoba, Colombia. 68 p.spa
dcterms.referencesDominguez-Hernandez E., Salaseviciene A., Ertbjerg P. (2018). Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 143: 104-113.spa
dcterms.referencesFAO. (2020). Perspectivas alimentarias. Resumenes de mercado. Documento de Junio de 2020. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Roma, Italia. 12 p. Disponible en: https://www.fao.org/3/cb0606es/cb0606es.pdf.spa
dcterms.referencesFarid M. (2019). Chapter 17 - Heat and Mass Transfer in Food Processing. En: Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition). Kutz M. (Ed.). Academic Press. pp. 439-460.spa
dcterms.referencesForrest J., Aberle E., Hedrick H., Judge M., Merkel R. (1979). Propiedades de la carne. Fundamentos de Ciencias de la Carne. 1era ed. Editorial Acribia: Zaragoza, España. 364 p.spa
dcterms.referencesFrakolaki G., Kekes T., Bizymis A.-P., Giannou V., Tzia C. (2023). 9 - Fundamentals of food frying processes. En: High-Temperature Processing of Food Products. Jafari S.M. (Ed.). Woodhead Publishing. pp. 227-291.spa
dcterms.referencesGao J., Su Y., Zhu C., Li J., Zheng T., Chitrakar B. (2021a). Reduction of oil uptake in deep-fried apple slices by the combined ultrasonic and ethanol pre-treatment. LWT, 152: 112274.spa
dcterms.referencesGao Y., Li M., Zhang L., Wang Z., Yu Q., Han L. (2021b). Preparation of rapeseed oil oleogels based on beeswax and its application in beef heart patties to replace animal fat. LWT, 149: 111986.spa
dcterms.referencesGargari A.N., Asefi N., Roufegarinejad L. (2022). Simulation of Heat Transfer in Deep Fat Frying of Foods: an Appropriate Method for Predicting the Temperature Distribution in a Potato Model. Potato Research, 65(4): 933-957.spa
dcterms.referencesGhaderi A., Dehghannya J., Ghanbarzadeh B. (2018). Momentum, heat and mass transfer enhancement during deep-fat frying process of potato strips: Influence of convective oil temperature. International Journal of Thermal Sciences, 134: 485-499.spa
dcterms.referencesGhimire A., Paudel N., Poudel R. (2022). Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis) meat. LWT, 154: 112690.spa
dcterms.referencesGibis M., Schuh V., Weiss J. (2015). Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloids, 45: 236-246.spa
dcterms.referencesGreenwood P.L. (2021). Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal, 15: 100295.spa
dcterms.referencesGruffat D., Bauchart D., Thomas A., Parafita E., Durand D. (2021). Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chemistry, 343: 128476.spa
dcterms.referencesHabeebrakuman R., Kaki S.S., Bethala Lakshmi Anu P.D., Maloo S., Vellanki B., Mallampalli Sri Lakshmi K. (2019). Influence of flour type on physico-chemical characteristics during deep frying. Journal of Food Science and Technology, 56(7): 3471-3480.spa
dcterms.referencesHåkansson A. (2019). An investigation of uncertainties in determining convective heat transfer during immersion frying using the general uncertainty management framework. Journal of Food Engineering, 263: 424-436.spa
dcterms.referencesHautrive T.P., Piccolo J., Rodrigues A.S., Campagnol P.C.B., Kubota E.H. (2019). Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT, 102: 403-410.spa
dcterms.referencesHosseini H., Ghorbani M., Meshginfar N., Mahoonak A.S. (2016). A Review on Frying: Procedure, Fat, Deterioration Progress and Health Hazards. Journal of the American Oil Chemists' Society, 93(4): 445-466.spa
dcterms.referencesICONTEC. (2008). Productos cárnicos procesados no enlatados. NTC-1325. Instituto Colombiano de Normas Técnicas (ICONTEC): Colombia. 32 p. Disponible en: https://tienda.icontec.org/gp-industrias-alimentarias-productos-carnicos-procesados-no-enlatados-ntc1325-2008.html.spa
dcterms.referencesIsleroglu H., Kemerlı-Kalbaran T., Özdestan-Ocak Ö., Üren A., Kaymak-Ertekin F. (2016). Steam Assisted Hybrid Cooking Behavior of Semitendinosus Muscle: Heterocyclic Amines Formation, Soluble Protein Degradation, Fat Retention, Surface Color, and Cooking Value. International Journal of Food Properties, 19(5): 1139-1153.spa
dcterms.referencesIsmail I., Hwang Y.H., Bakhsh A., Joo S.T. (2019). The alternative approach of low temperature-long time cooking on bovine semitendinosus meat quality. Asian-Australasian Journal of Animal Sciences, 32(2): 282-289.spa
dcterms.referencesJoardder M.U.H., Masud M.H. (2019). Food Preservation Techniques in Developing Countries. En: Food Preservation in Developing Countries: Challenges and Solutions. Joardder M.U.H., Hasan Masud M. (Eds.). Springer International Publishing: Cham. pp. 67-125.spa
dcterms.referencesJoshy C.G., Ratheesh G., Ninan G., Ashok Kumar K., Ravishankar C.N. (2020). Optimizing air-frying process conditions for the development of healthy fish snack using response surface methodology under correlated observations. Journal of Food Science and Technology, 57(7): 2651-2658.spa
dcterms.referencesJouki M., Shakouri M.J., Khazaei N. (2021). Effects of deep-fat frying and active pretreatments of tomato pectin and paste on physical, textural and nutritional properties of fried frankfurter-type chicken sausage. Journal of Food Measurement and Characterization, 15(6): 5485-5494.spa
dcterms.referencesKalschne D., Corso M., Canan C. (2020). Advances in Meat Processing Technologies: Modern Approaches to Meet Consumer Demand. Editorial Bentham Science Publishers: Singapur, Turquía. 148 p.spa
dcterms.referencesKang N., Panzone L., Kuznesof S. (2022). The role of cooking in consumers' quality formation: An exploratory study of beef steaks. Meat Science, 186: 108730.spa
dcterms.referencesKarki R., Bremer P., Silcock P., Oey I. (2022). Effect of Sous vide Processing on Quality Parameters of Beef Short Ribs and Optimisation of Sous vide Time and Temperature Using Third-Order Multiple Regression. Food and Bioprocess Technology, 15(7): 1629-1646.spa
dcterms.referencesKarwa R. (2020). Mass Transfer. En: Heat and Mass Transfer. Karwa R. (Ed.). Springer Singapore: Singapore. pp. 1041-1066.spa
dcterms.referencesKaur P., Singh M., Birwal P. (2021). Differential Scanning Calorimetry (DSC) for the Measurement of Food Thermal Characteristics and Its Relation to Composition and Structure. En: Techniques to Measure Food Safety and Quality: Microbial, Chemical, and Sensory. Khan M.S., Shafiur Rahman M. (Eds.). Springer International Publishing: Cham. pp. 283-328.spa
dcterms.referencesKılıç B., Şimşek A., Claus J.R., Karaca E., Bilecen D. (2018). Improving lipid oxidation inhibition in cooked beef hamburger patties during refrigerated storage with encapsulated polyphosphate incorporation. LWT, 92: 290-296.spa
dcterms.referencesKim D.N., Lim J., Bae I.Y., Lee H.G., Lee S. (2011). Effect of hydrocolloid coatings on the heat transfer and oil uptake during frying of potato strips. Journal of Food Engineering, 102(4): 317-320.spa
dcterms.referencesKim D.N., Min B., Lee S.H., Lee S. (2012). Influence of surface coating with xanthan gum on heat transfer during deep-fat frying of potato strips. Journal of Food Process Engineering, 35(6): 898-904.spa
dcterms.referencesKim H.-M., Park M.-K., Mun S.-J., Jung M.-Y., Lee S.-M., Kim Y.-S. (2022). Study on Volatile Profiles, Polycyclic Aromatic Hydrocarbons, and Acrylamide Formed in Welsh Onion (Allium fistulosum L.) Fried in Vegetable Oils at Different Temperatures. Foods 11, 10.3390/foods11091335: 10.3390/foods11091335spa
dcterms.referencesKondjoyan A., Oillic S., Portanguen S., Gros J.-B. (2013). Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Science, 95(2): 336-344.spa
dcterms.referencesKovácsné-Oroszvári B., Sjöholm I., Tornberg E. (2005). The mechanisms controlling heat and mass transfer on frying of beefburgers. I. The influence of the composition and comminution of meat raw material. Journal of Food Engineering, 67(4): 499-506.spa
dcterms.referencesKozłowicz K., Góral D., Kluza F., Góral M., Andrejko D. (2018). Experimental determination of thermophysical properties by line heat pulse method. Journal of Food Measurement and Characterization, 12(4): 2524-2534.spa
dcterms.referencesKrepper G., Romeo F., Fernandes D.D.d.S., Diniz P.H.G.D., de Araújo M.C.U., Di Nezio M.S., Pistonesi M.F., Centurión M.E. (2018). Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189: 300-306.spa
dcterms.referencesKuffi K.D., Lescouhier S., Nicolai B.M., De Smet S., Geeraerd A., Verboven P. (2018). Modelling postmortem evolution of pH in beef M. biceps femoris under two different cooling regimes. Journal of Food Science and Technology, 55(1): 233-243.spa
dcterms.referencesKumar S., Chandra A., Nema P.K., Sharanagat V.S., Kumar S., Gaibimei P. (2022). Optimization of the frying process in relation to quality characteristics of Khaja (A traditional sweet). Journal of Food Science and Technology, 59(11): 4352-4361.spa
dcterms.referencesKumar Y., Mehta N., Anurag R.K., Sethi S., Bashir A.A., Kumar V., Narsaiah K. (2019). Improving Meat Safety Through Reformulation Strategies: Natural Antioxidants and Antimicrobials. En: Reformulation as a Strategy for Developing Healthier Food Products: Challenges, Recent Developments and Future Prospects. Raikos V., Ranawana V. (Eds.). Springer International Publishing: Cham. pp. 251-289.spa
dcterms.referencesLi J., Deng Y., Xu W., Zhao R., Chen T., Wang M., Xu E., Zhou J., Wang W., Liu D. (2023). Multiscale modeling of food thermal processing for insight, comprehension, and utilization of heat and mass transfer: A state-of-the-art review. Trends in Food Science & Technology, 131: 31-45.spa
dcterms.referencesLi Y., Quan W., Wang J., He Z., Qin F., Wang Z., Zeng M., Chen J. (2021). Effects of ten vegetable oils on heterocyclic amine profiles in roasted beef patties using UPLC-MS/MS combined with principal component analysis. Food Chemistry, 347: 128996.spa
dcterms.referencesLi Y., Guo Q., Wang K., Nverjiang M., Wu K., Wang X., Xia X. (2022). Monitoring the Changes in Heat Transfer and Water Evaporation of French Fries during Frying to Analyze Its Oil Uptake and Quality. Foods 11, 10.3390/foods11213473: 10.3390/foods11213473spa
dcterms.referencesLiberty J.T., Dehghannya J., Ngadi M.O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92: 172-183.spa
dcterms.referencesLiu J., Han L., Han W., Gui L., Yuan Z., Hou S., Wang Z., Yang B., Raza S.H., et al. (2023). Effect of Different Heat Treatments on the Quality and Flavor Compounds of Black Tibetan Sheep Meat by HS-GC-IMS Coupled with Multivariate Analysis. Molecules 28, 10.3390/molecules28010165: 10.3390/molecules28010165spa
dcterms.referencesLiu Y., Tian J., Zhang T., Fan L. (2021). Effects of frying temperature and pore profile on the oil absorption behavior of fried potato chips. Food Chemistry, 345: 128832.spa
dcterms.referencesLorenzo J.M., Batlle R., Gómez M. (2014). Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT - Food Science and Technology, 59(1): 181-188.spa
dcterms.referencesMacharáčková B., Bogdanovičová K., Ježek F., Bednář J., Haruštiaková D., Kameník J. (2021). Cooking loss in retail beef cuts: The effect of muscle type, sex, ageing, pH, salt and cooking method. Meat Science, 171: 108270.spa
dcterms.referencesManjunatha S.S., Mathews A.T., Patki P.E. (2019). Modelling the kinetics of mass transfer and change in colour during deep fat frying of green peas (Pisum sativum L.) at different frying temperatures. Heat and Mass Transfer, 55(11): 3087-3102.spa
dcterms.referencesMarcotte M., Taherian A.R., Karimi Y. (2008). Thermophysical properties of processed meat and poultry products. Journal of Food Engineering, 88(3): 315-322.spa
dcterms.referencesMartín-Mateos M.J., Ortiz A., Curbelo P., Barraso C., León L., López-Parra M.M., Tejerina D., García-Torres S. (2022). New beef burger formulation with added cherry (pico negro variety) as a potential functional ingredient. Applied Food Research, 2(2): 100132.spa
dcterms.referencesMehta B.M. (2015). Nutritional and Toxicological Aspects of the Chemical Changes of Food Components and Nutrients During Heating and Cooking. En: Handbook of Food Chemistry. Cheung P.C.K., Mehta B.M. (Eds.). Springer Berlin Heidelberg: Berlin, Heidelberg. pp. 897-936.spa
dcterms.referencesMiller K.S., Singh R.P., Farkas B.E. (1994). VISCOSITY and HEAT TRANSFER COEFFICIENTS FOR CANOLA, CORN, PALM, and SOYBEAN OIL. Journal of Food Processing and Preservation, 18(6): 461-472.spa
dcterms.referencesMoghtadaei M., Soltanizadeh N., Goli S.A.H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108: 368-377.spa
dcterms.referencesMovahhed S., Ahmadi Chenarbon H. (2018). Moisture Content and Oil Uptake in Potatoes (Cultivar Satina) During Deep-Fat Frying. Potato Research, 61(3): 261-272.spa
dcterms.referencesMoya J., Lorente-Bailo S., Salvador M.L., Ferrer-Mairal A., Martínez M.A., Calvo B., Grasa J. (2021). Development and validation of a computational model for steak double-sided pan cooking. Journal of Food Engineering, 298: 110498.spa
dcterms.referencesMukama M., Ambaw A., Opara U.L. (2020). Thermophysical properties of fruit—a review with reference to postharvest handling. Journal of Food Measurement and Characterization, 14(5): 2917-2937.spa
dcterms.referencesMunekata P.E.S., Domínguez R., Pateiro M., Andrés S.C., Santos E.M., Fraqueza M.J., Campagnol P.C.B., Lorenzo J.M. (2023). Chapter 3 - Meat and meat products: animal species, products, processing, quality, and shelf life. En: Meat and Meat Replacements. Meiselman H.L., Manuel Lorenzo J. (Eds.). Woodhead Publishing. pp. 45-76.spa
dcterms.referencesMykhailov V., Onyshchenko V., Pak A., Bredykhin V., Zahorulko O. (2021). Investigation of frying process of meat sausages in glued casings from intestinal raw materials. Ukrainian Food Journal, 10(2): 387-398.spa
dcterms.referencesNaghavi E.-A., Dehghannya J., Ghanbarzadeh B. (2018). 3D computational simulation for the prediction of coupled momentum, heat and mass transfer during deep-fat frying of potato strips coated with different concentrations of alginate. Journal of Food Engineering, 235: 64-78.spa
dcterms.referencesNestel P.J., Beilin L.J., Clifton P.M., Watts G.F., Mori T.A. (2021). Practical Guidance for Food Consumption to Prevent Cardiovascular Disease. Heart, Lung and Circulation, 30(2): 163-179.spa
dcterms.referencesNgadi M.O., Hwang D.K. (2007). Modelling heat transfer and heterocyclic amines formation in meat patties during frying. Agricultural Engineering International, 9: 1-18.spa
dcterms.referencesNikmaram N., Budaraju S., Barba F.J., Lorenzo J.M., Cox R.B., Mallikarjunan K., Roohinejad S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Science, 145: 245-255.spa
dcterms.referencesNiranjan K. (2022). Elements of Mass Transfer. En: Engineering Principles for Food Process and Product Realization. Niranjan K. (Ed.). Springer International Publishing: Cham. pp. 81-102.spa
dcterms.referencesO'Neill C.M., Cruz-Romero M.C., Duffy G., Kerry J.P. (2019). Comparative effect of different cooking methods on the physicochemical and sensory characteristics of high pressure processed marinated pork chops. Innovative Food Science & Emerging Technologies, 54: 19-27.spa
dcterms.referencesOwusu-Apenten R., Vieira E. (2023). Meat. En: Elementary Food Science. Owusu-Apenten R., Vieira E.R. (Eds.). Springer International Publishing: Cham. pp. 377-397.spa
dcterms.referencesPaluri S., Phinney D.M., Heldman D.R. (2018). Recent advances in thermophysical properties—measurements, prediction, and importance. Current Opinion in Food Science, 23: 142-148.spa
dcterms.referencesPatel N., Toledo-Alvarado H., Bittante G. (2021). Performance of different portable and hand-held near-infrared spectrometers for predicting beef composition and quality characteristics in the abattoir without meat sampling. Meat Science, 178: 108518.spa
dcterms.referencesPathare P.B., Roskilly A.P. (2016). Quality and Energy Evaluation in Meat Cooking. Food Engineering Reviews, 8(4): 435-447.spa
dcterms.referencesPatinho I., Selani M.M., Saldaña E., Bortoluzzi A.C.T., Rios-Mera J.D., da Silva C.M., Kushida M.M., Contreras-Castillo C.J. (2021). Agaricus bisporus mushroom as partial fat replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Science, 172: 108307.spa
dcterms.referencesPatra A., Prasath V.A., Sutar P.P., Pandian N.K.S., Pandiselvam R. (2022). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162: 112074.spa
dcterms.referencesPeñaranda I., Garrido M.D., García-Segovia P., Martínez-Monzó J., Igual M. (2023). Enriched Pea Protein Texturing: Physicochemical Characteristics and Application as a Substitute for Meat in Hamburgers. Foods 12, 10.3390/foods12061303: 10.3390/foods12061303spa
dcterms.referencesPethick D.W., Hocquette J.F., Scollan N.D., Dunshea F.R. (2021). Review: Improving the nutritional, sensory and market value of meat products from sheep and cattle. Animal, 15: 100356.spa
dcterms.referencesPistón M., Suárez A., Bühl V., Tissot F., Silva J., Panizzolo L. (2020). Influence of cooking processes on Cu, Fe, Mn, Ni, and Zn levels in beef cuts. Journal of Food Composition and Analysis, 94: 103624.spa
dcterms.referencesPrías L., Díaz R., Mera C. (2017). Formulación de hamburguesa gourmet precocida-congelada, usando carne caprina, perejil (Petroselinum crispum) y albahaca (Ocimum basilicum). Revista Cumbres, 3(2): 9-16.spa
dcterms.referencesPujol A., Ospina-E J.C., Alvarez H., Muñoz D.A. (2023). Myoglobin content and oxidative status to understand meat products’ color: Phenomenological based model. Journal of Food Engineering, 348: 111439.spa
dcterms.referencesQuevedo R., Pedreschi F., Valencia E., Díaz O., Bastías J., Muñoz O. (2018). Kinetic modeling of deterioration of frozen industrial burgers based on oxidative rancidity and color. Journal of Food Processing and Preservation, 42(7): e13655.spa
dcterms.referencesRaeisi S., Ojagh S.M., Pourashouri P., Salaün F., Quek S.Y. (2021). Shelf-life and quality of chicken nuggets fortified with encapsulated fish oil and garlic essential oil during refrigerated storage. Journal of Food Science and Technology, 58(1): 121-128.spa
dcterms.referencesRahimi D., Kashaninejad M., Ziaiifar A.M., Mahoonak A.S. (2018). Effect of infrared final cooking on some physico-chemical and engineering properties of partially fried chicken nugget. Innovative Food Science & Emerging Technologies, 47: 1-8.spa
dcterms.referencesRibeiro J.S., Santos M.J.M.C., Silva L.K.R., Pereira L.C.L., Santos I.A., da Silva Lannes S.C., da Silva M.V. (2019). Natural antioxidants used in meat products: A brief review. Meat Science, 148: 181-188.spa
dcterms.referencesRibeiro W.O., Ozaki M.M., dos Santos M., Rodríguez A.P., Pflanzer S.B., Pollonio M.A.R. (2021). Interaction between papain and transglutaminase enzymes on the textural softening of burgers. Meat Science, 174: 108421.spa
dcterms.referencesRomero M.C., Fogar R.A., Doval M.M., Romero A.M., Judis M.A. (2019). Optimisation of cooking properties of healthier beef patties and quality evaluation during frozen storage. Journal of Food Measurement and Characterization, 13(3): 1907-1916.spa
dcterms.referencesSafari A., Salamat R., Baik O.-D. (2018). A review on heat and mass transfer coefficients during deep-fat frying: Determination methods and influencing factors. Journal of Food Engineering, 230: 114-123.spa
dcterms.referencesSahasrabudhe S.N., Staton J.A., Farkas B.E. (2019). Effect of frying oil degradation on surface tension and wettability. LWT, 99: 519-524.spa
dcterms.referencesSaldanha do Carmo C., Rieder A., Varela P., Zobel H., Dessev T., Nersten S., Gaber S.M., Sahlstrøm S., Knutsen S.H. (2023). Texturized vegetable protein from a faba bean protein concentrate and an oat fraction: Impact on physicochemical, nutritional, textural and sensory properties. Future Foods, 7: 100228.spa
dcterms.referencesSandhu J., Parikh A., Takhar P.S. (2016). Experimental determination of convective heat transfer coefficient during controlled frying of potato discs. LWT - Food Science and Technology, 65: 180-184.spa
dcterms.referencesSanz-Serrano J., Garayoa R., Vitas A.I., Azqueta A., López de Cerain A. (2021). In vitro mutagenicity assessment of fried meat-based food from mass catering companies. Food and Chemical Toxicology, 156: 112494.spa
dcterms.referencesSchilling M.W. (2019). Emulsifier Applications in Meat Products. En: Food Emulsifiers and Their Applications. Hasenhuettl G.L., Hartel R.W. (Eds.). Springer International Publishing: Cham. pp. 347-377.spa
dcterms.referencesSchmid S., Gombert A. (2018). McDonald’s: Is the Fast Food Icon Reaching the Limits of Growth? En: Internationalization of Business: Cases on Strategy Formulation and Implementation. Schmid S. (Ed.). Springer International Publishing: Cham. pp. 155-171.spa
dcterms.referencesSeo J.-K., Parvin R., Yim D.-G., Zahid M.A., Yang H.-S. (2019). Effects on quality properties of cooked pork sausages with Caesalpinia sappan L. extract during cold storage. Journal of Food Science and Technology, 56(11): 4946-4955.spa
dcterms.referencesShahidi F., Hossain A., Pegg R.B. (2022). Cooking of meat | Maillard reaction and browning. En: Reference Module in Food Science. Elsevier.spa
dcterms.referencesShen J., Zhang M., Zhao L., Mujumdar A.S., Wang H. (2021). Schemes for enhanced antioxidant stability in frying meat: a review of frying process using single oil and blended oils. Critical Reviews in Food Science and Nutrition: 1-16.spa
dcterms.referencesSosa-Morales M.E., Orzuna-Espíritu R., Vélez-Ruiz J.F. (2006). Mass, thermal and quality aspects of deep-fat frying of pork meat. Journal of Food Engineering, 77(3): 731-738.spa
dcterms.referencesSoto-Jover S., Boluda-Aguilar M., Esnoz-Nicuesa A., Iguaz-Gainza A., López-Gómez A. (2016). Texture, Oil Adsorption and Safety of the European Style Croquettes Manufactured at Industrial Scale. Food Engineering Reviews, 8(2): 181-200.spa
dcterms.referencesSu Y., Gao J., Tang S., Feng L., Azam S.M.R., Zheng T. (2022). Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes. Critical Reviews in Food Science and Nutrition, 62(19): 5183-5202.spa
dcterms.referencesSun A., Wu W., Soladoye O.P., Aluko R.E., Bak K.H., Fu Y., Zhang Y. (2022a). Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Research International, 151: 110823.spa
dcterms.referencesSun P., Lin J., Ren X., Zhang B., Liu J., Zhao Y., Li D. (2022b). Effect of Heating on Protein Denaturation, Water State, Microstructure, and Textural Properties of Antarctic Krill (Euphausia superba) Meat. Food and Bioprocess Technology, 15(10): 2313-2326.spa
dcterms.referencesTatiyaborworntham N., Oz F., Richards M.P., Wu H. (2022). Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chemistry: X, 14: 100317.spa
dcterms.referencesTeixeira A., Rodrigues S. (2021). Consumer perceptions towards healthier meat products. Current Opinion in Food Science, 38: 147-154.spa
dcterms.referencesThangavelu K.P., Hyland J.J., Henchion M., Kerry J.P., Álvarez C. (2022). Consumer intention towards the phosphate-reduced processed meat products using the extended theory of planned behaviour. Meat Science, 193: 108947.spa
dcterms.referencesToledo R.T., Singh R.K., Kong F. (2018). Heat Transfer. En: Fundamentals of Food Process Engineering. Toledo R.T., Singh R.K., Kong F. (Eds.). Springer International Publishing: Cham. pp. 135-182.spa
dcterms.referencesTorres-Gonzalez J.D., Alvis A., Gallo-García L.A., Acevedo D., Castellanos F., Bouchon P. (2018). Effect of deep fat frying on the mass transfer and color changes of arepa con huevo. Indian Journal of Science and Technology, 11(6): 1-13.spa
dcterms.referencesTovar A. (2003). Guía de procesos para la elaboración de productos cárnicos. Editorial Convenio Andrés Bello: Bogotá. 32 p.spa
dcterms.referencesTrevisan A.J.B., de Almeida Lima D., Sampaio G.R., Soares R.A.M., Markowicz Bastos D.H. (2016). Influence of home cooking conditions on Maillard reaction products in beef. Food Chemistry, 196: 161-169.spa
dcterms.referencesUdomkun P., Innawong B., Masso C., Klaikreuh D., Swennen R., Fotso A., Alakonya A., Vanlauwe B. (2021). Effects of pressure and temperature on the physico-chemical properties and acrylamide formation of starchy banana chips during the post-frying centrifuge step. Journal of Food Measurement and Characterization, 15(6): 5637-5647.spa
dcterms.referencesUnruh D.A., Kastner J.J., Jenott J.R., Gragg S.E. (2016). Chapter 7 - Handling of hamburgers and cooking practices. En: Food Hygiene and Toxicology in Ready-to-Eat Foods. Kotzekidou P. (Ed.). Academic Press: San Diego. pp. 107-122.spa
dcterms.referencesVaclavik V.A., Christian E.W., Campbell T. (2021). Food Preservation. En: Essentials of Food Science. Vaclavik V.A., Christian E.W., Campbell T. (Eds.). Springer International Publishing: Cham. pp. 327-346.spa
dcterms.referencesValdidieso V. (2010). Estudio del efecto de diferentes niveles de carragenato en la jugosidad de la hamburguesa de carne de res. Tesis de Grado para optar a la Licenciatura en Gestión Gastronómica. Escuela Superior Politécnica de Chimborazo: Riobamba, Ecuador. 117 p.spa
dcterms.referencesvan Koerten K.N., Somsen D., Boom R.M., Schutyser M.A.I. (2017). Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient. Journal of Food Engineering, 197: 60-67.spa
dcterms.referencesVenkateshan S.P. (2021). Special Topics in Heat Transfer. En: Heat Transfer. Venkateshan S.P. (Ed.). Springer International Publishing: Cham. pp. 815-913.spa
dcterms.referencesVu G., Zhou H., McClements D.J. (2022). Impact of cooking method on properties of beef and plant-based burgers: Appearance, texture, thermal properties, and shrinkage. Journal of Agriculture and Food Research, 9: 100355.spa
dcterms.referencesWang B., Li H., Huang Z., Kong B., Liu Q., Wang H., Xu M., Xia X. (2021). Dynamic changes in the qualities and heterocyclic aromatic amines of roasted pork induced by frying temperature and time. Meat Science, 176: 108457.spa
dcterms.referencesWitting E. (2001). Evaluación sensorial, una metodología actual para tecnología de alimentos. Vol. 1. Biblioteca digital de la Universidad de Chile: Santiago de Chile. 126 p.spa
dcterms.referencesXie Y.-K., Li X.-Y., Chen C., Zhang W.-P., Yu X.-L., Xiao H.-W., Lu F.-Y. (2023). Effects of Steam and Water Blanching on Drying Characteristics, Water Distribution, Microstructure, and Bioactive Components of Gastrodia Elata. Plants 12, 10.3390/plants12061372: 10.3390/plants12061372spa
dcterms.referencesYang D., Wu G., Lu Y., Li P., Qi X., Zhang H., Wang X., Jin Q. (2021). Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control, 128: 108195.spa
dcterms.referencesYang X.-y., Xu B.-c., Lei H.-m., Luo X., Zhu L.-x., Zhang Y.-m., Mao Y.-w., Liang R.-r. (2022). Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging. Journal of Integrative Agriculture, 21(8): 2445-2455.spa
dcterms.referencesYıldız A., Koray Palazoğlu T., Erdoğdu F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1): 11-17.spa
dcterms.referencesYounis K., Yousuf O., Qadri O.S., Jahan K., Osama K., Islam R.U. (2022). Incorporation of soluble dietary fiber in comminuted meat products: Special emphasis on changes in textural properties. Bioactive Carbohydrates and Dietary Fibre, 27: 100288.spa
dcterms.referencesYu X.-L., Ju H.-Y., Mujumdar A.S., Zheng Z.-A., Wang J., Deng L.-Z., Gao Z.-J., Xiao H.-W. (2019). Experimental and simulation studies of heat transfer in high-humidity hot air impingement blanching (HHAIB) of carrot. Food and Bioproducts Processing, 114: 196-204.spa
dcterms.referencesZając M., Zając K., Dybaś J. (2022). The effect of nitric oxide synthase and arginine on the color of cooked meat. Food Chemistry, 373: 131503.spa
dcterms.referencesZhang J., Zhang Y., Wang Y., Xing L., Zhang W. (2020a). Influences of ultrasonic-assisted frying on the flavor characteristics of fried meatballs. Innovative Food Science & Emerging Technologies, 62: 102365.spa
dcterms.referencesZhang W., Naveena B.M., Jo C., Sakata R., Zhou G., Banerjee R., Nishiumi T. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132: 35-44.spa
dcterms.referencesZhang X., Zhang M., Adhikari B. (2020b). Recent developments in frying technologies applied to fresh foods. Trends in Food Science & Technology, 98: 68-81.spa
dcterms.referencesZiaiifar A.M., Ranjbar Nedamani A., Aghajanzadeh S. (2021). Chapter 9 - Conductive heat transfer in food processing. En: Engineering Principles of Unit Operations in Food Processing. Jafari S.M. (Ed.). Woodhead Publishing. pp. 281-313.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
diazavilawilliamyesid.pdf
Tamaño:
3.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Corrección nombre de trabajo de grado
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.(0).pdf
Tamaño:
256 KB
Formato:
Adobe Portable Document Format
Descripción:
Colecciones