Publicación:
Evaluación del potencial antifúngico del isoespintanol extraído de Oxandra xylopioides Diels (Annonaceae), contra aislamientos intrahospitalarios de Candida tropicalis

dc.contributor.advisorSantafé Patiño, Gilmar
dc.contributor.authorContreras Martínez, Orfa Inés
dc.contributor.jurySáez Vega, Alex
dc.contributor.juryPajaro Castro, Nerlis
dc.contributor.juryPérez Hernández, Edwin
dc.date.accessioned2024-01-29T21:32:41Z
dc.date.available2024-01-29T21:32:41Z
dc.date.issued2024-01-26
dc.description.abstractActualmente, la incidencia de Infecciones Asociadas a la Atención en Salud (IAAS) representa un grave problema por el aumento, no solo de los índices de morbilidad y mortalidad, sino también los costos en los servicios de salud a nivel global. Los hongos son uno de los principales agentes etiológicos de estas infecciones; infectan a un gran número de personas cada año aumentando las tasas de morbi-mortalidad especialmente en personas inmunocomprometidas. Recientemente se ha reportado la eficacia de compuestos de origen vegetal con potencial antifúngico como una alternativa a ser empleada. Por esto, el objetivo de esta investigación fue evaluar el potencial antimicrobiano del isoespintanol (ISO), tomando como modelo la levadura patógena Candida tropicalis, estimar su capacidad para inhibir biopelículas y hacer una exploración a los mecanismos de acción antifúngica de este compuesto. Los resultados revelaron inhibición del crecimiento fúngico e inhibición de biopalículas, con efectos superiores al efecto causado por la anfotericina B (AFB). Además, se evidenció el efecto del ISO sobre varias dianas moleculares como mecanismo de acción antifúngica. En cuanto al efecto del ISO, sobre el transcriptoma de C. tropicalis, el análisis de expresión génica diferencial permitió una visión integral de los cambios fisiológicos, estructurales y metabólicos de C. tropicalis que ocurren en presencia de ISO. Esta investigación resalta que la actividad antifúngica de ISO es un proceso complejo que involucra múltiples objetivos de acción.spa
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor(a) en Microbiología y Salud Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN 3spa
dc.description.tableofcontentsABSTRACT 5eng
dc.description.tableofcontentsCAPITULO 1. INTRODUCCIÓN 7spa
dc.description.tableofcontents1.1. Problema y Justificación 7spa
dc.description.tableofcontents1.2. OBJETIVOS 10spa
dc.description.tableofcontents1.2.1. Objetivo general 10spa
dc.description.tableofcontents1.2.2. Objetivos específicos 10spa
dc.description.tableofcontentsCAPITULO 2. MARCO TEÓRICO 11spa
dc.description.tableofcontents2.1. Bases teóricas 11spa
dc.description.tableofcontents2.1.1. Infecciones Asociadas a la Atención en Salud (IAAS)spa
dc.description.tableofcontents2.1.2. Infecciones por Candida spp.spa
dc.description.tableofcontents2.1.3. Candida tropicalisspa
dc.description.tableofcontents2.1.4. Factores de virulencia en Candida tropicalisspa
dc.description.tableofcontents2.1.5. Mecanismos de resistenciaspa
dc.description.tableofcontents2.1.6. La familia Annonaceaespa
dc.description.tableofcontents2.1.7. El género Oxandraspa
dc.description.tableofcontents2.1.8. Oxandra xylopioides Dielsspa
dc.description.tableofcontents2.1.9. Metabolitos secundariosspa
dc.description.tableofcontents2.1.10. Isoespintanol 17spa
dc.description.tableofcontents2.2. Antecedentes 19spa
dc.description.tableofcontentsCAPITULO 3. METODOLOGÍA 21spa
dc.description.tableofcontents3.1. Aislamiento, Purificación, e Identificación del Isoespintanol 21spa
dc.description.tableofcontents3.2. Ensayos de citotoxicidad del isoespintanol 21spa
dc.description.tableofcontents3.2.1. Cultivo celular 22spa
dc.description.tableofcontents3.2.2. Ensayo de MTT 22spa
dc.description.tableofcontents3.2.3. Ensayo de viabilidad con CV 22spa
dc.description.tableofcontents3.3. Sensibilidad de bacterias y levaduras del género Candida frente al isoespintanol. 23spa
dc.description.tableofcontents3.3.1. Sensibilidad de bacterias frente al ISO 24spa
dc.description.tableofcontents3.3.2. Sensibilidad de levaduras del género Candida frente al ISO 25spa
dc.description.tableofcontents3.4. Filogenómica de Candida tropicalis 26spa
dc.description.tableofcontents3.4.1. Extracción de ADN genómico 26spa
dc.description.tableofcontents3.4.2. Secuenciación genómica de C. tropicalis WGS (Whole genome shotgun) 27spa
dc.description.tableofcontents3.5. Ensayos de sensibilidad antifúngica de C. tropicalis 27spa
dc.description.tableofcontents3.5.1. Ensayo de reducción de MTT 27spa
dc.description.tableofcontents3.5.2. Curva de inhibición del crecimiento fúngico 28spa
dc.description.tableofcontents3.6. Exploración de mecanismos de acción antifúngico del isoespintanol contra C. tropicalis mediante su acción sobre diferentes dianas 28spa
dc.description.tableofcontents3.6.1. Efecto del ISO sobre la membrana celular fúngica 28spa
dc.description.tableofcontents3.6.1.1. Ensayos con citometría de flujo empleando Ioduro de propidio (IP) 28spa
dc.description.tableofcontents3.6.1.2. Pérdida de material intracelular a través de la membrana celular 29spa
dc.description.tableofcontents3.6.1.3. Medida de pH extracelular 29spa
dc.description.tableofcontents3.6.1.4. Ensayos LIVE/DEAD 30spa
dc.description.tableofcontents3.6.1.5. Tinción con azul de Evans 30spa
dc.description.tableofcontents3.6.1.6. Determinación del contenido de ergosterol 30spa
dc.description.tableofcontents3.6.2. Efecto del ISO sobre la morfología e integridad de las células 31spa
dc.description.tableofcontents3.6.3. Efecto del ISO sobre la producción de especies reactivas de oxígeno intracelular (EROi) 32spa
dc.description.tableofcontents3.6.4. Efecto del ISO sobre el potencial de membrana mitocondrial (ΔΨm) 32spa
dc.description.tableofcontents3.6.5. Efecto del ISO sobre biopelículas fúngicas 33spa
dc.description.tableofcontents3.6.6. Efecto del ISO sobre la integridad de la pared celular 34spa
dc.description.tableofcontents3.7. Efecto del ISO sobre el transcriptoma de C. tropicalis 35spa
dc.description.tableofcontents3.7.1. Secuenciación de ARN y datos de recuentos de lectura. 35spa
dc.description.tableofcontents3.7.2. Análisis bioinformático 35spa
dc.description.tableofcontentsCAPITULO 4. RESULTADOS Y DISCUSIÓN 37spa
dc.description.tableofcontentsCAPITULO 5. CONCLUSIONES 38spa
dc.description.tableofcontentsReferencias 39spa
dc.description.tableofcontentsAnexos 50spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8132
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programDoctorado en Microbiología y Salud Tropical
dc.relation.references1. Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, et al. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon. 2021;7(2):e06310.
dc.relation.references2. Morais A, Araujo H, Arias L, Ramírez W, Porangaba G, Penha S, et al. Nanocarriers of Miconazole or Fluconazole: Effects on Three-Species Candida Biofilms and Cytotoxic Effects In Vitro. J. Fungi. 2021;7(7):500.
dc.relation.references3. Boonsilp S, Homkaew A, Phumisantiphong U, Nutalai D, Wongsuk T. Species distribution, antifungal susceptibility, and molecular epidemiology of candida species causing Candidemia in a tertiary care hospital in Bangkok, Thailand. J. Fungi. 2021;7(7).
dc.relation.references4. Steinmann J, Schrauzer T, Kirchhoff L, Meis JF, Rath PM. Two Candida auris cases in Germany with no recent contact to foreign healthcare—epidemiological and microbiological investigations. J. Fungi. 2021;7(5):1–6.
dc.relation.references5. Hassan Y, Chew SY. Candida glabrata : Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J. Fungi. 2021;7.
dc.relation.references6. Chen P, Chuang Y, Wu U, Sun H, Wang J, Sheng W, et al. Mechanisms of Azole Resistance and Trailing in Candida tropicalis Bloodstream Isolates. J. Fungi. 2021;7 (8).
dc.relation.references7. Kakar A, Holzknecht J, Dubrac S, Gelmi ML, Romanelli A. New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B : Peptide Analogs Are Effective Inhibitors of Candida albicans Growth. J. Fungi. 2021;7 (6).
dc.relation.references8. Bongomin F, Gago S, Oladele R, Denning D. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi. 2017;3:1–29.
dc.relation.references9. Janbon G, Quintin J, Lanternier F, D´Enfert. Studying fungal pathogens of humans and fungal infections : fungal diversity and diversity of approaches. Genes Immun. 2019; Available from: http://dx.doi.org/10.1038/s41435-019-0071-2
dc.relation.references10. Galvis-acosta D, Aycardi-morinelly MP, Contreras-martínez OI, Lorduy-Rodríguez AJ. Prevalencia de infecciones fúngicas en centros hospitalarios de Montería, Córdoba, Colombia. Rev Cubana Hig Epidemiol. 2020;57:413.
dc.relation.references11. Donadu MG, Peralta-ruiz Y, Usai D, Maggio F, Molina-hernandez JB, Rizzo D, et al. Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. J. Fungi. 2021;7:383.
dc.relation.references12. Scorneaux B, Angulo D, Borroto-esoda K, Ghannoum M, Peel M, Wring S. SCY-078 Is Fungicidal against Candida Species in Time-Kill Studies. Antimicrob Agents Chemother. 2017;61(3):1–10.
dc.relation.references13. El‐kholy MA, Helaly GF, El Ghazzawi EF, El‐sawaf G, Shawky SM. Virulence factors and antifungal susceptibility profile of C. tropicalis isolated from various clinical specimens in Alexandria, Egypt. J. Fungi. 2021;7(5):351.
dc.relation.references14. Zuza-Alves DL, Sila-Rocha WP, Chaves G. An update on Candida tropicalis based on basic and clinical approaches. Front Microbiol. 2017;8.
dc.relation.references15. Munhoz-Alves N, Nishiyama Mimura LA, Viero RM, Bagagli E, Schatzmann J, Sartori A, et al. Candida tropicalis systemic infection redirects leukocyte infiltration to the kidneys attenuating Encephalomyelitis. J. Fungi. 2021;7:757.
dc.relation.references16. Cortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos E V. Candidemia in Colombia. Biomedica. 2020;40(1):195–207.
dc.relation.references17. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36(2):288–305.
dc.relation.references18. Gintjee TJ, Donnelley MA, Thompson III GR. Aspiring Antifungals : Review of Current Antifungal Pipeline Developments. J. Fungi. 2020;6(28).
dc.relation.references19. Araldi RP, dos Santos MO, Barbon FF, Manjerona BA, Meirelles BR, de Oliva Neto P, et al. Analysis of antioxidant, cytotoxic and mutagenic potential of Agave sisalana Perrine extracts using Vero cells, human lymphocytes and mice polychromatic erythrocytes. Biomed Pharmacother. 2018;98:873–85.
dc.relation.references20. Mekonnen Bayisa Y, Aga Bullo T. Optimization and characterization of oil extracted from Croton macrostachyus seed for antimicrobial activity using experimental analysis of variance. Heliyon. 2021;7.
dc.relation.references21. Aylate A, Agize M, Ekero D, Kiros A, Ayledo G, Gendiche K. In-vitro and In-vivo antibacterial activities of Croton macrostachyus methanol extract against E. coli and S. aureus. Adv Anim Vet Sci. 2017;5:107–14.
dc.relation.references22. Naman CB, Benatrehina PA, Kinghorn AD. Pharmaceuticals, Plant Drugs. Second Edi. Vol. 2, Encyclopedia of Applied Plant Sciences. Elsevier; 2016. 93–99 p.
dc.relation.references23. Avato P. Editorial to the special issue –“Natural products and drug discovery". Molecules. 2020;25:1128.
dc.relation.references24. Rojano B, Saez J, Schinella G, Quijano J, Vélez E, Gil A, et al. Experimental and theoretical determination of the antioxidant properties of isoespintanol (2-isopropyl-3,6-dimethoxy-5-methylphenol). J. Mol Struct. 2008;877:1–6.
dc.relation.references25. Rojano B, Pérez E, Figadère B, Martin MT, Recio MC, Giner R, et al. Constituents of Oxandra cf. xylopioides with anti-inflammatory activity. J. Nat Prod. 2007;70(5):835–8.
dc.relation.references26. Gavilánez Buñay TC, Colareda GA, Ragone MI, Bonilla M, Rojano BA, Schinella GR, et al. Intestinal, urinary and uterine antispasmodic effects of isoespintanol, metabolite from Oxandra xylopioides leaves. Phytomedicine. 2018 Dec 1;51:20–8.
dc.relation.references27. Rinaldi GJ, Rojano B, Schinella G, Mosca SM. Participation of NO in the vasodilatory action of isoespintanol. Vitae. 2019;26:78–83.
dc.relation.references28. Usuga A, Tejera I, Gómez J, Restrepo O, Rojano B, Restrepo G. Cryoprotective effects of ergothioneine and isoespintanol on canine semen. Animals. 2021;11:2757.
dc.relation.references29. Rojano BA, Montoya S, Yépez F, Saez J. Evaluación de isoespintanol aislado de Oxandra cf. xylopioides (Annonaceae) sobre Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae). Rev. Fac. Nal. Agr. 2007,Vol. 60.
dc.relation.references30. Arango N, Vanegas N, Saez J, García C, Rojano B. Actividad antifúngica del isoespintanol sobre hongos del género Colletotricum. Sci Tech. 2007;33:279–80.
dc.relation.references31. González Arbeláez L, Ciocci Pardo A, Fantinelli JC, Rojano B, Schinella G, Mosca SM. Isoespintanol, a monoterpene isolated from Oxandra cf xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKCε/eNOS-dependent pathways. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020;393 (4):629–38.
dc.relation.references32. Liu JY, Dickter JK. Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointest Endosc Clin N Am. 2020;30(4):637–52.
dc.relation.references33. Lemiech-Mirowska E, Kiersnowska Z, Michalkiewicz M, Depta A, Marczak M. Nosocomial infections as one of the most important problems of the healthcare system. Ann Agric Environ Med. 2021;28:361–6.
dc.relation.references34. Khan A, Miller WR, Arias CA. Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Rev Anti Infect Ther. 2018;16:269–87.
dc.relation.references35. Contreras-Omaña R, Escorcia-Saucedo AE, Velarde-Ruiz Velasco JA. Prevalencia e impacto de resistencias a antimicrobianos en infecciones gastrointestinales: una revisión. Rev Gastroenterol Mex. 2021;86:265–75.
dc.relation.references36. Resurrección-Delgado C, Montenegro-Idrogo J, Chiappe-Gonzalez A, Vargas-Gonzalez R, Cucho-Espinoza C, Mamani-Condori D, et al. Klebsiella pneumoniae Nueva Delhi metalo-betalactamasa en el hospital nacional Dos de mayo. Lima, Perú. Rev Peru Med Exp Salud Publica. 2017;34:261–7.
dc.relation.references37. Ghodhbane H, Elaidi S, Sabatier J-M, Achour S, Benhmida J, Regaya I. Bacteriocins Active Against Multi-Resistant Gram Negative Bacteria Implicated in Nosocomial Infections. Infect Disord Drug Targets. 2015;15:2–12.
dc.relation.references38. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11(3):297–308.
dc.relation.references39. Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, et al. Novel Therapies for Biofilm-Based Candida spp. Infections. Adv Exp Med Biol. 2019;1214:93–123.
dc.relation.references40. Chowdhary A, Tarai B, Singh A, Sharma A. Multidrug-resistant Candida auris infections in critically ill coronavirus disease patients, India, april-july 2020. Emerg Infect Dis. 2020;26:2694–6.
dc.relation.references41. Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol. 2020;59(1):1–17.
dc.relation.references42. Öncü B, Belet N, Emecen AN, Birinci A. Health care-associated invasive Candida infections in children. Med Mycol. 2019;57(8):929–36.
dc.relation.references43. Whaley S, Berkow E, Rybak J, Nishimoto A, Barker K, Rogers D. Azole antifungal resistance in Candida albicans and emerging non-albicans candida species. Front Microbiol. 2017;7:1–12.
dc.relation.references44. Rasheed M, Battu A, Kaur R. Host–pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Rev Anti Infect Ther. 2020;00(00):1093–103.
dc.relation.references45. Wang D, An N, Yang Y, Yang X, Fan Y, Feng J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. 2021;1–9.
dc.relation.references46. Da Silva MA, Baronetti JL, Páez PL, Paraje MG. Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation With Persister Cells. Front Microbiol. 2021;11(February):1–14.
dc.relation.references47. Tóth R, Nosek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, et al. Candida parapsilosis: From genes to the bedside. Clin Microbiol Rev. 2019;32(2).
dc.relation.references48. Carvajal SK, Alvarado M, Rodriguez YM, Parra-Giraldo CM, Var C, Morales-l SE, et al. Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model. J. Fungi. 2021;7:1–10.
dc.relation.references49. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, et al. Candida auris: A review of the literature. Clin Microbiol Rev. 2018;31(1).
dc.relation.references50. Colombo AL, Júnior JNDA, Guinea J. Emerging multidrug-resistant Candida species. Curr Opin Infect Dis. 2017;30(6):528–38.
dc.relation.references51. De Souza CM, dos Santos MM, Furlaneto-Maia L, Furlaneto MC. Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: What do we know?. Can J. Microbiol. 2023;69(6):207–18.
dc.relation.references52. Silva S, Hooper SJ, Henriques M, Oliveira R, Azeredo J, Williams DW. The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clin Microbiol Infect. 2011;17(2):264–72.
dc.relation.references53. Guembe M, Cruces R, Peláez T, Mu P, Bouza E. Assessment of biofilm production in Candida isolates according to species and origin of infection. Enferm Infecc Microbiol Clin. 2017;35 (1):37–40.
dc.relation.references54. Tascini C, Sozio E, Corte L, Sbrana F. The role of biofilm forming on mortality in patients with candidemia : a study derived from real world data. Infect Dis (Auckl). 2017;50 (3)(0):1–6.
dc.relation.references55. Grosset M, Desnos-Ollivier M, Godet C, Kauffmann-Lacroix C, Cazenave-Roblot F. Recurrent episodes of candidemia due to Candida glabrata, Candida tropicalis and Candida albicans with acquired echinocandin resistance. Med Mycol Case Repots. 2016;14:20–3.
dc.relation.references56. De Oliveira JS, Pereira VS, Castelo-Branco D de SCM, Cordeiro R de A, Sidrim JJC, Brilhante RSN, et al. The yeast, the antifungal, and the wardrobe: A journey into antifungal resistance mechanisms of Candida tropicalis. Can J. Microbiol. 2020;66(6):377–88.
dc.relation.references57. Wang D, Na A, Yang Y, Yang X, Fan Yy, Feng J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob Resist Infect Control. 2021;10.
dc.relation.references58. Atanasov A, Zotchev S, Dirsch V, Taskforce TINPS, Supuran C. Natural products in drug discovery: advances and opportunities. Nat Rev. 2021;20:200–16.
dc.relation.references59. Mickymaray S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics. 2019;8:257.
dc.relation.references60. Attiq A, Jalil J, Husain K. Annonaceae: Breaking the Wall of Inflammation. Front Pharmacol. 2017;8:1–24.
dc.relation.references61. Hernández Fuentes LM, González EM, Magaña M de LG, Esparza LMA, González YN, Villagrán Z, et al. Current situation and perspectives of fruit Annonaceae in mexico: Biological and agronomic importance and bioactive properties. Plants. 2022;11(1):1–22.
dc.relation.references62. Murillo J. Las Annonaceae de Colombia. Biota Colomb. 2001;2(1):49–58.
dc.relation.references63. Junikka L, Maas PJM, Maas-van de Kamer H, Westra LYT. Revision of Oxandra (Annonaceae). Blumea J Plant Taxon Plant Geogr. 2016;61(3):215–66.
dc.relation.references64. Zhang J, El-Shabrawy A, El-Shanawany M, Schiff P, Slatkin D. New azafluorene alkaloids from Oxandra xylopioides. J. Nat Prod. 1987;50:800–6.
dc.relation.references65. Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23:762.
dc.relation.references66. Morales I, De La Fuente J, Sosa V. Componentes de Eupatorium saltense. An Asoc Quim Argent. 1991;79(3):141–4.
dc.relation.references67. Hocquemiller R, Cortes D, Arango GJ, Myint SH, Cave A. Isolement et synthese de L´Espintanol, nouveau monoterpene antiparasitaire. J Nat Prod. 1991;54:445–52.
dc.relation.references68. Rojano B, Gaviria CA, Sáez J. Determinación de la actividad antioxidante en un modelo de peroxidación lipídica de mantequilla inhibida por el isoespintanol. Vitae. 15:212–8.
dc.relation.references69. Restrepo G, Rojano B. Efecto del isoespintanol y el timol en la actividad antioxidante de semen equino diluido con fines de congelación. Rev Med Vet. 2017;35:149–58.
dc.relation.references70. Restrepo G, Rojano B. Actividad antioxidante del isoespintanol y el timol en el semen equino criopreservado. Rev Inv Vet Perú. 2018;29:205–16.
dc.relation.references71. Marquez-Fernandez M, Munoz-Lasso D, Bautista Lopez J, Zapata K, Puertas Mejia M, Lopez-Alarcon C, et al. Effect of isoespintanol isolated from Oxandra cf. xylopioides against DNA damage of human lymphocytes. Pak J Pharm Sci. 2018;31:1777–82.
dc.relation.references72. Zapata K, Arias J, Cortés F, Alarcon C, Durango D, Rojano B. Oxidative stabilization of palm olein with isoespintanol (2-isopropyl-3,6-dimethoxy-5-methylphenol) isolated from Oxandra cf xylopioides. J. Med Plants Res. 2017;11:218–25.
dc.relation.references73. Sun F-J, Li M, Gu L, Wang M, Yang M. Recent progress on anti-Candida natural products. Chin J. Nat Med. 2021;19(8):561–79.
dc.relation.references74. Contreras Martínez OI, Angulo Ortíz AA, Santafé Patiño G. Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon. 2022;8(10).
dc.relation.references75. Contreras Martínez OI, Angulo Ortíz AA, Santafé Patiño G. Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules. 2022;27:5808.
dc.relation.references76. Contreras Martínez OI, Angulo Ortíz AA, Santafé Patiño G, Peñata-Taborda A, Berrio Soto R. Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. Int J. Mol Sci. 2023;24(12):10187.
dc.relation.references77. Iraji A, Yazdanpanah S, Alizadeh F, Mirzamohammadi S, Ghasemi Y, Pakshir K, et al. Screening the antifungal activities of monoterpenes and their isomers against Candida species. J Appl Microbiol. 2020;129(6):1541–51.
dc.relation.references78. Gallucci MN, Carezzano ME, Oliva MM, Demo MS, Pizzolitto RP, Zunino MP, et al. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: A quantitative structure-activity relationship analysis. J. Appl Microbiol. 2014;116(4):795–804.
dc.relation.references79. Xiong H, Zhou X, Xiang W, Huang M, Lin Z, Tang J, et al. Integrated transcriptome reveals that D -limonene inhibits Candida tropicalis by disrupting metabolism. LWT- Food Sci Technol. 2023;176:114535.
dc.relation.references80. Yu H, Lin Z, Xiang W, Huang M, Tang J, Lu Y, et al. Antifungal activity and mechanism of D -limonene against foodborne opportunistic pathogen Candida tropicalis. LWT-Food Sci Technol. 2022;159:113144.
dc.relation.references81. Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules. 2020;25:4125.
dc.relation.references82. Dias de Castro R, Souza PA de, Dornelas Bezerra L, Silva Ferreira G, Melo de Brito Costa E, Leite Cavalcanti A. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study. BMC Complement Altern Med. 2015;15 (1).
dc.relation.references83. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402–14.
dc.relation.references84. Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. Mycol Med. 2020;30(1):100911.
dc.relation.references85. Oliveira Lima I, de Oliveira Pereira F, Araújo de Oliveira W, de Oliveira Lima E, Albuquerque Menezes E. Antifungal activity and mode of action of carvacrol against Candida albicans strains. J. Essent Oil Res. 2013;25 (2):37–41.
dc.relation.references86. Vitali A, Stringaro A, Colone M, Muntiu A, Angiolella L. Antifungal carvacrol loaded chitosan nanoparticles. Antibiotics. 2022;11(1).
dc.relation.references87. Chatrath A, Kumar M, Prasad R. Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral. Protoplasma. 2022;259(2):263–75.
dc.relation.references88. Silva D, Diniz-neto H, Silva-neta M, Silva S, Andrade-j F, Leite M, et al. (R)-(+)-B-Citronellol and (S)-(-)-B-Citronellol in Combination with Amphotericin B against Candida Spp. Int J Mol Sci. 2020;21:1785.
dc.relation.references89. Kim DJ, Lee MW, Choi JS, Lee SG, Park JY, Kim SW. Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species. PLoS One. 2017;12(2):1–11.
dc.relation.references90. Lemos ASO, Florêncio JR, Pinto NCC, Campos LM, Silva TP, Grazul RM, et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front Microbiol. 2020;11(July):1–11.
dc.relation.references91. Kumar R, Saha A, Saha D. A new antifungal coumarin from Clausena excavata. Fitoterapia. 2012;83(1):230–3.
dc.relation.references92. Ramírez RD, Páez MS, Angulo AA. Obtención de isoespintanol por hidrodestilación y cristalización a partir del extracto bencínico de Oxandra xylopioides. Inf Tecnol. 2015;26(6):13–8.
dc.relation.references93. Hussein HA, Maulidiani M, Abdullah MA. Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon. 2020;6(10):e05263.
dc.relation.references94. Motlhatlego K, Ali M, Leonard C, Eloff J, McGaw L. Inhibitory effect of Newtonia extracts and myricetin-3-o-rhamnoside (myricitrin) on bacterial biofilm formation. BMC Complement Med Ther. 2020;20:358.
dc.relation.references95. Negrette-Guzmán M, Huerta-Yepez S, Vega MI, León-Contreras JC, Hernández-Pando R, Medina-Campos ON, et al. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem Toxicol. 2017;100:90–102.
dc.relation.references96. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol. 1983;65:55–63.
dc.relation.references97. Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016(4):343–6. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition. Vol. 32. 2012.
dc.relation.references98. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition. Vol. 32. 2012.
dc.relation.references99. Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008;118(3):418–28.
dc.relation.references100. Cantón E, Martín E, Espinel-Ingroff A. Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Rev Iberoam Micol. 2007
dc.relation.references101. Rodriguez-tudela JL. Method for Determination of Minimal Inhibitory Concentration ( MIC ) by Broth Dilution of Fermentative Yeasts. Clin Microbiol Infect. 2003;(August).
dc.relation.references102. Maldonado J, Casaña R, Martínez I, San Martín E. La espectroscopia UV-Vis en la evaluación de la viabilidad de células de cáncer de mama. Latin-American J Phys Educ. 2018;12(2):1–7.
dc.relation.references103. Zhang X, Zhang T, Guo S, Zhang Y, Sheng R, Sun R, et al. In vitro antifungal activity and mechanism of Ag3PW12O40 composites against Candida species. Molecules. 2020;25:6012.
dc.relation.references104. Zhao F, Dong HH, Wang YH, Wang TY, Yan ZH, Yan F, et al. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. Medchemcomm. 2017;8(5):1093–102.
dc.relation.references105. Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1–2):167–90.
dc.relation.references106. Tao N, Ouyang Q, Jia L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control. 2014;41:116–21.
dc.relation.references107. Chaves-lopez C, Nguyen HN, Oliveira RC, Nadres ET, Paparella A, Rodrigues DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. Nanoscale. 2018;10:20702–16.
dc.relation.references108. Song J, Kanazawa I, Sun K, Murata T, Yokoyama K. Color coding the cell death status of plant suspension cells. Biotechniques. 1999;26(6):1060–2.
dc.relation.references109. Da Silva CR, Campos R de S, Neto JB de A, Sampaio LS, do Nascimento F, do AV Sa LG, et al. Antifungal activity of B-lapachone against azole-resistant Candida spp. and its aspects upon biofilm formation. Future Microbiol. 2020;15:1543–54.
dc.relation.references110. Neto JBA, Da Silva CR, Neta MAS, Campos RS, Siebra JT, Silva RAC, et al. Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: A special emphasis on mechanisms of action on Candida tropicalis. PLoS One. 2014;9(5):1–10.
dc.relation.references111. Chang CK, Kao MC, Lan CY. Antimicrobial activity of the peptide lfcinb15 against Candida albicans. J. Fungi. 2021;7(7).
dc.relation.references112. Marika GJ, Saez GT, O’Connor J-E. A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry. 1994;15(4):335–42.
dc.relation.references113. Johnson LV V., Walsh MLL, Bockus BJ, Chen LB. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981;88(3):526–35.
dc.relation.references114. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta - Bioenerg. 2003;1606(1–3):137–46.
dc.relation.references115. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.
dc.relation.references116. Costa de Oliveira S, Silva A, Miranda I, Salvador A, Azevedo M, Munro C, et al. Determination of chitin content in fungal cell wall: an alternative flow cytometric method. Cytom part A. 2013;83A:324–8.
dc.relation.references117. Hoch HC, Galvani CD, Szarowski DH, Turner JN. Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia. 2005;97(3):580–8.
dc.relation.references118. Monheit JG, Brown G, Kott MM, Schmidt WA, Moore DG. Calcofluor white detection of fungi in cytopathology. Am J Clin Pathol. 1986;85(2):222–5.
dc.relation.references119. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995;57(1):289–300.
dc.relation.references120. Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9.
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsOxandra xylopioides
dc.subject.keywordsIsoespintanol
dc.subject.keywordsAntifungal potential
dc.subject.proposalOxandra xylopioides
dc.subject.proposalIsoespintanol
dc.subject.proposalPotencial antifúngico
dc.titleEvaluación del potencial antifúngico del isoespintanol extraído de Oxandra xylopioides Diels (Annonaceae), contra aislamientos intrahospitalarios de Candida tropicalisspa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS DOCTORAL ORFA CONTRERAS.pdf
Tamaño:
19.92 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización Repositorio.pdf
Tamaño:
697.9 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones