Publicación: Análisis termodinámico de la cogeneración de un motor de combustión interna acoplado a sistemas de refrigeración por absorción
dc.audience | ||
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | spa |
dc.contributor.advisor | Rhenals Julio, Jesús David | spa |
dc.contributor.author | Vega González, Taylor De Jesús De La | |
dc.date.accessioned | 2022-11-04T15:44:45Z | |
dc.date.available | 2022-11-04T15:44:45Z | |
dc.date.issued | 2022 | |
dc.description.abstract | El objetivo de este trabajo es realizar un análisis energético y exergético de un sistema de cogeneración compuesto por un motor de combustión interna y un sistema de refrigeración por absorción mediante el software DSWIM. Se realizó un modelo termodinámico para ajustar las propiedades. Con el uso de los balances de masa y energía se calcularon parámetros de eficiencia basados en la Primera Ley de la Termodinámica. Con el uso del balance exergético se calcularon las eficiencias exergéticas del MC, SRA y del sistema total. Se obtuvo una potencia en el MCI de 1452kW con una eficiencia térmica de 31.68%. Se obtuvo una eficiencia global del sistema de 35.01%, donde se observa el crecimiento gracias al sistema de refrigeración el cual es de un 9.51%. La mayor irreversibilidad ocurre en la combustión, que participa en la media con el 75.42% de la total. La eficiencia exergética en el MCI fue de 31.38%. El calor extraído del evaporador fue de 153.06 kW, con un COP obtenido de 0.13. la eficiencia exergética del SRA fue de 31.62%, mientras que la eficiencia exergética global fue de 36.90%. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN 1 | spa |
dc.description.tableofcontents | ABSTRACT 2 | spa |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación 3 | spa |
dc.description.tableofcontents | 1.1. Introducción. 3 | spa |
dc.description.tableofcontents | 1.2. Objetivos. 6 | spa |
dc.description.tableofcontents | 1.2.1. Objetivo general. 6 | spa |
dc.description.tableofcontents | 1.2.2. Objetivos específicos. 6 | spa |
dc.description.tableofcontents | 1.3. Estructura de la tesis. 7 | spa |
dc.description.tableofcontents | 1.4. Revisión de literatura. 8 | spa |
dc.description.tableofcontents | 1.4.1. La biomasa. 8 | spa |
dc.description.tableofcontents | 1.4.2. Biodigestión y Biogás. 9 | spa |
dc.description.tableofcontents | 1.4.3. Cogeneración 11 | spa |
dc.description.tableofcontents | 1.4.4. Sistemas de Refrigeración por Absorción. 13 | spa |
dc.description.tableofcontents | 1.4.5. Fluido de Trabajo para la refrigeración por absorción. 15 | spa |
dc.description.tableofcontents | 1.4.6. Coeficiente de Desempeño. 16 | spa |
dc.description.tableofcontents | 1.5. Estado del arte 17 | spa |
dc.description.tableofcontents | 2. Capítulo II. Caracterización de los parámetros operativos 23 | spa |
dc.description.tableofcontents | 2.1. Introducción. 23 | spa |
dc.description.tableofcontents | 2.2. Materiales y métodos 25 | spa |
dc.description.tableofcontents | 2.2.1. Caracterización del biogás. 25 | spa |
dc.description.tableofcontents | 2.2.2. Parámetros operativos del motor a combustión interna. 25 | spa |
dc.description.tableofcontents | 2.2.3. Parámetros del sistema de Refrigeración 25 | spa |
dc.description.tableofcontents | 2.3. Resultados 26 | spa |
dc.description.tableofcontents | 2.3.1. Caracterización del combustible. 26 | spa |
dc.description.tableofcontents | 2.3.2. Parámetros operativos del motor a combustión interna 27 | spa |
dc.description.tableofcontents | 2.3.3. Parámetros del sistema de refrigeración. 28 | spa |
dc.description.tableofcontents | 2.4. Conclusiones. 28 | spa |
dc.description.tableofcontents | 3. Capítulo III: Modelo de Cogeneración usando herramientas computacionales (DWSIM®). 30 | spa |
dc.description.tableofcontents | 3.1. Introducción 30 | spa |
dc.description.tableofcontents | 3.2. Materiales y métodos. 32 | spa |
dc.description.tableofcontents | 3.2.1. Simulación del proceso cogeneración mediante el uso de herramientas computacionales (DWSIM®). 32 | spa |
dc.description.tableofcontents | 3.2.1.1. Selección del modelo de ecuaciones de estado. 32 | spa |
dc.description.tableofcontents | 3.2.2. Simulación del Motor de Combustión Interna. 33 | spa |
dc.description.tableofcontents | 3.2.3. Simulación del Modelo de Refrigeración. 36 | spa |
dc.description.tableofcontents | 3.2.4. Análisis energético del sistema de cogeneración. 38 | spa |
dc.description.tableofcontents | 3.3. Resultados. 39 | spa |
dc.description.tableofcontents | 3.3.1. Simulación del modelo de combustión interna 39 | spa |
dc.description.tableofcontents | 3.3.2. Simulación del modelo de refrigeración 42 | spa |
dc.description.tableofcontents | 3.4. Conclusiones 45 | spa |
dc.description.tableofcontents | 4. Capítulo IV. Análisis Exergético del sistema de cogeneración. 46 | spa |
dc.description.tableofcontents | 4.1. Introducción. 46 | spa |
dc.description.tableofcontents | 4.2. Materiales y métodos. 48 | spa |
dc.description.tableofcontents | 4.2.1 Balance de exergía: cálculo de la exergía destruida y la eficiencia exergética. 48 | spa |
dc.description.tableofcontents | 4.2.2.1 Calculo de la exergía destruida y eficiencia exergética. 50 | spa |
dc.description.tableofcontents | 4.3. Resultados. 52 | spa |
dc.description.tableofcontents | 4.3.1. Exergía destruida en el MCI y SRA. 52 | spa |
dc.description.tableofcontents | 4.3.2. Eficiencia Exergética del MCI y SRA. 54 | spa |
dc.description.tableofcontents | 5. Conclusiones Generales y futuros trabajos 57 | spa |
dc.description.tableofcontents | 5.1. Objetivo específico I: Caracterización de los parámetros del MCI y SRA. 57 | spa |
dc.description.tableofcontents | 5.2. Objetivo específico II: Modelo de Cogeneración usando herramientas computacionales (DWSIM®). 57 | spa |
dc.description.tableofcontents | 5.3. Objetivo específico III: Análisis Exergético del sistema de cogeneración 58 | spa |
dc.description.tableofcontents | 5.4. Futuros trabajos. 58 | spa |
dc.description.tableofcontents | 6. Bibliografía. 59 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6756 | |
dc.language.iso | spa | spa |
dc.publisher | UNIVERSIDAD DE CÓRDOBA | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | DWSIM | spa |
dc.subject.keywords | Cogeneration | spa |
dc.subject.keywords | COP | spa |
dc.subject.keywords | Irreversibility | spa |
dc.subject.keywords | Exergy Efficiency | spa |
dc.subject.proposal | DWSIM | spa |
dc.subject.proposal | Cogeneración | spa |
dc.subject.proposal | COP | spa |
dc.subject.proposal | Irreversibilidad | spa |
dc.subject.proposal | Eficiencia Exergética | spa |
dc.title | Análisis termodinámico de la cogeneración de un motor de combustión interna acoplado a sistemas de refrigeración por absorción | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abusaibaa, G.Y., Al-Aasam, A.B., Alwaeli, A.H.A., Al-Fatlawi, A.W.A., bin Sopian, K., 2020. Performance analysis of solar absorption cooling systems in Iraq. International Journal of Renewable Energy Research 10. https://doi.org/10.20508/ijrer.v10i1.10472.g7857 | spa |
dcterms.references | Adjibade, M.I.S., Thiam, A., Awanto, C., Azilinon, D., 2017. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas. Case Studies in Thermal Engineering 10. https://doi.org/10.1016/j.csite.2017.07.004 | spa |
dcterms.references | Afonso, C.F.A., Braga, L.M.D.P., 2000. Exergetic analysis of a natural gas cogeneration plant in a sugar refinery in Oporto-Portugal, in: ECOS 2000-International Conference on Efficiency, Cost Optimization, Simulation and Environmental Aspect of Energy and Process System. | spa |
dcterms.references | Alobaid, M., Hughes, B., Calautit, J.K., O’Connor, D., Heyes, A., 2017. A review of solar driven absorption cooling with photovoltaic thermal systems. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.03.081 | spa |
dcterms.references | Al-Sulaiman, F.A., Dincer, I., Hamdullahpur, F., 2010. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J Power Sources 195. https://doi.org/10.1016/j.jpowsour.2009.10.075 | spa |
dcterms.references | Amaris, C., Vallès, M., Bourouis, M., 2018. Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.09.071 | spa |
dcterms.references | Arbabi, P., Abbassi, A., Mansoori, Z., Seyfi, M., 2017. Joint numerical-technical analysis and economical evaluation of applying small internal combustion engines in combined heat and power (CHP). Appl Therm Eng 113. https://doi.org/10.1016/j.applthermaleng.2016.11.064 | spa |
dcterms.references | Balakheli, M.M., Chahartaghi, M., Sheykhi, M., Hashemian, S.M., Rafiee, N., 2020. Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energy Convers Manag 203, 112253 | spa |
dcterms.references | Bocanegra Galeano, L., Mojica Castellanos, L., 2019. Estudio exergético-ambiental del desempeño de un sistema de generación con base en un gasificador de biomasa integrado a un motor de combustión interna. | spa |
dcterms.references | Boudéhenn, F., Demasles, H., Wyttenbach, J., Jobard, X., Chèze, D., Papillon, P., 2012. Development of a 5 kW cooling capacity ammonia-water absorption chiller for solar cooling applications, in: Energy Procedia. https://doi.org/10.1016/j.egypro.2012.11.006 | spa |
dcterms.references | Calbry-Muzyka, A., Madi, H., Rüsch-Pfund, F., Gandiglio, M., Biollaz, S., 2022. Biogas composition from agricultural sources and organic fraction of municipal solid waste. Renew Energy 181. https://doi.org/10.1016/j.renene.2021.09.100 | spa |
dcterms.references | Calise, F., Libertini, L., Vicidomini, M., 2017. Design and optimization of a novel solar cooling system for combined cycle power plants. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.157 | spa |
dcterms.references | Cengel, Y.A., Boles, M.A., 2015. Thermodynamics: an Engineering Approach 8th Edition, McGraw-Hill. | spa |
dcterms.references | Chandekar, A.C., Debnath, B.K., 2018. Computational investigation of air-biogas mixing device for different biogas substitutions and engine load variations. Renew Energy. https://doi.org/10.1016/j.renene.2018.05.003 | spa |
dcterms.references | Chen, B., Chen, G.Q., Yang, Z.F., 2006. Exergy-based resource accounting for China. Ecol Modell 196, 313–328. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2006.02.019 | spa |
dcterms.references | Chen, Y., Han, W., Jin, H., 2017. Investigation of an ammonia-water combined power and cooling system driven by the jacket water and exhaust gas heat of an internal combustion engine. international journal of refrigeration 82, 174–188. | spa |
dcterms.references | Chuayboon, S., Abanades, S., 2020. An overview of solar decarbonization processes, reacting oxide materials, and thermochemical reactors for hydrogen and syngas production. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.04.098 | spa |
dcterms.references | Confederação Nacional das Indústrias, 2021. Matriz Energética: Cenários, Oportunidades e Desafios [WWW Document]. URL http://www.cni.org.br/portal/data/ files/matriz energética | spa |
dcterms.references | Dai, J., Chen, B., 2010. Extended exergy-based fossil fuels resource accounting in spatial distribution in 2007, China. Procedia Environ Sci 2, 1799–1807. https://doi.org/https://doi.org/10.1016/j.proenv.2010.10.191 | spa |
dcterms.references | Dalpaz, R., Konrad, O., da Silva Cyrne, C.C., Barzotto, H.P., Hasan, C., Guerini Filho, M., 2020. Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments 40, 100774. | spa |
dcterms.references | Dincer, I., 2002. The role of exergy in energy policy making. Energy Policy 30, 137–149. https://doi.org/https://doi.org/10.1016/S0301-4215(01)00079-9 | spa |
dcterms.references | DNP Colombia, 2021. Pérdida y Desperdicio de alimentos en Colombia: Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. Departamento Nacional de Planeación | spa |
dcterms.references | Ekwonu, M.C., Perry, S., Oyedoh, E.A., 2013. Modelling and simulation of gas engines using aspen HYSYS. Journal of Engineering Science and Technology Review 6. https://doi.org/10.25103/jestr.063.01 | spa |
dcterms.references | Gómez Mosquera, I.D., 2018. Análisis termodinámico de un ciclo de refrigeración por absorción de simple efecto combinado con un tubo vórtex. | spa |
dcterms.references | Goyal, A., Staedter, M.A., Hoysall, D.C., Ponkala, M.J., Garimella, S., 2017. Experimental evaluation of a small-capacity, waste-heat driven ammonia-water absorption chiller. International Journal of Refrigeration 79. https://doi.org/10.1016/j.ijrefrig.2017.04.006 | spa |
dcterms.references | Hassan, A.A., Elwardany, A.E., Ookawara, S., Ahmed, M., El-Sharkawy, I.I., 2020. Integrated adsorption-based multigeneration systems: A critical review and future trends. International Journal of Refrigeration 116, 129–145. | spa |
dcterms.references | Hijazi, O., Munro, S., Zerhusen, B., Effenberger, M., 2016. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2015.10.013 | spa |
dcterms.references | Hosseini, M., Dincer, I., Rosen, M.A., 2012. Steam and air fed biomass gasification: Comparisons based on energy and exergy. Int J Hydrogen Energy 37, 16446–16452. https://doi.org/10.1016/j.ijhydene.2012.02.115 | spa |
dcterms.references | International Energy Agency (IEA), 2020. Statistics report: CO2 Emissions from Fuel Combustion. CO2 Emissions from fuel combustion dataset. | spa |
dcterms.references | Ishaq, H., Dincer, I., Naterer, G.F., 2018. Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy 159, 1206– 1217. https://doi.org/https://doi.org/10.1016/j.energy.2018.06.213 | spa |
dcterms.references | Jiménez-García, J.C., Rivera, W., 2019. Parametric analysis on the experimental performance of an ammonia/water absorption cooling system built with plate heat exchangers. Appl Therm Eng 148. https://doi.org/10.1016/j.applthermaleng.2018.11.040 | spa |
dcterms.references | Julio, J.D.R., Gómez, A.E.Á., Guarín, A.R.M., Padilla, E.R.D., Gonzalez, T.D. la V., 2021. Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17. https://doi.org/http://doi.org/10.17981/ingecuc.17.2.2021.03 | spa |
dcterms.references | Karellas, S., Braimakis, K., 2016. Energy-exergy analysis and economic investigation of a cogeneration and trigeneration ORC-VCC hybrid system utilizing biomass fuel and solar power. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2015.06.080 | spa |
dcterms.references | Lazzarin, R.M., Noro, M., 2018. Past, present, future of solar cooling: Technical and economical considerations. Solar Energy. https://doi.org/10.1016/j.solener.2017.12.055 | spa |
dcterms.references | León Mejía, J.M., Novoa Posada, A.L., 2018. Evaluación del rendimiento energético del biogás de estiércol bovino empleando la tecnología mci en ciclo otto y diésel para la generación de potencia en el departamento de Córdoba. | spa |
dcterms.references | Lindkvist, E., Karlsson, M., 2018. Biogas production plants; existing classifications and proposed categories. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.10.317 | spa |
dcterms.references | Lu, Y., Guo, L., Zhang, X., Yan, Q., 2007. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal 131, 233–244. https://doi.org/https://doi.org/10.1016/j.cej.2006.11.016 | spa |
dcterms.references | Mansouri, R., Boukholda, I., Bourouis, M., Bellagi, A., 2015. Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform. Energy 93, 2374–2383. https://doi.org/https://doi.org/10.1016/j.energy.2015.10.081 | spa |
dcterms.references | MATELLI, J.A., RÜCKER, C.P.R., BAZZO, E., 2002. A Cogeneration System Applied to the UFSC University Hospital: An Exergetic, Economic and Environmental Analysis, in: INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMISATION, SIMULATION AND ENVIRONMENTAL ASPECTS OF ENERGY AND PROCESS SYSTEMS. pp. 941–948. | spa |
dcterms.references | Mauky, E., Jacobi, H.F., Liebetrau, J., Nelles, M., 2015. Flexible biogas production for demand driven energy supply - Feeding strategies and types of substrates. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.08.123 | spa |
dcterms.references | Mendes, L.F.R., Sthel, M.S., 2018. Analysis of the hydrological cycle and its impacts on the sustainability of the electric matrix in the state of Rio de Janeiro/Brazil. Energy Strategy Reviews. https://doi.org/10.1016/j.esr.2018.08.015 | spa |
dcterms.references | Mendoza Fandiño, J.M., González Doria, Y.E., Doria Oviedo, M., Pedroza Urueta, Á., Ruiz Garcés, A.F., 2020. Manufacture of densified solid biofuels (Briquettes) made of acacia sawdust and cattle manure in the region of Cordoba. Ingeniare. https://doi.org/10.4067/S0718- 33052020000300448 | spa |
dcterms.references | Mondal, P., Ghosh, S., 2016. Externally fired biomass gasification-based combined cycle plant: Exergo-economic analysis. International Journal of Exergy. https://doi.org/10.1504/IJEX.2016.078097 | spa |
dcterms.references | Nikbakhti, R., Wang, X., Hussein, A.K., Iranmanesh, A., 2020. Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2020.01.036 | spa |
dcterms.references | Palacios-Bereche, R., Nebra, S.A., 2009. Thermodynamic modeling of a cogeneration system for a sugarcane mill using ASPEN PLUS, difficulties and challenges, in: 20th International Congress of Mechanical Engineering, Gramado, RS, Brazil. pp. 15–20. | spa |
dcterms.references | Palomino, R.G., Nebra, S.A., 2004. Energetic, exergetic and exergetic cost analysis for a cogeneration system integrated by an internal combustion engine, HRSG and an absorption refrigeration system, in: Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2004. https://doi.org/10.1115/esda2004-58052 | spa |
dcterms.references | Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M., Lee, J.W., 2017. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.182 | spa |
dcterms.references | Pehme, S., Veromann, E., 2015. Environmental consequences of anaerobic digestion of manure with different co-substrates to produce bioenergy: A review of life cycle assessments. Agronomy Research. | spa |
dcterms.references | Porpatham, E., Ramesh, A., Nagalingam, B., 2013. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2013.07.071 | spa |
dcterms.references | Rehl, T., Müller, J., 2011. Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2011.08.007 | spa |
dcterms.references | Rhenals Julio, J., 2021. Análisis energético y exergético de un sistema de refrigeración absorción difusión con diferentes fuentes de calor. Corporación Universidad de la Costa, BARRANQUILLA-COLOMBIA. | spa |
dcterms.references | Rosen, M., Tang, R., 2008. Improving steam power plant efficiency through exergy analysis: Effects of altering excess combustion air and stack-gas temperature. International Journal of Exergy - INT J EXERGY 5. https://doi.org/10.1504/IJEX.2008.016011 | spa |
dcterms.references | Sagastume Gutiérrez, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C., 2020. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod 269, 122317. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122317 | spa |
dcterms.references | Salomon, K.R., Silva Lora, E.E., 2009. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2009.03.001 | spa |
dcterms.references | Singh, A.K., Singh, R.G., Tiwari, G.N., 2020. Thermal and electrical performance evaluation of photo-voltaic thermal compound parabolic concentrator integrated fixed dome biogas plant. Renew Energy. https://doi.org/10.1016/j.renene.2020.03.028 | spa |
dcterms.references | Singh, D., Sharma, D., Soni, S.L., Sharma, S., Kumar Sharma, P., Jhalani, A., 2020. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. https://doi.org/10.1016/j.fuel.2019.116553 | spa |
dcterms.references | Soltani, M., Chahartaghi, M., Hashemian, S.M., Shojaei, A.F., 2020. Technical and economic evaluations of combined cooling, heating and power (CCHP) system with gas engine in commercial cold storages. Energy Convers Manag 214, 112877. | spa |
dcterms.references | Sui, J., Liu, H., Liu, F., Han, W., 2018. A distributed energy system with advanced utilization of internal combustion engine waste heat. CSEE Journal of Power and Energy Systems 4, 257– 262. | spa |
dcterms.references | Sun, X.Y., Chen, J.L., Zhao, Y., Li, X., Ge, T.S., Wang, C.H., Dai, Y.J., 2021. Experimental investigation on a dehumidification unit with heat recovery using desiccant coated heat exchanger in waste to energy system. Appl Therm Eng 185, 116342. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116342 | spa |
dcterms.references | Szarka, N., Scholwin, F., Trommler, M., Fabian Jacobi, H., Eichhorn, M., Ortwein, A., Thrän, D., 2013. A novel role for bioenergy: A flexible, demand-oriented power supply. Energy. https://doi.org/10.1016/j.energy.2012.12.053 | spa |
dcterms.references | Takalkar, G.D., Bhosale, R.R., Mali, N.A., Bhagwat, S.S., 2019. Thermodynamic analysis of EMISE–Water as a working pair for absorption refrigeration system. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.11.092 | spa |
dcterms.references | Tappen, S.J., Effenberger, M., 2017. Environmental impact and technical requirements of flexible energy supply from biogas-driven cogeneration units. J of Fund. of Renew. Energy and Appli 7 | spa |
dcterms.references | Wang, X., Lv, W., Guo, L., Zhai, M., Dong, P., Qi, G., 2016. Energy and exergy analysis of rice husk high-temperature pyrolysis. Int J Hydrogen Energy 41, 21121–21130. https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.09.155 | spa |
dcterms.references | Wang, X., Shu, G., Tian, H., Wang, R., Cai, J., 2020. Dynamic performance comparison of different cascade waste heat recovery systems for internal combustion engine in combined cooling, heating and power. Appl Energy 260, 114245. | spa |
dcterms.references | Yin, Y.L., Song, Z.P., Li, Y., Wang, R.Z., Zhai, X.Q., 2012. Experimental investigation of a mini type solar absorption cooling system under different cooling modes. Energy and Buildings 47. https://doi.org/10.1016/j.enbuild.2011.11.036 | spa |
dcterms.references | Zhang, J., Zhou, Y., Wang, R., Xu, J., Fang, F., 2014. Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems. Energy. https://doi.org/10.1016/j.energy.2014.01.068 | spa |
dcterms.references | Zhang, L., Li, F., Sun, B., Zhang, C., 2019. Integrated optimization design of combined cooling, heating, and power system coupled with solar and biomass energy. Energies (Basel) 12. https://doi.org/10.3390/en12040687 | spa |
dcterms.references | Zhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., Zhang, G., 2018. Thermodynamic and economic analysis of biomass partial gasification process. Appl Therm Eng 129, 410–420. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.10.069 | spa |
dcterms.references | Zhang, Y., Fan, X., Li, B.-X., Li, H., Xiaoyan, G., 2017a. Assessing the potential environmental impact of fuel using exergy-cases of wheat straw and coal. International Journal of Exergy 23, 85. https://doi.org/10.1504/IJEX.2017.084517 | spa |
dcterms.references | Zhang, Y., Zhao, Y., Li, B.-X., Xiaoyan, G., Jiang, B., 2017b. Energy and exergy characteristics of syngas produced from air gasification of walnut sawdust in an entrained flow reactor. International Journal of Exergy 23, 244. https://doi.org/10.1504/IJEX.2017.085772 | spa |
dcterms.references | Zheng, L., Furimsky, E., 2003. ASPEN simulation of cogeneration plants. Energy Convers Manag 44. https://doi.org/10.1016/S0196-8904(02)00190-5 | spa |
dcterms.references | Zhou, S., He, G., Li, Y., Liang, X., Pang, Q., Cai, D., 2021. Comprehensive experimental evaluation of an exhaust-heat-driven absorption refrigeration cycle system using NH3- NaSCN as working pair. International Journal of Refrigeration 126, 168–180 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: