Publicación: Residuos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico: una revisión de métodos, alternativas de tratamiento e impacto ambiental
dc.contributor.advisor | Pinedo Hernández, José Joaquín | spa |
dc.contributor.author | Morfil Medina, Jesús Daniel | spa |
dc.date.accessioned | 2022-03-30T19:57:37Z | |
dc.date.available | 2022-03-30T19:57:37Z | |
dc.date.issued | 2022-03-30 | |
dc.description.abstract | The presence and increase of emerging contaminants (EC) of pharmaceutical origin in water matrices have become a major environmental problem. These pharmaceutical pollutants are often persistent, come from various sources, and have gone almost unnoticed in recent years, as well as their effects on health and the environment. Therefore, it is essential to study and apply methodologies for the determination of these pollutants and, in the same way, mechanisms for their treatment that lead to a decrease in their environmental effects. This work was focused on reviewing the main methods for determining EC of pharmaceutical origin in water belonging to three therapeutic classes (antibiotics, analgesics & antihypertensives) and identifying efficient technologies for their treatment, and finally, evaluating the environmental impact. For this purpose, articles published mainly in the databases of Science Direct, Springer, Scopus, Scielo, etc. were collected. With a 5-year research window compared to the current one (2017-2021). In summary, this research and critical analysis of information play an important role as an orientation tool in the field of chemistry, when it comes to monitoring and treating emerging contaminants of pharmaceutical origin in water resources | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | La presencia y el aumento de contaminantes emergentes (CE) de origen farmacéutico en matrices de agua, se ha convertido en una gran problemática a nivel ambiental. Estos contaminantes farmacéuticos suelen ser persistentes, provienen de diversas fuentes y han pasado casi desapercibidos en los últimos años, así como sus efectos en la salud y el ambiente. Por lo tanto, se hace indispensable el estudio y aplicación de metodologías para la determinación de estos contaminantes y, de igual forma, mecanismos para su tratamiento que conlleven a una disminución de sus efectos ambientales. Este trabajo estuvo enfocado en revisar los principales métodos para la determinación de CE de origen farmacéutico en el agua, pertenecientes a tres clases terapéuticas (antibióticos, analgésicos & antihipertensivos) e identificar tecnologías eficientes para su tratamiento y finalmente, evaluar el impacto ambiental. Para tal fin, se recopilaron artículos publicados principalmente en las bases de datos de Science Direct, Springer, Scopus, Scielo, etc., con una ventana de investigación de cinco años respecto al actual (2017-2021). En síntesis, esta investigación y análisis crítico de información, juega un papel importante como herramienta de orientación en el campo de la química, a la hora de ejercer monitoreo y tratamiento para los contaminantes emergentes de origen farmacéutico en el recurso hídrico. | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ----------9 | spa |
dc.description.tableofcontents | 2. OBJETIVOS -----------------14 | spa |
dc.description.tableofcontents | 2.1. Objetivo general----------------------------------------------------------------------------14 | spa |
dc.description.tableofcontents | 2.2. Objetivos específicos---------------------------------------------------------------------- 14 | spa |
dc.description.tableofcontents | 3. DESARROLLO DEL TEMA----------------------------------------------------------- 15 | spa |
dc.description.tableofcontents | 3.1. Capítulo I: métodos para la determinación de contaminantes emergentes de origen farmacéutico en el recurso hídrico----------------------------------------------------- 17 | spa |
dc.description.tableofcontents | 3.1.1. Cromatografía liquida y espectrometría de masas------------------------- 18 | spa |
dc.description.tableofcontents | 3.1.2. Cromatografía líquida y espectrofotometría-------------------------------- 21 | spa |
dc.description.tableofcontents | 3.1.3. Métodos electroquímicos-------------------------------------------------------- 22 | spa |
dc.description.tableofcontents | 3.2. Capítulo II: Alternativas para el tratamiento de contaminantes emergentes de origen farmacéutico en el recurso hídrico -----------------------------------------------------29 | spa |
dc.description.tableofcontents | 3.2.1. Procesos de oxidación avanzada (POA)-------------------------------------- 29 | spa |
dc.description.tableofcontents | 3.2.1.1. Fotocatálisis------------------------------------------------------------------------ 30 | spa |
dc.description.tableofcontents | 3.2.1.2. Fotólisis----------------------------------------------------------------------------- 33 | spa |
dc.description.tableofcontents | 3.2.1.3. Métodos Fenton------------------------------------------------------------------- 35 | spa |
dc.description.tableofcontents | 3.2.1.3.1. Proceso electro-Fenton----------------------------------------------------------- 35 | spa |
dc.description.tableofcontents | 3.2.1.3.2. Proceso sono-Fenton------------------------------------------------------------- 36 | spa |
dc.description.tableofcontents | 3.2.2. Procesos con adsorbentes-------------------------------------------------------- 37 | spa |
dc.description.tableofcontents | 3.2.3. Procesos biológicos--------------------------------------------------------------- 41 | spa |
dc.description.tableofcontents | 3.3. Capitulo III: impacto ambiental de los contaminantes emergentes derivados de residuos farmacéuticos en el recurso hídrico------------------------------------------------- 42 | spa |
dc.description.tableofcontents | 3.3.1. Presencia, efectos y evaluación de riesgos de los contaminantes farmacéuticos en aguas superficiales y subterráneas--------------------------------------- 42 | spa |
dc.description.tableofcontents | 3.3.1.1. Interacciones con parásitos y efecto en el huésped------------------------- 42 | spa |
dc.description.tableofcontents | 3.3.1.2. Interacciones con microplásticos y resistencia a los antibióticos-------- 43 | spa |
dc.description.tableofcontents | 3.3.1.3. Riesgos en humanos y peces debido a la presencia en algunos ríos y efluentes de PTAR---------------------------------------------------------------------------------- 45 | spa |
dc.description.tableofcontents | 3.3.1.4. Contaminación de aguas subterráneas por infiltración------------------- 46 | spa |
dc.description.tableofcontents | 3.3.1.5. Presencia y posibles riesgos en aguas para el consumo humano-------- 47 | spa |
dc.description.tableofcontents | 3.3.1.6. Presencia y riesgo ambiental en aguas costeras y oceánicas------------- 48 | spa |
dc.description.tableofcontents | 3.3.1.7. Evaluación de riesgos ambientales-------------------------------------------- 49 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES------------------------------------------------------------------------- 50 | spa |
dc.description.tableofcontents | 5. REFERENCIAS BIBLIOGRÁFICAS------------------------------------------------ 52 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5116 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Environmental impact | eng |
dc.subject.keywords | Pharmaceuticals | eng |
dc.subject.keywords | Persistence | eng |
dc.subject.keywords | Aquatic environment | eng |
dc.subject.proposal | Impacto ambiental | spa |
dc.subject.proposal | Productos farmacéuticos | spa |
dc.subject.proposal | Persistencia | spa |
dc.subject.proposal | Ambiente acuático | spa |
dc.title | Residuos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico: una revisión de métodos, alternativas de tratamiento e impacto ambiental | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abdel-Aziz, H.M., Farag, R.S., y Abdel-Gawad, S.A. (2019). Carbamazepine Removal from Aqueous Solution by Green Synthesis Zero-Valent Iron/Cu Nanoparticles with Ficus Benjamina Leaves’ Extract. Int J Environ Res. 13, 843–852. https://doi.org/10.1007/s41742-019-00220-w. | spa |
dcterms.references | Adityosulindro, S., Barthe, L., Labrada, K.G., Haza, U.J.J., Delmas, H., y Julcour, C. (2019). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)wáter. Ultrasonics Sonochemistry, 39, 889-896. https://doi.org/10.1016/j.ultsonch.2017.06.008 | spa |
dcterms.references | Ahmaruzzaman, M. (2021). Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Materials Research Bulletin, 140, 111262. https://doi.org/10.1016/j.materresbull.2021.111262. | spa |
dcterms.references | Ali, I., Alothman, Z.A., y Alwarthan, A. (2017). Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption, Journal of Molecular Liquids. 236, 205-213. https://doi.org/10.1016/j.molliq.2017.04.028. | spa |
dcterms.references | Biel-Maeso, M., Baena-Nogueras, R.M., Corada-Fernandez, C., y Lara-Martin, P.A. (2018). Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ. 612, 649-659. https://doi.org/10.1016/j.scitotenv.2017.08.279. | spa |
dcterms.references | Barhoumi, N., Oturan, N., Ammar, S. et al. (2017). Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ Chem Lett 15, 689–693. https://doi.org/10.1007/s10311-017-0638-y. | spa |
dcterms.references | Campaña, A., Florez, S., Noguera, M., Fuentes, O., Ruiz Puentes, P., Cruz, J., y Osma, J. (2019). Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors, 9 (1), 41. https://doi.org/10.3390/bios901004. | spa |
dcterms.references | Caruso, G. (2019). Microplastics as vectors of contaminants. Mar. Pollut. Bull. 146, 921–924. https://doi.org/10.1016/j.marpolbul.2019.07.052. | spa |
dcterms.references | Čelić, M., Gros, M., Farré, M., Barceló, D., y Petrović, M. (2019). Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain), Science of The Total Environment, 652, 952-963. https://doi.org/10.1016/j.scitotenv.2018.10.290. | spa |
dcterms.references | Chan, Y., Lim, K., Lim, K., Teh, C., Kee, C., Cheong, S., Khoo, Y., Baharudin, A., Ling, M., Omar, M., y Ahmad, N. (2017). Physical activity and overweight/obesity among Malaysian adults: findings from the 2015 National Health and morbidity survey (NHMS). BMC Public Health, 17, 1–12. https://doi.org/10.1186/s12889-017-4772-z. | spa |
dcterms.references | Chaturvedi, P., Shukla, P., Giri, B.S., Chowdhary, P., Chandra, R., Gupta, P., y Pandey, A. (2021). Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environmental Research. 194, 110664. https://doi.org/10.1016/j.envres.2020.110664. | spa |
dcterms.references | Costa, E., Nouws, H., Delerue, C., Blanco, M., y Fernández, M. (2019). Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform, Analytica Chimica Acta, 1074, 89-97, https://doi.org/10.1016/j.aca.2019.05.016. | spa |
dcterms.references | Dinh, Q., Moreau-Guigon, E., Labadie, P., Alliot, F., Teil, M.-J., Blanchard, M., Eurin, J., Chevreuil, M., 2017. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 575, 758–766. https://doi.org/10.1016/j.scitotenv.2016.09.118. | spa |
dcterms.references | Dogan, A., Płotka-Wasylka, J., Kempińska-Kupczyk, D., Namieśnik, J., y Kot-Wasik, A. (2020). Detection, identification and determination of chiral pharmaceutical residues in wastewater: problems and challenges, Trends Anal. Chem. 122, 115710. https://doi.org/10.1016/j.trac.2019.115710. | spa |
dcterms.references | Ebele, A.J., Abdallah, M.A.E., y Harrad, S., (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1–16. https://doi.org/10.1016/j.emcon.2016.12.004. | spa |
dcterms.references | El-Yazbi, A., Khamis, E., Youssef, R., El-Sayed, M., y Aboukhalil, F. (2020). Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon, 6 (9), e04819. https://doi.org/10.1016/j.heliyon.2020.e04819. | spa |
dcterms.references | Fekadu, S., Alemayehu, E., Dewil, R., Van der Bruggen, B., 2019. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci. Total Environ, 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072. | spa |
dcterms.references | Garcia-Segura, S., Ocon, J.., Chong, M., (2018). Electrochemical oxidation remediation of real wastewater effluents-A review. Process Safety and Environm. Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014. | spa |
dcterms.references | Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin: A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. https://doi.org/10.1016/j.bios.2016.12.005. | spa |
dcterms.references | Gonzalez-Alonso, S., Merino, L.M., Esteban, S., Lopez de Alda, M., Barcelo, D., Duran, J.J. et al. (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula región. Environmental Pollution. 229, 241-254. https://doi.org/10.1016/j.envpol.2017.05.060. | spa |
dcterms.references | Grisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N. (2021). Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour. Technol, 326, 124753. https://doi.org/10.1016/j.biortech.2021.124753. | spa |
dcterms.references | Guillermo, P. (2020). Estudio de contaminantes emergentes presentes en efluentes acuosos urbanos: Técnicas analíticas y tecnologías de tratamiento [Tesis de maestría, Universidad politécnica de Cartagena]. https://repositorio.upct.es/bitstream/handle/10317/8963/tfm-gui-est.pdf?sequence=1&isAllowed=y. | spa |
dcterms.references | Guruge, K., Goswamid, P., Tanoue, R., Nomiyama, K., Wijesekara, R., y Dharmaratne, T. (2019). First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ., 690, 683-695. https://doi.org/10.1016/j.scitotenv.2019.07.042. | spa |
dcterms.references | He, S., Dong, D., Zhang, X., Sun, C., Wang, C., Hua, X., Zhang, L., y Guo, Z. (2018). Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environ Sci Pollut Res. 25, 24003–24012. https://doi.org/10.1007/s11356-018-2459-3. | spa |
dcterms.references | Hernández-Ramírez, A., Hernández, R., Hinojosa, L, Ramos-Delgado, N., y Guzmán, J. (2021). Determination of Pharmaceuticals Discharged in Wastewater from a Public Hospital Using LC-MS/MS TechniqueJ. Mex. Chem. Soc. 65(1), 94-108. https://doi.org/10.29356/jmcs.v65i1.1439. | spa |
dcterms.references | Husein, D.Z., Hassanien, R., y Al-Hakkani, M.F. (2019). Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewatersamples. Heliyon, 5, e02339. https://doi.org/10.1016/j.heliyon.2019.e02339. | spa |
dcterms.references | Jaimes, J., y Vera, J. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización. Informador Técnico, 84(2), 21-34. https://doi.org/10.23850/22565035.2305. | spa |
dcterms.references | Kar, P., Shukla, K., Jain, P., Sathiyan, G., y Gupta, R.K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, Volume 3 (1), 25-46. https://doi.org/10.1016/j.nanoms.2020.11.001. | spa |
dcterms.references | Khasawneh, O.F.S., Palaniandy, P., Ahmadipour, M., Mohammadi, H., y Hamdand M.R.B. (2021). Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation: Optimization study,Journal of Environmental Chemical Engineering, 9 (1), 104921. https://doi.org/10.1016/j.jece.2020.104921. | spa |
dcterms.references | Kondor, A.C., Molnar, E., Vancsik, A., Filep, T., Szeberenyi, J., Szabó, L., Maasz, G., Pirger, Z. et al. (2021). Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking wáter. J. Water Process Eng. 41, 102039. https://doi.org/10.1016/j.scp.2018.12.006. | spa |
dcterms.references | Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., y Stadler, F. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants, Journal of Molecular Liquids, 290, 111177. https://doi.org/10.1016/j.molliq.2019.111177. | spa |
dcterms.references | Kumari, P., Alam, M., y Siddiqi, W.A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: an emerging trend. Sustain. Mater. Technol. 22, e00128. https://doi.org/10.1016/j.susmat.2019.e00128. | spa |
dcterms.references | Luján-Facundo, M., Iborra-Clar, M., Mendoza-Roca, J., y Alcaina-Miranda, M. (2019). Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod, 238, 117866. https://doi.org/10.1016/j.jclepro.2019.117866. | spa |
dcterms.references | Lu, G.-H., Piao, H.-T., Gai, N., Shao, P.-W., Zheng, Y., Jiao, X.-C., Yang, Y.-L. (2018). Pharmaceutical and personal care products in surface waters from the inner city of Beijing, China: influence of hospitals and reclaimed water irrigation. Arch. Environ. Contam. Toxicol. 76, 255-564. https://doi.org/10.1007/s00244-018-0578-y. | spa |
dcterms.references | Lu, Y.C., Mao, J.H., Zhang, W., Wang, C., Cao, M., Wang, X.D., Wang, K.Y., y Xiong, X. (2020). A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano−polymers. Chemosphere, 238, 124640. 10.1016/j.chemosphere.2019.124640. | spa |
dcterms.references | Maldonado Katia. Desarrollo de dos nuevas metodologías validadas para la determinación y cuantificación del Paracetamol, como contaminante emergente, en muestras de agua subterránea. Repositorio Institucional de la UNSA. México 2018. recuperado de: http://repositorio.unsa.edu.pe/handle/UNSA/6334. | spa |
dcterms.references | Mi, X., Li, Y., Ning, X., Jia, J., Wang, H., Xia, Y., Sun, Y., y Zhan, S. (2019). Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: Enhanced redox capacity and accelerated electron transfer. Chemical Engineering Journal, 358, 299-309. https://doi.org/10.1016/j.cej.2018.10.047. | spa |
dcterms.references | Mulla, S.I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., & Yu. C.P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, 93-102. https://doi.org/10.1016/j.jenvman.2017.10.029. | spa |
dcterms.references | Murgolo, S., Franz, S., Arab, H., Bestetti, M., Falletta, E., y Mascolo, G. (2019). Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes, Water Research, Volume 164, 114920. https://doi.org/10.1016/j.watres.2019.114920. | spa |
dcterms.references | Nannou, C., Ofrydopoulou, A., Evgenidou, E., Heath, D., Heath, E., Lambropoulou, D.(2019). Analytical strategies for the determination of antiviral drugs in the aquatic environment. Trends in Environmental Analytical Chemistry, 24, e0007. https://doi.org/10.1016/j.teac.2019.e00071. | spa |
dcterms.references | Nantaba, F., Wasswa, J., Kylin, H., Palm, W., Bouwman, H., y Kummerer, K (2020). Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda, Chemosphere, 239, 124642. https://doi.org/10.1016/j.chemosphere.2019.124642. | spa |
dcterms.references | Neha, R., Adithya, S., Jayaraman, R.S., Gopinath, K.P., y Arun, J. (2021). Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere, 272, 129852. https://doi.org/10.1016/j.chemosphere.2021.129852. | spa |
dcterms.references | Ng, K., Rapp-Wright, H., Egli, M., Hartmann, A., Steele, J., Sosa-Hernández, J. et al. (2020). High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography tandem mass spectrometry. J. Hazard Mater, 398, 122933. https://doi.org/10.1016/j.jhazmat.2020.122933. | spa |
dcterms.references | Oliveira, M., Farias, B., Velasques, J., Corrêa, F., Sabioni, P., Migliolo, L. (2020). Pharmaceuticals residues and xenobiotics contaminants: Occurrence,analytical techniques and sustainable alternatives for wastewater treatment. Science of the Total Environment, 194, 110664. https://doi.org/10.1016/j.envres.2020.110664. | spa |
dcterms.references | Ogueji, E. O., Nwani, C. D., Mbah, C. E., y Nweke, F. N. (2019). Acute hematological toxicity of ivermectin to juvenile Clarias gariepinus. Toxicological & Environmental Chemistry. 101:3-6, 300-314. https://doi.org/10.2989/16085914.2018.1465393. | spa |
dcterms.references | Paíga, P., Correia, M., Fernandes, M., Silva, A., Carvalho, M., Vieira, J., Jorge, S., Silva, J., Freire, C., y Delerue-Matos, C. (2019). Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Science of The Total Environment, 648, 582-600. https://doi.org/10.1016/j.scitotenv.2018.08.129. | spa |
dcterms.references | Pinasseau, L., Wiest, L., Volatier, L., Mermillod-Blondin, F., y Vulliet, E. (2020). Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. Environmental Pollution. 266(2), 115387. https://doi.org/10.1016/j.envpol.2020.115387. | spa |
dcterms.references | Pravdová, M., Kolářová, J., Grabicová., K., Mikl, L., Bláha, M., Randák, T. et al. (2020). Associations between pharmaceutical contaminants, parasite load and health status in brown trout exposed to sewage effluent in a small stream, Ecohydrology & Hydrobiology, 21(2), Pages 233-243. https://doi.org/10.1016/j.ecohyd.2020.09.001. | spa |
dcterms.references | Praveena, S., Shaifuddin, S., Sukiman, S., Nasir, F., Hanafi, Z., Kamarudin, N., Ismail, T., Aris, A. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): occurrence and potential risk assessments Sci. Total Environ, 642, 230-240. https://doi.org/10.1016/j.scitotenv.2018.06.058. | spa |
dcterms.references | Pylypchuk, I.V., Daniel, G., Kessler, V.G., y Seisenbaeva, G.A. (2020). Removal of Diclofenac, Paracetamol, and Carbamazepine from Model Aqueous Solutions by Magnetic Sol–Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites. Nanomaterials, 10, 282. https://doi.org/10.3390/nano10020282. | spa |
dcterms.references | Qiu, L., Jaria, G., Gil, M. V., Feng, J., Dai, Y., Esteves, V. I., Otero, M., & Calisto, V. (2020). Core-Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers, 12 (6), 1385. https://doi.org/10.3390/polym12061385. | spa |
dcterms.references | Ramírez, L., Chicaiza, S., Ramos, A., y Álvarez, C. (2019). Detección de antibióticos betalactámicos, tetraciclinas y sulfamidas como contaminantes emergentes en los ríos San Pedro y Pita del cantón Rumiñahui. LA GRANJA. Revista de Ciencias de la Vida, 30(2), 88-102. https://doi.org/10.17163/lgr.n30.2019.08 | spa |
dcterms.references | Reinoso, J., Serrano, C., Orellana, D. (2017). Contaminantes emergentes y su impacto en la salud. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 35(2) 55-59. https://publicaciones.ucuenca.edu.ec/ojs/index.php/medicina/article/view/1723. | spa |
dcterms.references | Sandegren, L. (2019). Low sub-minimal inhibitory concentrations of antibiotics generate new types of resistance. Sustainable Chemistry and Pharmacy. 11, 46-48. https://doi.org/10.1016/j.scp.2018.12.006. | spa |
dcterms.references | Sekulic, M., Boskovic, N., Milanovic, M., Letic, N., Gligoric, E., y Pap, S.(2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, Volume 284, 372-382, https://doi.org/10.1016/j.molliq.2019.04.020. | spa |
dcterms.references | Shalauddin, M., Akhter, S., Bagheri, S., Abd Karim, M.S., Kadri, N.A., Basirun W. (2017). Immobilized copper ions on MWCNTS-Chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution, International Journal of Hydrogen Energy, 42 (31), 19951-19960, https://doi.org/10.1016/j.ijhydene.2017.06.163. | spa |
dcterms.references | Sures, B., Nachev, M., Selbach, C., y Marcogliese, D. (2017). Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasites Vectors 10, 65. https://doi.org/10.1186/s13071-017-2001-3. | spa |
dcterms.references | TermehYousefi, A., Tateno, K., Bagheri, S., y Tanaka, H. (2017). Development of Frequency Based Taste Receptors Using Bioinspired Glucose Nanobiosensor. Sci Rep, 7, 1623. https://doi.org/10.1038/s41598-017-01855-5. | spa |
dcterms.references | Vargas-Berrones, K., Bernal-Jácome, L., Díaz de León-Martínez, L., & Flores-Ramírez, R. (2020). Emerging pollutants (EPs) in latin américa: A critical review of under-studied EPs, case of study -nonylphenol. Science of the Total Environment, 726, 138493. https://doi-org.ezproxy.umng.edu.co/10.1016/j.scitotenv.2020.138493. | spa |
dcterms.references | Vieira, Y., Lima, E.C., Foletto, E.L., y Dotto, G.L. (2021). Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. Science of The Total Environment. 753, 141981. https://doi.org/10.1016/j.scitotenv.2020.141981. | spa |
dcterms.references | Vita, J., de Oliveira, L., Caneppele, G., Gonçalves, M. (2018). Narrowing the interface between sample preparation and electrochemistry: Trace-level determination of emerging pollutant in water samples after in situ microextraction and electroanalysis using a new cell configuration, Electrochimica Acta, 275, 67-75, https://doi.org/10.1016/j.electacta.2018.04.134. | spa |
dcterms.references | Wang, Q., y Zhao, W. (2018). Optical methods of antibiotic residues detections: A comprehensive review. Sens. Actuators B Chem. 269, 238–256. https://doi.org/10.1016/j.snb.2018.04.097. | spa |
dcterms.references | Wu, Y., Wang, F., Jin, X., Zheng, X., Wang, Y., Wei, D., Zhang, Q., Feng, Y., Xie, Z., Chen, P., Liu, H., y Liu, G. (2021). Facile synthesis of solar light-driven Z-scheme Ag2CO3/TNS-001 photocatalyst for the effective degradation of naproxen: Mechanisms and degradation pathways. Separation and Purification Technology, 254, 117598. https://doi.org/10.1016/j.seppur.2020.117598. | spa |
dcterms.references | Yadav, D., Rangabhashiyam, S., Verma, P., Singh, P., Devi, P., Kumar, P. et al. (2021). Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere, 272, 129492. https://doi.org/10.1016/j.chemosphere.2020.129492. | spa |
dcterms.references | Yin, K., Deng, L., Luo, J., Crittenden, J., Liu, C., Wei, Y., Y Wang, L. (2018). Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, by products, toxicity evaluation and trichloromethane formation potential. Chemical Engineering Journal, 351, 867-877. https://doi.org/10.1016/j.cej.2018.06.164. | spa |
dcterms.references | Zyoud, A.H., Zubi, A., Hejjawi, S., Zyoud, S.H., Helal, M.H., Zyoud, S.H. et al. (2020). Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: catalytic efficiency assessment for future prospects. J. Environ. Chem. Eng. 8 (4), 104038. https://doi.org/10.1016/j.jece.2020.104038. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- morfilmedinajesusdaniel.pdf
- Tamaño:
- 589.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Informe final monografía: Residuos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico una revisión de métodos, alternativas de tratamiento e impacto ambiental
No hay miniatura disponible
- Nombre:
- Autorización de Publicación firmada.pdf
- Tamaño:
- 282.87 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: