Publicación: Contaminantes emergentes en diferentes matrices de aguas y tratamientos alternativos para su eliminación
dc.contributor.advisor | Díaz Pongutá, Basilio | spa |
dc.contributor.author | Viloria Soto, María Fernanda | spa |
dc.contributor.author | Madera Lopez, Daniela | spa |
dc.date.accessioned | 2020-11-12T18:41:37Z | spa |
dc.date.available | 2020-11-12T18:41:37Z | spa |
dc.date.issued | 2020-11-10 | spa |
dc.description.abstract | Durante décadas los contaminantes emergentes (CE) han pasado desapercibido debido a las bajas concentraciones en las que se encuentran en el medio, pero que, en estos últimos años han despertado un gran interés por ser sustancias toxicas que en su mayoría son vertidos al medio acuático, como suele pasar con los plaguicidas, productos de uso personal, metabolitos de fármacos y drogas, entre otros. Por esto se ha hecho necesario desarrollar e implementar nuevas tecnologías para el tratamiento de aguas y eficientes para su eliminación. El siguiente trabajo tuvo como objetivo recopilar información asociada a contaminantes emergentes en agua potable, residual y biota acuática; así mismo, de métodos de tratamiento, degradación y análisis químico, revelando así, información útil para futuras investigaciones en Colombia. Para ello, se realizó una recopilación bibliográfica a través del uso de bases de datos como: Reaxys y Science Direct, con una ventana de observación de cinco años (2015 hasta 2020). Como resultado de esta investigación se obtuvo bases para la orientación de proyectos de investigación, monitoreo, distribución y concentración de las sustancias emergentes. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.notes | Monografía | spa |
dc.description.tableofcontents | INTRODUCCIÓN ................................................................................................................... 11 | spa |
dc.description.tableofcontents | OBJETIVOS ............................................................................................................................ 14 | spa |
dc.description.tableofcontents | OBJETIVO GENERAL ................................................................................................. 14 | spa |
dc.description.tableofcontents | OBJETIVOS ESPECÍFICOS: ....................................................................................... 14 | spa |
dc.description.tableofcontents | MATERIALES Y METODOS ............................................................................................... 15 | spa |
dc.description.tableofcontents | DESARROLLO DEL TEMA ................................................................................................. 16 | spa |
dc.description.tableofcontents | CAPITULO I: GENERALIDADES DE LOS CONTAMINANTES EMERGENTE ..............16 | spa |
dc.description.tableofcontents | Ejemplo de contaminantes emergentes ..................................................................... 19 | spa |
dc.description.tableofcontents | TIPOS DE CONTAMINANTES EMERGENTES .................................................. 20 | spa |
dc.description.tableofcontents | Fármacos y productos de higiene personal ....................................................... 21 | spa |
dc.description.tableofcontents | Retardantes de llama bromados ........................................................................ 24 | spa |
dc.description.tableofcontents | Surfactantes ......................................................................................................... 25 | spa |
dc.description.tableofcontents | Parafinas cloradas ............................................................................................... 26 | spa |
dc.description.tableofcontents | Productos para el tratamiento de aguas ............................................................ 26 | spa |
dc.description.tableofcontents | Plaguicidas ........................................................................................................... 27 | spa |
dc.description.tableofcontents | Drogas Ilícitas ...................................................................................................... 28 | spa |
dc.description.tableofcontents | PRINCIPALES FUENTES Y RUTAS DE LOS CONTAMINANTES EMERGENTES ........................................................................................................................... 29 | spa |
dc.description.tableofcontents | Fuentes ................................................................................................................. 29 | spa |
dc.description.tableofcontents | Rutas ..................................................................................................................... 30 | spa |
dc.description.tableofcontents | CAPITULO II: NORMATIVA .......................................................................................... 31 | spa |
dc.description.tableofcontents | Regulación y clasificación ........................................................................................... 31 | spa |
dc.description.tableofcontents | Regulación de aguas residuales hospitalarias ........................................................... 33 | spa |
dc.description.tableofcontents | Regulación internacional ............................................................................................ 35 | spa |
dc.description.tableofcontents | ALEMANIA ......................................................................................................... 37 | spa |
dc.description.tableofcontents | FRANCIA ............................................................................................................ 39 | spa |
dc.description.tableofcontents | SUIZA ................................................................................................................... 39 | spa |
dc.description.tableofcontents | ESTADOS UNIDOS ............................................................................................ 40 | spa |
dc.description.tableofcontents | AUSTRALIA ....................................................................................................... 41 | spa |
dc.description.tableofcontents | REGLAMENTACIÓN DE LA LEY DE PROTECCIÓN AMBIENTAL CANADIENSE Y AUSTRALIANA Y EL MINISTERIO DE SALUD DE JAPÓN ............ 43 | spa |
dc.description.tableofcontents | LATINOAMÉRICA .................................................................................................... 43 | spa |
dc.description.tableofcontents | COLOMBIA ............................................................................................................... 45 | spa |
dc.description.tableofcontents | CAPITULO III: CONTAMINATES EMERGENTES EN DIFERENTES MATRICES AMBIENTALES. ............................................................................................................................ 46 | spa |
dc.description.tableofcontents | CONTAMINANTES EMERGENTES EN BIOTA ACUÁTICA ........................... 46 | spa |
dc.description.tableofcontents | Recolección de muestras y pretratamiento ....................................................... 48 | spa |
dc.description.tableofcontents | Extracción ............................................................................................................ 50 | spa |
dc.description.tableofcontents | Muestras líquidas ................................................................................................ 52 | spa |
dc.description.tableofcontents | Muestras sólidas .................................................................................................. 52 | spa |
dc.description.tableofcontents | Limpieza ............................................................................................................... 55 | spa |
dc.description.tableofcontents | Determinación ...................................................................................................... 56 | spa |
dc.description.tableofcontents | CONTAMINANTES EMRERGENTES EN AGUAS RESIDUALES ....................... 59 | spa |
dc.description.tableofcontents | ANÁLISIS DE CONTAMINATES EMERGENTES ................................................ 60 | spa |
dc.description.tableofcontents | Recolección de muestra .............................................................................................. 60 | spa |
dc.description.tableofcontents | Extracción ................................................................................................................... 61 | spa |
dc.description.tableofcontents | Determinación................................................................................................................ 61 | spa |
dc.description.tableofcontents | CONTAMINATES EMERGENTES EN AGUA POTABLE ..................................... 69 | spa |
dc.description.tableofcontents | MÉTODOS DE ANÁLISIS .................................................................................... 70 | spa |
dc.description.tableofcontents | CAPÍTULO IV: CONTAMINATES EMERGENTES EN LATINOAMÉRICA ......... 74 | spa |
dc.description.tableofcontents | Principales contaminantes estudiados ................................................................... 77 | spa |
dc.description.tableofcontents | Contaminantes emergentes en aguas residuales (drenaje urbano) ................. 79 | spa |
dc.description.tableofcontents | Agua potable ........................................................................................................ 81 | spa |
dc.description.tableofcontents | Agua superficial ................................................................................................... 83 | spa |
dc.description.tableofcontents | DISCUSIONES ........................................................................................................................ 91 | spa |
dc.description.tableofcontents | CONCLUSIONES ................................................................................................................... 97 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS .................................................................................. 99 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3572 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Química | spa |
dc.relation.references | (MAVDT)Ministerio de Ambiente, V. y D. T. (2005). Política ambiental para la gestión integral de residuos o desechos peligrosos. | spa |
dc.relation.references | Alejandro González, R. (2016). Caracterización y seguimiento de contaminantes emergentes. Universidad Valenciana, 526. https://doi.org/10.1360/zd-2013-43-6-1064 | spa |
dc.relation.references | Álvarez-Ruiz, R., & Picó, Y. (2020). Analysis of emerging and related pollutants in aquatic biota. Trends in Environmental Analytical Chemistry, 25. https://doi.org/10.1016/j.teac.2020.e00082 | spa |
dc.relation.references | Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073 | spa |
dc.relation.references | Arribas, P., Khayet, M., García-Payo, M. C., & Gil, L. (2015). Novel and emerging membranes for water treatment by hydrostatic pressure and vapor pressure gradient membrane processes. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-1-78242-121-4.00008-3 | spa |
dc.relation.references | Augusto, J., & Solano, V. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización Wastewater treatment of the pharmaceutical industry through. 84(2), 2–15. | spa |
dc.relation.references | Bedoya-Ríos, D. F., Lara-Borrero, J. A., & Enríquez-Hidalgo, A. M. (2018). Ocurrencia de contaminantes emergentes en el ciclo urbano del agua, caso Bogotá. Desafíos En La Gestión Integral Del Agua: Ahorro, Uso Eficiente y Microcontamiantes, 49–64. | spa |
dc.relation.references | Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review. Environment International, 124(January), 336–353. https://doi.org/10.1016/j.envint.2019.01.011 | spa |
dc.relation.references | Brack, W., Altenburger, R., Schüürmann, G., Krauss, M., López Herráez, D., van Gils, J., Slobodnik, J., Munthe, J., Gawlik, B. M., van Wezel, A., Schriks, M., Hollender, J., Tollefsen, K. E., Mekenyan, O., Dimitrov, S., Bunke, D., Cousins, I., Posthuma, L., van den Brink, P. J., … de Aragão Umbuzeiro, G. (2015). The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 503–504, 22–31. 101 https://doi.org/10.1016/j.scitotenv.2014.05.143 | spa |
dc.relation.references | Brandt, E. M. F., de Queiroz, F. B., Afonso, R. J. C. F., Aquino, S. F., & Chernicharo, C. A. L. (2013). Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems. Journal of Environmental Management, 128, 718–726. https://doi.org/10.1016/j.jenvman.2013.06.003 | spa |
dc.relation.references | Bu, Q., Wang, B., Huang, J., Deng, S., & Yu, G. (2013). Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials, 262, 189–211. https://doi.org/10.1016/j.jhazmat.2013.08.040 | spa |
dc.relation.references | Campo, J., Pérez, F., Masiá, A., Picó, Y., Farré, M. la, & Barceló, D. (2015). Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Science of the Total Environment, 503–504, 48–57. https://doi.org/10.1016/j.scitotenv.2014.05.094 | spa |
dc.relation.references | Carrasco, J. del C. R., Delgado, C. Y. S., & Cobos, D. F. O. (2017). Emerging contaminants and its impact on the health. Revista de La Facultad de Ciencias Médicas de La Universidad de Cuenca, 35(2), 55–59. https://publicaciones.ucuenca.edu.ec/ojs/index.php/medicina/article/view/1723 | spa |
dc.relation.references | Caviedes, Diego., Delgado, D. (2017). Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos* Environmental normativity to regulate the presence of residual pharmaceutical products in aquatic environments. Revista Jurídica, 16(1), 121–130. https://doi.org/10.25054/16576799.1445 | spa |
dc.relation.references | Chiesa, L. M., Nobile, M., Panseri, S., & Arioli, F. (2019). Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC-HRMS). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 36(4), 592–600. https://doi.org/10.1080/19440049.2019.1583380 | spa |
dc.relation.references | Couderc, M., Poirier, L., Zalouk-Vergnoux, A., Kamari, A., Blanchet-Letrouvé, I., Marchand, P., Vénisseau, A., Veyrand, B., Mouneyrac, C., & Le Bizec, B. (2015). Occurrence of POPs and other persistent organic contaminants in the European eel (Anguilla anguilla) from the Loire estuary, France. Science of the Total Environment, 505, 199–215. https://doi.org/10.1016/j.scitotenv.2014.09.053 | spa |
dc.relation.references | Cruz, N. de la. (2015). Estudio de la eliminación de contaminantes emergentes en aguas mediante Procesos de Oxidación Avanzados. Repositorio Institucional: Diposit.Ub.Edu/Dspace. | spa |
dc.relation.references | Dasenaki, M. E., & Thomaidis, N. S. (2015). Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 880, 103–121. https://doi.org/10.1016/j.aca.2015.04.013 | spa |
dc.relation.references | Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 214(6), 442–448. https://doi.org/10.1016/j.ijheh.2011.08.002 | spa |
dc.relation.references | Delgado-Ortega, H. S. (2016). Análisis de la exposición de compuestos emergentes en varios escenarios de usos del agua. | spa |
dc.relation.references | DIRECTIVA 2008/105 / CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO. (n.d.). Off. J. Eur. Union L348, 84–97. | spa |
dc.relation.references | Djatmika, R., Hsieh, C. C., Chen, J. M., & Ding, W. H. (2016). Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography−mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1036–1037, 93–99. https://doi.org/10.1016/j.jchromb.2016.10.005 | spa |
dc.relation.references | Egea-Corbacho Lopera, A. (2018). Removal of emerging contaminants from wastewater for its subsequent reuse. Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Enesca, A., Baneto, M., Perniu, D., Isac, L., Bogatu, C., & Duta, A. (2016). Solar-activated tandem thin films based on CuInS2, TiO2 and SnO2 in optimized wastewater treatment processes. Applied Catalysis B: Environmental, 186, 69–76. https://doi.org/10.1016/j.apcatb.2015.12.053 | spa |
dc.relation.references | Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products, 1 (2015) (testimony of EPA). | spa |
dc.relation.references | Fàbrega, F., Kumar, V., Schuhmacher, M., Domingo, J. L., & Nadal, M. (2015). PBPK modeling for PFOS and PFOA: Validation with human experimental data. Toxicology Letters, 230(2), 244–251. https://doi.org/10.1016/j.toxlet.2014.01.007 | spa |
dc.relation.references | Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6(September 2017), 169–180. https://doi.org/10.1016/j.gsd.2017.12.009 | spa |
dc.relation.references | Guillén, D., Ginebreda, A., Farré, M., Darbra, R. M., Petrovic, M., Gros, M., & Barceló, D. (2012). Prioritization of chemicals in the aquatic environment based on risk assessment: Analytical, modeling and regulatory perspective. Science of the Total Environment, 440, 236–252. https://doi.org/10.1016/j.scitotenv.2012.06.064 | spa |
dc.relation.references | Guzmán-Barragán, B. L., Días Bevilacqua, P., & Nava-Tovar, G. (2015). Contextos locales de la vigilancia de la calidad del agua para consumo humano: Brasil y Colombia. Revista de Salud Publica, 17(6). https://doi.org/10.15446/rsap.v17n6.40977 | spa |
dc.relation.references | Han, C., Xia, B., Chen, X., Shen, J., Miao, Q., & Shen, Y. (2016). Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chemistry, 194, 1199–1207. https://doi.org/10.1016/j.foodchem.2015.08.093 | spa |
dc.relation.references | Hídricos, Y. G. D. E. R. (2019). Y DESTINO EMERGING POLLUTANTS : ORIGIN AND DESTINATION. | spa |
dc.relation.references | Huerta, B., Jakimska, A., Llorca, M., Ruhí, A., Margoutidis, G., Acuña, V., Sabater, S., Rodriguez-Mozaz, S., & Barcelò, D. (2015). Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta, 132, 373–381. https://doi.org/10.1016/j.talanta.2014.09.017 | spa |
dc.relation.references | Ismail, N. S., Müller, C. E., Morgan, R. R., & Luthy, R. G. (2014). Uptake of contaminants of emerging concern by the bivalves anodonta californiensis and corbicula fluminea. Environmental Science and Technology, 48(16), 9211–9219. https://doi.org/10.1021/es5011576 | spa |
dc.relation.references | Janet Gil, M., María Soto, A., Iván Usma, J., & Darío Gutiérrez, O. (2012). Emerging contaminants in waters: effects and possible treatments Contaminantes emergentes em águas, efeitos e possíveis tratamentos. 7(2), 52–73. http://www.scielo.org.co/pdf/pml/v7n2/v7n2a05.pdf | spa |
dc.relation.references | Jesús, F., Hladki, R., Gérez, N., Besil, N., Niell, S., Fernández, G., Heinzen, H., & Cesio, M. V. (2018). Miniaturized QuEChERS based methodology for multiresidue determination of pesticides in odonate nymphs as ecosystem biomonitors. Talanta, 178, 410–418. https://doi.org/10.1016/j.talanta.2017.09.014 | spa |
dc.relation.references | Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Yousefi, M., Mohammadi, A. A., & Changani, F. (2020). Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. TrAC - Trends in Analytical Chemistry, 122, 115744. https://doi.org/10.1016/j.trac.2019.115744 | spa |
dc.relation.references | Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417. https://doi.org/10.1016/j.envint.2008.07.009 | spa |
dc.relation.references | Kumar, M., Borah, P., & Devi, P. (2020). Priority and emerging pollutants in water. Inorganic Pollutants in Water, 33–49. https://doi.org/10.1016/b978-0-12-818965-8.00003-2 | spa |
dc.relation.references | Leal, J. E., Thompson, A. N., & Brzezinski, W. A. (2010). Pharmaceuticals in drinking water: Local analysis of the problem and finding a solution through awareness. Journal of the American Pharmacists Association, 50(5), 600–603. https://doi.org/10.1331/JAPhA.2010.09186 | spa |
dc.relation.references | Liu, J., Lu, G., Xie, Z., Zhang, Z., Li, S., & Yan, Z. (2015). Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Science of the Total Environment, 511, 54–62. https://doi.org/10.1016/j.scitotenv.2014.12.033 | spa |
dc.relation.references | Liu, J., Lu, G., Zhang, Z., Bao, Y., Liu, F., Wu, D., & Wang, Y. (2015). Biological effects and bioaccumulation of pharmaceutically active compounds in crucian carp caged near the outfall of a sewage treatment plant. Environmental Sciences: Processes and Impacts, 17(1), 54–61. https://doi.org/10.1039/c4em00472h | spa |
dc.relation.references | Llorca, M., Farré, M., Eljarrat, E., Díaz-Cruz, S., Rodríguez-Mozaz, S., Wunderlin, D., 105 & Barcelo, D. (2017). Review of emerging contaminants in aquatic biota from Latin America: 2002–2016. Environmental Toxicology and Chemistry, 36(7), 1716–1727. https://doi.org/10.1002/etc.3626 | spa |
dc.relation.references | Malaj, E., Von Der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9549–9554. https://doi.org/10.1073/pnas.1321082111 | spa |
dc.relation.references | Meléndez-marmolejo, J., García-saavedra, Y., Galván-romero, V., León-martínez, L. D. De, Vargas-, K., Mejía-saavedra, J., & Ramírez, R. F. (2020). Contaminantes emergentes . Problemática ambiental asociada al uso de antibióticos . Nuevas técnicas de detección , remediación y perspectivas de legislación en América Latina Contaminantes emergentes . Problemática ambiental associada ao uso de antibiótic. 20(1), 1–9. | spa |
dc.relation.references | Miller, T. H., Ng, K. T., Bury, S. T., Bury, S. E., Bury, N. R., & Barron, L. P. (2019). Biomonitoring of pesticides, pharmaceuticals and illicit drugs in a freshwater invertebrate to estimate toxic or effect pressure. Environment International, 129(March), 595–606. https://doi.org/10.1016/j.envint.2019.04.038 | spa |
dc.relation.references | Monge, S. B., Torres-Pinto, A., Ribeiro, R. S., Silva, A. M. T., & Bengoa, C. (2018). Manual técnico sobre Procesos de Oxidación Avanzada aplicados en el tratamiento de aguas de la industria. In Programa CYTED - Red TRITÓN 316RT0508. ISBN: 978-84-09-08637-5 (Issues 978-84-09-08637–5). | spa |
dc.relation.references | MOREIRA, J. C., GONÇALVES, E. S., & BERETTA, M. (2013). Contaminantes Emergentes. Revista de Química Industrial, 738, 4–13. https://doi.org/0370694X | spa |
dc.relation.references | National Performance Report 2016-2017: Urban Water Utilities, National Water Commission, Australian Government. (2018). | spa |
dc.relation.references | NORMAN. (2011). Welcome To the Norman Network | Norman. | spa |
dc.relation.references | Ocaña-Rios, I., Peña-Alvarez, A., Loeza-Fuentes, E., & Zuñiga-Perez, I. (2018). | spa |
dc.relation.references | Determination of Personal Care Products in Fish Tissue Based on Matrix Solid-Phase Dispersion Combined with Programmable Split/Splitless Injector Gas Chromatography-Mass Spectrometry. Food Analytical Methods, 11(8), 2272–2279. 106 https://doi.org/10.1007/s12161-018-1206-1 | spa |
dc.relation.references | Patiño, Yolanda, Díaz, Eva; Ordóñez, S. (2014). MICROCONTAMINANTES EMERGENTES EN AGUAS: TIPOS Y SISTEMAS DE TRATAMIENTO. Avances En Ciencias e Ingeniería, 5, 1–20. | spa |
dc.relation.references | Pemberthy M, D., Padilla, Y., Echeverri, A., & Peñuela, G. A. (2020). Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon, 6(6). https://doi.org/10.1016/j.heliyon.2020.e04215 | spa |
dc.relation.references | Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237(December 2018), 408–423. https://doi.org/10.1016/j.jenvman.2019.02.100 | spa |
dc.relation.references | Peng, X., Jin, J., Wang, C., Ou, W., & Tang, C. (2015). Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1384, 97–106. https://doi.org/10.1016/j.chroma.2015.01.051 | spa |
dc.relation.references | Pérez Álvarez, J. A. (2017). Fármacos como contaminates emergentes: caracterización, cuantificación y eliminación en plantas de tratamiento de aguas residuales. 372. http://digibuo.uniovi.es/dspace/handle/10651/42662 | spa |
dc.relation.references | Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2019). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122(November 2018), 52–66. https://doi.org/10.1016/j.envint.2018.11.038 | spa |
dc.relation.references | Raúl, A., Rosales, B., & Cesar Valdez, E. (2017). Contaminantes emergentes Que para obtener el título de UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA | spa |
dc.relation.references | Reichert, G., Hilgert, S., Fuchs, S., & Azevedo, J. C. R. (2019). Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113140 | spa |
dc.relation.references | Reichert, G., Hilgert, S., Fuchs, S., & Azevedo, J. C. R. (2019). Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113140 | spa |
dc.relation.references | Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242. https://doi.org/10.1016/j.watres.2014.11.021 | spa |
dc.relation.references | Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380. https://doi.org/10.1016/j.cej.2017.04.106 | spa |
dc.relation.references | Rozas, O., Vidal, C., Baeza, C., Jardim, W. F., Rossner, A., & Mansilla, H. D. (2016). Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment. Water Research, 98, 109–118. https://doi.org/10.1016/j.watres.2016.03.069 | spa |
dc.relation.references | Schlechtriem, C., Fliedner, A., & Schäfers, C. (2016). Determination of lipid content in fish samples from bioaccumulation studies: Contributions to the revision of guideline OECD 305. Environmental Sciences Europe, 24(4), 1–7. https://doi.org/10.1186/2190-4715-24-13 | spa |
dc.relation.references | Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21(2), 921–931. https://doi.org/10.1007/s11356-013-1957-6 | spa |
dc.relation.references | Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7(3), 1043–1067. https://doi.org/10.1007/s13201-016-0455-7 | spa |
dc.relation.references | Stefanakis, A. I., & Becker, J. A. (2015). A review of emerging contaminants in water: Classification, sources, and potential risks. Impact of Water Pollution on Human Health and Environmental Sustainability, September, 55–80. https://doi.org/10.4018/978-1-4666-9559-7.ch003 | spa |
dc.relation.references | Stockholm Convention. (2013). Stockholm Convention on Persistent Organic Pollutants (POPs). In Encyclopedia of Corporate Social Responsibility (pp. 2336–2336). https://doi.org/10.1007/978-3-642-28036-8_101506 | spa |
dc.relation.references | Stockholm Convention, & UNEP. (2017). The 16 New POPs. 25 p. June, 25. | spa |
dc.relation.references | Stumpf, M., Ternes, T. A., Wilken, R. D., Silvana Vianna Rodrigues, & Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225(1–2), 135–141. https://doi.org/10.1016/S0048-9697(98)00339-8 | spa |
dc.relation.references | Tanoue, R., Nomiyama, K., Nakamura, H., Hayashi, T., Kim, J. W., Isobe, T., Shinohara, R., & Tanabe, S. (2014). Simultaneous determination of polar pharmaceuticals and personal care products in biological organs and tissues. Journal of Chromatography A, 1355, 193–205. https://doi.org/10.1016/j.chroma.2014.06.016 | spa |
dc.relation.references | Teodosiu, C., Gilca, A. F., Barjoveanu, G., & Fiore, S. (2018). Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. Journal of Cleaner Production, 197, 1210–1221. https://doi.org/10.1016/j.jclepro.2018.06.247 | spa |
dc.relation.references | Terán, M. (2016). Estudio de la aplicacion de procesos de oxidacion avanzada a aguas contaminadas. Repositorio Unitécnica de Cataluña, 100. https://upcommons.upc.edu/bitstream/handle/2117/88273/01_TFG.pdf | spa |
dc.relation.references | Ternes, T., Joss, A., & Oehlmann, J. (2015). Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Research, 72, 1–2. https://doi.org/10.1016/j.watres.2015.02.055 | spa |
dc.relation.references | Thines, R. K., Mubarak, N. M., Nizamuddin, S., Sahu, J. N., Abdullah, E. C., & Ganesan, P. (2017). Application potential of carbon nanomaterials in water and wastewater treatment: A review. Journal of the Taiwan Institute of Chemical Engineers, 72, 116–133. https://doi.org/10.1016/j.jtice.2017.01.018 | spa |
dc.relation.references | Tran, N. H., Chen, H., Reinhard, M., Mao, F., & Gin, K. Y. H. (2016). Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research, 104, 461–472. https://doi.org/10.1016/j.watres.2016.08.040 | spa |
dc.relation.references | US EPA. (2018). Contaminant Candidate List 5 (CCL 5). Public Domain. | spa |
dc.relation.references | USEPA. (2014). Priority Pollutant List. Effluent Guidelines. | spa |
dc.relation.references | Vargas-Berrones, K., Bernal-Jácome, L., Díaz de León-Martínez, L., & Flores-Ramírez, R. (2020a). Emerging pollutants (EPs) in Latin América: A critical review of under- 109 studied EPs, case of study -Nonylphenol-. Science of the Total Environment, 726, 138493. https://doi.org/10.1016/j.scitotenv.2020.138493 | spa |
dc.relation.references | Vásquez R., E. D. (2015). Estudio de biorreactor de membrana para el tratamiento de aguas residuales urbanas. 1–15. | spa |
dc.relation.references | Water, S., Swp, P., & Assembly, G. (2019). HOW SVGW SUPPORTS THE DRINKING WATER SECTOR. | spa |
dc.relation.references | Wilkinson, J. L., Hooda, P. S., Swinden, J., Barker, J., & Barton, S. (2018). Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms. Environmental Pollution, 234, 864–875. https://doi.org/10.1016/j.envpol.2017.11.090 | spa |
dc.relation.references | Wille, K., De Brabander, H. F., Vanhaecke, L., De Wulf, E., Van Caeter, P., & Janssen, C. R. (2015). Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. TrAC - Trends in Analytical Chemistry, 35, 87–108. https://doi.org/10.1016/j.trac.2011.12.003 | spa |
dc.relation.references | Wu, M., Pan, C., Yang, M., Xu, B., Lei, X., Ma, J., Cai, L., & Chen, J. (2016). Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone. Environmental Toxicology and Chemistry, 35(1), 182–190. https://doi.org/10.1002/etc.3176 | spa |
dc.relation.references | Xu, F., García-Bermejo, Á., Malarvannan, G., Gómara, B., Neels, H., & Covaci, A. (2015). Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry. Journal of Chromatography A, 1401, 33–41. https://doi.org/10.1016/j.chroma.2015.05.001 | spa |
dc.relation.references | Yu, Y., & Wu, L. (2015). Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis). Frontiers of Environmental Science and Engineering, 9(3), 475–481. https://doi.org/10.1007/s11783-014-0640-6 | spa |
dc.relation.references | Zhao, X., Cui, T., Guo, R., Liu, Y., Wang, X., An, Y. xia, Qiao, X., & Zheng, B. (2019). A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Analytica Chimica Acta, 1047(xxxx), 71–80. https://doi.org/10.1016/j.aca.2018.10.011 | spa |
dc.relation.references | Ziarrusta, H., Olivares, M., Delgado, A., Posada-Ureta, O., Zuloaga, O., & Etxebarria, N. (2015). Multiscreening determination of organic pollutants in molluscs using matrix solid phase dispersion. Journal of Chromatography A, 1391(1), 18–30. https://doi.org/10.1016/j.chroma.2015.02.072 | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Aquatic environment | ing |
dc.subject.keywords | Toxic substances | ing |
dc.subject.keywords | Drugs | ing |
dc.subject.keywords | Waters | ing |
dc.subject.keywords | Treatments | ing |
dc.title | Contaminantes emergentes en diferentes matrices de aguas y tratamientos alternativos para su eliminación | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: