Publicación:
Evaluación de cuatro plantas silvestres para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb Y Cd) por actividades de minería

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorDurante Yánez, Elvia Valeria
dc.date.accessioned2022-01-25T23:54:37Z
dc.date.available2022-01-25T23:54:37Z
dc.date.issued2022-01-25
dc.description.abstractLa contaminación de suelos con metales pesados procedente de actividades antrópicas se ha convertido en una preocupación mundial por los impactos en la salud humana y ambiental, por lo que es necesario buscar estrategias sostenibles para remediar zonas contaminadas. El objetivo de este estudio fue evaluar cuatro plantas silvestres (Senna obtusifolia (L.) H.S. Irwin & Barneby, Sida rhombifolia L., Amaranthus spinosus L. y Clidemia sericea D. Don.) para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb y Cd) por actividades de minería aurífera. El estudio se realizó durante tres meses, con suelos provenientes de una zona de minería aurífera. Se utilizó un diseño factorial 4x3, los factores fueron el tipo de especies vegetal (S. obtusifolia, S. rhombifolia., A. spinosus y C. sericea) y la concentración de metales pesados en suelo (Control, Media y Alta), cada tratamiento por triplicado para cada especie, para un total de 36 unidades experimentales. Los análisis de concentración de Hg, Pb y Cd para las muestras de suelos y plantas, se realizaron de acuerdo a los métodos de EPA 7473 (para Hg) y EPA 3051A (para Pb y Cd). Se determinaron efectos fitotóxicos en las plantas, factores de bioconcentración (FBC) y translocación (FT).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN 11spa
dc.description.tableofcontentsABSTRACT 12spa
dc.description.tableofcontents1. INTRODUCCIÓN 13spa
dc.description.tableofcontents2. OBJETIVOS 15spa
dc.description.tableofcontents2.1 OBJETIVO GENERAL 15spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECÍFICOS 15spa
dc.description.tableofcontents3. ANTECEDENTES Y MARCO TEÓRICO 16spa
dc.description.tableofcontents3.1 ANTECEDENTES 16spa
dc.description.tableofcontents3.2 MARCO TEÓRICO 19spa
dc.description.tableofcontents3.2.1 Suelos contaminados por metales pesados 19spa
dc.description.tableofcontents3.2.2 Toxicidad de los metales pesados en la salud humana 20spa
dc.description.tableofcontents3.2.3 Toxicidad de los metales pesados en las plantas 20spa
dc.description.tableofcontents3.2.4 Fitorremediación 21spa
dc.description.tableofcontents3.2.5 Acumulación y translocación de metales pesados en plantas 23spa
dc.description.tableofcontents3.2.6 Plantas silvestres para fitorremediación 24spa
dc.description.tableofcontents4. METODOLOGÍA 27spa
dc.description.tableofcontents4.1 DETERMINAR LAS CARACTERÍSTICAS FISICOQUÍMICAS (pH, M.O, S, P, Ca, Mg, K, Na, CICe, TEXTURA, CONCENTRACIÓN Y BIODISPONIBILIDAD DE Hg, Pb Y Cd) DE LOS SUELOS 27spa
dc.description.tableofcontents4.1.1 Muestreo de suelos 27spa
dc.description.tableofcontents4.1.2 Análisis fisicoquímico de los suelos 27spa
dc.description.tableofcontents4.1.3 Análisis y control analítico de metales pesados en suelos y plantas 28spa
dc.description.tableofcontents4.2 DESARROLLAR EL PROCESO DE FITORREMEDIACIÓN A NIVEL DE INVERNADERO PARA SUELOS CONTAMINADOS CON METALES PESADOS (Hg, Pb Y Cd) PROCEDENTES DE ACTIVIDADES DE MINERÍA AURÍFERA MEDIANTE EL USO DE ESPECIES SILVESTRES (S. obtusifolia, S. rhombifolia, A. spinosus Y C. sericea) 30spa
dc.description.tableofcontents4.2.1 Diseño experimental 30spa
dc.description.tableofcontents4.2.2 Montaje de experimento en invernadero 31spa
dc.description.tableofcontents4.2.2.1 Obtención de plántulas 31spa
dc.description.tableofcontents4.2.2.2 Unidades experimentales 32spa
dc.description.tableofcontents4.3 DETERMINAR LOS EFECTOS FITOTÓXICOS Y FACTORES DE BIOCONCENTRACIÓN Y TRANSLOCACIÓN DE METALES PESADOS (Hg, Pb Y Cd) EN LAS ESPECIES SILVESTRES (S. obtusifolia, S. rhombifolia, A. spinosus Y C. sericea) 34spa
dc.description.tableofcontents4.3.1 Seguimiento de efectos fitotóxicos 34spa
dc.description.tableofcontents4.3.2 Determinación de área foliar, biomasa seca, clorofila y carotenoides 34spa
dc.description.tableofcontents4.3.3 Determinación de factores de bioconcentración y translocación 35spa
dc.description.tableofcontents4.3.4 Análisis estadístico 36spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN 37spa
dc.description.tableofcontents5.1 CARACTERÍSTICAS FISICOQUÍMICAS DE LOS SUELOS 37spa
dc.description.tableofcontents5.2 COMPORTAMIENTO DE LAS VARIABLES MORFOMÉTRICAS Y FISIOLÓGICAS DE LAS PLANTAS 47spa
dc.description.tableofcontents5.2.1 Seguimiento de altura de la planta, diámetro del tallo, número de hojas, flores y frutos 47spa
dc.description.tableofcontents5.2.2 Comparación de la duodécima medida de las variables morfométricas entre tratamientos 56spa
dc.description.tableofcontents5.2.3 Área foliar, biomasa seca, clorofila y carotenoides 65spa
dc.description.tableofcontents5.3 CONCENTRACIÓN DE Hg, Pb y Cd EN TEJIDOS DE LAS PLANTAS 75spa
dc.description.tableofcontents5.3.1 Mercurio (Hg) 75spa
dc.description.tableofcontents5.3.2 Plomo (Pb) 79spa
dc.description.tableofcontents5.3.3 Cadmio (Cd) 82spa
dc.description.tableofcontents5.4 FACTORES DE BIOCONCENTRACIÓN Y TRANSLOCACIÓN 85spa
dc.description.tableofcontents6. CONCLUSIONES 88spa
dc.description.tableofcontents7. RECOMENDACIONES 89spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS 90spa
dc.description.tableofcontentsANEXOS 118spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4774
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsWild plant specieseng
dc.subject.keywordsBCFs and TFseng
dc.subject.keywordsHeavy metalseng
dc.subject.keywordsMiningeng
dc.subject.proposalEspecies silvestresspa
dc.subject.proposalFBC y FTspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalSuelos minerosspa
dc.titleEvaluación de cuatro plantas silvestres para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb Y Cd) por actividades de mineríaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbdul-Wahab, S., Marikar, F. 2012. The environmental impact of gold mines: pollution by heavy metals. Central European Journal of Engineering. 2(2):304-313. https://doi.org./10.2478/s13531-011-0052-3spa
dcterms.referencesAgudelo-Calderón, C. A., Quiroz-Arcentales, L., García-Ubaque, J. C., Robledo-Martínez, R., García-Ubaque, C. A. 2016. Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18, 50-60. http://dx.doi.org/10.15446/rsap.v18n1.55384spa
dcterms.referencesAgyarko, K., Darteh, E., Berlinger, B. 2010. Metal levels in some refuse dump soils and plants in Ghana. Plant, Soil and Environment, 56(5), 244-251.spa
dcterms.referencesAhammad, S. J., Sumithra, S., Senthilkumar, P.2018. Mercury uptake and translocation by indigenous plants. Rasayan Journal of Chemistry, 11, 1-12.spa
dcterms.referencesAli, H., Khan, E., Sajad, M. A. 2013. Phytoremediation of heavy metals - concepts and applications. Chemosphere, 91(7):869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075spa
dcterms.referencesAli, N., Hadi, F., Ali, M. 2019. Growth stage and molybdenum treatment affect cadmium accumulation, antioxidant defence and chlorophyll contents in Cannabis sativa plant. Chemosphere, 236, 124360. https://doi.org/10.1016/j.chemosphere.2019.124360spa
dcterms.referencesAngiosperm Phylogeny Group - APG. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 1-20.spa
dcterms.referencesAntoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Majeti, N.V., Wenzel. W., Rinklebe, J. 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005spa
dcterms.referencesAudet, P., Charest, C. 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution. 147(1): 231-237. https://doi.org/10.1016/j. envpol.2006.08.011spa
dcterms.referencesAwa, S. H., Hadibarata, T. 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water, Air, & Soil Pollution, 231(2), 47. https://doi.org/10.1007/s11270-020-4426-0spa
dcterms.referencesBañuelos, G. S., Arroyo, I., Pickering, I. J., Yang, S. I., Freeman, J. L. 2015. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food chemistry. 166: 603-608. https://doi.org/10.1016/j.foodchem.2014.06.071spa
dcterms.referencesBañuelos, G. S., Lin, Z. Q., Arroyo, I., Terry, N. 2005. Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere, 60(9).1203-1213.https://doi.org/10.1016/ j. chemosphere. 2005.02.033spa
dcterms.referencesBernal, A., Montaño, J., Sánchez, R., Albarrán, Y., Forero, F. 2014. Evaluación de materiales encalantes y orgánicos sobre las bases intercambiables de un suelo sulfatado ácido en invernadero. Temas agrarios, 19(1), 19-31. https://doi.org/10.21897/rta.v19i1.722spa
dcterms.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento, M. Gutiérrez. 2012. Bledo espinoso. (Amaranthus spinosus). Nombres Comunes de las Plantas de Colombia.spa
dcterms.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento, M. Gutiérrez. 2012. Mortiño. (Clidemia sericea) Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/nombrescomunes/detalle/ncientifico/22693/spa
dcterms.referencesBetancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., Borgemeister, C. 2018. Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production. 199: 538-553. https://doi.org/10.1016/j.jclepro.2018.07.142spa
dcterms.referencesBoldt-Burisch, K., Schneider, B. U., Naeth, M. A., Huettl, R. F. 2019. Root exudation of organic acids of herbaceous pioneer plants and their growth in sterile and non-sterile nutrient-poor, sandy soils from post-mining sites. Pedosphere, 29(1), 34-44. https://doi.org/10.1016/S1002-0160(18)60056-6spa
dcterms.referencesBonanno, G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and environmental safety. 97:124-130. https://doi.org/10.1016/j.ecoenv.2013.07.017spa
dcterms.referencesBuccolieri, A., Buccolieri, G., Cardellicchio, N., Dell'Atti, A., Di Leo, A., Maci, A. 2006. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Marine chemistry, 99(1-4), 227-235. https://doi.org/10.1016/j.marchem.2005.09.009spa
dcterms.referencesCanadian Ministry of the Environment. 2009. Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act; Canadian Ministry of the Environment: Toronto, ON, Canada.spa
dcterms.referencesCandeias, C., Ávila, P., Coelho, P., Teixeira, J. P. 2019. Mining activities: health impacts. Reference Module in Earth Systems and Environmental Sciences, 1-21. https://doi.org/10.1016/B978-0-12-409548-9.11056-5spa
dcterms.referencesCastillo S, Martínez-Orea Y, Romero-Romaro M, Guadarrama-Chavez P, Nuñez-Castillo O, Sánchez-Gallen I, Maeve JA. 2007. La reserva Ecológica del Pedregal de San Ángel: Aspectos florísticos y ecológicos. Universidad Nacional Autónoma de México, México, DFspa
dcterms.referencesChamba, I., Gazquez, M. J., Selvaraj, T., Calva, J., Toledo, J. J., Armijos, C. 2016. Selection of a suitable plant for phytoremediation in mining artisanal zones. International journal of phytoremediation, 18(9), 853-860. https://doi.org/10.1080/15226514.2016.1156638spa
dcterms.referencesChandra, R., Kumar, V. 2017. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science and Pollution Research. 24(3): 2605-2619. https://doi.org/10.1007/s11356-016-8022-1spa
dcterms.referencesChaney, R.L. 1983. Plant uptake of inorganic waste constituents. J.F.E.A. Parr (Ed.), Land Treatment of Hazardous Wastes, Noyes Data Corp., Park Ridge, NJ (1983), pp. 50-76spa
dcterms.referencesChen, M., Lu, W., Hou, Z., Zhang, Y., Jiang, X., Wu, J. 2017. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China. Environmental Science and Pollution Research, 24(3), 3084-3096. https://doi-org.ezproxy.unal.edu.co/10.1007/s11356-016-7968-3spa
dcterms.referencesChen, Z., Zhao, Y., Fan, L., Xing, L., Yang, Y. 2015. Cadmium (Cd) localization in tissues of cotton (Gossypium hirsutum L.), and its phytoremediation potential for Cd-contaminated soils. Bulletin of environmental contamination and toxicology, 95(6), 784-789. https://doi-org/10.1007/s00128-015-1662-xspa
dcterms.referencesCheng, S. 2003. Effects of heavy metals on plants and resistance mechanisms. Environmental Science and Pollution Research. 10(4): 256-264. https://doi.org/10.1007/s11356-016-6333-xspa
dcterms.referencesChinmayee, M. D., Mahesh, B., Pradesh, S., Mini, I., Swapna, T. S. 2012. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Applied biochemistry and biotechnology. 167(6):1550-1559. https://doi.org./10.1007/s12 010 -012-9657-0spa
dcterms.referencesChunilall, V., Kindness, A., Jonnalagadda, S. B. 2005. Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. Journal of Envirnomental Science and Health, 40(2), 375-384. https://doi.org/10.1081/PFC-200045573spa
dcterms.referencesČížková, B., Woś, B., Pietrzykowski, M., Frouz, J. 2018. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecological Engineering, 123, 103-111. https://doi.org/10.1016/j.ecoleng.2018.09.004spa
dcterms.referencesMinciencias (Ministerio de Ciencia, Tecnología e Innovación), Universidad de Córdoba. 2012. Remoción de mercurio en suelos por plantas que crecen en sitios contaminados con el metal en el norte de Colombia (mina el Alacrán en el departamento de Córdoba y mina Santa Cruz en el departamento de Bolívar). Informe de Convocatoria 475 de 2009.spa
dcterms.referencesCombatt, E. M., Palencia, G., Marin, N. 2003. Clasificación de suelos sulfatados ácidos según azufre extraíble en los municipios del medio y bajo Sinú en Córdoba. Temas Agrarios, 8(2), 22-29. ISSN electrónica:2389-9182spa
dcterms.referencesCristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., Ferrante, M. 2017. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation. 8:309-326. http://dx.doi.org/10.1016/j.eti.2017.08.002spa
dcterms.referencesda Conceição Gomes, M. A., Hauser-Davis, R. A., de Souza, A. N., Vitória, A. P. 2016. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety. 134:133-147. https://doi.org/10.1016/j.ecoenv.2016.08.024spa
dcterms.referencesDary, M., Chamber-Pérez, M. A., Palomares, A., J., Pajuelo, E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials.177(1-3):323-330. https://doi.org/10.1016/j.jhazmat.2009.12.035spa
dcterms.referencesDhiman, S. S., Selvaraj, C., Li, J., Singh, R., Zhao, X., Kim, D., Kim, J., Kang, Y., Lee, J. K. 2016. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel. 183: 107-114. https://doi.org/10.1016/j.fuel.2016.06.025spa
dcterms.referencesDíaz, L., Díaz, A., Carrillo, R., González, M. 2005. Plantas que se desarrollan en áreas contaminadas con residuos mineros. In: González Chávez MC, Pérez Moreno J, Carrillo González R (eds) El sistema planta-microorganismo-suelo en áreas contaminadas con residuos de minas. Colegio de Postgraduados, México.spa
dcterms.referencesDing, W., Zhang, J., Wu, S. C., Zhang, S., Christie, P., Liang, P. 2019. Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. Ecotoxicology and environmental safety, 183, 109549. https://doi.org/10.1016/j.ecoenv.2019.109549spa
dcterms.referencesDinu, C., Ungureanu, E. M., Vasile, G., Kim, L., Ionescu, I., Ene, C., Simion, M. 2018. Soil and vegetation pollution from an abandoned mining area situated in Hunedoara County, Romania. https://doi.org/10.37358/RC.18.1.6036spa
dcterms.referencesDinu, C., Vasile, G. G., Buleandra, M., Popa, D. E., Gheorghe, S., Ungureanu, E. M. 2020. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments, 1-14. https://doi-org /10.1007/s11368-019-02550-wspa
dcterms.referencesDong, G., Nkoh, J. N., Hong, Z. N., Dong, Y., Lu, H. L., Yang, J., Pan, H., Xu, R. K. 2020. Phytotoxicity of Cu2+ and Cd2+ to the roots of four different wheat cultivars as related to charge properties and chemical forms of the metals on whole plant roots. Ecotoxicology and Environmental Safety, 196, 110545. https://doi.org/10.1016/j.ecoenv.2020.110545spa
dcterms.referencesDos Santos, J. V., Varón-López, M., Soares, C. R. F. S., Leal, P. L., Siqueira, J. O., de Souza Moreira, F. M. 2016. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research, 23(7), 6735-6748. https://doi.org/10.1007/s11356-015-5904-6spa
dcterms.referencesDu, H., Yin, N., Cai, X., Wang, P., Li, Y., Fu, Y., Sultana, M.S., Sun, G., Cui, Y. 2020. Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota. Science of The Total Environment, 708, 135227. https://doi.org/10.1016/j.scitotenv.2019.135227spa
dcterms.referencesEkmekçi, Y., Tanyolac, D., Ayhan, B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of plant physiology. 165(6): 600-611. https://doi.org/10.1016/j.jplph.2007.01.017spa
dcterms.referencesEl-Mahrouk, E. S. M., Eisa, E. A. H., Hegazi, M. A., Abdel-Gayed, M. E. S., Dewir, Y. H., El-Mahrouk, M. E., Naidoo, Y. 2019. Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience, 54(7), 1249-1257. https://doi.org/10.21273/HORTSCI14018-19spa
dcterms.referencesEnvironment Protection Authority of Australia. 2003. Classification and Management of Contaminated Soil for Disposal. Available online: https://epa.tas.gov.au/policy/acts-regulations/empca. [Acceso: 27 de marzo de 2020].spa
dcterms.referencesEnvironmental Protection Ministry of China. 2015. Standards of Soil Environmental Quality of Agricultural Land; Environmental Protection Ministry of China: Beijing, China.spa
dcterms.referencesEuropean Commission on Environment. 2002. Heavy Metals in Wastes. http://c.ymcdn.com/sites/www.productstewardship.us/respa
dcterms.referencesFAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2020. Portal de Suelos de la FAO: Propiedades Físicas del Suelo. En línea: http://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/spa
dcterms.referencesFarid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S. A. H., Saeed, R., Wu, L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicology and environmental safety. 145: 90-102. https://doi.org/10.1016/j.ecoenv.2017.07.016spa
dcterms.referencesFeng, C., Chen, Y., Zhang, S., Wang, G., Zhong, Q., Zhou, W., Xu, X., Li, T. 2020. Removal of lead, zinc and cadmium from contaminated soils with two plant extracts: Mechanism and potential risks. Ecotoxicology and environmental safety, 187, 109829. https://doi.org/10.1016/j.ecoenv.2019.109829spa
dcterms.referencesFernández, S., Poschenrieder, C., Marcenòce, C., Gallego, J.R, Jiménez-Gámez, D., Bueno, A., Afifd, E. 2017. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration.174:10-20. https://doi.org/10.1016/j.gexplo. 2016.05.015spa
dcterms.referencesFerreira, O. G. L., Rossi, F. D., Andrighetto, C. 2009. Determinação de área foliar, índice de área foliar e área de olho de lombo através de imagens digitais. Reunião Anual Da Sociedade Brasileira de Zootecnia, 46.spa
dcterms.referencesFu, X., Dou, C., Chen, Y., Chen, X., Shi, J., Yu, M., Xu, J. 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 186(1), 103-107. https://doi.org/10.1016/j.jhazmat.2010.10.122spa
dcterms.referencesFutughe, A. E., Purchase, D., Jones, H. 2020. Phytoremediation using native plants. In Phytoremediation (pp. 285-327). Springer, Cham. https://doi-org/10.1007/978-3-030-00099-8_9spa
dcterms.referencesGamiño-Gutiérrez, S. P., González-Pérez, C. I., Gonsebatt, M. E., Monroy-Fernández, M. G. 2013. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environmental geochemistry and health, 35(1), 37-51. https://doi-org /10.1007/s10653-012-9469-8spa
dcterms.referencesGarcía J., Muñoz D.A., Morales J. 2015. Evaluación del contenido de mercurio en suelos y lechos de quebradas en la zona minera de Miraflores, Quinchía, Colombia. Acta Agronómica 64 (2), 165-177. http://dx.doi.org/10.15446/acag.v64n2.40639spa
dcterms.referencesGautam, M., Pandey, D., Agrawal, S. B., Agrawal, M. 2016. Metals from mining and metallurgical industries and their toxicological impacts on plants. In Plant Responses to Xenobiotics (pp. 231-272). Springer, Singapore. https://doi-org/10.1007/978-981-10-2860-1_10spa
dcterms.referencesGebrekiro, M.G., Tessema, Z.K. 2018. Effect of Senna obtusifolia (L.) invasion on herbaceous vegetation and soil properties of rangelands in the western Tigray, northern Ethiopia. Ecological Processes, 7(1): 1-12. https://doi.org/10.1186/s13717-018-0121-0spa
dcterms.referencesGomes, P., Valente, T., Braga, M. A. S., Grande, J. A., De la Torre, M. L. 2016. Enrichment of trace elements in the clay size fraction of mining soils. Environmental Science and Pollution Research, 23(7), 6039-6045. https://doi.org/10.1007/s11356-015-4236-xspa
dcterms.referencesGonçalves Jr, A. C., Schwantes, D., de Sousa, R. F. B., da Silva, T. R. B., Guimarães, V. F., Campagnolo, M. A., Soares de Vasconcelos, E., Zimmermann, J. 2020. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. Journal of Environmental Management, 262, 110342. https://doi.org/10.1016/j.jenvman.2020.110342spa
dcterms.referencesGorelova, S. V., Frontasyeva, M. V. 2017. The use of higher plants in biomonitoring and environmental bioremediation. In Phytoremediation (pp. 103-155). Springer, Cham. https://doi-org /10.1007/978-3-319-52381-1_5spa
dcterms.referencesGuo, D., Ali, A., Ren, C., Du, J., Li, R., Lahori, A. H., Zhang, Z., Zhang, Z. 2019. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicology and environmental safety. 167: 396-403. https://doi.org/ 10.1016/ j. ecoenv.2018.10.038spa
dcterms.referencesGurajala, H. K., Cao, X., Tang, L., Ramesh, T. M., Lu, M., Yang, X. 2019. Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environmental Pollution, 254, 113085. https://doi.org/10.1016/j.envpol.2019.113085spa
dcterms.referencesHasanpour, R., Zaefarian, F., Rezvani, M., Jalili, B. 2019. Potential of Mentha aquatica L., Eryngium caucasicum Trautv. and Froriepia subpinnata Ledeb. for phytoremediation of Cd-contaminated soil. Brazilian Journal of Botany, 42(3), 399-406. https://doi-org/10.1007/s40415-019-00550-1spa
dcterms.referencesHatamian, M., Rezaei Nejad, A., Kafi, M., Souri, M., Shahbazi, K. 2020. Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chem. Biol. Technol. Agric. 7, 9. https://doi.org/10.1186/s40538-019-0173-0spa
dcterms.referencesHe, C., Zhao, Y., Wang, F., Oh, K., Zhao, Z., Wu, C., Zhang, X., Chen, X.-P., Liu, X. 2020. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. Chemosphere, 126471. https://doi.org/10.1016/j.chemosphere.2020.126471spa
dcterms.referencesHe, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., Stoffella, P. J. 2015. Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators. 9:17-18. Open Access: www.environmentalindicators.netspa
dcterms.referencesHerlina, L., Widianarko, B., Purnaweni, H., Sudarno, S., Sunoko, H. R. 2020b. Phytoremediation of Lead Contaminated Soil Using Croton (Cordiaeum variegatum) Plants. Journal of Ecological Engineering, 21(5), 107-113.https://doi.org/10.12911/22998993/122238spa
dcterms.referencesHerlina, L., Widianarko, B., Sunoko, H. R. 2020a. Phytoremediation Potential of Cordyline Fruticosa for Lead Contaminated Soil. Jurnal Pendidikan IPA Indonesia, 9(1), 42-49. https://doi.org/10.15294/jpii.v9i1.23422spa
dcterms.referencesHuang, Y., Xi, Y., Gan, L., Johnson, D., Wu, Y., Ren, D., Liu, H. 2019. Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential. International journal of phytoremediation, 21(10), 1041-1049. https://doi.org/10.1080/15226514.2019.1594686spa
dcterms.referencesHuihui, Z., Xin, L., Zisong, X., Yue, W., Zhiyuan, T., Meijun, A., Yuehui, Z., Wenxu, Z., Nan, X., Guangyu, S. 2020. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety, 195, 110469. https://doi.org/10.1016/j.ecoenv.2020.110469spa
dcterms.referencesICONTEC (Instituto Colombiano de Normas Técnicas y Certificación).2008. NTC 5264. Calidad del Suelo. Determinación Del pH. p9.spa
dcterms.referencesICONTEC (Instituto Colombiano de Normas Técnicas y Certificación).2013. NTC 5403. Calidad de suelo. Determinación del carbono orgánico. p16.spa
dcterms.referencesIGAC (Instituto Geográfico Agustín Codazzi).2006. Métodos Analíticos del Laboratorio de Suelos. IGAC: Bogotá, Colombia. p648. ISBN: 9789589067987Raspa
dcterms.referencesIrga, P. J., Pettit, T. J., Torpy, F. R. 2018. The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science and Bio/Technology, 17(2), 395-415. https://doi.org/10.1007/s11157-018-9465-2spa
dcterms.referencesJia, Q., Zhu, X., Hao, Y., Yang, Z., Wang, Q., Fu, H., Yu, H. 2018. Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure. Journal of Environmental Sciences, 68, 73-82. https://doi.org/10.1016/j.jes.2017.05.018spa
dcterms.referencesKalaivanan, D., Ganeshamurthy, A. N. 2016. Mechanisms of heavy metal toxicity in plants. In Abiotic stress physiology of horticultural crops (pp. 85-102). Springer, New Delhi. https://doi-org /10.1007/978-81-322-2725-0_5spa
dcterms.referencesKamunda, C., Mathuthu, M., Madhuku, M. 2016. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663. https://doi.org/10.3390/ijerph13070663spa
dcterms.referencesKaninga, B. K., Chishala, B. H., Maseka, K. K., Sakala, G. M., Lark, M. R., Tye, A., Watts, M. J. 2019. Mine tailings in an African tropical environment—mechanisms for the bioavailability of heavy metals in soils. Environmental geochemistry and health, 1-26. https://doi.org/10.1007/s10653-019-00326-2spa
dcterms.referencesKasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Varesche, M. B. A., Trofino, J. C., Rodrigues, V. G. S. 2016. Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using the integration of geochemical and microbiological data. Environmental monitoring and assessment, 188(12), 698. https://doi-org /10.1007/ s10661-016-5708-2spa
dcterms.referencesKathal, R., Malhotra, P., Chaudhary, V. 2016a. Phytoremediation of cadmium from polluted soil. J. Bioremediat. Biodegrad. 7:376-378. https://doi.org/10.4172/2155-6199.1000 376spa
dcterms.referencesKathal, R., Malhotra, P., Kumar, L., Uniyal, P. L. 2016b. Phytoextraction of Pb and Ni from the Polluted Soil by Brassica juncea L. J. Environ. Anal. Toxicol., 6, 394. https://doi.org/10.4172/2161-0525.1000394spa
dcterms.referencesKatoh, M., Risky, E., Sato, T. 2017. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite. International journal of environmental research and public health.14(10):1273. https://doi.org/10.3390/ijerph14101273spa
dcterms.referencesKaznina, N. M., Titov, A. F. 2014. The influence of cadmium on physiological processes and productivity of Poaceae plants. Biology Bulletin Reviews, 4(4), 335-348. https://doi.org/10.1134/S2079086414040057spa
dcterms.referencesKhalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., Dumat, C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration.182:247-268. https://doi.org/10.1016/j.gexplo.2016.11.02 1spa
dcterms.referencesKhan, A., Khan, S., Khan, M. A., Qamar, Z., Waqas, M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22(18), 13772-13799. https://doi-org/10.1007/s11356-015-4881-0spa
dcterms.referencesKhan, A., Khan, S., Khan, M. A., Qamar, Z., Waqas, M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research. 22(18):13772-13799. https://doi.org/10.1007/s11356-015-4881-0spa
dcterms.referencesKim, K. R., Owens, G., Kwon, S. 2010. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. J Environ Sci, 22(1), 98-105. https://doi.org/10.1016/S1001-0742(09)60080-2spa
dcterms.referencesKoopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ. 2008. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156(3):905–914. https://doi.org/10.1016/j.envpol.2008.05.029spa
dcterms.referencesKubota, H., Sugawara, R., Kitajima, N., Yajima, S., Tani, S. 2010. Cadmium phytoremediation by Arabidopsis halleri ssp. gemmifera. Japanese Journal of Soil Science and Plant Nutrition, 81(2), 118-124.spa
dcterms.referencesKumar Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., Ahmad Khan, S. 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological engineering. 120: 274-298. http://doi.org/10.1016/j.ecoleng.2018.05.039spa
dcterms.referencesKumar, A., Aery, N. C. 2016. Impact, Metabolism, and Toxicity of Heavy Metals in Plants. In Plant Responses to Xenobiotics (pp. 141-176). Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_7spa
dcterms.referencesKumar, B., Smita, K., Flores, L. C. 2017. Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335-S2342. https://doi.org/10.1016/j.arabjc.2013.08.010spa
dcterms.referencesKumar, R., Pandey, S., Pandey, A. 2006. Plant roots and carbon sequestration. Current Science, 885-890. https://www.jstor.org/stable/24094284spa
dcterms.referencesKumari, A., Lal, B., Rai, U. N. 2016. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. International journal of phytoremediation.18(6):592-597. https://doi.org/10.10 80/15226514.2015.1086301spa
dcterms.referencesKwon, J. C., Nejad, Z. D., Jung, M. C. 2017. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena, 148, 92-100. https://doi.org/10.1016/j.catena.2016.01.005spa
dcterms.referencesLai, H. Y. 2015. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana. Water, Air, & Soil Pollution, 226(1), 2246. https://doi-org/10.1007/s11270-014-2246-9spa
dcterms.referencesLai, T., Cappai, G., Carucci, A. 2016. Phytoremediation of Mining Areas: An Overview of Application in Lead-and Zinc-Contaminated Soils. In Phytoremediation (pp. 3-27). Springer, Cham. https://doi.org/10.1007/s11356-019-04174-6spa
dcterms.referencesLam, E. J., Montofré, Í. L., Ramírez, Y. 2021. Mine tailings phytoremediation in arid and semiarid environments. In Phytorestoration of Abandoned Mining and Oil Drilling Sites (pp. 115-166). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00012-1spa
dcterms.referencesLeal-Alvarado, D. A., Espadas-Gil, F., Sáenz-Carbonell, L., Talavera-May, C., Santamaría, J. M. 2016. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquatic Toxicology, 171, 37-47. https://doi.org/10.1016/j.aquatox.2015.12.008spa
dcterms.referencesLi, J., Li, K., Cave, M., Li, H. B., Ma, L. Q. 2015. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of hazardous materials, 295, 55-62. https://doi.org/10.1016/j.jhazmat.2015.03.061spa
dcterms.referencesLi, X., Zhang, X., Wang, X., Cui, Z. 2019. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicology and environmental safety, 180, 517-525. https://doi.org/10.1016/j.ecoenv.2019.05.033spa
dcterms.referencesLi, Y., Zhao, J., Guo, J., Liu, M., Xu, Q., Li, H., Li, Y.-F., Zheng, L., Zhang, Z., Gao, Y. 2017. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 182, 293-300. https://doi.org/10.1016/j.chemosphere.2017.04.129spa
dcterms.referencesLiang, L., Xu, X., Han, J., Xu, Z., Wu, P., Guo, J., Qiu, G. 2019. Characteristics, speciation, and bioavailability of mercury and methylmercury impacted by an abandoned coal gangue in southwestern China. Environmental Science and Pollution Research, 1-11. https://doi-org /10.1007/s11356-019-06775-7spa
dcterms.referencesLichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. 148:350-382. https://doi.org/10.1016/0076 - 6879(87)48036-1spa
dcterms.referencesLiu, D., Li, T. Q., Jin, X. F., Yang, X. E., Islam, E., Mahmood, Q. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non‐accumulating ecotypes of Sedum alfredii. Journal of integrative plant biology, 50(2), 129-140. https://doi.org/10.1111/j.1744-7909.2007.00608.xspa
dcterms.referencesLiu, K., Zhang, H., Liu, Y., Li, Y., Yu, F. 2020. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Environ Sci Pollut Res. https://doi-org/10.1007/s11356-020-08514-9spa
dcterms.referencesLiu, L., Li, W., Song, W., Guo, M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of The Total Environment. 633:206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161spa
dcterms.referencesLuo, J., Cai, L., Qi, S., Wu, J., Gu, X. S. 2017. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. Journal of environmental management. 204:17-22. https://doi.org/10.1016/j.jenvman.2017.08. 029spa
dcterms.referencesLuo, L., Shen, Y., Wang, X., Chu, B., Xu, T., Liu, Y., Zeng, Y., Liu, J. 2018. Phytoavailability, bioaccumulation, and human health risks of metal (loid) elements in an agroecosystem near a lead-zinc mine. Environmental Science and Pollution Research, 25(24), 24111-24124. https://doi-org /10.1007/s11356-018-2482-4spa
dcterms.referencesLuo, Y. M., Christie, P., Baker, A. J. M. 2000. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere, 41(1-2),161-164. https://doi.org/10.1016/ S0045-6535(99)00405-1spa
dcterms.referencesMa, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., Kennelley, E. D. 2001. A fern that hyperaccumulates arsenic. Nature. 409(6820):579. https://doi.org/10.1038/350546 64spa
dcterms.referencesMa, N., Wang, W., Gao, J., Chen, J. 2017. Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecological Engineering. 109:48-56. https://doi.org/10.1016/j.ecoleng.2017. 09.008spa
dcterms.referencesMa, Z., Chen, K., Li, Z., Bi, J., Huang, L. 2016. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: a preliminary identification of contaminated sites. Journal of soils and sediments, 16(1), 204-214. https://doi.org/10.1007/s11368-015-1208-1spa
dcterms.referencesMackay, A. K., Taylor, M. P., Munksgaard, N. C., Hudson-Edwards, K. A., Burn-Nunes, L. 2013. Identification of environmental lead sources and pathways in a mining and smelting town: Mount Isa, Australia. Environmental Pollution, 180, 304-311. https://doi.org/10.1016/j.envpol.2013.05.007spa
dcterms.referencesMahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., Zhang, Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and environmental safety. 126: 111-121.https://doi. org/10.1016/j.ecoenv.2015.12.023spa
dcterms.referencesMani, D., Kumar, C., Patel, N. K. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. International journal of phytoremediation, 17(3), 256-263. https://doi. org/10.1080/15226514.2014.883497spa
dcterms.referencesMarrugo-Madrid, S., Turull, M., Montes, G. E., Pico, M. V., Marrugo-Negrete, J. L., Díez, S. 2021. Phytoremediation of mercury in soils impacted by gold mining: a case-study of Colombia. In Bioremediation for Environmental Sustainability (pp. 145-160). Elsevier.spa
dcterms.referencesMarrugo-Negrete, J., Durango-Hernández, J., Díaz-Fernández, L., Urango-Cárdenas, I., Araméndiz-Tatis, H., Vergara-Flórez, V., Bravo, A.G., Díez, S. 2020. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Chemosphere, 250, 126142. https://doi.org/10.1016/j.chemosphere.2020.126142spa
dcterms.referencesMarrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Enamorado-Montes, G., Díez, S. 2016b. Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences. 48: 120-125. https://doi.org/10.1016 /j. jes.2015.10.036spa
dcterms.referencesMarrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., Díez, S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63. https://doi.org/10.1016/j.chemosphere.2014.12.073spa
dcterms.referencesMarrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., Díez, S. 2016a. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117spa
dcterms.referencesMarrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E. M., Bravo, A. G., Díez, S. 2019. Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation & Development, 30(17), 2139-2149. https://doi-org /10.1002/ldr.3398spa
dcterms.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., Díez, S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021spa
dcterms.referencesMartin, S. R., Llugany, M., Barceló, J., Poschenrieder, C. 2012. Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biologia Plantarum. 56(4): 729-734. https://doi.org/10.1007/s10535-012-0056-8spa
dcterms.referencesMartínez-Trinidad, S., Silva, G. H., Reyes, J. M., Munguía, G. S., Valdez, S. S., Islas, M. E. R., Martínez, R. G. 2013. Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofísica internacional, 52(1), 43-58. https://doi.org/10.1016/S0016-7169(13)71461-2spa
dcterms.referencesMellem, J. J., Baijnath, H., Odhav, B. 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health Part A, 44(6), 568-575. https://doi-org 10.1080/10934520902784583spa
dcterms.referencesMinisterio de Ambiente y Desarrollo Sostenible (MADS). 2016. Diseño de una estrategia comprensiva para el manejo de pasivos ambientales en Colombia. MADS: Bogotáspa
dcterms.referencesMinistry of Housing, Netherlands. 2000. Spatial Planning and Environment. Circular on Target Values and Intervention Values for Soil Remediation. Ministry of Housing, Netherlands. 2000.spa
dcterms.referencesMitra, G. N. 2015. Uptake of heavy metals. In Regulation of Nutrient Uptake by Plants (pp. 91-111). Springer, New Delhi. Online ISBN 978-81-322-2334-4spa
dcterms.referencesMohtadi, A., Ghaderian, S. M., Schat, H. 2012. A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant and Soil. 352(1-2): 267-276. https://doi.org/10.1007/s11104-011-0994-5spa
dcterms.referencesMondal, N. K., Das, C., Datta, J. K. 2015. Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environmental monitoring and assessment, 187(5), 241. https://doi-org/10.1007/s10661-015-4484-8spa
dcterms.referencesMontaño Santana, J. C., Forero Ulloa, F. E. 2013. The effect of organic by products of the jaggery production process on the physical properties of a sulfate acid soil. Corpoica Ciencia y Tecnología Agropecuaria, 14(2), 207-214. ISSN 0122-8706spa
dcterms.referencesMuthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, M., Prakashmaran, J., …Al-Duaij, O. K. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental chemistry letters, 16(4), 1339-1359. https://doi.org/10.1007/s10311-018-0762-3spa
dcterms.referencesNacke, H., Gonçalves, A. C., Schwantes, D., Nava, I. A., Strey, L., Coelho, G. F. 2013. Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Archives of Environmental Contamination and Toxicology, 64(4), 537-544. https://doi.org/10.1007/s00244-012-9867-zspa
dcterms.referencesNagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters. 8(3): 199-216. https:// doi.org/10.1007/s10311-010-0297-8spa
dcterms.referencesNarro Farías, E.1994. Física de Suelos: con enfoque agrícola. Editor Trillas, México D.F., 195 pp. ISBN: 9682446724, 9789682446726.spa
dcterms.referencesNawab, J., Khan, S., Shah, M. T., Khan, K., Huang, Q., Ali, R. 2015. Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International journal of phytoremediation. 17(9):801-813. https://doi.org/10.1080/15226514.2014.981246spa
dcterms.referencesNisar, N., Li, L., Lu, S., Khin, N. C., Pogson, B. J. 2015. Carotenoid metabolism in plants. Molecular plant, 8(1), 68-82. https://doi.org/10.1016/j.molp.2014.12.007spa
dcterms.referencesNurzhanova, A., Pidlisnyuk, V., Abit, K., Nurzhanov, C., Kenessov, B., Stefanovska, T., Erickson, L. 2019. Comparative assessment of using Miscanthus× giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environmental Science and Pollution Research, 26(13), 13320-13333. https://doi-org /10.1016/j.envint.2005.02.004spa
dcterms.referencesOgunkunle, C. O., Fatoba, P. O., Oyedeji, A. O., Awotoye, O. O. 2014. Assessing the heavy metal transfer and translocation by Sida acuta and Pennisetum purpureum for phytoremediation purposes. Albanian Journal of Agricultural Sciences, 13(1).spa
dcterms.referencesOlowoyo, J. O., Okedeyi, O. O., Mkolo, N. M., Lion, G. N., Mdakane, S. T. R. 2012. Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. South African Journal of Botany, 78, 116-121. https://doi.org/10.1016/j.sajb.2011.05.010spa
dcterms.referencesOseni, O. M., Dada, O. E., Okunlola, G. O., Ajao, A. A. 2018. Phytoremediation Potential of Chromolaena odorata (L.) King and Robinson (Asteraceae) and Sida acuta Burm. f.(Malvaceae) Grown in lead-Polluted Soils. Jordan Journal of Biological Sciences, 11(4).spa
dcterms.referencesOti Wilberforce JO, Nwabue FI. 2013. Heavy metals effect due to contamination of vegetables from Enyigba lead mine in Ebonyi State, Nigeria. Environment and Pollution, 2(1), 19. http://dx.doi.org/10.5539/ep.v2n1p19spa
dcterms.referencesOuzounidou, G., Moustakas, M., Eleftheriou, E. P. 1997. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32(2), 154-160. https://doi.org/10.1007/s002449900168spa
dcterms.referencesPajević, S., Borišev, M., Nikolić, N., Arsenov, D. D., Orlović, S., Župunski, M. 2016. Phytoextraction of heavy metals by fast-growing trees: a review. In Phytoremediation (pp. 29-64). Springer, Cham. https://doi-org/10.1007/978-3-319-40148-5_2spa
dcterms.referencesPang, J., Han, J., Fan, X., Li, C., Dong, X., Liang, L., Chen, Z. 2019. Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impacted by abandoned Hg mine-waste tailings. Acta Geochimica, 38(3), 391-403. https://doi-org/10.1007/s11631-018-0305-4spa
dcterms.referencesParihar, J. K., Parihar, P. K., Pakade, Y. B., Katnoria, J. K. 2020. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environmental Science and Pollution Research, 1-17. https://doi-org/10.1007/s11356-020-10454-3spa
dcterms.referencesPérez-Vargas, H. M., Vidal-Durango, J. V., Marrugo-Negrete, J. L. 2014. Evaluación de la capacidad acumuladora de mercurio del ají (Capsicum annuum). Revista de Salud Pública, 16, 897-909. http://dx.doi.org/10.15446/rsap.v16n6.31466spa
dcterms.referencesPetelka, J., Abraham, J., Bockreis, A., Deikumah, J. P., Zerbe, S. 2019. Soil Heavy Metal (loid) Pollution and Phytoremediation Potential of Native Plants on a Former Gold Mine in Ghana. Water, Air, & Soil Pollution, 230(11), 267. https://doi.org/10.1007/s11270-019-4317-4spa
dcterms.referencesPorta, J., López-Acevedo, M., Roquero, C.1999. Edafología para la agricultura y el medio ambiente. 2da edición. Ediciones Mundi-Prensa. Bilbao, España, 849 pp.spa
dcterms.referencesPošćić, F., Fellet, G., Vischi, M., Casolo, V., Schat, H., Marchiol, L. 2015. Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte biscutella laevigata subsp. laevigata. International journal of phytoremediation.17(5):464-475. https://doi.org/10.1080/15226514.2014.922921spa
dcterms.referencesPourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E. 2011. Lead uptake, toxicity, and detoxification in plants. In Reviews of Environmental Contamination and Toxicology Volume 213 (pp. 113-136). Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9860-6_4spa
dcterms.referencesPratush, A., Kumar, A., Hu, Z. 2018. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology. 21(3):97-106. https://doi.org/10.1007/s10123-018-0012-3spa
dcterms.referencesRaj, D. 2019. Bioaccumulation of mercury, arsenic, cadmium, and lead in plants grown on coal mine soil. Human and Ecological Risk Assessment: An International Journal, 25(3), 659-671. https://doi-org/10.1080/10807039.2018.1447360spa
dcterms.referencesRamana, S., Biswas, A. K., Singh, A. B., Ahirwar, N. K., Rao, A. S. 2013. Potential of rose for phytostabilization of chromium contaminated soils. Indian Journal of Plant Physiology.18(4):381-383. https://doi.org/10.1007/s40502-013-0055-6spa
dcterms.referencesRamírez Niño, M. Á., Navarro Ramírez, M. Á. 2015. Heavy Metal Analysis on Soils Irrigated with Water from the Guatiquía River. Ciencia en Desarrollo, 6(2), 167-175. ISSN 0121-7488spa
dcterms.referencesRamírez Pisco, R., Gómez Yarce, J. P., Guáqueta Restrepo, J. J., Gaviria Palacio, D. 2017. Gold phytoextraction and mining-degraded soil reclamation. Acta Agronómica, 66(4), 574-579.https://doi.org/ 10.15446/acag.v66n4.59773spa
dcterms.referencesRanđelović, D., Gajić, G., Mutić, J., Pavlović, P., Mihailović, N., Jovanović, S. 2016. Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. Ecological Engineering. 95: 800-810. https://doi.org/10.1016/j.ecoleng.201 6.07.015spa
dcterms.referencesRauret G., López-Sánchez J. F., Sahuquillo A., Barahona E., Lachica M., Ure A.M., Davison C.M., Gomez A., Lück D., Bacon J., Yli-Halla M., Muntau H., Quevauviller Ph. 2000. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content.  Journal of Environmental Monitoring. 2(3):228-33. https:// doi.org/10.1039/B001496Fspa
dcterms.referencesRizwan, M., Ali, S., ur Rehman, M. Z., Maqbool, A. 2019. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 26(7), 6279-6289. https://doi.org/10.1007/s11356-019-04174-6spa
dcterms.referencesRocha-Román, L., Olivero-Verbel, J., Caballero-Gallardo, K. R. 2018. Impacto de la minería del oro asociado con la contaminación por mercurio en suelo superficial de San Martín de Loba, sur de Bolívar (Colombia). Revista internacional de contaminación ambiental, 34(1), 93-102. Doi:10.20937/RICA.2018.34.01.08spa
dcterms.referencesRodríguez-Vázquez, R., Sánchez, S., Mena-Espino, X., Amezcua-Allieri, M. A. 2016. Identification of the medicinal plant species with the potential for remediation of hydrocarbons contaminated soils. Acta physiologiae plantarum. 38(23): 1-11. https://doi.org/10.1007/s11738-015-2036-zspa
dcterms.referencesRomeh, A. A., Khamis, M. A., Metwally, S. M. 2016. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water, Air, & Soil Pollution, 227(1), 9. https://doi-org/10.1007/s11270-015-2687-9spa
dcterms.referencesRomeh, A. A., Khamis, M. A., Metwally, S. M. 2016. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water, Air, & Soil Pollution, 227(1), 9. https://doi-org/10.1007/s11270-015-2687-9spa
dcterms.referencesRosenfeld, C. E., Chaney, R. L., Martinez, C. E. 2017. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) FK Mey in field-contaminated soils. Science of the Total Environment, 616, 279-287. https://doi.org/10.1016/j.scitotenv.2017.11.016spa
dcterms.referencesRotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A., Baker, A. J. M. 2006. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution, 144(2), 681-688.spa
dcterms.referencesRóżański, S. Ł., Castejón, J. M. P., Fernández, G. G. 2016. Bioavailability and mobility of mercury in selected soil profiles. Environmental Earth Sciences, 75(13), 1065. https://doi-org /10.1007/s12665-016-5863-3spa
dcterms.referencesRzedowski, G., Rzedowski, J. 2001. Flora fanerogámica del Valle de México. 2a (ed) Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México, p. 1406.spa
dcterms.referencesSabir, A., Naveed, M., Bashir, M. A., Hussain, A., Mustafa, A., Zahir, Z. A., Kamran, M., Ditta, A., Núñez-Delgado, A., Qadeer, A. 2020. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journalspa
dcterms.referencesSabir, M., Waraich, E. A., Hakeem, K. R., Öztürk, M., Ahmad, H. R., Shahid, M. 2015. Soil Remediation and Plants: Chapter 4 - Phytoremediation: Mechanisms and Adaptations. Soil Remediation and Plants: Prospects and Challenges. 85-105. http://dx.doi.org/10.1016/B978-0-12-799937-1.00004-8spa
dcterms.referencesSaghi, A., Rashed Mohassel, M. H., Parsa, M., Hammami, H. 2016. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. International journal of phytoremediation, 18(4), 387-392. https://doi-org /10.1080/15226514.2015.1109607spa
dcterms.referencesSako, A., Semdé, S., Wenmenga, U. 2018. Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. Journal of African Earth Sciences, 145, 297-316.spa
dcterms.referencesSahu, G. K., Upadhyay, S., Sahoo, B. B. 2012. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiology and Molecular Biology of Plants, 18(1), 21-31. https://doi-org/10.1007/s12298-011-0090-6spa
dcterms.referencesSaifullaha, Zia, M.H., Meers, E., Ghafoor, A., Murtaza, G., Sabir, M., Zia-ur-Rehman, M., Tack, F.M.G. 2010. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere, 79(6), 652-658. https://doi.org/10.1016/j.chemosphere.2010.01.066spa
dcterms.referencesSalas-Luevano, M. A., Manzanares-Acuña, E., Letechipía-de León, C., Vega-Carrillo, H. R. 2009. Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian Journal of Experimental Sciences. 23(1): 27-32.spa
dcterms.referencesSalas-Moreno, M., Marrugo-Negrete, J. 2019. Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. International journal of phytoremediation, 22(1), 87-97. https://doi.org/10.1080/15226514.2019.1644291spa
dcterms.referencesSaleem, M. H., Ali, S., Rehman, M., Rana, M. S., Rizwan, M., Kamran, M., Imran, M., Riaz, M., Soliman, M.H., Elkelish, A., Liu, L. 2020. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere, 126032. https://doi.org/10.1016/j.chemosphere.2020.126032spa
dcterms.referencesSarwar, N., Imran, M., Shaheen, M., Ishaq, W., Kamran, A., Matloob, A., Hussain, S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171: 710-721. https://doi.org/10.1016/j. chemosphere.2016.12.116spa
dcterms.referencesSengar, R. S., Gautam, M., Sengar, K., Chaudhary, R., Garg, S. 2010. Physiological and metabolic effect of mercury accumulation in higher plants system. Toxicological & Environmental Chemistry, 92(7), 1265-1281. https://doi-org /10.1080/02772240903450678spa
dcterms.referencesSeverino, L., Cardoso, G., Do Vale, L., Dos Santos, J. 2004. Método para determinação da are foliar da mamoeira. Rev. Bras. Oleaginosas Fibrosas, 8 (2004), pp. 753-762.spa
dcterms.referencesSewalem, N., Elfeky, S., Fatma, E. 2014. Phytoremediation of lead and cadmium contaminated soils using sunflower plant. Journal of Stress Physiology & Biochemistry, 10(1). ISSN 1997-0838.spa
dcterms.referencesShahid, M., Dumat, C., Khalid, S., Niazi, N. K., Antunes, P. M. 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In Reviews of Environmental Contamination and Toxicology Volume 241 (pp. 73-137). Springer, Cham. https://doi-org /10.1007/398_2016_8spa
dcterms.referencesShang, K., Hu, Y. H., Vincent, G., Labrecque, M. 2020. Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. International Journal of Phytoremediation, 22(1), 10-19. https://doi.org/10.1080/15226514.2019.1633998spa
dcterms.referencesShiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., Su, Y. 2009. Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicology and Environmental Safety. 72(2): 619-625. https://doi.org/10.1016/j.ecoenv.2008.06.002spa
dcterms.referencesShu, X., Yin, L., Zhang, Q., Wang, W. 2012. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893-902. https://doi-org/10.1007/s11356-011-0625-yspa
dcterms.referencesSilva, J. R. R., Fernandes, A. R., Junior, M. S., Santos, C. R. C., Lobato, A. K. S. 2018. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity–potential use for phytoremediation. Photosynthetica, 56(2), 495-504. https://doi.org/10.1007/s11099-017-0698-zspa
dcterms.referencesSmolińska, B., Cedzyńska, K. 2007. EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere. 69(9):1388-1395.https://doi.org/10.1016/j. chemosphere. 2007.05.003spa
dcterms.referencesSmolinska, B., Leszczynska, J. 2017. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environmental Science and Pollution Research, 24(15), 13384-13393. https://doi-org/10.1007/s11356-017-8951-3spa
dcterms.referencesSofianska, E., Michailidis, K. 2015. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece. Environmental monitoring and assessment, 187(3), 101. https://doi-org/10.1007/s10661-015-4335-7spa
dcterms.referencesSoto Carrión, C., Jiménez Mendoza, W. 2019. Potential Phytoremediator of Native Species in Soils Contaminated by Heavy Metals in the Garbage Dump Quitasol-Imponeda Abancay. Journal of Sustainable Development of Energy, Water and Environment Systems, 7(4), 584-600. https://doi.org/10.13044/j.sdewes.d7.0261spa
dcterms.referencesSuchkova, N., Tsiripidis, I., Alifragkis, D., Ganoulis, J., Darakas, E., Sawidis, T. 2014. Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecological engineering. 69:160-169. https://doi.org/10.1016/j.ecoleng.2014.03.029spa
dcterms.referencesTariq, S. R., Ashraf, A. 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry. 9(6):806-814. https://doi.org/10.1016/j.arabjc.2013.09.024spa
dcterms.referencesTepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., Saghatelyan, A. 2018. Continuous impact of mining activities on soil heavy metals levels and human health. Science of The Total Environment, 639, 900-909. https://doi.org/10.1016/j.scitotenv.2018.05.211spa
dcterms.referencesUdiba, U. U., Antai, E. E., Akpan, E. R. 2020. Assessment of Lead (Pb) Remediation Potential of Senna obtusifolia in Dareta Village, Zamfara, Nigeria. Journal of Health and Pollution, 10(25), 200301. https://doi.org/10.5696/2156-9614-10.25.200301spa
dcterms.referencesUSEPA (United States Environmental Protection Agency). 2000. Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.spa
dcterms.referencesUSEPA (United States Environmental Protection Agency). 2007a. Method 7473 mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Disponible en: <https://www.epa.gov/sites/production/files/2015-07/documents/epa-7473.pdf>. (Acceso: 15 de octubre de 2018).spa
dcterms.referencesUSEPA (United States Environmental Protection Agency). 2007b. Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Disponible en: <https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf>. (Acceso: 15 de octubre de 2018).spa
dcterms.referencesVarun, M., D’Souza, R., Favas, P. J., Pratas, J., Paul, M. S. 2015. Utilization and supplementation of phytoextraction potential of some terrestrial plants in metal-contaminated soils. In Phytoremediation (pp. 177-200). Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_13spa
dcterms.referencesVidal Durango, J. V., Marrugo Negrete, J. L., Jaramillo Colorado, B., Pérez Castro, L. M. 2010. Remediación de suelos contaminados con mercurio utilizando guarumo (Cecropia peltata). Ingeniería y desarrollo, (27). ISSN electrónico: 2145-9371spa
dcterms.referencesWan, X., Lei, M., Chen, T. 2016. Cost - benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment. 563:796-802. https://doi.org/10.1016/j.scitotenv.2015.12.080spa
dcterms.referencesWang, L., Ji, B., Hu, Y., Liu, R., Sun, W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594-600.https://doi.org/10.1016/j.chemosphere.2017.0 6.025spa
dcterms.referencesWu, M., Luo, Q., Liu, S., Zhao, Y., Long, Y., Pan, Y. 2018. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicology and environmental safety, 162, 35-41. https://doi.org/10.1016/j.ecoenv.2018.06.049spa
dcterms.referencesWu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., Yang, L. 2016. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research. 23(9):8244-8259. https://doi.org/10.1007/s11356-016-6333-xspa
dcterms.referencesXiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., Zhang, Z. 2018. Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and environmental safety. 162:178-183.https:// doi.org/ 10.1016/j.ecoenv.2018.06.095spa
dcterms.referencesXiao, R., Wang, S., Li, R., Wang, J. J., Zhang, Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and environmental safety, 141, 17-24. https://doi.org/10.1016/j.ecoenv.2017.03.002spa
dcterms.referencesXie, W., Peng, C., Wang, H., Chen, W. 2018. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities. Environmental Earth Sciences, 77(17), 606. https://doi.org/10.1007/s12665-018-7783-xspa
dcterms.referencesXu, J., Zhang, J., Lv, Y., Xu, K., Lu, S., Liu, X., Yang, Y. 2020. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotoxicology and Environmental Safety, 195, 110472. https://doi.org/10.1016/j.ecoenv.2020.110472.spa
dcterms.referencesXun, Y., Feng, L., Li, Y., Dong, H. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of Xun, Y., Feng, L., Li, Y., Dong, H. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, 161-170. https://doi.org/10.1016/j.chemosphere.2017.09.055mercury polluted sites. Chemosphere, 189, 161-170. https://doi.org/10.1016/j.chemosphere.2017.09.055spa
dcterms.referencesYang, Y., Ge, Y., Zeng, H., Zhou, X., Peng, L., Zeng, Q. 2017. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Scientific Reports, 7(1), 1-10.spa
dcterms.referencesYang, J., Yang, J., Huang, J. 2017. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–A field case. Ecological Engineering. 109: 35-40. https://doi.org/10.1016/j.ecoleng.2017.09.001spa
dcterms.referencesYang, J., Zheng, G., Yang, J., Wan, X., Song, B., Cai, W., Guo, J. 2017. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecological Engineering.107:56-64. https://doi.org/10.1016/j. ecoleng.2017.06.052spa
dcterms.referencesYoon, J., Cao, X., Zhou, Q., Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment. 368(2-3): 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016spa
dcterms.referencesZhang, J., Li, H., Zhou, Y., Dou, L., Cai, L., Mo, L., You, J. 2018. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environmental Pollution, 235, 710-719. https://doi.org/10.1016/j.envpol.2017.12.106spa
dcterms.referencesZhang, Z., Cao, Y., Li, J., Cai, C., Huang, Z. 2014. Spatial distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China. Environmental earth sciences, 72(5), 1749-1758. https://doi-org/10.1007/s12665-014-3079-yspa
dcterms.referencesZhao, L., Meng, B., Feng, X. 2020. Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicology and Environmental Safety, 195, 110462. https://doi.org/10.1016/j.ecoenv.2020.110462spa
dcterms.referencesZhao, X., He, B., Wu, H., Zheng, G., Ma, X., Liang, J., Li, P., Fan, Q. 2020. A comprehensive investigation of hazardous elements contamination in mining and smelting-impacted soils and sediments. Ecotoxicology and Environmental Safety, 192, 110320. https://doi.org/10.1016/j.ecoenv.2020.110320spa
dcterms.referencesZheng, Y., Shen, D., Wu, S., Han, Y., Li, S., Tang, F., Ni, Z., Mo, R., Liu, Y. 2018. Uptake effects of toxic heavy metals from growth soils into jujube and persimmon of China. Environmental Science and Pollution Research, 25(31), 31593-31602. https://doi.org/10.1007/s11356-018-2959-1spa
dcterms.referencesZhou, J., Li, Z., Zhou, T., Xin, Z., Wu, L., Luo, Y., Christie, P. 2020. Aluminum toxicity decreases the phytoextraction capability by cadmium/zinc hyperaccumulator Sedum plumbizincicola in acid soils. Science of The Total Environment, 134591. https://doi.org/10.1016/j.scitotenv.2019.134591spa
dcterms.referencesZhou, Y., Wang, L., Xiao, T., Chen, Y., Beiyuan, J., She, J., Zhou, Y., Yin, M., Liu, J., Liu, Y., Wang, Y., Wang, J. 2020. Legacy of multiple heavy metal (loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Science of The Total Environment, 720, 137541. https://doi.org/10.1016/j.scitotenv.2020.137541spa
dcterms.referencesZhou, Z., Chen, Z., Pan, H., Sun, B., Zeng, D., He, L., Yang, R., Zhou, G. 2018. Cadmium contamination in soils and crops in four mining areas, China. Journal of Geochemical Exploration, 192, 72-84. https://doi.org/10.1016/j.gexplo.2018.06.003spa
dcterms.referencesZu, Y.Q., Li, Y., Chen, J.J., Chen, H.Y., Qin, L. Schvartz, C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International. 31(5):755-762. https://doi.org/10.1016/j.envint.2005.02. 004spa
dcterms.referencesZulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., Anjum, M. Z. 2019. Lead toxicity in plants: Impacts and remediation. Journal of environmental management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
duranteyanezelviavaleria.pdf
Tamaño:
3.2 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
996.5 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones