Publicación: Caracterización de marcos en espacios 2-Hilbert
dc.audience | ||
dc.contributor.advisor | Ferrer Villar, Osmin | spa |
dc.contributor.author | Negrete Petro, Pedro Manuel | |
dc.date.accessioned | 2022-09-05T00:25:56Z | |
dc.date.available | 2023-04-08 | |
dc.date.available | 2022-09-05T00:25:56Z | |
dc.date.issued | 2022-09-03 | |
dc.description.abstract | En este trabajo se da una caracterización de dos clases especiales de marcos, estos son los marcos duales y marcos de Parseval en espacios 2-Hilbert, además se prúeban algunas propiedades que se transfieren de los marcos en espacios de Hilbert a los marcos en espacios 2-Hilbert. Se dá una condición necesaria y suficiente para que una sucesión contable de vectores de un espacio 2-Hilbert sea un 2-marco de parseval. Por último se mostrará cómo construir 2-marcos y 2-marcos de parseval a partir de algunos operadores acotados. | spa |
dc.description.abstract | In this research work we will give a characterization of two special classes of frames such as dual frames and Parseval frames in 2-Hilbert spaces, furthermore we will show some properties that transfer from frames in Hilbert spaces to frames in 2-Hilbert spaces. In addition we will give a necessary and sufficient condition for a countable sequence of vectors of a 2-Hilbert space to be a 2-frame of Parseval. Finally it will be shown how to construct 2-frames and 2-Parseval frames from some bounded operators. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Matemáticas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Declaración de Autoría................................................................... V | spa |
dc.description.tableofcontents | Resumen.............................................................................. IX | spa |
dc.description.tableofcontents | Agradecimientos....................................................................XIII | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN.............................................................. 1 | spa |
dc.description.tableofcontents | 2. MARCOS EN ESPACIOS DE HILBERT............... 3 | spa |
dc.description.tableofcontents | 2.1. PRELIMINARES . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 | spa |
dc.description.tableofcontents | 2.2. ESPACIOS DE HILBERT . . . . . . . . . . . . . . . . . . . 6 | spa |
dc.description.tableofcontents | 2.3. OPERADORES EN ESPACIOS DE HILBERT . . 12 | spa |
dc.description.tableofcontents | 2.4. MARCOS EN ESPACIOS DE HILBERT. . . . . 17 | spa |
dc.description.tableofcontents | 3. MARCOS EN ESPACIOS 2-HILBERT................. 27 | spa |
dc.description.tableofcontents | 3.1. ESPACIOS 2-NORMADOS . . . . . . . . . . . . . . . . . 27 | spa |
dc.description.tableofcontents | 3.2. ESPACIOS CON PRODUCTO 2-INTERNO . .32 | spa |
dc.description.tableofcontents | 3.3. ESPACIOS 2-HILBERT . . . . . . . . . . . . . . . . . . . . 42 | spa |
dc.description.tableofcontents | 3.4. MARCOS EN ESPACIOS 2-HILBERT . . . . . . .45 | spa |
dc.description.tableofcontents | 4. CARACTERIZACIÓN DE MARCOS EN ESPACIOS 2-HILBERT ....51 | spa |
dc.description.tableofcontents | 4.1. CARACTERIZACIÓN DE MARCOS DUALES EN ESPACIOS 2-HILBERT . . 54 | spa |
dc.description.tableofcontents | 4.2. CARACTERIZACIÓN DE 2-MARCOS DE PARSEVAL Y SUS OPERADORES.....59 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES............................................................. 71 | spa |
dc.description.tableofcontents | Bibliografía............................................................................... 73 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6560 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Matemáticas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Frames | spa |
dc.subject.keywords | 2-Hilbert spaces | spa |
dc.subject.keywords | 2-Frame. | spa |
dc.subject.keywords | Dual 2-frames | spa |
dc.subject.keywords | Parseval 2-frames | spa |
dc.subject.proposal | Marcos | spa |
dc.subject.proposal | Espacios 2-Hilbert | spa |
dc.subject.proposal | 2-Marcos. | spa |
dc.subject.proposal | 2-Marcos duales. | spa |
dc.subject.proposal | 2-Marcos de Parseval. | spa |
dc.title | Caracterización de marcos en espacios 2-Hilbert | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Ali, S Twareque, Jean-Pierre Antoine y Jean-Pierre Gazeau (1993). Continuous frames in Hilbert space. Vol. 222. 1. Annals of Physics, págs. 1-37. | spa |
dcterms.references | Amiri, Z y col. (2013). Bessel subfusion sequences and subfusion frames. Iranian Journal of Mathematical Sciences e Informatic (IJMSI). | spa |
dcterms.references | Amyari, Maryam y Ghadir Sadeghi (2010). Isometrics in non-Archimedean strictly convex and strictly 2-convex 2-normed spaces. Springer, págs. 13-22. | spa |
dcterms.references | Arefijamaal, Ali Akbar y Ghadir Sadeghi (2013). Frames in 2-inner product spaces. Iranian Journal of Mathematical Sciences e Informatic (IJMSI). | spa |
dcterms.references | Askari Hemmat, A, M Dehghan y M Radjabalipour (2001). Generalized frames and their redundancy. Vol. 129. 4. Proceedings of the American Mathematical Society, págs. 1143-1147. | spa |
dcterms.references | Balan, Radu y col. (2007). A new identity for Parseval frames. Vol. 135. 4. Proceedings of the American Mathematical Society, págs. 1007-1015. | spa |
dcterms.references | Casazza, Peter G, Deguang Han y David R Larson (1999). Frames for Banach spaces. Vol. 247. Contemporary Mathematics, págs. 149-182. | spa |
dcterms.references | Casazza, Peter G y Gitta Kutyniok (2004). Frames of subspaces. Vol. 345. Contemporary Mathematics, págs. 87-114. | spa |
dcterms.references | Cho Yoel, J,MMatic y J Pecaric (2001). On Grams determinant in 2-inner product spaces. Vol. 38. 6. Journal of the Korean Mathematical Society, págs. 1125-1156. | spa |
dcterms.references | Cho, Yeol Je (2001). Theory of 2-inner product spaces. Nova Science Pub Incorporated. | spa |
dcterms.references | Christensen, Ole y Diana T Stoeva (2003). p-frames in separable Banach spaces. Vol. 18. 2. Advances in Computational Mathematics, págs. 117-126. | spa |
dcterms.references | Christensen, Ole y col. (2003). An introduction to frames and Riesz bases. Vol. 7. Springer. | spa |
dcterms.references | Daubechies, Ingrid, Alex Grossmann e Yves Meyer (1986). Painless nonorthogonal expansions. Vol. 27. 5. Journal of Mathematical Physics, págs. 1271-1283. | spa |
dcterms.references | Duffin, Richard J y Albert C Schaeffer (1952). A class of nonharmonic Fourier series. Vol. 72. 2. Transactions of the American Mathematical Society, págs. 341-366. | spa |
dcterms.references | Escobar, German, Kevin Esmeral y Osmin Ferrer (2014). Construction, Extension and Coupling of Frames on Finite Dimensional Pontryagin Space. arXiv preprint arXiv:1408.6584. | spa |
dcterms.references | Esmeral, Kevin, Osmin Ferrer y Boris Lora (2016). Dual and similar frames in Krein spaces. Vol. 10. Int. J. Math. Anal, págs. 932-952. | spa |
dcterms.references | Esmeral, Kevin, Osmin Ferrer y Elmar Wagner (2015). Frames in Krein space arising from a non-regular w-metric. Vol. 9. 1. Banach Journal of Mathematical Analysis. | spa |
dcterms.references | Ferrer, Osmin, Arley Sierra y José Sanabria (2021). Soft Frames in Soft Hilbert Spaces. Vol. 9. 18. Mathematics (MDPI), pág. 2249. | spa |
dcterms.references | Freese, RW y col. (2005). Some companions of Grüss inequality in 2-inner product spaces and applications for determinantal integral inequalities. Vol. 20. 3. Communications of the Korean Mathematical Society, págs. 487-503. | spa |
dcterms.references | Gabardo, Jean-Pierre y Deguang Han (2003). Frames associated with measurable spaces. Vol. 18. 2. Advances in Computational Mathematics, págs. 127-147. | spa |
dcterms.references | Gähler, Siegfried (1964). Lineare 2-normierte Räume. Vol. 28. 1-2. Mathematische nachrichten, págs. 1-43. | spa |
dcterms.references | Gröchenig, Karlheinz (1991). Describing functions: atomic decompositions versus frames. Vol. 112. 1. Monatshefte für Mathematik, págs. 1-42. | spa |
dcterms.references | Heuser, H (s.f.). Functional Analysis.(1982). Marcel Dekker, New York. | spa |
dcterms.references | Lewandowska, Zofia (2004). Bounded 2-linear operators on 2-normed sets. Vol. 39. 2. Glasnik matematiˇcki, págs. 301-312. | spa |
dcterms.references | Li, Shidong e Hidemitsu Ogawa (2004). Pseudoframes for subspaces with applications. Vol. 10. 4. Journal of Fourier Analysis y Applications, págs. 409-431. | spa |
dcterms.references | Lindenstrauss, Joram y Lior Tzafriri (1977). Classical Banach spaces I. Vol. 97. Springer Science & Business Media. | spa |
dcterms.references | Rudin, Walter (1986). Real and Complex Analysis. McGraw-Hill. | spa |
dcterms.references | Singer, Ivan (1970). Bases in Banach spaces I. Springer. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: