Publicación:
Análisis termodinámico de la cogeneración de un motor de combustión interna acoplado a sistemas de refrigeración por absorción

dc.audience
dc.contributor.advisorMendoza Fandiño, Jorge Mariospa
dc.contributor.advisorRhenals Julio, Jesús Davidspa
dc.contributor.authorVega González, Taylor De Jesús De La
dc.date.accessioned2022-11-04T15:44:45Z
dc.date.available2022-11-04T15:44:45Z
dc.date.issued2022
dc.description.abstractEl objetivo de este trabajo es realizar un análisis energético y exergético de un sistema de cogeneración compuesto por un motor de combustión interna y un sistema de refrigeración por absorción mediante el software DSWIM. Se realizó un modelo termodinámico para ajustar las propiedades. Con el uso de los balances de masa y energía se calcularon parámetros de eficiencia basados en la Primera Ley de la Termodinámica. Con el uso del balance exergético se calcularon las eficiencias exergéticas del MC, SRA y del sistema total. Se obtuvo una potencia en el MCI de 1452kW con una eficiencia térmica de 31.68%. Se obtuvo una eficiencia global del sistema de 35.01%, donde se observa el crecimiento gracias al sistema de refrigeración el cual es de un 9.51%. La mayor irreversibilidad ocurre en la combustión, que participa en la media con el 75.42% de la total. La eficiencia exergética en el MCI fue de 31.38%. El calor extraído del evaporador fue de 153.06 kW, con un COP obtenido de 0.13. la eficiencia exergética del SRA fue de 31.62%, mientras que la eficiencia exergética global fue de 36.90%.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN 1spa
dc.description.tableofcontentsABSTRACT 2spa
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigación 3spa
dc.description.tableofcontents1.1. Introducción. 3spa
dc.description.tableofcontents1.2. Objetivos. 6spa
dc.description.tableofcontents1.2.1. Objetivo general. 6spa
dc.description.tableofcontents1.2.2. Objetivos específicos. 6spa
dc.description.tableofcontents1.3. Estructura de la tesis. 7spa
dc.description.tableofcontents1.4. Revisión de literatura. 8spa
dc.description.tableofcontents1.4.1. La biomasa. 8spa
dc.description.tableofcontents1.4.2. Biodigestión y Biogás. 9spa
dc.description.tableofcontents1.4.3. Cogeneración 11spa
dc.description.tableofcontents1.4.4. Sistemas de Refrigeración por Absorción. 13spa
dc.description.tableofcontents1.4.5. Fluido de Trabajo para la refrigeración por absorción. 15spa
dc.description.tableofcontents1.4.6. Coeficiente de Desempeño. 16spa
dc.description.tableofcontents1.5. Estado del arte 17spa
dc.description.tableofcontents2. Capítulo II. Caracterización de los parámetros operativos 23spa
dc.description.tableofcontents2.1. Introducción. 23spa
dc.description.tableofcontents2.2. Materiales y métodos 25spa
dc.description.tableofcontents2.2.1. Caracterización del biogás. 25spa
dc.description.tableofcontents2.2.2. Parámetros operativos del motor a combustión interna. 25spa
dc.description.tableofcontents2.2.3. Parámetros del sistema de Refrigeración 25spa
dc.description.tableofcontents2.3. Resultados 26spa
dc.description.tableofcontents2.3.1. Caracterización del combustible. 26spa
dc.description.tableofcontents2.3.2. Parámetros operativos del motor a combustión interna 27spa
dc.description.tableofcontents2.3.3. Parámetros del sistema de refrigeración. 28spa
dc.description.tableofcontents2.4. Conclusiones. 28spa
dc.description.tableofcontents3. Capítulo III: Modelo de Cogeneración usando herramientas computacionales (DWSIM®). 30spa
dc.description.tableofcontents3.1. Introducción 30spa
dc.description.tableofcontents3.2. Materiales y métodos. 32spa
dc.description.tableofcontents3.2.1. Simulación del proceso cogeneración mediante el uso de herramientas computacionales (DWSIM®). 32spa
dc.description.tableofcontents3.2.1.1. Selección del modelo de ecuaciones de estado. 32spa
dc.description.tableofcontents3.2.2. Simulación del Motor de Combustión Interna. 33spa
dc.description.tableofcontents3.2.3. Simulación del Modelo de Refrigeración. 36spa
dc.description.tableofcontents3.2.4. Análisis energético del sistema de cogeneración. 38spa
dc.description.tableofcontents3.3. Resultados. 39spa
dc.description.tableofcontents3.3.1. Simulación del modelo de combustión interna 39spa
dc.description.tableofcontents3.3.2. Simulación del modelo de refrigeración 42spa
dc.description.tableofcontents3.4. Conclusiones 45spa
dc.description.tableofcontents4. Capítulo IV. Análisis Exergético del sistema de cogeneración. 46spa
dc.description.tableofcontents4.1. Introducción. 46spa
dc.description.tableofcontents4.2. Materiales y métodos. 48spa
dc.description.tableofcontents4.2.1 Balance de exergía: cálculo de la exergía destruida y la eficiencia exergética. 48spa
dc.description.tableofcontents4.2.2.1 Calculo de la exergía destruida y eficiencia exergética. 50spa
dc.description.tableofcontents4.3. Resultados. 52spa
dc.description.tableofcontents4.3.1. Exergía destruida en el MCI y SRA. 52spa
dc.description.tableofcontents4.3.2. Eficiencia Exergética del MCI y SRA. 54spa
dc.description.tableofcontents5. Conclusiones Generales y futuros trabajos 57spa
dc.description.tableofcontents5.1. Objetivo específico I: Caracterización de los parámetros del MCI y SRA. 57spa
dc.description.tableofcontents5.2. Objetivo específico II: Modelo de Cogeneración usando herramientas computacionales (DWSIM®). 57spa
dc.description.tableofcontents5.3. Objetivo específico III: Análisis Exergético del sistema de cogeneración 58spa
dc.description.tableofcontents5.4. Futuros trabajos. 58spa
dc.description.tableofcontents6. Bibliografía. 59spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6756
dc.language.isospaspa
dc.publisherUNIVERSIDAD DE CÓRDOBAspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ingeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsDWSIMspa
dc.subject.keywordsCogenerationspa
dc.subject.keywordsCOPspa
dc.subject.keywordsIrreversibilityspa
dc.subject.keywordsExergy Efficiencyspa
dc.subject.proposalDWSIMspa
dc.subject.proposalCogeneraciónspa
dc.subject.proposalCOPspa
dc.subject.proposalIrreversibilidadspa
dc.subject.proposalEficiencia Exergéticaspa
dc.titleAnálisis termodinámico de la cogeneración de un motor de combustión interna acoplado a sistemas de refrigeración por absorciónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbusaibaa, G.Y., Al-Aasam, A.B., Alwaeli, A.H.A., Al-Fatlawi, A.W.A., bin Sopian, K., 2020. Performance analysis of solar absorption cooling systems in Iraq. International Journal of Renewable Energy Research 10. https://doi.org/10.20508/ijrer.v10i1.10472.g7857spa
dcterms.referencesAdjibade, M.I.S., Thiam, A., Awanto, C., Azilinon, D., 2017. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas. Case Studies in Thermal Engineering 10. https://doi.org/10.1016/j.csite.2017.07.004spa
dcterms.referencesAfonso, C.F.A., Braga, L.M.D.P., 2000. Exergetic analysis of a natural gas cogeneration plant in a sugar refinery in Oporto-Portugal, in: ECOS 2000-International Conference on Efficiency, Cost Optimization, Simulation and Environmental Aspect of Energy and Process System.spa
dcterms.referencesAlobaid, M., Hughes, B., Calautit, J.K., O’Connor, D., Heyes, A., 2017. A review of solar driven absorption cooling with photovoltaic thermal systems. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.03.081spa
dcterms.referencesAl-Sulaiman, F.A., Dincer, I., Hamdullahpur, F., 2010. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J Power Sources 195. https://doi.org/10.1016/j.jpowsour.2009.10.075spa
dcterms.referencesAmaris, C., Vallès, M., Bourouis, M., 2018. Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.09.071spa
dcterms.referencesArbabi, P., Abbassi, A., Mansoori, Z., Seyfi, M., 2017. Joint numerical-technical analysis and economical evaluation of applying small internal combustion engines in combined heat and power (CHP). Appl Therm Eng 113. https://doi.org/10.1016/j.applthermaleng.2016.11.064spa
dcterms.referencesBalakheli, M.M., Chahartaghi, M., Sheykhi, M., Hashemian, S.M., Rafiee, N., 2020. Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energy Convers Manag 203, 112253spa
dcterms.referencesBocanegra Galeano, L., Mojica Castellanos, L., 2019. Estudio exergético-ambiental del desempeño de un sistema de generación con base en un gasificador de biomasa integrado a un motor de combustión interna.spa
dcterms.referencesBoudéhenn, F., Demasles, H., Wyttenbach, J., Jobard, X., Chèze, D., Papillon, P., 2012. Development of a 5 kW cooling capacity ammonia-water absorption chiller for solar cooling applications, in: Energy Procedia. https://doi.org/10.1016/j.egypro.2012.11.006spa
dcterms.referencesCalbry-Muzyka, A., Madi, H., Rüsch-Pfund, F., Gandiglio, M., Biollaz, S., 2022. Biogas composition from agricultural sources and organic fraction of municipal solid waste. Renew Energy 181. https://doi.org/10.1016/j.renene.2021.09.100spa
dcterms.referencesCalise, F., Libertini, L., Vicidomini, M., 2017. Design and optimization of a novel solar cooling system for combined cycle power plants. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.157spa
dcterms.referencesCengel, Y.A., Boles, M.A., 2015. Thermodynamics: an Engineering Approach 8th Edition, McGraw-Hill.spa
dcterms.referencesChandekar, A.C., Debnath, B.K., 2018. Computational investigation of air-biogas mixing device for different biogas substitutions and engine load variations. Renew Energy. https://doi.org/10.1016/j.renene.2018.05.003spa
dcterms.referencesChen, B., Chen, G.Q., Yang, Z.F., 2006. Exergy-based resource accounting for China. Ecol Modell 196, 313–328. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2006.02.019spa
dcterms.referencesChen, Y., Han, W., Jin, H., 2017. Investigation of an ammonia-water combined power and cooling system driven by the jacket water and exhaust gas heat of an internal combustion engine. international journal of refrigeration 82, 174–188.spa
dcterms.referencesChuayboon, S., Abanades, S., 2020. An overview of solar decarbonization processes, reacting oxide materials, and thermochemical reactors for hydrogen and syngas production. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.04.098spa
dcterms.referencesConfederação Nacional das Indústrias, 2021. Matriz Energética: Cenários, Oportunidades e Desafios [WWW Document]. URL http://www.cni.org.br/portal/data/ files/matriz energéticaspa
dcterms.referencesDai, J., Chen, B., 2010. Extended exergy-based fossil fuels resource accounting in spatial distribution in 2007, China. Procedia Environ Sci 2, 1799–1807. https://doi.org/https://doi.org/10.1016/j.proenv.2010.10.191spa
dcterms.referencesDalpaz, R., Konrad, O., da Silva Cyrne, C.C., Barzotto, H.P., Hasan, C., Guerini Filho, M., 2020. Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments 40, 100774.spa
dcterms.referencesDincer, I., 2002. The role of exergy in energy policy making. Energy Policy 30, 137–149. https://doi.org/https://doi.org/10.1016/S0301-4215(01)00079-9spa
dcterms.referencesDNP Colombia, 2021. Pérdida y Desperdicio de alimentos en Colombia: Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. Departamento Nacional de Planeaciónspa
dcterms.referencesEkwonu, M.C., Perry, S., Oyedoh, E.A., 2013. Modelling and simulation of gas engines using aspen HYSYS. Journal of Engineering Science and Technology Review 6. https://doi.org/10.25103/jestr.063.01spa
dcterms.referencesGómez Mosquera, I.D., 2018. Análisis termodinámico de un ciclo de refrigeración por absorción de simple efecto combinado con un tubo vórtex.spa
dcterms.referencesGoyal, A., Staedter, M.A., Hoysall, D.C., Ponkala, M.J., Garimella, S., 2017. Experimental evaluation of a small-capacity, waste-heat driven ammonia-water absorption chiller. International Journal of Refrigeration 79. https://doi.org/10.1016/j.ijrefrig.2017.04.006spa
dcterms.referencesHassan, A.A., Elwardany, A.E., Ookawara, S., Ahmed, M., El-Sharkawy, I.I., 2020. Integrated adsorption-based multigeneration systems: A critical review and future trends. International Journal of Refrigeration 116, 129–145.spa
dcterms.referencesHijazi, O., Munro, S., Zerhusen, B., Effenberger, M., 2016. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2015.10.013spa
dcterms.referencesHosseini, M., Dincer, I., Rosen, M.A., 2012. Steam and air fed biomass gasification: Comparisons based on energy and exergy. Int J Hydrogen Energy 37, 16446–16452. https://doi.org/10.1016/j.ijhydene.2012.02.115spa
dcterms.referencesInternational Energy Agency (IEA), 2020. Statistics report: CO2 Emissions from Fuel Combustion. CO2 Emissions from fuel combustion dataset.spa
dcterms.referencesIshaq, H., Dincer, I., Naterer, G.F., 2018. Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy 159, 1206– 1217. https://doi.org/https://doi.org/10.1016/j.energy.2018.06.213spa
dcterms.referencesJiménez-García, J.C., Rivera, W., 2019. Parametric analysis on the experimental performance of an ammonia/water absorption cooling system built with plate heat exchangers. Appl Therm Eng 148. https://doi.org/10.1016/j.applthermaleng.2018.11.040spa
dcterms.referencesJulio, J.D.R., Gómez, A.E.Á., Guarín, A.R.M., Padilla, E.R.D., Gonzalez, T.D. la V., 2021. Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17. https://doi.org/http://doi.org/10.17981/ingecuc.17.2.2021.03spa
dcterms.referencesKarellas, S., Braimakis, K., 2016. Energy-exergy analysis and economic investigation of a cogeneration and trigeneration ORC-VCC hybrid system utilizing biomass fuel and solar power. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2015.06.080spa
dcterms.referencesLazzarin, R.M., Noro, M., 2018. Past, present, future of solar cooling: Technical and economical considerations. Solar Energy. https://doi.org/10.1016/j.solener.2017.12.055spa
dcterms.referencesLeón Mejía, J.M., Novoa Posada, A.L., 2018. Evaluación del rendimiento energético del biogás de estiércol bovino empleando la tecnología mci en ciclo otto y diésel para la generación de potencia en el departamento de Córdoba.spa
dcterms.referencesLindkvist, E., Karlsson, M., 2018. Biogas production plants; existing classifications and proposed categories. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.10.317spa
dcterms.referencesLu, Y., Guo, L., Zhang, X., Yan, Q., 2007. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal 131, 233–244. https://doi.org/https://doi.org/10.1016/j.cej.2006.11.016spa
dcterms.referencesMansouri, R., Boukholda, I., Bourouis, M., Bellagi, A., 2015. Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform. Energy 93, 2374–2383. https://doi.org/https://doi.org/10.1016/j.energy.2015.10.081spa
dcterms.referencesMATELLI, J.A., RÜCKER, C.P.R., BAZZO, E., 2002. A Cogeneration System Applied to the UFSC University Hospital: An Exergetic, Economic and Environmental Analysis, in: INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMISATION, SIMULATION AND ENVIRONMENTAL ASPECTS OF ENERGY AND PROCESS SYSTEMS. pp. 941–948.spa
dcterms.referencesMauky, E., Jacobi, H.F., Liebetrau, J., Nelles, M., 2015. Flexible biogas production for demand driven energy supply - Feeding strategies and types of substrates. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.08.123spa
dcterms.referencesMendes, L.F.R., Sthel, M.S., 2018. Analysis of the hydrological cycle and its impacts on the sustainability of the electric matrix in the state of Rio de Janeiro/Brazil. Energy Strategy Reviews. https://doi.org/10.1016/j.esr.2018.08.015spa
dcterms.referencesMendoza Fandiño, J.M., González Doria, Y.E., Doria Oviedo, M., Pedroza Urueta, Á., Ruiz Garcés, A.F., 2020. Manufacture of densified solid biofuels (Briquettes) made of acacia sawdust and cattle manure in the region of Cordoba. Ingeniare. https://doi.org/10.4067/S0718- 33052020000300448spa
dcterms.referencesMondal, P., Ghosh, S., 2016. Externally fired biomass gasification-based combined cycle plant: Exergo-economic analysis. International Journal of Exergy. https://doi.org/10.1504/IJEX.2016.078097spa
dcterms.referencesNikbakhti, R., Wang, X., Hussein, A.K., Iranmanesh, A., 2020. Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2020.01.036spa
dcterms.referencesPalacios-Bereche, R., Nebra, S.A., 2009. Thermodynamic modeling of a cogeneration system for a sugarcane mill using ASPEN PLUS, difficulties and challenges, in: 20th International Congress of Mechanical Engineering, Gramado, RS, Brazil. pp. 15–20.spa
dcterms.referencesPalomino, R.G., Nebra, S.A., 2004. Energetic, exergetic and exergetic cost analysis for a cogeneration system integrated by an internal combustion engine, HRSG and an absorption refrigeration system, in: Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2004. https://doi.org/10.1115/esda2004-58052spa
dcterms.referencesPaudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M., Lee, J.W., 2017. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.182spa
dcterms.referencesPehme, S., Veromann, E., 2015. Environmental consequences of anaerobic digestion of manure with different co-substrates to produce bioenergy: A review of life cycle assessments. Agronomy Research.spa
dcterms.referencesPorpatham, E., Ramesh, A., Nagalingam, B., 2013. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2013.07.071spa
dcterms.referencesRehl, T., Müller, J., 2011. Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2011.08.007spa
dcterms.referencesRhenals Julio, J., 2021. Análisis energético y exergético de un sistema de refrigeración absorción difusión con diferentes fuentes de calor. Corporación Universidad de la Costa, BARRANQUILLA-COLOMBIA.spa
dcterms.referencesRosen, M., Tang, R., 2008. Improving steam power plant efficiency through exergy analysis: Effects of altering excess combustion air and stack-gas temperature. International Journal of Exergy - INT J EXERGY 5. https://doi.org/10.1504/IJEX.2008.016011spa
dcterms.referencesSagastume Gutiérrez, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C., 2020. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod 269, 122317. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122317spa
dcterms.referencesSalomon, K.R., Silva Lora, E.E., 2009. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2009.03.001spa
dcterms.referencesSingh, A.K., Singh, R.G., Tiwari, G.N., 2020. Thermal and electrical performance evaluation of photo-voltaic thermal compound parabolic concentrator integrated fixed dome biogas plant. Renew Energy. https://doi.org/10.1016/j.renene.2020.03.028spa
dcterms.referencesSingh, D., Sharma, D., Soni, S.L., Sharma, S., Kumar Sharma, P., Jhalani, A., 2020. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. https://doi.org/10.1016/j.fuel.2019.116553spa
dcterms.referencesSoltani, M., Chahartaghi, M., Hashemian, S.M., Shojaei, A.F., 2020. Technical and economic evaluations of combined cooling, heating and power (CCHP) system with gas engine in commercial cold storages. Energy Convers Manag 214, 112877.spa
dcterms.referencesSui, J., Liu, H., Liu, F., Han, W., 2018. A distributed energy system with advanced utilization of internal combustion engine waste heat. CSEE Journal of Power and Energy Systems 4, 257– 262.spa
dcterms.referencesSun, X.Y., Chen, J.L., Zhao, Y., Li, X., Ge, T.S., Wang, C.H., Dai, Y.J., 2021. Experimental investigation on a dehumidification unit with heat recovery using desiccant coated heat exchanger in waste to energy system. Appl Therm Eng 185, 116342. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116342spa
dcterms.referencesSzarka, N., Scholwin, F., Trommler, M., Fabian Jacobi, H., Eichhorn, M., Ortwein, A., Thrän, D., 2013. A novel role for bioenergy: A flexible, demand-oriented power supply. Energy. https://doi.org/10.1016/j.energy.2012.12.053spa
dcterms.referencesTakalkar, G.D., Bhosale, R.R., Mali, N.A., Bhagwat, S.S., 2019. Thermodynamic analysis of EMISE–Water as a working pair for absorption refrigeration system. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.11.092spa
dcterms.referencesTappen, S.J., Effenberger, M., 2017. Environmental impact and technical requirements of flexible energy supply from biogas-driven cogeneration units. J of Fund. of Renew. Energy and Appli 7spa
dcterms.referencesWang, X., Lv, W., Guo, L., Zhai, M., Dong, P., Qi, G., 2016. Energy and exergy analysis of rice husk high-temperature pyrolysis. Int J Hydrogen Energy 41, 21121–21130. https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.09.155spa
dcterms.referencesWang, X., Shu, G., Tian, H., Wang, R., Cai, J., 2020. Dynamic performance comparison of different cascade waste heat recovery systems for internal combustion engine in combined cooling, heating and power. Appl Energy 260, 114245.spa
dcterms.referencesYin, Y.L., Song, Z.P., Li, Y., Wang, R.Z., Zhai, X.Q., 2012. Experimental investigation of a mini type solar absorption cooling system under different cooling modes. Energy and Buildings 47. https://doi.org/10.1016/j.enbuild.2011.11.036spa
dcterms.referencesZhang, J., Zhou, Y., Wang, R., Xu, J., Fang, F., 2014. Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems. Energy. https://doi.org/10.1016/j.energy.2014.01.068spa
dcterms.referencesZhang, L., Li, F., Sun, B., Zhang, C., 2019. Integrated optimization design of combined cooling, heating, and power system coupled with solar and biomass energy. Energies (Basel) 12. https://doi.org/10.3390/en12040687spa
dcterms.referencesZhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., Zhang, G., 2018. Thermodynamic and economic analysis of biomass partial gasification process. Appl Therm Eng 129, 410–420. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.10.069spa
dcterms.referencesZhang, Y., Fan, X., Li, B.-X., Li, H., Xiaoyan, G., 2017a. Assessing the potential environmental impact of fuel using exergy-cases of wheat straw and coal. International Journal of Exergy 23, 85. https://doi.org/10.1504/IJEX.2017.084517spa
dcterms.referencesZhang, Y., Zhao, Y., Li, B.-X., Xiaoyan, G., Jiang, B., 2017b. Energy and exergy characteristics of syngas produced from air gasification of walnut sawdust in an entrained flow reactor. International Journal of Exergy 23, 244. https://doi.org/10.1504/IJEX.2017.085772spa
dcterms.referencesZheng, L., Furimsky, E., 2003. ASPEN simulation of cogeneration plants. Energy Convers Manag 44. https://doi.org/10.1016/S0196-8904(02)00190-5spa
dcterms.referencesZhou, S., He, G., Li, Y., Liang, X., Pang, Q., Cai, D., 2021. Comprehensive experimental evaluation of an exhaust-heat-driven absorption refrigeration cycle system using NH3- NaSCN as working pair. International Journal of Refrigeration 126, 168–180spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
INFORME FINAL_TAYLOR DE LA VEGA_repositorio.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación._1.pdf
Tamaño:
256.31 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones