Publicación: Evaluación de cuatro plantas silvestres para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb Y Cd) por actividades de minería
dc.contributor.advisor | Marrugo Negrete, José Luis | |
dc.contributor.author | Durante Yánez, Elvia Valeria | |
dc.date.accessioned | 2022-01-25T23:54:37Z | |
dc.date.available | 2022-01-25T23:54:37Z | |
dc.date.issued | 2022-01-25 | |
dc.description.abstract | La contaminación de suelos con metales pesados procedente de actividades antrópicas se ha convertido en una preocupación mundial por los impactos en la salud humana y ambiental, por lo que es necesario buscar estrategias sostenibles para remediar zonas contaminadas. El objetivo de este estudio fue evaluar cuatro plantas silvestres (Senna obtusifolia (L.) H.S. Irwin & Barneby, Sida rhombifolia L., Amaranthus spinosus L. y Clidemia sericea D. Don.) para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb y Cd) por actividades de minería aurífera. El estudio se realizó durante tres meses, con suelos provenientes de una zona de minería aurífera. Se utilizó un diseño factorial 4x3, los factores fueron el tipo de especies vegetal (S. obtusifolia, S. rhombifolia., A. spinosus y C. sericea) y la concentración de metales pesados en suelo (Control, Media y Alta), cada tratamiento por triplicado para cada especie, para un total de 36 unidades experimentales. Los análisis de concentración de Hg, Pb y Cd para las muestras de suelos y plantas, se realizaron de acuerdo a los métodos de EPA 7473 (para Hg) y EPA 3051A (para Pb y Cd). Se determinaron efectos fitotóxicos en las plantas, factores de bioconcentración (FBC) y translocación (FT). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN 11 | spa |
dc.description.tableofcontents | ABSTRACT 12 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 13 | spa |
dc.description.tableofcontents | 2. OBJETIVOS 15 | spa |
dc.description.tableofcontents | 2.1 OBJETIVO GENERAL 15 | spa |
dc.description.tableofcontents | 2.2 OBJETIVOS ESPECÍFICOS 15 | spa |
dc.description.tableofcontents | 3. ANTECEDENTES Y MARCO TEÓRICO 16 | spa |
dc.description.tableofcontents | 3.1 ANTECEDENTES 16 | spa |
dc.description.tableofcontents | 3.2 MARCO TEÓRICO 19 | spa |
dc.description.tableofcontents | 3.2.1 Suelos contaminados por metales pesados 19 | spa |
dc.description.tableofcontents | 3.2.2 Toxicidad de los metales pesados en la salud humana 20 | spa |
dc.description.tableofcontents | 3.2.3 Toxicidad de los metales pesados en las plantas 20 | spa |
dc.description.tableofcontents | 3.2.4 Fitorremediación 21 | spa |
dc.description.tableofcontents | 3.2.5 Acumulación y translocación de metales pesados en plantas 23 | spa |
dc.description.tableofcontents | 3.2.6 Plantas silvestres para fitorremediación 24 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA 27 | spa |
dc.description.tableofcontents | 4.1 DETERMINAR LAS CARACTERÍSTICAS FISICOQUÍMICAS (pH, M.O, S, P, Ca, Mg, K, Na, CICe, TEXTURA, CONCENTRACIÓN Y BIODISPONIBILIDAD DE Hg, Pb Y Cd) DE LOS SUELOS 27 | spa |
dc.description.tableofcontents | 4.1.1 Muestreo de suelos 27 | spa |
dc.description.tableofcontents | 4.1.2 Análisis fisicoquímico de los suelos 27 | spa |
dc.description.tableofcontents | 4.1.3 Análisis y control analítico de metales pesados en suelos y plantas 28 | spa |
dc.description.tableofcontents | 4.2 DESARROLLAR EL PROCESO DE FITORREMEDIACIÓN A NIVEL DE INVERNADERO PARA SUELOS CONTAMINADOS CON METALES PESADOS (Hg, Pb Y Cd) PROCEDENTES DE ACTIVIDADES DE MINERÍA AURÍFERA MEDIANTE EL USO DE ESPECIES SILVESTRES (S. obtusifolia, S. rhombifolia, A. spinosus Y C. sericea) 30 | spa |
dc.description.tableofcontents | 4.2.1 Diseño experimental 30 | spa |
dc.description.tableofcontents | 4.2.2 Montaje de experimento en invernadero 31 | spa |
dc.description.tableofcontents | 4.2.2.1 Obtención de plántulas 31 | spa |
dc.description.tableofcontents | 4.2.2.2 Unidades experimentales 32 | spa |
dc.description.tableofcontents | 4.3 DETERMINAR LOS EFECTOS FITOTÓXICOS Y FACTORES DE BIOCONCENTRACIÓN Y TRANSLOCACIÓN DE METALES PESADOS (Hg, Pb Y Cd) EN LAS ESPECIES SILVESTRES (S. obtusifolia, S. rhombifolia, A. spinosus Y C. sericea) 34 | spa |
dc.description.tableofcontents | 4.3.1 Seguimiento de efectos fitotóxicos 34 | spa |
dc.description.tableofcontents | 4.3.2 Determinación de área foliar, biomasa seca, clorofila y carotenoides 34 | spa |
dc.description.tableofcontents | 4.3.3 Determinación de factores de bioconcentración y translocación 35 | spa |
dc.description.tableofcontents | 4.3.4 Análisis estadístico 36 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN 37 | spa |
dc.description.tableofcontents | 5.1 CARACTERÍSTICAS FISICOQUÍMICAS DE LOS SUELOS 37 | spa |
dc.description.tableofcontents | 5.2 COMPORTAMIENTO DE LAS VARIABLES MORFOMÉTRICAS Y FISIOLÓGICAS DE LAS PLANTAS 47 | spa |
dc.description.tableofcontents | 5.2.1 Seguimiento de altura de la planta, diámetro del tallo, número de hojas, flores y frutos 47 | spa |
dc.description.tableofcontents | 5.2.2 Comparación de la duodécima medida de las variables morfométricas entre tratamientos 56 | spa |
dc.description.tableofcontents | 5.2.3 Área foliar, biomasa seca, clorofila y carotenoides 65 | spa |
dc.description.tableofcontents | 5.3 CONCENTRACIÓN DE Hg, Pb y Cd EN TEJIDOS DE LAS PLANTAS 75 | spa |
dc.description.tableofcontents | 5.3.1 Mercurio (Hg) 75 | spa |
dc.description.tableofcontents | 5.3.2 Plomo (Pb) 79 | spa |
dc.description.tableofcontents | 5.3.3 Cadmio (Cd) 82 | spa |
dc.description.tableofcontents | 5.4 FACTORES DE BIOCONCENTRACIÓN Y TRANSLOCACIÓN 85 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES 88 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES 89 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS 90 | spa |
dc.description.tableofcontents | ANEXOS 118 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4774 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Wild plant species | eng |
dc.subject.keywords | BCFs and TFs | eng |
dc.subject.keywords | Heavy metals | eng |
dc.subject.keywords | Mining | eng |
dc.subject.proposal | Especies silvestres | spa |
dc.subject.proposal | FBC y FT | spa |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Suelos mineros | spa |
dc.title | Evaluación de cuatro plantas silvestres para la fitorremediación de suelos contaminados con metales pesados (Hg, Pb Y Cd) por actividades de minería | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abdul-Wahab, S., Marikar, F. 2012. The environmental impact of gold mines: pollution by heavy metals. Central European Journal of Engineering. 2(2):304-313. https://doi.org./10.2478/s13531-011-0052-3 | spa |
dcterms.references | Agudelo-Calderón, C. A., Quiroz-Arcentales, L., García-Ubaque, J. C., Robledo-Martínez, R., García-Ubaque, C. A. 2016. Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18, 50-60. http://dx.doi.org/10.15446/rsap.v18n1.55384 | spa |
dcterms.references | Agyarko, K., Darteh, E., Berlinger, B. 2010. Metal levels in some refuse dump soils and plants in Ghana. Plant, Soil and Environment, 56(5), 244-251. | spa |
dcterms.references | Ahammad, S. J., Sumithra, S., Senthilkumar, P.2018. Mercury uptake and translocation by indigenous plants. Rasayan Journal of Chemistry, 11, 1-12. | spa |
dcterms.references | Ali, H., Khan, E., Sajad, M. A. 2013. Phytoremediation of heavy metals - concepts and applications. Chemosphere, 91(7):869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075 | spa |
dcterms.references | Ali, N., Hadi, F., Ali, M. 2019. Growth stage and molybdenum treatment affect cadmium accumulation, antioxidant defence and chlorophyll contents in Cannabis sativa plant. Chemosphere, 236, 124360. https://doi.org/10.1016/j.chemosphere.2019.124360 | spa |
dcterms.references | Angiosperm Phylogeny Group - APG. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 1-20. | spa |
dcterms.references | Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Majeti, N.V., Wenzel. W., Rinklebe, J. 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005 | spa |
dcterms.references | Audet, P., Charest, C. 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution. 147(1): 231-237. https://doi.org/10.1016/j. envpol.2006.08.011 | spa |
dcterms.references | Awa, S. H., Hadibarata, T. 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water, Air, & Soil Pollution, 231(2), 47. https://doi.org/10.1007/s11270-020-4426-0 | spa |
dcterms.references | Bañuelos, G. S., Arroyo, I., Pickering, I. J., Yang, S. I., Freeman, J. L. 2015. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food chemistry. 166: 603-608. https://doi.org/10.1016/j.foodchem.2014.06.071 | spa |
dcterms.references | Bañuelos, G. S., Lin, Z. Q., Arroyo, I., Terry, N. 2005. Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere, 60(9).1203-1213.https://doi.org/10.1016/ j. chemosphere. 2005.02.033 | spa |
dcterms.references | Bernal, A., Montaño, J., Sánchez, R., Albarrán, Y., Forero, F. 2014. Evaluación de materiales encalantes y orgánicos sobre las bases intercambiables de un suelo sulfatado ácido en invernadero. Temas agrarios, 19(1), 19-31. https://doi.org/10.21897/rta.v19i1.722 | spa |
dcterms.references | Bernal, R., G. Galeano, A. Rodríguez, H. Sarmiento, M. Gutiérrez. 2012. Bledo espinoso. (Amaranthus spinosus). Nombres Comunes de las Plantas de Colombia. | spa |
dcterms.references | Bernal, R., G. Galeano, A. Rodríguez, H. Sarmiento, M. Gutiérrez. 2012. Mortiño. (Clidemia sericea) Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/nombrescomunes/detalle/ncientifico/22693/ | spa |
dcterms.references | Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., Borgemeister, C. 2018. Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production. 199: 538-553. https://doi.org/10.1016/j.jclepro.2018.07.142 | spa |
dcterms.references | Boldt-Burisch, K., Schneider, B. U., Naeth, M. A., Huettl, R. F. 2019. Root exudation of organic acids of herbaceous pioneer plants and their growth in sterile and non-sterile nutrient-poor, sandy soils from post-mining sites. Pedosphere, 29(1), 34-44. https://doi.org/10.1016/S1002-0160(18)60056-6 | spa |
dcterms.references | Bonanno, G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and environmental safety. 97:124-130. https://doi.org/10.1016/j.ecoenv.2013.07.017 | spa |
dcterms.references | Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell'Atti, A., Di Leo, A., Maci, A. 2006. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Marine chemistry, 99(1-4), 227-235. https://doi.org/10.1016/j.marchem.2005.09.009 | spa |
dcterms.references | Canadian Ministry of the Environment. 2009. Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act; Canadian Ministry of the Environment: Toronto, ON, Canada. | spa |
dcterms.references | Candeias, C., Ávila, P., Coelho, P., Teixeira, J. P. 2019. Mining activities: health impacts. Reference Module in Earth Systems and Environmental Sciences, 1-21. https://doi.org/10.1016/B978-0-12-409548-9.11056-5 | spa |
dcterms.references | Castillo S, Martínez-Orea Y, Romero-Romaro M, Guadarrama-Chavez P, Nuñez-Castillo O, Sánchez-Gallen I, Maeve JA. 2007. La reserva Ecológica del Pedregal de San Ángel: Aspectos florísticos y ecológicos. Universidad Nacional Autónoma de México, México, DF | spa |
dcterms.references | Chamba, I., Gazquez, M. J., Selvaraj, T., Calva, J., Toledo, J. J., Armijos, C. 2016. Selection of a suitable plant for phytoremediation in mining artisanal zones. International journal of phytoremediation, 18(9), 853-860. https://doi.org/10.1080/15226514.2016.1156638 | spa |
dcterms.references | Chandra, R., Kumar, V. 2017. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science and Pollution Research. 24(3): 2605-2619. https://doi.org/10.1007/s11356-016-8022-1 | spa |
dcterms.references | Chaney, R.L. 1983. Plant uptake of inorganic waste constituents. J.F.E.A. Parr (Ed.), Land Treatment of Hazardous Wastes, Noyes Data Corp., Park Ridge, NJ (1983), pp. 50-76 | spa |
dcterms.references | Chen, M., Lu, W., Hou, Z., Zhang, Y., Jiang, X., Wu, J. 2017. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China. Environmental Science and Pollution Research, 24(3), 3084-3096. https://doi-org.ezproxy.unal.edu.co/10.1007/s11356-016-7968-3 | spa |
dcterms.references | Chen, Z., Zhao, Y., Fan, L., Xing, L., Yang, Y. 2015. Cadmium (Cd) localization in tissues of cotton (Gossypium hirsutum L.), and its phytoremediation potential for Cd-contaminated soils. Bulletin of environmental contamination and toxicology, 95(6), 784-789. https://doi-org/10.1007/s00128-015-1662-x | spa |
dcterms.references | Cheng, S. 2003. Effects of heavy metals on plants and resistance mechanisms. Environmental Science and Pollution Research. 10(4): 256-264. https://doi.org/10.1007/s11356-016-6333-x | spa |
dcterms.references | Chinmayee, M. D., Mahesh, B., Pradesh, S., Mini, I., Swapna, T. S. 2012. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Applied biochemistry and biotechnology. 167(6):1550-1559. https://doi.org./10.1007/s12 010 -012-9657-0 | spa |
dcterms.references | Chunilall, V., Kindness, A., Jonnalagadda, S. B. 2005. Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. Journal of Envirnomental Science and Health, 40(2), 375-384. https://doi.org/10.1081/PFC-200045573 | spa |
dcterms.references | Čížková, B., Woś, B., Pietrzykowski, M., Frouz, J. 2018. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecological Engineering, 123, 103-111. https://doi.org/10.1016/j.ecoleng.2018.09.004 | spa |
dcterms.references | Minciencias (Ministerio de Ciencia, Tecnología e Innovación), Universidad de Córdoba. 2012. Remoción de mercurio en suelos por plantas que crecen en sitios contaminados con el metal en el norte de Colombia (mina el Alacrán en el departamento de Córdoba y mina Santa Cruz en el departamento de Bolívar). Informe de Convocatoria 475 de 2009. | spa |
dcterms.references | Combatt, E. M., Palencia, G., Marin, N. 2003. Clasificación de suelos sulfatados ácidos según azufre extraíble en los municipios del medio y bajo Sinú en Córdoba. Temas Agrarios, 8(2), 22-29. ISSN electrónica:2389-9182 | spa |
dcterms.references | Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., Ferrante, M. 2017. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation. 8:309-326. http://dx.doi.org/10.1016/j.eti.2017.08.002 | spa |
dcterms.references | da Conceição Gomes, M. A., Hauser-Davis, R. A., de Souza, A. N., Vitória, A. P. 2016. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety. 134:133-147. https://doi.org/10.1016/j.ecoenv.2016.08.024 | spa |
dcterms.references | Dary, M., Chamber-Pérez, M. A., Palomares, A., J., Pajuelo, E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials.177(1-3):323-330. https://doi.org/10.1016/j.jhazmat.2009.12.035 | spa |
dcterms.references | Dhiman, S. S., Selvaraj, C., Li, J., Singh, R., Zhao, X., Kim, D., Kim, J., Kang, Y., Lee, J. K. 2016. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel. 183: 107-114. https://doi.org/10.1016/j.fuel.2016.06.025 | spa |
dcterms.references | Díaz, L., Díaz, A., Carrillo, R., González, M. 2005. Plantas que se desarrollan en áreas contaminadas con residuos mineros. In: González Chávez MC, Pérez Moreno J, Carrillo González R (eds) El sistema planta-microorganismo-suelo en áreas contaminadas con residuos de minas. Colegio de Postgraduados, México. | spa |
dcterms.references | Ding, W., Zhang, J., Wu, S. C., Zhang, S., Christie, P., Liang, P. 2019. Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. Ecotoxicology and environmental safety, 183, 109549. https://doi.org/10.1016/j.ecoenv.2019.109549 | spa |
dcterms.references | Dinu, C., Ungureanu, E. M., Vasile, G., Kim, L., Ionescu, I., Ene, C., Simion, M. 2018. Soil and vegetation pollution from an abandoned mining area situated in Hunedoara County, Romania. https://doi.org/10.37358/RC.18.1.6036 | spa |
dcterms.references | Dinu, C., Vasile, G. G., Buleandra, M., Popa, D. E., Gheorghe, S., Ungureanu, E. M. 2020. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments, 1-14. https://doi-org /10.1007/s11368-019-02550-w | spa |
dcterms.references | Dong, G., Nkoh, J. N., Hong, Z. N., Dong, Y., Lu, H. L., Yang, J., Pan, H., Xu, R. K. 2020. Phytotoxicity of Cu2+ and Cd2+ to the roots of four different wheat cultivars as related to charge properties and chemical forms of the metals on whole plant roots. Ecotoxicology and Environmental Safety, 196, 110545. https://doi.org/10.1016/j.ecoenv.2020.110545 | spa |
dcterms.references | Dos Santos, J. V., Varón-López, M., Soares, C. R. F. S., Leal, P. L., Siqueira, J. O., de Souza Moreira, F. M. 2016. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research, 23(7), 6735-6748. https://doi.org/10.1007/s11356-015-5904-6 | spa |
dcterms.references | Du, H., Yin, N., Cai, X., Wang, P., Li, Y., Fu, Y., Sultana, M.S., Sun, G., Cui, Y. 2020. Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota. Science of The Total Environment, 708, 135227. https://doi.org/10.1016/j.scitotenv.2019.135227 | spa |
dcterms.references | Ekmekçi, Y., Tanyolac, D., Ayhan, B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of plant physiology. 165(6): 600-611. https://doi.org/10.1016/j.jplph.2007.01.017 | spa |
dcterms.references | El-Mahrouk, E. S. M., Eisa, E. A. H., Hegazi, M. A., Abdel-Gayed, M. E. S., Dewir, Y. H., El-Mahrouk, M. E., Naidoo, Y. 2019. Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience, 54(7), 1249-1257. https://doi.org/10.21273/HORTSCI14018-19 | spa |
dcterms.references | Environment Protection Authority of Australia. 2003. Classification and Management of Contaminated Soil for Disposal. Available online: https://epa.tas.gov.au/policy/acts-regulations/empca. [Acceso: 27 de marzo de 2020]. | spa |
dcterms.references | Environmental Protection Ministry of China. 2015. Standards of Soil Environmental Quality of Agricultural Land; Environmental Protection Ministry of China: Beijing, China. | spa |
dcterms.references | European Commission on Environment. 2002. Heavy Metals in Wastes. http://c.ymcdn.com/sites/www.productstewardship.us/re | spa |
dcterms.references | FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2020. Portal de Suelos de la FAO: Propiedades Físicas del Suelo. En línea: http://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/ | spa |
dcterms.references | Farid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S. A. H., Saeed, R., Wu, L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicology and environmental safety. 145: 90-102. https://doi.org/10.1016/j.ecoenv.2017.07.016 | spa |
dcterms.references | Feng, C., Chen, Y., Zhang, S., Wang, G., Zhong, Q., Zhou, W., Xu, X., Li, T. 2020. Removal of lead, zinc and cadmium from contaminated soils with two plant extracts: Mechanism and potential risks. Ecotoxicology and environmental safety, 187, 109829. https://doi.org/10.1016/j.ecoenv.2019.109829 | spa |
dcterms.references | Fernández, S., Poschenrieder, C., Marcenòce, C., Gallego, J.R, Jiménez-Gámez, D., Bueno, A., Afifd, E. 2017. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration.174:10-20. https://doi.org/10.1016/j.gexplo. 2016.05.015 | spa |
dcterms.references | Ferreira, O. G. L., Rossi, F. D., Andrighetto, C. 2009. Determinação de área foliar, índice de área foliar e área de olho de lombo através de imagens digitais. Reunião Anual Da Sociedade Brasileira de Zootecnia, 46. | spa |
dcterms.references | Fu, X., Dou, C., Chen, Y., Chen, X., Shi, J., Yu, M., Xu, J. 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 186(1), 103-107. https://doi.org/10.1016/j.jhazmat.2010.10.122 | spa |
dcterms.references | Futughe, A. E., Purchase, D., Jones, H. 2020. Phytoremediation using native plants. In Phytoremediation (pp. 285-327). Springer, Cham. https://doi-org/10.1007/978-3-030-00099-8_9 | spa |
dcterms.references | Gamiño-Gutiérrez, S. P., González-Pérez, C. I., Gonsebatt, M. E., Monroy-Fernández, M. G. 2013. Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay. Environmental geochemistry and health, 35(1), 37-51. https://doi-org /10.1007/s10653-012-9469-8 | spa |
dcterms.references | García J., Muñoz D.A., Morales J. 2015. Evaluación del contenido de mercurio en suelos y lechos de quebradas en la zona minera de Miraflores, Quinchía, Colombia. Acta Agronómica 64 (2), 165-177. http://dx.doi.org/10.15446/acag.v64n2.40639 | spa |
dcterms.references | Gautam, M., Pandey, D., Agrawal, S. B., Agrawal, M. 2016. Metals from mining and metallurgical industries and their toxicological impacts on plants. In Plant Responses to Xenobiotics (pp. 231-272). Springer, Singapore. https://doi-org/10.1007/978-981-10-2860-1_10 | spa |
dcterms.references | Gebrekiro, M.G., Tessema, Z.K. 2018. Effect of Senna obtusifolia (L.) invasion on herbaceous vegetation and soil properties of rangelands in the western Tigray, northern Ethiopia. Ecological Processes, 7(1): 1-12. https://doi.org/10.1186/s13717-018-0121-0 | spa |
dcterms.references | Gomes, P., Valente, T., Braga, M. A. S., Grande, J. A., De la Torre, M. L. 2016. Enrichment of trace elements in the clay size fraction of mining soils. Environmental Science and Pollution Research, 23(7), 6039-6045. https://doi.org/10.1007/s11356-015-4236-x | spa |
dcterms.references | Gonçalves Jr, A. C., Schwantes, D., de Sousa, R. F. B., da Silva, T. R. B., Guimarães, V. F., Campagnolo, M. A., Soares de Vasconcelos, E., Zimmermann, J. 2020. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. Journal of Environmental Management, 262, 110342. https://doi.org/10.1016/j.jenvman.2020.110342 | spa |
dcterms.references | Gorelova, S. V., Frontasyeva, M. V. 2017. The use of higher plants in biomonitoring and environmental bioremediation. In Phytoremediation (pp. 103-155). Springer, Cham. https://doi-org /10.1007/978-3-319-52381-1_5 | spa |
dcterms.references | Guo, D., Ali, A., Ren, C., Du, J., Li, R., Lahori, A. H., Zhang, Z., Zhang, Z. 2019. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicology and environmental safety. 167: 396-403. https://doi.org/ 10.1016/ j. ecoenv.2018.10.038 | spa |
dcterms.references | Gurajala, H. K., Cao, X., Tang, L., Ramesh, T. M., Lu, M., Yang, X. 2019. Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environmental Pollution, 254, 113085. https://doi.org/10.1016/j.envpol.2019.113085 | spa |
dcterms.references | Hasanpour, R., Zaefarian, F., Rezvani, M., Jalili, B. 2019. Potential of Mentha aquatica L., Eryngium caucasicum Trautv. and Froriepia subpinnata Ledeb. for phytoremediation of Cd-contaminated soil. Brazilian Journal of Botany, 42(3), 399-406. https://doi-org/10.1007/s40415-019-00550-1 | spa |
dcterms.references | Hatamian, M., Rezaei Nejad, A., Kafi, M., Souri, M., Shahbazi, K. 2020. Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chem. Biol. Technol. Agric. 7, 9. https://doi.org/10.1186/s40538-019-0173-0 | spa |
dcterms.references | He, C., Zhao, Y., Wang, F., Oh, K., Zhao, Z., Wu, C., Zhang, X., Chen, X.-P., Liu, X. 2020. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. Chemosphere, 126471. https://doi.org/10.1016/j.chemosphere.2020.126471 | spa |
dcterms.references | He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., Stoffella, P. J. 2015. Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators. 9:17-18. Open Access: www.environmentalindicators.net | spa |
dcterms.references | Herlina, L., Widianarko, B., Purnaweni, H., Sudarno, S., Sunoko, H. R. 2020b. Phytoremediation of Lead Contaminated Soil Using Croton (Cordiaeum variegatum) Plants. Journal of Ecological Engineering, 21(5), 107-113.https://doi.org/10.12911/22998993/122238 | spa |
dcterms.references | Herlina, L., Widianarko, B., Sunoko, H. R. 2020a. Phytoremediation Potential of Cordyline Fruticosa for Lead Contaminated Soil. Jurnal Pendidikan IPA Indonesia, 9(1), 42-49. https://doi.org/10.15294/jpii.v9i1.23422 | spa |
dcterms.references | Huang, Y., Xi, Y., Gan, L., Johnson, D., Wu, Y., Ren, D., Liu, H. 2019. Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential. International journal of phytoremediation, 21(10), 1041-1049. https://doi.org/10.1080/15226514.2019.1594686 | spa |
dcterms.references | Huihui, Z., Xin, L., Zisong, X., Yue, W., Zhiyuan, T., Meijun, A., Yuehui, Z., Wenxu, Z., Nan, X., Guangyu, S. 2020. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety, 195, 110469. https://doi.org/10.1016/j.ecoenv.2020.110469 | spa |
dcterms.references | ICONTEC (Instituto Colombiano de Normas Técnicas y Certificación).2008. NTC 5264. Calidad del Suelo. Determinación Del pH. p9. | spa |
dcterms.references | ICONTEC (Instituto Colombiano de Normas Técnicas y Certificación).2013. NTC 5403. Calidad de suelo. Determinación del carbono orgánico. p16. | spa |
dcterms.references | IGAC (Instituto Geográfico Agustín Codazzi).2006. Métodos Analíticos del Laboratorio de Suelos. IGAC: Bogotá, Colombia. p648. ISBN: 9789589067987Ra | spa |
dcterms.references | Irga, P. J., Pettit, T. J., Torpy, F. R. 2018. The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science and Bio/Technology, 17(2), 395-415. https://doi.org/10.1007/s11157-018-9465-2 | spa |
dcterms.references | Jia, Q., Zhu, X., Hao, Y., Yang, Z., Wang, Q., Fu, H., Yu, H. 2018. Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure. Journal of Environmental Sciences, 68, 73-82. https://doi.org/10.1016/j.jes.2017.05.018 | spa |
dcterms.references | Kalaivanan, D., Ganeshamurthy, A. N. 2016. Mechanisms of heavy metal toxicity in plants. In Abiotic stress physiology of horticultural crops (pp. 85-102). Springer, New Delhi. https://doi-org /10.1007/978-81-322-2725-0_5 | spa |
dcterms.references | Kamunda, C., Mathuthu, M., Madhuku, M. 2016. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663. https://doi.org/10.3390/ijerph13070663 | spa |
dcterms.references | Kaninga, B. K., Chishala, B. H., Maseka, K. K., Sakala, G. M., Lark, M. R., Tye, A., Watts, M. J. 2019. Mine tailings in an African tropical environment—mechanisms for the bioavailability of heavy metals in soils. Environmental geochemistry and health, 1-26. https://doi.org/10.1007/s10653-019-00326-2 | spa |
dcterms.references | Kasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Varesche, M. B. A., Trofino, J. C., Rodrigues, V. G. S. 2016. Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using the integration of geochemical and microbiological data. Environmental monitoring and assessment, 188(12), 698. https://doi-org /10.1007/ s10661-016-5708-2 | spa |
dcterms.references | Kathal, R., Malhotra, P., Chaudhary, V. 2016a. Phytoremediation of cadmium from polluted soil. J. Bioremediat. Biodegrad. 7:376-378. https://doi.org/10.4172/2155-6199.1000 376 | spa |
dcterms.references | Kathal, R., Malhotra, P., Kumar, L., Uniyal, P. L. 2016b. Phytoextraction of Pb and Ni from the Polluted Soil by Brassica juncea L. J. Environ. Anal. Toxicol., 6, 394. https://doi.org/10.4172/2161-0525.1000394 | spa |
dcterms.references | Katoh, M., Risky, E., Sato, T. 2017. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite. International journal of environmental research and public health.14(10):1273. https://doi.org/10.3390/ijerph14101273 | spa |
dcterms.references | Kaznina, N. M., Titov, A. F. 2014. The influence of cadmium on physiological processes and productivity of Poaceae plants. Biology Bulletin Reviews, 4(4), 335-348. https://doi.org/10.1134/S2079086414040057 | spa |
dcterms.references | Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., Dumat, C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration.182:247-268. https://doi.org/10.1016/j.gexplo.2016.11.02 1 | spa |
dcterms.references | Khan, A., Khan, S., Khan, M. A., Qamar, Z., Waqas, M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22(18), 13772-13799. https://doi-org/10.1007/s11356-015-4881-0 | spa |
dcterms.references | Khan, A., Khan, S., Khan, M. A., Qamar, Z., Waqas, M. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research. 22(18):13772-13799. https://doi.org/10.1007/s11356-015-4881-0 | spa |
dcterms.references | Kim, K. R., Owens, G., Kwon, S. 2010. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. J Environ Sci, 22(1), 98-105. https://doi.org/10.1016/S1001-0742(09)60080-2 | spa |
dcterms.references | Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ. 2008. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156(3):905–914. https://doi.org/10.1016/j.envpol.2008.05.029 | spa |
dcterms.references | Kubota, H., Sugawara, R., Kitajima, N., Yajima, S., Tani, S. 2010. Cadmium phytoremediation by Arabidopsis halleri ssp. gemmifera. Japanese Journal of Soil Science and Plant Nutrition, 81(2), 118-124. | spa |
dcterms.references | Kumar Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., Ahmad Khan, S. 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological engineering. 120: 274-298. http://doi.org/10.1016/j.ecoleng.2018.05.039 | spa |
dcterms.references | Kumar, A., Aery, N. C. 2016. Impact, Metabolism, and Toxicity of Heavy Metals in Plants. In Plant Responses to Xenobiotics (pp. 141-176). Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_7 | spa |
dcterms.references | Kumar, B., Smita, K., Flores, L. C. 2017. Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335-S2342. https://doi.org/10.1016/j.arabjc.2013.08.010 | spa |
dcterms.references | Kumar, R., Pandey, S., Pandey, A. 2006. Plant roots and carbon sequestration. Current Science, 885-890. https://www.jstor.org/stable/24094284 | spa |
dcterms.references | Kumari, A., Lal, B., Rai, U. N. 2016. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. International journal of phytoremediation.18(6):592-597. https://doi.org/10.10 80/15226514.2015.1086301 | spa |
dcterms.references | Kwon, J. C., Nejad, Z. D., Jung, M. C. 2017. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena, 148, 92-100. https://doi.org/10.1016/j.catena.2016.01.005 | spa |
dcterms.references | Lai, H. Y. 2015. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana. Water, Air, & Soil Pollution, 226(1), 2246. https://doi-org/10.1007/s11270-014-2246-9 | spa |
dcterms.references | Lai, T., Cappai, G., Carucci, A. 2016. Phytoremediation of Mining Areas: An Overview of Application in Lead-and Zinc-Contaminated Soils. In Phytoremediation (pp. 3-27). Springer, Cham. https://doi.org/10.1007/s11356-019-04174-6 | spa |
dcterms.references | Lam, E. J., Montofré, Í. L., Ramírez, Y. 2021. Mine tailings phytoremediation in arid and semiarid environments. In Phytorestoration of Abandoned Mining and Oil Drilling Sites (pp. 115-166). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00012-1 | spa |
dcterms.references | Leal-Alvarado, D. A., Espadas-Gil, F., Sáenz-Carbonell, L., Talavera-May, C., Santamaría, J. M. 2016. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquatic Toxicology, 171, 37-47. https://doi.org/10.1016/j.aquatox.2015.12.008 | spa |
dcterms.references | Li, J., Li, K., Cave, M., Li, H. B., Ma, L. Q. 2015. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of hazardous materials, 295, 55-62. https://doi.org/10.1016/j.jhazmat.2015.03.061 | spa |
dcterms.references | Li, X., Zhang, X., Wang, X., Cui, Z. 2019. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicology and environmental safety, 180, 517-525. https://doi.org/10.1016/j.ecoenv.2019.05.033 | spa |
dcterms.references | Li, Y., Zhao, J., Guo, J., Liu, M., Xu, Q., Li, H., Li, Y.-F., Zheng, L., Zhang, Z., Gao, Y. 2017. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 182, 293-300. https://doi.org/10.1016/j.chemosphere.2017.04.129 | spa |
dcterms.references | Liang, L., Xu, X., Han, J., Xu, Z., Wu, P., Guo, J., Qiu, G. 2019. Characteristics, speciation, and bioavailability of mercury and methylmercury impacted by an abandoned coal gangue in southwestern China. Environmental Science and Pollution Research, 1-11. https://doi-org /10.1007/s11356-019-06775-7 | spa |
dcterms.references | Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. 148:350-382. https://doi.org/10.1016/0076 - 6879(87)48036-1 | spa |
dcterms.references | Liu, D., Li, T. Q., Jin, X. F., Yang, X. E., Islam, E., Mahmood, Q. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non‐accumulating ecotypes of Sedum alfredii. Journal of integrative plant biology, 50(2), 129-140. https://doi.org/10.1111/j.1744-7909.2007.00608.x | spa |
dcterms.references | Liu, K., Zhang, H., Liu, Y., Li, Y., Yu, F. 2020. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Environ Sci Pollut Res. https://doi-org/10.1007/s11356-020-08514-9 | spa |
dcterms.references | Liu, L., Li, W., Song, W., Guo, M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of The Total Environment. 633:206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161 | spa |
dcterms.references | Luo, J., Cai, L., Qi, S., Wu, J., Gu, X. S. 2017. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. Journal of environmental management. 204:17-22. https://doi.org/10.1016/j.jenvman.2017.08. 029 | spa |
dcterms.references | Luo, L., Shen, Y., Wang, X., Chu, B., Xu, T., Liu, Y., Zeng, Y., Liu, J. 2018. Phytoavailability, bioaccumulation, and human health risks of metal (loid) elements in an agroecosystem near a lead-zinc mine. Environmental Science and Pollution Research, 25(24), 24111-24124. https://doi-org /10.1007/s11356-018-2482-4 | spa |
dcterms.references | Luo, Y. M., Christie, P., Baker, A. J. M. 2000. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere, 41(1-2),161-164. https://doi.org/10.1016/ S0045-6535(99)00405-1 | spa |
dcterms.references | Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., Kennelley, E. D. 2001. A fern that hyperaccumulates arsenic. Nature. 409(6820):579. https://doi.org/10.1038/350546 64 | spa |
dcterms.references | Ma, N., Wang, W., Gao, J., Chen, J. 2017. Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecological Engineering. 109:48-56. https://doi.org/10.1016/j.ecoleng.2017. 09.008 | spa |
dcterms.references | Ma, Z., Chen, K., Li, Z., Bi, J., Huang, L. 2016. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: a preliminary identification of contaminated sites. Journal of soils and sediments, 16(1), 204-214. https://doi.org/10.1007/s11368-015-1208-1 | spa |
dcterms.references | Mackay, A. K., Taylor, M. P., Munksgaard, N. C., Hudson-Edwards, K. A., Burn-Nunes, L. 2013. Identification of environmental lead sources and pathways in a mining and smelting town: Mount Isa, Australia. Environmental Pollution, 180, 304-311. https://doi.org/10.1016/j.envpol.2013.05.007 | spa |
dcterms.references | Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., Zhang, Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and environmental safety. 126: 111-121.https://doi. org/10.1016/j.ecoenv.2015.12.023 | spa |
dcterms.references | Mani, D., Kumar, C., Patel, N. K. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. International journal of phytoremediation, 17(3), 256-263. https://doi. org/10.1080/15226514.2014.883497 | spa |
dcterms.references | Marrugo-Madrid, S., Turull, M., Montes, G. E., Pico, M. V., Marrugo-Negrete, J. L., Díez, S. 2021. Phytoremediation of mercury in soils impacted by gold mining: a case-study of Colombia. In Bioremediation for Environmental Sustainability (pp. 145-160). Elsevier. | spa |
dcterms.references | Marrugo-Negrete, J., Durango-Hernández, J., Díaz-Fernández, L., Urango-Cárdenas, I., Araméndiz-Tatis, H., Vergara-Flórez, V., Bravo, A.G., Díez, S. 2020. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Chemosphere, 250, 126142. https://doi.org/10.1016/j.chemosphere.2020.126142 | spa |
dcterms.references | Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Enamorado-Montes, G., Díez, S. 2016b. Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences. 48: 120-125. https://doi.org/10.1016 /j. jes.2015.10.036 | spa |
dcterms.references | Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., Díez, S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63. https://doi.org/10.1016/j.chemosphere.2014.12.073 | spa |
dcterms.references | Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., Díez, S. 2016a. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117 | spa |
dcterms.references | Marrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E. M., Bravo, A. G., Díez, S. 2019. Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation & Development, 30(17), 2139-2149. https://doi-org /10.1002/ldr.3398 | spa |
dcterms.references | Marrugo-Negrete, J., Pinedo-Hernández, J., Díez, S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021 | spa |
dcterms.references | Martin, S. R., Llugany, M., Barceló, J., Poschenrieder, C. 2012. Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biologia Plantarum. 56(4): 729-734. https://doi.org/10.1007/s10535-012-0056-8 | spa |
dcterms.references | Martínez-Trinidad, S., Silva, G. H., Reyes, J. M., Munguía, G. S., Valdez, S. S., Islas, M. E. R., Martínez, R. G. 2013. Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofísica internacional, 52(1), 43-58. https://doi.org/10.1016/S0016-7169(13)71461-2 | spa |
dcterms.references | Mellem, J. J., Baijnath, H., Odhav, B. 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health Part A, 44(6), 568-575. https://doi-org 10.1080/10934520902784583 | spa |
dcterms.references | Ministerio de Ambiente y Desarrollo Sostenible (MADS). 2016. Diseño de una estrategia comprensiva para el manejo de pasivos ambientales en Colombia. MADS: Bogotá | spa |
dcterms.references | Ministry of Housing, Netherlands. 2000. Spatial Planning and Environment. Circular on Target Values and Intervention Values for Soil Remediation. Ministry of Housing, Netherlands. 2000. | spa |
dcterms.references | Mitra, G. N. 2015. Uptake of heavy metals. In Regulation of Nutrient Uptake by Plants (pp. 91-111). Springer, New Delhi. Online ISBN 978-81-322-2334-4 | spa |
dcterms.references | Mohtadi, A., Ghaderian, S. M., Schat, H. 2012. A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant and Soil. 352(1-2): 267-276. https://doi.org/10.1007/s11104-011-0994-5 | spa |
dcterms.references | Mondal, N. K., Das, C., Datta, J. K. 2015. Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environmental monitoring and assessment, 187(5), 241. https://doi-org/10.1007/s10661-015-4484-8 | spa |
dcterms.references | Montaño Santana, J. C., Forero Ulloa, F. E. 2013. The effect of organic by products of the jaggery production process on the physical properties of a sulfate acid soil. Corpoica Ciencia y Tecnología Agropecuaria, 14(2), 207-214. ISSN 0122-8706 | spa |
dcterms.references | Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, M., Prakashmaran, J., …Al-Duaij, O. K. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental chemistry letters, 16(4), 1339-1359. https://doi.org/10.1007/s10311-018-0762-3 | spa |
dcterms.references | Nacke, H., Gonçalves, A. C., Schwantes, D., Nava, I. A., Strey, L., Coelho, G. F. 2013. Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Archives of Environmental Contamination and Toxicology, 64(4), 537-544. https://doi.org/10.1007/s00244-012-9867-z | spa |
dcterms.references | Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters. 8(3): 199-216. https:// doi.org/10.1007/s10311-010-0297-8 | spa |
dcterms.references | Narro Farías, E.1994. Física de Suelos: con enfoque agrícola. Editor Trillas, México D.F., 195 pp. ISBN: 9682446724, 9789682446726. | spa |
dcterms.references | Nawab, J., Khan, S., Shah, M. T., Khan, K., Huang, Q., Ali, R. 2015. Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International journal of phytoremediation. 17(9):801-813. https://doi.org/10.1080/15226514.2014.981246 | spa |
dcterms.references | Nisar, N., Li, L., Lu, S., Khin, N. C., Pogson, B. J. 2015. Carotenoid metabolism in plants. Molecular plant, 8(1), 68-82. https://doi.org/10.1016/j.molp.2014.12.007 | spa |
dcterms.references | Nurzhanova, A., Pidlisnyuk, V., Abit, K., Nurzhanov, C., Kenessov, B., Stefanovska, T., Erickson, L. 2019. Comparative assessment of using Miscanthus× giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environmental Science and Pollution Research, 26(13), 13320-13333. https://doi-org /10.1016/j.envint.2005.02.004 | spa |
dcterms.references | Ogunkunle, C. O., Fatoba, P. O., Oyedeji, A. O., Awotoye, O. O. 2014. Assessing the heavy metal transfer and translocation by Sida acuta and Pennisetum purpureum for phytoremediation purposes. Albanian Journal of Agricultural Sciences, 13(1). | spa |
dcterms.references | Olowoyo, J. O., Okedeyi, O. O., Mkolo, N. M., Lion, G. N., Mdakane, S. T. R. 2012. Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. South African Journal of Botany, 78, 116-121. https://doi.org/10.1016/j.sajb.2011.05.010 | spa |
dcterms.references | Oseni, O. M., Dada, O. E., Okunlola, G. O., Ajao, A. A. 2018. Phytoremediation Potential of Chromolaena odorata (L.) King and Robinson (Asteraceae) and Sida acuta Burm. f.(Malvaceae) Grown in lead-Polluted Soils. Jordan Journal of Biological Sciences, 11(4). | spa |
dcterms.references | Oti Wilberforce JO, Nwabue FI. 2013. Heavy metals effect due to contamination of vegetables from Enyigba lead mine in Ebonyi State, Nigeria. Environment and Pollution, 2(1), 19. http://dx.doi.org/10.5539/ep.v2n1p19 | spa |
dcterms.references | Ouzounidou, G., Moustakas, M., Eleftheriou, E. P. 1997. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32(2), 154-160. https://doi.org/10.1007/s002449900168 | spa |
dcterms.references | Pajević, S., Borišev, M., Nikolić, N., Arsenov, D. D., Orlović, S., Župunski, M. 2016. Phytoextraction of heavy metals by fast-growing trees: a review. In Phytoremediation (pp. 29-64). Springer, Cham. https://doi-org/10.1007/978-3-319-40148-5_2 | spa |
dcterms.references | Pang, J., Han, J., Fan, X., Li, C., Dong, X., Liang, L., Chen, Z. 2019. Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impacted by abandoned Hg mine-waste tailings. Acta Geochimica, 38(3), 391-403. https://doi-org/10.1007/s11631-018-0305-4 | spa |
dcterms.references | Parihar, J. K., Parihar, P. K., Pakade, Y. B., Katnoria, J. K. 2020. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environmental Science and Pollution Research, 1-17. https://doi-org/10.1007/s11356-020-10454-3 | spa |
dcterms.references | Pérez-Vargas, H. M., Vidal-Durango, J. V., Marrugo-Negrete, J. L. 2014. Evaluación de la capacidad acumuladora de mercurio del ají (Capsicum annuum). Revista de Salud Pública, 16, 897-909. http://dx.doi.org/10.15446/rsap.v16n6.31466 | spa |
dcterms.references | Petelka, J., Abraham, J., Bockreis, A., Deikumah, J. P., Zerbe, S. 2019. Soil Heavy Metal (loid) Pollution and Phytoremediation Potential of Native Plants on a Former Gold Mine in Ghana. Water, Air, & Soil Pollution, 230(11), 267. https://doi.org/10.1007/s11270-019-4317-4 | spa |
dcterms.references | Porta, J., López-Acevedo, M., Roquero, C.1999. Edafología para la agricultura y el medio ambiente. 2da edición. Ediciones Mundi-Prensa. Bilbao, España, 849 pp. | spa |
dcterms.references | Pošćić, F., Fellet, G., Vischi, M., Casolo, V., Schat, H., Marchiol, L. 2015. Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte biscutella laevigata subsp. laevigata. International journal of phytoremediation.17(5):464-475. https://doi.org/10.1080/15226514.2014.922921 | spa |
dcterms.references | Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E. 2011. Lead uptake, toxicity, and detoxification in plants. In Reviews of Environmental Contamination and Toxicology Volume 213 (pp. 113-136). Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9860-6_4 | spa |
dcterms.references | Pratush, A., Kumar, A., Hu, Z. 2018. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology. 21(3):97-106. https://doi.org/10.1007/s10123-018-0012-3 | spa |
dcterms.references | Raj, D. 2019. Bioaccumulation of mercury, arsenic, cadmium, and lead in plants grown on coal mine soil. Human and Ecological Risk Assessment: An International Journal, 25(3), 659-671. https://doi-org/10.1080/10807039.2018.1447360 | spa |
dcterms.references | Ramana, S., Biswas, A. K., Singh, A. B., Ahirwar, N. K., Rao, A. S. 2013. Potential of rose for phytostabilization of chromium contaminated soils. Indian Journal of Plant Physiology.18(4):381-383. https://doi.org/10.1007/s40502-013-0055-6 | spa |
dcterms.references | Ramírez Niño, M. Á., Navarro Ramírez, M. Á. 2015. Heavy Metal Analysis on Soils Irrigated with Water from the Guatiquía River. Ciencia en Desarrollo, 6(2), 167-175. ISSN 0121-7488 | spa |
dcterms.references | Ramírez Pisco, R., Gómez Yarce, J. P., Guáqueta Restrepo, J. J., Gaviria Palacio, D. 2017. Gold phytoextraction and mining-degraded soil reclamation. Acta Agronómica, 66(4), 574-579.https://doi.org/ 10.15446/acag.v66n4.59773 | spa |
dcterms.references | Ranđelović, D., Gajić, G., Mutić, J., Pavlović, P., Mihailović, N., Jovanović, S. 2016. Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. Ecological Engineering. 95: 800-810. https://doi.org/10.1016/j.ecoleng.201 6.07.015 | spa |
dcterms.references | Rauret G., López-Sánchez J. F., Sahuquillo A., Barahona E., Lachica M., Ure A.M., Davison C.M., Gomez A., Lück D., Bacon J., Yli-Halla M., Muntau H., Quevauviller Ph. 2000. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring. 2(3):228-33. https:// doi.org/10.1039/B001496F | spa |
dcterms.references | Rizwan, M., Ali, S., ur Rehman, M. Z., Maqbool, A. 2019. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 26(7), 6279-6289. https://doi.org/10.1007/s11356-019-04174-6 | spa |
dcterms.references | Rocha-Román, L., Olivero-Verbel, J., Caballero-Gallardo, K. R. 2018. Impacto de la minería del oro asociado con la contaminación por mercurio en suelo superficial de San Martín de Loba, sur de Bolívar (Colombia). Revista internacional de contaminación ambiental, 34(1), 93-102. Doi:10.20937/RICA.2018.34.01.08 | spa |
dcterms.references | Rodríguez-Vázquez, R., Sánchez, S., Mena-Espino, X., Amezcua-Allieri, M. A. 2016. Identification of the medicinal plant species with the potential for remediation of hydrocarbons contaminated soils. Acta physiologiae plantarum. 38(23): 1-11. https://doi.org/10.1007/s11738-015-2036-z | spa |
dcterms.references | Romeh, A. A., Khamis, M. A., Metwally, S. M. 2016. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water, Air, & Soil Pollution, 227(1), 9. https://doi-org/10.1007/s11270-015-2687-9 | spa |
dcterms.references | Romeh, A. A., Khamis, M. A., Metwally, S. M. 2016. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water, Air, & Soil Pollution, 227(1), 9. https://doi-org/10.1007/s11270-015-2687-9 | spa |
dcterms.references | Rosenfeld, C. E., Chaney, R. L., Martinez, C. E. 2017. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) FK Mey in field-contaminated soils. Science of the Total Environment, 616, 279-287. https://doi.org/10.1016/j.scitotenv.2017.11.016 | spa |
dcterms.references | Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A., Baker, A. J. M. 2006. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution, 144(2), 681-688. | spa |
dcterms.references | Różański, S. Ł., Castejón, J. M. P., Fernández, G. G. 2016. Bioavailability and mobility of mercury in selected soil profiles. Environmental Earth Sciences, 75(13), 1065. https://doi-org /10.1007/s12665-016-5863-3 | spa |
dcterms.references | Rzedowski, G., Rzedowski, J. 2001. Flora fanerogámica del Valle de México. 2a (ed) Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México, p. 1406. | spa |
dcterms.references | Sabir, A., Naveed, M., Bashir, M. A., Hussain, A., Mustafa, A., Zahir, Z. A., Kamran, M., Ditta, A., Núñez-Delgado, A., Qadeer, A. 2020. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journal | spa |
dcterms.references | Sabir, M., Waraich, E. A., Hakeem, K. R., Öztürk, M., Ahmad, H. R., Shahid, M. 2015. Soil Remediation and Plants: Chapter 4 - Phytoremediation: Mechanisms and Adaptations. Soil Remediation and Plants: Prospects and Challenges. 85-105. http://dx.doi.org/10.1016/B978-0-12-799937-1.00004-8 | spa |
dcterms.references | Saghi, A., Rashed Mohassel, M. H., Parsa, M., Hammami, H. 2016. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. International journal of phytoremediation, 18(4), 387-392. https://doi-org /10.1080/15226514.2015.1109607 | spa |
dcterms.references | Sako, A., Semdé, S., Wenmenga, U. 2018. Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. Journal of African Earth Sciences, 145, 297-316. | spa |
dcterms.references | Sahu, G. K., Upadhyay, S., Sahoo, B. B. 2012. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiology and Molecular Biology of Plants, 18(1), 21-31. https://doi-org/10.1007/s12298-011-0090-6 | spa |
dcterms.references | Saifullaha, Zia, M.H., Meers, E., Ghafoor, A., Murtaza, G., Sabir, M., Zia-ur-Rehman, M., Tack, F.M.G. 2010. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere, 79(6), 652-658. https://doi.org/10.1016/j.chemosphere.2010.01.066 | spa |
dcterms.references | Salas-Luevano, M. A., Manzanares-Acuña, E., Letechipía-de León, C., Vega-Carrillo, H. R. 2009. Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian Journal of Experimental Sciences. 23(1): 27-32. | spa |
dcterms.references | Salas-Moreno, M., Marrugo-Negrete, J. 2019. Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. International journal of phytoremediation, 22(1), 87-97. https://doi.org/10.1080/15226514.2019.1644291 | spa |
dcterms.references | Saleem, M. H., Ali, S., Rehman, M., Rana, M. S., Rizwan, M., Kamran, M., Imran, M., Riaz, M., Soliman, M.H., Elkelish, A., Liu, L. 2020. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere, 126032. https://doi.org/10.1016/j.chemosphere.2020.126032 | spa |
dcterms.references | Sarwar, N., Imran, M., Shaheen, M., Ishaq, W., Kamran, A., Matloob, A., Hussain, S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171: 710-721. https://doi.org/10.1016/j. chemosphere.2016.12.116 | spa |
dcterms.references | Sengar, R. S., Gautam, M., Sengar, K., Chaudhary, R., Garg, S. 2010. Physiological and metabolic effect of mercury accumulation in higher plants system. Toxicological & Environmental Chemistry, 92(7), 1265-1281. https://doi-org /10.1080/02772240903450678 | spa |
dcterms.references | Severino, L., Cardoso, G., Do Vale, L., Dos Santos, J. 2004. Método para determinação da are foliar da mamoeira. Rev. Bras. Oleaginosas Fibrosas, 8 (2004), pp. 753-762. | spa |
dcterms.references | Sewalem, N., Elfeky, S., Fatma, E. 2014. Phytoremediation of lead and cadmium contaminated soils using sunflower plant. Journal of Stress Physiology & Biochemistry, 10(1). ISSN 1997-0838. | spa |
dcterms.references | Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., Antunes, P. M. 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In Reviews of Environmental Contamination and Toxicology Volume 241 (pp. 73-137). Springer, Cham. https://doi-org /10.1007/398_2016_8 | spa |
dcterms.references | Shang, K., Hu, Y. H., Vincent, G., Labrecque, M. 2020. Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. International Journal of Phytoremediation, 22(1), 10-19. https://doi.org/10.1080/15226514.2019.1633998 | spa |
dcterms.references | Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., Su, Y. 2009. Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicology and Environmental Safety. 72(2): 619-625. https://doi.org/10.1016/j.ecoenv.2008.06.002 | spa |
dcterms.references | Shu, X., Yin, L., Zhang, Q., Wang, W. 2012. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19(3), 893-902. https://doi-org/10.1007/s11356-011-0625-y | spa |
dcterms.references | Silva, J. R. R., Fernandes, A. R., Junior, M. S., Santos, C. R. C., Lobato, A. K. S. 2018. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity–potential use for phytoremediation. Photosynthetica, 56(2), 495-504. https://doi.org/10.1007/s11099-017-0698-z | spa |
dcterms.references | Smolińska, B., Cedzyńska, K. 2007. EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere. 69(9):1388-1395.https://doi.org/10.1016/j. chemosphere. 2007.05.003 | spa |
dcterms.references | Smolinska, B., Leszczynska, J. 2017. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environmental Science and Pollution Research, 24(15), 13384-13393. https://doi-org/10.1007/s11356-017-8951-3 | spa |
dcterms.references | Sofianska, E., Michailidis, K. 2015. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece. Environmental monitoring and assessment, 187(3), 101. https://doi-org/10.1007/s10661-015-4335-7 | spa |
dcterms.references | Soto Carrión, C., Jiménez Mendoza, W. 2019. Potential Phytoremediator of Native Species in Soils Contaminated by Heavy Metals in the Garbage Dump Quitasol-Imponeda Abancay. Journal of Sustainable Development of Energy, Water and Environment Systems, 7(4), 584-600. https://doi.org/10.13044/j.sdewes.d7.0261 | spa |
dcterms.references | Suchkova, N., Tsiripidis, I., Alifragkis, D., Ganoulis, J., Darakas, E., Sawidis, T. 2014. Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecological engineering. 69:160-169. https://doi.org/10.1016/j.ecoleng.2014.03.029 | spa |
dcterms.references | Tariq, S. R., Ashraf, A. 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry. 9(6):806-814. https://doi.org/10.1016/j.arabjc.2013.09.024 | spa |
dcterms.references | Tepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., Saghatelyan, A. 2018. Continuous impact of mining activities on soil heavy metals levels and human health. Science of The Total Environment, 639, 900-909. https://doi.org/10.1016/j.scitotenv.2018.05.211 | spa |
dcterms.references | Udiba, U. U., Antai, E. E., Akpan, E. R. 2020. Assessment of Lead (Pb) Remediation Potential of Senna obtusifolia in Dareta Village, Zamfara, Nigeria. Journal of Health and Pollution, 10(25), 200301. https://doi.org/10.5696/2156-9614-10.25.200301 | spa |
dcterms.references | USEPA (United States Environmental Protection Agency). 2000. Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH. | spa |
dcterms.references | USEPA (United States Environmental Protection Agency). 2007a. Method 7473 mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Disponible en: <https://www.epa.gov/sites/production/files/2015-07/documents/epa-7473.pdf>. (Acceso: 15 de octubre de 2018). | spa |
dcterms.references | USEPA (United States Environmental Protection Agency). 2007b. Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Disponible en: <https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf>. (Acceso: 15 de octubre de 2018). | spa |
dcterms.references | Varun, M., D’Souza, R., Favas, P. J., Pratas, J., Paul, M. S. 2015. Utilization and supplementation of phytoextraction potential of some terrestrial plants in metal-contaminated soils. In Phytoremediation (pp. 177-200). Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_13 | spa |
dcterms.references | Vidal Durango, J. V., Marrugo Negrete, J. L., Jaramillo Colorado, B., Pérez Castro, L. M. 2010. Remediación de suelos contaminados con mercurio utilizando guarumo (Cecropia peltata). Ingeniería y desarrollo, (27). ISSN electrónico: 2145-9371 | spa |
dcterms.references | Wan, X., Lei, M., Chen, T. 2016. Cost - benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment. 563:796-802. https://doi.org/10.1016/j.scitotenv.2015.12.080 | spa |
dcterms.references | Wang, L., Ji, B., Hu, Y., Liu, R., Sun, W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594-600.https://doi.org/10.1016/j.chemosphere.2017.0 6.025 | spa |
dcterms.references | Wu, M., Luo, Q., Liu, S., Zhao, Y., Long, Y., Pan, Y. 2018. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicology and environmental safety, 162, 35-41. https://doi.org/10.1016/j.ecoenv.2018.06.049 | spa |
dcterms.references | Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., Yang, L. 2016. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research. 23(9):8244-8259. https://doi.org/10.1007/s11356-016-6333-x | spa |
dcterms.references | Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., Zhang, Z. 2018. Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and environmental safety. 162:178-183.https:// doi.org/ 10.1016/j.ecoenv.2018.06.095 | spa |
dcterms.references | Xiao, R., Wang, S., Li, R., Wang, J. J., Zhang, Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and environmental safety, 141, 17-24. https://doi.org/10.1016/j.ecoenv.2017.03.002 | spa |
dcterms.references | Xie, W., Peng, C., Wang, H., Chen, W. 2018. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities. Environmental Earth Sciences, 77(17), 606. https://doi.org/10.1007/s12665-018-7783-x | spa |
dcterms.references | Xu, J., Zhang, J., Lv, Y., Xu, K., Lu, S., Liu, X., Yang, Y. 2020. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotoxicology and Environmental Safety, 195, 110472. https://doi.org/10.1016/j.ecoenv.2020.110472. | spa |
dcterms.references | Xun, Y., Feng, L., Li, Y., Dong, H. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of Xun, Y., Feng, L., Li, Y., Dong, H. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, 161-170. https://doi.org/10.1016/j.chemosphere.2017.09.055mercury polluted sites. Chemosphere, 189, 161-170. https://doi.org/10.1016/j.chemosphere.2017.09.055 | spa |
dcterms.references | Yang, Y., Ge, Y., Zeng, H., Zhou, X., Peng, L., Zeng, Q. 2017. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Scientific Reports, 7(1), 1-10. | spa |
dcterms.references | Yang, J., Yang, J., Huang, J. 2017. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–A field case. Ecological Engineering. 109: 35-40. https://doi.org/10.1016/j.ecoleng.2017.09.001 | spa |
dcterms.references | Yang, J., Zheng, G., Yang, J., Wan, X., Song, B., Cai, W., Guo, J. 2017. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecological Engineering.107:56-64. https://doi.org/10.1016/j. ecoleng.2017.06.052 | spa |
dcterms.references | Yoon, J., Cao, X., Zhou, Q., Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment. 368(2-3): 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016 | spa |
dcterms.references | Zhang, J., Li, H., Zhou, Y., Dou, L., Cai, L., Mo, L., You, J. 2018. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environmental Pollution, 235, 710-719. https://doi.org/10.1016/j.envpol.2017.12.106 | spa |
dcterms.references | Zhang, Z., Cao, Y., Li, J., Cai, C., Huang, Z. 2014. Spatial distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China. Environmental earth sciences, 72(5), 1749-1758. https://doi-org/10.1007/s12665-014-3079-y | spa |
dcterms.references | Zhao, L., Meng, B., Feng, X. 2020. Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicology and Environmental Safety, 195, 110462. https://doi.org/10.1016/j.ecoenv.2020.110462 | spa |
dcterms.references | Zhao, X., He, B., Wu, H., Zheng, G., Ma, X., Liang, J., Li, P., Fan, Q. 2020. A comprehensive investigation of hazardous elements contamination in mining and smelting-impacted soils and sediments. Ecotoxicology and Environmental Safety, 192, 110320. https://doi.org/10.1016/j.ecoenv.2020.110320 | spa |
dcterms.references | Zheng, Y., Shen, D., Wu, S., Han, Y., Li, S., Tang, F., Ni, Z., Mo, R., Liu, Y. 2018. Uptake effects of toxic heavy metals from growth soils into jujube and persimmon of China. Environmental Science and Pollution Research, 25(31), 31593-31602. https://doi.org/10.1007/s11356-018-2959-1 | spa |
dcterms.references | Zhou, J., Li, Z., Zhou, T., Xin, Z., Wu, L., Luo, Y., Christie, P. 2020. Aluminum toxicity decreases the phytoextraction capability by cadmium/zinc hyperaccumulator Sedum plumbizincicola in acid soils. Science of The Total Environment, 134591. https://doi.org/10.1016/j.scitotenv.2019.134591 | spa |
dcterms.references | Zhou, Y., Wang, L., Xiao, T., Chen, Y., Beiyuan, J., She, J., Zhou, Y., Yin, M., Liu, J., Liu, Y., Wang, Y., Wang, J. 2020. Legacy of multiple heavy metal (loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Science of The Total Environment, 720, 137541. https://doi.org/10.1016/j.scitotenv.2020.137541 | spa |
dcterms.references | Zhou, Z., Chen, Z., Pan, H., Sun, B., Zeng, D., He, L., Yang, R., Zhou, G. 2018. Cadmium contamination in soils and crops in four mining areas, China. Journal of Geochemical Exploration, 192, 72-84. https://doi.org/10.1016/j.gexplo.2018.06.003 | spa |
dcterms.references | Zu, Y.Q., Li, Y., Chen, J.J., Chen, H.Y., Qin, L. Schvartz, C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International. 31(5):755-762. https://doi.org/10.1016/j.envint.2005.02. 004 | spa |
dcterms.references | Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., Anjum, M. Z. 2019. Lead toxicity in plants: Impacts and remediation. Journal of environmental management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: