Publicación:
Residuos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico: una revisión de métodos, alternativas de tratamiento e impacto ambiental

dc.contributor.advisorPinedo Hernández, José Joaquínspa
dc.contributor.authorMorfil Medina, Jesús Danielspa
dc.date.accessioned2022-03-30T19:57:37Z
dc.date.available2022-03-30T19:57:37Z
dc.date.issued2022-03-30
dc.description.abstractThe presence and increase of emerging contaminants (EC) of pharmaceutical origin in water matrices have become a major environmental problem. These pharmaceutical pollutants are often persistent, come from various sources, and have gone almost unnoticed in recent years, as well as their effects on health and the environment. Therefore, it is essential to study and apply methodologies for the determination of these pollutants and, in the same way, mechanisms for their treatment that lead to a decrease in their environmental effects. This work was focused on reviewing the main methods for determining EC of pharmaceutical origin in water belonging to three therapeutic classes (antibiotics, analgesics & antihypertensives) and identifying efficient technologies for their treatment, and finally, evaluating the environmental impact. For this purpose, articles published mainly in the databases of Science Direct, Springer, Scopus, Scielo, etc. were collected. With a 5-year research window compared to the current one (2017-2021). In summary, this research and critical analysis of information play an important role as an orientation tool in the field of chemistry, when it comes to monitoring and treating emerging contaminants of pharmaceutical origin in water resourceseng
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenLa presencia y el aumento de contaminantes emergentes (CE) de origen farmacéutico en matrices de agua, se ha convertido en una gran problemática a nivel ambiental. Estos contaminantes farmacéuticos suelen ser persistentes, provienen de diversas fuentes y han pasado casi desapercibidos en los últimos años, así como sus efectos en la salud y el ambiente. Por lo tanto, se hace indispensable el estudio y aplicación de metodologías para la determinación de estos contaminantes y, de igual forma, mecanismos para su tratamiento que conlleven a una disminución de sus efectos ambientales. Este trabajo estuvo enfocado en revisar los principales métodos para la determinación de CE de origen farmacéutico en el agua, pertenecientes a tres clases terapéuticas (antibióticos, analgésicos & antihipertensivos) e identificar tecnologías eficientes para su tratamiento y finalmente, evaluar el impacto ambiental. Para tal fin, se recopilaron artículos publicados principalmente en las bases de datos de Science Direct, Springer, Scopus, Scielo, etc., con una ventana de investigación de cinco años respecto al actual (2017-2021). En síntesis, esta investigación y análisis crítico de información, juega un papel importante como herramienta de orientación en el campo de la química, a la hora de ejercer monitoreo y tratamiento para los contaminantes emergentes de origen farmacéutico en el recurso hídrico.spa
dc.description.tableofcontents1. INTRODUCCIÓN ----------9spa
dc.description.tableofcontents2. OBJETIVOS -----------------14spa
dc.description.tableofcontents2.1. Objetivo general----------------------------------------------------------------------------14spa
dc.description.tableofcontents2.2. Objetivos específicos---------------------------------------------------------------------- 14spa
dc.description.tableofcontents3. DESARROLLO DEL TEMA----------------------------------------------------------- 15spa
dc.description.tableofcontents3.1. Capítulo I: métodos para la determinación de contaminantes emergentes de origen farmacéutico en el recurso hídrico----------------------------------------------------- 17spa
dc.description.tableofcontents3.1.1. Cromatografía liquida y espectrometría de masas------------------------- 18spa
dc.description.tableofcontents3.1.2. Cromatografía líquida y espectrofotometría-------------------------------- 21spa
dc.description.tableofcontents3.1.3. Métodos electroquímicos-------------------------------------------------------- 22spa
dc.description.tableofcontents3.2. Capítulo II: Alternativas para el tratamiento de contaminantes emergentes de origen farmacéutico en el recurso hídrico -----------------------------------------------------29spa
dc.description.tableofcontents3.2.1. Procesos de oxidación avanzada (POA)-------------------------------------- 29spa
dc.description.tableofcontents3.2.1.1. Fotocatálisis------------------------------------------------------------------------ 30spa
dc.description.tableofcontents3.2.1.2. Fotólisis----------------------------------------------------------------------------- 33spa
dc.description.tableofcontents3.2.1.3. Métodos Fenton------------------------------------------------------------------- 35spa
dc.description.tableofcontents3.2.1.3.1. Proceso electro-Fenton----------------------------------------------------------- 35spa
dc.description.tableofcontents3.2.1.3.2. Proceso sono-Fenton------------------------------------------------------------- 36spa
dc.description.tableofcontents3.2.2. Procesos con adsorbentes-------------------------------------------------------- 37spa
dc.description.tableofcontents3.2.3. Procesos biológicos--------------------------------------------------------------- 41spa
dc.description.tableofcontents3.3. Capitulo III: impacto ambiental de los contaminantes emergentes derivados de residuos farmacéuticos en el recurso hídrico------------------------------------------------- 42spa
dc.description.tableofcontents3.3.1. Presencia, efectos y evaluación de riesgos de los contaminantes farmacéuticos en aguas superficiales y subterráneas--------------------------------------- 42spa
dc.description.tableofcontents3.3.1.1. Interacciones con parásitos y efecto en el huésped------------------------- 42spa
dc.description.tableofcontents3.3.1.2. Interacciones con microplásticos y resistencia a los antibióticos-------- 43spa
dc.description.tableofcontents3.3.1.3. Riesgos en humanos y peces debido a la presencia en algunos ríos y efluentes de PTAR---------------------------------------------------------------------------------- 45spa
dc.description.tableofcontents3.3.1.4. Contaminación de aguas subterráneas por infiltración------------------- 46spa
dc.description.tableofcontents3.3.1.5. Presencia y posibles riesgos en aguas para el consumo humano-------- 47spa
dc.description.tableofcontents3.3.1.6. Presencia y riesgo ambiental en aguas costeras y oceánicas------------- 48spa
dc.description.tableofcontents3.3.1.7. Evaluación de riesgos ambientales-------------------------------------------- 49spa
dc.description.tableofcontents4. CONCLUSIONES------------------------------------------------------------------------- 50spa
dc.description.tableofcontents5. REFERENCIAS BIBLIOGRÁFICAS------------------------------------------------ 52spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5116
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsEnvironmental impacteng
dc.subject.keywordsPharmaceuticalseng
dc.subject.keywordsPersistenceeng
dc.subject.keywordsAquatic environmenteng
dc.subject.proposalImpacto ambientalspa
dc.subject.proposalProductos farmacéuticosspa
dc.subject.proposalPersistenciaspa
dc.subject.proposalAmbiente acuáticospa
dc.titleResiduos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico: una revisión de métodos, alternativas de tratamiento e impacto ambientalspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbdel-Aziz, H.M., Farag, R.S., y Abdel-Gawad, S.A. (2019). Carbamazepine Removal from Aqueous Solution by Green Synthesis Zero-Valent Iron/Cu Nanoparticles with Ficus Benjamina Leaves’ Extract. Int J Environ Res. 13, 843–852. https://doi.org/10.1007/s41742-019-00220-w.spa
dcterms.referencesAdityosulindro, S., Barthe, L., Labrada, K.G., Haza, U.J.J., Delmas, H., y Julcour, C. (2019). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)wáter. Ultrasonics Sonochemistry, 39, 889-896. https://doi.org/10.1016/j.ultsonch.2017.06.008spa
dcterms.referencesAhmaruzzaman, M. (2021). Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Materials Research Bulletin, 140, 111262. https://doi.org/10.1016/j.materresbull.2021.111262.spa
dcterms.referencesAli, I., Alothman, Z.A., y Alwarthan, A. (2017). Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption, Journal of Molecular Liquids. 236, 205-213. https://doi.org/10.1016/j.molliq.2017.04.028.spa
dcterms.referencesBiel-Maeso, M., Baena-Nogueras, R.M., Corada-Fernandez, C., y Lara-Martin, P.A. (2018). Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ. 612, 649-659. https://doi.org/10.1016/j.scitotenv.2017.08.279.spa
dcterms.referencesBarhoumi, N., Oturan, N., Ammar, S. et al. (2017). Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ Chem Lett 15, 689–693. https://doi.org/10.1007/s10311-017-0638-y.spa
dcterms.referencesCampaña, A., Florez, S., Noguera, M., Fuentes, O., Ruiz Puentes, P., Cruz, J., y Osma, J. (2019). Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors, 9 (1), 41. https://doi.org/10.3390/bios901004.spa
dcterms.referencesCaruso, G. (2019). Microplastics as vectors of contaminants. Mar. Pollut. Bull. 146, 921–924. https://doi.org/10.1016/j.marpolbul.2019.07.052.spa
dcterms.referencesČelić, M., Gros, M., Farré, M., Barceló, D., y Petrović, M. (2019). Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain), Science of The Total Environment, 652, 952-963. https://doi.org/10.1016/j.scitotenv.2018.10.290.spa
dcterms.referencesChan, Y., Lim, K., Lim, K., Teh, C., Kee, C., Cheong, S., Khoo, Y., Baharudin, A., Ling, M., Omar, M., y Ahmad, N. (2017). Physical activity and overweight/obesity among Malaysian adults: findings from the 2015 National Health and morbidity survey (NHMS). BMC Public Health, 17, 1–12. https://doi.org/10.1186/s12889-017-4772-z.spa
dcterms.referencesChaturvedi, P., Shukla, P., Giri, B.S., Chowdhary, P., Chandra, R., Gupta, P., y Pandey, A. (2021). Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environmental Research. 194, 110664. https://doi.org/10.1016/j.envres.2020.110664.spa
dcterms.referencesCosta, E., Nouws, H., Delerue, C., Blanco, M., y Fernández, M. (2019). Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform, Analytica Chimica Acta, 1074, 89-97, https://doi.org/10.1016/j.aca.2019.05.016.spa
dcterms.referencesDinh, Q., Moreau-Guigon, E., Labadie, P., Alliot, F., Teil, M.-J., Blanchard, M., Eurin, J., Chevreuil, M., 2017. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 575, 758–766. https://doi.org/10.1016/j.scitotenv.2016.09.118.spa
dcterms.referencesDogan, A., Płotka-Wasylka, J., Kempińska-Kupczyk, D., Namieśnik, J., y Kot-Wasik, A. (2020). Detection, identification and determination of chiral pharmaceutical residues in wastewater: problems and challenges, Trends Anal. Chem. 122, 115710. https://doi.org/10.1016/j.trac.2019.115710.spa
dcterms.referencesEbele, A.J., Abdallah, M.A.E., y Harrad, S., (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1–16. https://doi.org/10.1016/j.emcon.2016.12.004.spa
dcterms.referencesEl-Yazbi, A., Khamis, E., Youssef, R., El-Sayed, M., y Aboukhalil, F. (2020). Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon, 6 (9), e04819. https://doi.org/10.1016/j.heliyon.2020.e04819.spa
dcterms.referencesFekadu, S., Alemayehu, E., Dewil, R., Van der Bruggen, B., 2019. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci. Total Environ, 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072.spa
dcterms.referencesGarcia-Segura, S., Ocon, J.., Chong, M., (2018). Electrochemical oxidation remediation of real wastewater effluents-A review. Process Safety and Environm. Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014.spa
dcterms.referencesGaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin: A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. https://doi.org/10.1016/j.bios.2016.12.005.spa
dcterms.referencesGonzalez-Alonso, S., Merino, L.M., Esteban, S., Lopez de Alda, M., Barcelo, D., Duran, J.J. et al. (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula región. Environmental Pollution. 229, 241-254. https://doi.org/10.1016/j.envpol.2017.05.060.spa
dcterms.referencesGrisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N. (2021). Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour. Technol, 326, 124753. https://doi.org/10.1016/j.biortech.2021.124753.spa
dcterms.referencesGuillermo, P. (2020). Estudio de contaminantes emergentes presentes en efluentes acuosos urbanos: Técnicas analíticas y tecnologías de tratamiento [Tesis de maestría, Universidad politécnica de Cartagena]. https://repositorio.upct.es/bitstream/handle/10317/8963/tfm-gui-est.pdf?sequence=1&isAllowed=y.spa
dcterms.referencesGuruge, K., Goswamid, P., Tanoue, R., Nomiyama, K., Wijesekara, R., y Dharmaratne, T. (2019). First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ., 690, 683-695. https://doi.org/10.1016/j.scitotenv.2019.07.042.spa
dcterms.referencesHe, S., Dong, D., Zhang, X., Sun, C., Wang, C., Hua, X., Zhang, L., y Guo, Z. (2018). Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environ Sci Pollut Res. 25, 24003–24012. https://doi.org/10.1007/s11356-018-2459-3.spa
dcterms.referencesHernández-Ramírez, A., Hernández, R., Hinojosa, L, Ramos-Delgado, N., y Guzmán, J. (2021). Determination of Pharmaceuticals Discharged in Wastewater from a Public Hospital Using LC-MS/MS TechniqueJ. Mex. Chem. Soc. 65(1), 94-108. https://doi.org/10.29356/jmcs.v65i1.1439.spa
dcterms.referencesHusein, D.Z., Hassanien, R., y Al-Hakkani, M.F. (2019). Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewatersamples. Heliyon, 5, e02339. https://doi.org/10.1016/j.heliyon.2019.e02339.spa
dcterms.referencesJaimes, J., y Vera, J. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización. Informador Técnico, 84(2), 21-34. https://doi.org/10.23850/22565035.2305.spa
dcterms.referencesKar, P., Shukla, K., Jain, P., Sathiyan, G., y Gupta, R.K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, Volume 3 (1), 25-46. https://doi.org/10.1016/j.nanoms.2020.11.001.spa
dcterms.referencesKhasawneh, O.F.S., Palaniandy, P., Ahmadipour, M., Mohammadi, H., y Hamdand M.R.B. (2021). Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation: Optimization study,Journal of Environmental Chemical Engineering, 9 (1), 104921. https://doi.org/10.1016/j.jece.2020.104921.spa
dcterms.referencesKondor, A.C., Molnar, E., Vancsik, A., Filep, T., Szeberenyi, J., Szabó, L., Maasz, G., Pirger, Z. et al. (2021). Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking wáter. J. Water Process Eng. 41, 102039. https://doi.org/10.1016/j.scp.2018.12.006.spa
dcterms.referencesKumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., y Stadler, F. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants, Journal of Molecular Liquids, 290, 111177. https://doi.org/10.1016/j.molliq.2019.111177.spa
dcterms.referencesKumari, P., Alam, M., y Siddiqi, W.A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: an emerging trend. Sustain. Mater. Technol. 22, e00128. https://doi.org/10.1016/j.susmat.2019.e00128.spa
dcterms.referencesLuján-Facundo, M., Iborra-Clar, M., Mendoza-Roca, J., y Alcaina-Miranda, M. (2019). Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod, 238, 117866. https://doi.org/10.1016/j.jclepro.2019.117866.spa
dcterms.referencesLu, G.-H., Piao, H.-T., Gai, N., Shao, P.-W., Zheng, Y., Jiao, X.-C., Yang, Y.-L. (2018). Pharmaceutical and personal care products in surface waters from the inner city of Beijing, China: influence of hospitals and reclaimed water irrigation. Arch. Environ. Contam. Toxicol. 76, 255-564. https://doi.org/10.1007/s00244-018-0578-y.spa
dcterms.referencesLu, Y.C., Mao, J.H., Zhang, W., Wang, C., Cao, M., Wang, X.D., Wang, K.Y., y Xiong, X. (2020). A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano−polymers. Chemosphere, 238, 124640. 10.1016/j.chemosphere.2019.124640.spa
dcterms.referencesMaldonado Katia. Desarrollo de dos nuevas metodologías validadas para la determinación y cuantificación del Paracetamol, como contaminante emergente, en muestras de agua subterránea. Repositorio Institucional de la UNSA. México 2018. recuperado de: http://repositorio.unsa.edu.pe/handle/UNSA/6334.spa
dcterms.referencesMi, X., Li, Y., Ning, X., Jia, J., Wang, H., Xia, Y., Sun, Y., y Zhan, S. (2019). Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: Enhanced redox capacity and accelerated electron transfer. Chemical Engineering Journal, 358, 299-309. https://doi.org/10.1016/j.cej.2018.10.047.spa
dcterms.referencesMulla, S.I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., & Yu. C.P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, 93-102. https://doi.org/10.1016/j.jenvman.2017.10.029.spa
dcterms.referencesMurgolo, S., Franz, S., Arab, H., Bestetti, M., Falletta, E., y Mascolo, G. (2019). Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes, Water Research, Volume 164, 114920. https://doi.org/10.1016/j.watres.2019.114920.spa
dcterms.referencesNannou, C., Ofrydopoulou, A., Evgenidou, E., Heath, D., Heath, E., Lambropoulou, D.(2019). Analytical strategies for the determination of antiviral drugs in the aquatic environment. Trends in Environmental Analytical Chemistry, 24, e0007. https://doi.org/10.1016/j.teac.2019.e00071.spa
dcterms.referencesNantaba, F., Wasswa, J., Kylin, H., Palm, W., Bouwman, H., y Kummerer, K (2020). Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda, Chemosphere, 239, 124642. https://doi.org/10.1016/j.chemosphere.2019.124642.spa
dcterms.referencesNeha, R., Adithya, S., Jayaraman, R.S., Gopinath, K.P., y Arun, J. (2021). Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere, 272, 129852. https://doi.org/10.1016/j.chemosphere.2021.129852.spa
dcterms.referencesNg, K., Rapp-Wright, H., Egli, M., Hartmann, A., Steele, J., Sosa-Hernández, J. et al. (2020). High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography tandem mass spectrometry. J. Hazard Mater, 398, 122933. https://doi.org/10.1016/j.jhazmat.2020.122933.spa
dcterms.referencesOliveira, M., Farias, B., Velasques, J., Corrêa, F., Sabioni, P., Migliolo, L. (2020). Pharmaceuticals residues and xenobiotics contaminants: Occurrence,analytical techniques and sustainable alternatives for wastewater treatment. Science of the Total Environment, 194, 110664. https://doi.org/10.1016/j.envres.2020.110664.spa
dcterms.referencesOgueji, E. O., Nwani, C. D., Mbah, C. E., y Nweke, F. N. (2019). Acute hematological toxicity of ivermectin to juvenile Clarias gariepinus. Toxicological & Environmental Chemistry. 101:3-6, 300-314. https://doi.org/10.2989/16085914.2018.1465393.spa
dcterms.referencesPaíga, P., Correia, M., Fernandes, M., Silva, A., Carvalho, M., Vieira, J., Jorge, S., Silva, J., Freire, C., y Delerue-Matos, C. (2019). Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Science of The Total Environment, 648, 582-600. https://doi.org/10.1016/j.scitotenv.2018.08.129.spa
dcterms.referencesPinasseau, L., Wiest, L., Volatier, L., Mermillod-Blondin, F., y Vulliet, E. (2020). Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. Environmental Pollution. 266(2), 115387. https://doi.org/10.1016/j.envpol.2020.115387.spa
dcterms.referencesPravdová, M., Kolářová, J., Grabicová., K., Mikl, L., Bláha, M., Randák, T. et al. (2020). Associations between pharmaceutical contaminants, parasite load and health status in brown trout exposed to sewage effluent in a small stream, Ecohydrology & Hydrobiology, 21(2), Pages 233-243. https://doi.org/10.1016/j.ecohyd.2020.09.001.spa
dcterms.referencesPraveena, S., Shaifuddin, S., Sukiman, S., Nasir, F., Hanafi, Z., Kamarudin, N., Ismail, T., Aris, A. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): occurrence and potential risk assessments Sci. Total Environ, 642, 230-240. https://doi.org/10.1016/j.scitotenv.2018.06.058.spa
dcterms.referencesPylypchuk, I.V., Daniel, G., Kessler, V.G., y Seisenbaeva, G.A. (2020). Removal of Diclofenac, Paracetamol, and Carbamazepine from Model Aqueous Solutions by Magnetic Sol–Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites. Nanomaterials, 10, 282. https://doi.org/10.3390/nano10020282.spa
dcterms.referencesQiu, L., Jaria, G., Gil, M. V., Feng, J., Dai, Y., Esteves, V. I., Otero, M., & Calisto, V. (2020). Core-Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers, 12 (6), 1385. https://doi.org/10.3390/polym12061385.spa
dcterms.referencesRamírez, L., Chicaiza, S., Ramos, A., y Álvarez, C. (2019). Detección de antibióticos betalactámicos, tetraciclinas y sulfamidas como contaminantes emergentes en los ríos San Pedro y Pita del cantón Rumiñahui. LA GRANJA. Revista de Ciencias de la Vida, 30(2), 88-102. https://doi.org/10.17163/lgr.n30.2019.08spa
dcterms.referencesReinoso, J., Serrano, C., Orellana, D. (2017). Contaminantes emergentes y su impacto en la salud. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 35(2) 55-59. https://publicaciones.ucuenca.edu.ec/ojs/index.php/medicina/article/view/1723.spa
dcterms.referencesSandegren, L. (2019). Low sub-minimal inhibitory concentrations of antibiotics generate new types of resistance. Sustainable Chemistry and Pharmacy. 11, 46-48. https://doi.org/10.1016/j.scp.2018.12.006.spa
dcterms.referencesSekulic, M., Boskovic, N., Milanovic, M., Letic, N., Gligoric, E., y Pap, S.(2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, Volume 284, 372-382, https://doi.org/10.1016/j.molliq.2019.04.020.spa
dcterms.referencesShalauddin, M., Akhter, S., Bagheri, S., Abd Karim, M.S., Kadri, N.A., Basirun W. (2017). Immobilized copper ions on MWCNTS-Chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution, International Journal of Hydrogen Energy, 42 (31), 19951-19960, https://doi.org/10.1016/j.ijhydene.2017.06.163.spa
dcterms.referencesSures, B., Nachev, M., Selbach, C., y Marcogliese, D. (2017). Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasites Vectors 10, 65. https://doi.org/10.1186/s13071-017-2001-3.spa
dcterms.referencesTermehYousefi, A., Tateno, K., Bagheri, S., y Tanaka, H. (2017). Development of Frequency Based Taste Receptors Using Bioinspired Glucose Nanobiosensor. Sci Rep, 7, 1623. https://doi.org/10.1038/s41598-017-01855-5.spa
dcterms.referencesVargas-Berrones, K., Bernal-Jácome, L., Díaz de León-Martínez, L., & Flores-Ramírez, R. (2020). Emerging pollutants (EPs) in latin américa: A critical review of under-studied EPs, case of study -nonylphenol. Science of the Total Environment, 726, 138493. https://doi-org.ezproxy.umng.edu.co/10.1016/j.scitotenv.2020.138493.spa
dcterms.referencesVieira, Y., Lima, E.C., Foletto, E.L., y Dotto, G.L. (2021). Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. Science of The Total Environment. 753, 141981. https://doi.org/10.1016/j.scitotenv.2020.141981.spa
dcterms.referencesVita, J., de Oliveira, L., Caneppele, G., Gonçalves, M. (2018). Narrowing the interface between sample preparation and electrochemistry: Trace-level determination of emerging pollutant in water samples after in situ microextraction and electroanalysis using a new cell configuration, Electrochimica Acta, 275, 67-75, https://doi.org/10.1016/j.electacta.2018.04.134.spa
dcterms.referencesWang, Q., y Zhao, W. (2018). Optical methods of antibiotic residues detections: A comprehensive review. Sens. Actuators B Chem. 269, 238–256. https://doi.org/10.1016/j.snb.2018.04.097.spa
dcterms.referencesWu, Y., Wang, F., Jin, X., Zheng, X., Wang, Y., Wei, D., Zhang, Q., Feng, Y., Xie, Z., Chen, P., Liu, H., y Liu, G. (2021). Facile synthesis of solar light-driven Z-scheme Ag2CO3/TNS-001 photocatalyst for the effective degradation of naproxen: Mechanisms and degradation pathways. Separation and Purification Technology, 254, 117598. https://doi.org/10.1016/j.seppur.2020.117598.spa
dcterms.referencesYadav, D., Rangabhashiyam, S., Verma, P., Singh, P., Devi, P., Kumar, P. et al. (2021). Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere, 272, 129492. https://doi.org/10.1016/j.chemosphere.2020.129492.spa
dcterms.referencesYin, K., Deng, L., Luo, J., Crittenden, J., Liu, C., Wei, Y., Y Wang, L. (2018). Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, by products, toxicity evaluation and trichloromethane formation potential. Chemical Engineering Journal, 351, 867-877. https://doi.org/10.1016/j.cej.2018.06.164.spa
dcterms.referencesZyoud, A.H., Zubi, A., Hejjawi, S., Zyoud, S.H., Helal, M.H., Zyoud, S.H. et al. (2020). Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: catalytic efficiency assessment for future prospects. J. Environ. Chem. Eng. 8 (4), 104038. https://doi.org/10.1016/j.jece.2020.104038.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
morfilmedinajesusdaniel.pdf
Tamaño:
589.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Informe final monografía: Residuos farmacéuticos como precursores de contaminantes emergentes en el recurso hídrico una revisión de métodos, alternativas de tratamiento e impacto ambiental
No hay miniatura disponible
Nombre:
Autorización de Publicación firmada.pdf
Tamaño:
282.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: