Publicación: Dinámica del arsénico (As), cadmio (Cd), plomo (Pb), ZINC (Zn) Y mercurio (Hg) humedales de la confluencia de los ríos Cauca y Magdalena, Colombia
dc.audience | ||
dc.contributor.advisor | Marrugo Negrete, José Luis | spa |
dc.contributor.author | Bravo Ferro, Eva Melisa | |
dc.date.accessioned | 2023-08-28T13:05:19Z | |
dc.date.available | 2025-08-08 | |
dc.date.available | 2023-08-28T13:05:19Z | |
dc.date.issued | 2023-04-28 | |
dc.description.abstract | En este estudio se determinaron las concentraciones de cinco elementos potencialmente tóxicos (EPTs) mercurio (Hg-T), plomo (Pb), cadmio (Cd), arsénico total (As-T) y zinc (Zn) en ocho ciénagas de la confluencia de los ríos Cauca y magdalena, su distribución en seis especies de macrófitas (Eichornia crassipes, Neptunia oleracea, Polygonum densiflorum, Paspalum repens, Eichornia azurea y Ludwigia helminthorrhiza) y su concentración en agua y sedimentos, así como también el FBC y FT en las diferentes especies. Las concentraciones de EPTs se trataron de acuerdo con el método EPA 200.2 (USEPA 2007) el caso del agua y se analizaron mediante espectrometría de absorción atómica (APHA 1998). En lo que respecta a los sedimentos fueron procesados siguiendo el método 3051 A (USEPA, 2007) y las macrófitas a través del método EPA 200.3 (USEPA 1991a). Los resultados mostraron una mayor concentración de Zn en agua, sedimentos y macrófitas, la tendencia en concentración siguió el orden decreciente Zn>Cd>As>Pb>Hg en las especies y Zn>Pb>As>Hg>Cd tanto en agua como en sedimentos. La ciénaga la Redonda fue la que registro valores máximos de este elemento (377.45 μg/g sedimento y 211.5 μg/L agua) entre tanto que la especie Ludwigia helminthorrhiza mostro una concentración máxima de 321.83μg/g. Hubo fuertes correlaciones significativas (p < 0.05) entre los EPTs en sedimentos y agua, pero escasas entre estos compartimentos y las especies. En cuanto al FBC y FT en la mayoría de las especies se establecieron resultados análogos entre estos factores solo la especie Neptunia oleracea obtuvo valores de FBC> 1 y TF > 1 para Cd otorgándole la capacidad de fitoextractora. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ........................................................................................ 8 | spa |
dc.description.tableofcontents | 2. MARCO DE REFERENCIA ................................................................... 10 | spa |
dc.description.tableofcontents | 2.1 ANTECEDENTES ................................................................ 10 | spa |
dc.description.tableofcontents | 2.2 MARCO TEÓRICO ................................................ 12 | spa |
dc.description.tableofcontents | 2.2.1 Elementos potencialmente tóxicos (EPTs) ............................................12 | spa |
dc.description.tableofcontents | 2.2.2. Elementos esenciales y no esenciales .............................................13 | spa |
dc.description.tableofcontents | 2.2.3 Contaminación de ecosistemas acuáticos continentales por metales pesados ................................................................................. 16 | spa |
dc.description.tableofcontents | 2.2.4. Contaminación con elementos potencialmente tóxicos e impactos sobre la biota y ecosistemas de humedales .............................18 | spa |
dc.description.tableofcontents | 2.2.5 Macrófitas........................................................................................... 20 | spa |
dc.description.tableofcontents | 2.2.6 Descripciones de las Especies de Macrófitas ................................... 20 | spa |
dc.description.tableofcontents | 2.2.7. Dinámica de los elementos potencialmente tóxicos en plantas acuáticas............................................................................................... 25 | spa |
dc.description.tableofcontents | 2.2.8. Factores de Bioconcentración y Traslocación ................................... 26 | spa |
dc.description.tableofcontents | 3. OBJETIVOS ...................................................................................... 27 | spa |
dc.description.tableofcontents | 4.1. ÁREA DE ESTUDIO ................................................................. 28 | spa |
dc.description.tableofcontents | 4.2. Fase de campo.................................................................................... 29 | spa |
dc.description.tableofcontents | 4.2.1 Colecta de las muestras (macrófitas, agua y sedimentos)............................................................................................30 | spa |
dc.description.tableofcontents | 4.3. Fase de Laboratorio ................................................................................. 31 | spa |
dc.description.tableofcontents | 4.4. Control de calidad de los métodos............................................................... 31 | spa |
dc.description.tableofcontents | 4.5. Análisis de datos ..................................................................................................... 32 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN ......................................................................... 32 | spa |
dc.description.tableofcontents | 5.1. Composición y abundancia de plantas vasculares acuáticas en ocho ciénagas de la cuenca del Magdalena .............................................. 32 | spa |
dc.description.tableofcontents | 5.2. Concentraciones de EPTs en las diferentes especies de macrófitas de ocho ciénagas de la confluencia de los ríos Cauca y Magdalena .............................................................................................................. 35 | spa |
dc.description.tableofcontents | 5.3. Concentraciones de elementos potencialmente tóxicos en agua de ocho ciénagas del Magdalena, Bolívar .................................................. 39 | spa |
dc.description.tableofcontents | 5.4. Concentraciones de elementos potencialmente tóxicos en sedimentos de 8 ciénagas del Magdalena, Bolívar .............................. 41 | spa |
dc.description.tableofcontents | 5.5. Factor de Bioconcentración (BAF) y de Translocación (FT) ............................................................................................................... 42 | spa |
dc.description.tableofcontents | 5.6. Correlación de las concentraciones de elementos potencialmente tóxicos en agua, sedimentos con especies de macrófitas ..................................................................................................... 48 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7759 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | EPTs | spa |
dc.subject.keywords | Macrophytes | spa |
dc.subject.keywords | Swamps | spa |
dc.subject.keywords | Cauca river | spa |
dc.subject.keywords | Magdalena river | spa |
dc.subject.proposal | EPTs | spa |
dc.subject.proposal | Macrófitas | spa |
dc.subject.proposal | Ciénagas | spa |
dc.subject.proposal | Rio Cauca | spa |
dc.subject.proposal | Rio Magdalena | spa |
dc.title | Dinámica del arsénico (As), cadmio (Cd), plomo (Pb), ZINC (Zn) Y mercurio (Hg) humedales de la confluencia de los ríos Cauca y Magdalena, Colombia | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Aboelkassem, A., Alzamel, N. M., Alzain, M. N., Loutfy, N., 2022. Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) PH Raven Physiology and Phytoremediation Performance. Plants, 11(5), 636. | spa |
dcterms.references | Achary, M, Satpathy, K, Panigrahi, S., Mohanty, A., Padhi, R, Biswas, S., & Panigrahy, R., 2017. Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control, 72, 232-243. | spa |
dcterms.references | Ahmed, M., Ali, S., El-Dek, S., & Galal, A. (2013). Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Materials Science and Engineering: B, 178(10), 744-751. | spa |
dcterms.references | Ahmad, M., Lee, S., Yang, J., Ro, M., Lee, Y., Ok, Y., 2012. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and environmental safety, 79, 225-231. | spa |
dcterms.references | Ali, H., Khan, E., 2018. Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum Ecol Risk Assess (in press). doi:10.1080/10807039.2018.1438175 | spa |
dcterms.references | Ali., H, Khan., E, Sajad M., 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881 | spa |
dcterms.references | Ali, H., Khan, E., 2018. Trophic transfer, bioaccumulation, andbiomagnification of non-essential hazardous heavy metals and metalloids in food chains/ webs—Concepts and implications for wildlife and human health, Human and Ecological Risk Assessment: An International Journal, DOI: 10.1080/10807039.2018.1469398 | spa |
dcterms.references | Alipour, H., Pourkhabbaz, A., Hassanpour, M., 2014. Estimation of potential health risks for some metallic elements by consumption of fsh. Water Qual. Expos. Hea. 7, 179–185. https://doi.org/10.1007/s12403-014-0137-3. | spa |
dcterms.references | Álvarez, M., Domini, C., Garrido, M., Lista, A., Fernández, B., 2011. Singlestep chemical extraction procedures and chemometrics for assessment of heavy metal behaviour in sediment samples from the Bahía Blanca estuary, Argentina. J. Soils Sediments 11, 657–666. https://doi.org/10.1007/s11368-011-0350-7. | spa |
dcterms.references | Angarita, H., Delgado, B. Wickel, & M. Escobar (2016). Biodiversidad, ecosistemas de humedal y riesgo de inundación: Implicaciones de la expansión hidroeléctrica en la cuenca del río Magdalena. SEI, The Nature Conservancy and USAID fact sheet | spa |
dcterms.references | APHA. (1998). Standard methods for the examination of wáter and wastewater (20th ed.). Washington: American Public Health Association. | spa |
dcterms.references | Azzam, A., El-Wakeel, S., Mostafa, B., El-Shahat, M (2016.) Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. 4, 2196–2206. https://doi.org/10.1016/j.jece.2016.03.048. | spa |
dcterms.references | Badr, N., Fawzy M., and Al-Qahtani, K. M. (2012). Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil and Evaluation of Plant Removal Ability. World Applied Sciences Journal 16 (9): 1292-1301. | spa |
dcterms.references | Bai J., Xiao R., Cui B., Zhang K., Wang Q., Liu X., Gao H., Huang L. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Env. Poll. 159: 817-824. | spa |
dcterms.references | Beckers F., Rinklebe J., 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology; 47: 693-794. | spa |
dcterms.references | Bhattacharya, A., Bhattacharya, S., 2016. Unraveling the role of vacancies in the potentially promising thermoelectric clathrates Ba 8 Zn x Ge 46− x− y□ y. Physical Review B, 94(9), 094305. | spa |
dcterms.references | Bonanno, G. y Cirelli, G. (2017). Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety, 143 (1), 92-101 | spa |
dcterms.references | Bonanno, G. & Lo Giudice, R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639-645. | spa |
dcterms.references | Burks, R., Mulderij, G., Gross, E., Jones, I., Jacobsen, L., Jeppesen, E. y Van Donk, E. (2006). Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Wetlands: functioning, biodiversity conservation, and restoration (pp. 37-59). Springer Berlin Heidelberg | spa |
dcterms.references | Burton, I., Huq, S., Lim, B., Pilifosova, O., Schipper, E. (2002). From impacts assessment to adaptation priorities: the shaping of adaptation policy. Climate policy, 2(2-3), 145-159. | spa |
dcterms.references | Burzynski, M. (1988). The uptake and accumulation of phosphorous and nitrates and the activity of nitrate reductase in cucumber seedlings treated with Pb and Cd. Acta Soc. Bot. Pol. 57, 349– 359. | spa |
dcterms.references | Cañas, A., Marrugo., J. (2017). Metales pesados en sedimentos de la Cuenca Baja del río Magdalena, Colombia. In 2017 | spa |
dcterms.references | Ceschin S, Zuccarello V, Caneva G (2010) Role of macrophyte communities as bioindicators of water quality: application on the Tiber River basin (Italy). Plant Biosyst 144(3):528–536. | spa |
dcterms.references | Ceschin, S., Aleffi, M., Bisceglie, S., Savo, V., Zuccarello, V., (2012) Aquatic bryophytes as ecological indicators of water quality in the Tiber basin, Italy. Ecol Indic 14(1):74–81. | spa |
dcterms.references | Chabukdhara, M., Munjal, A., Nema, A., Gupta, S., Kaushal, R., (2016). Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human and Ecological Risk Assessment: An International Journal, 22(3), 736-752. | spa |
dcterms.references | Chen, J., Qin, Y., Zhu, Lorenzo., V., Rosen, B. 2013. Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl. Environ. Microbiol. 79: 4493-4505. | spa |
dcterms.references | Chibuike, G.U., Obiora, S.C., 2014. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. https://doi.org/ 10.1155/2014/752708. | spa |
dcterms.references | Clemens, S., Ma, J. (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 489–512. https://doi.org/10.1146/annurevarplant-043015-112301 | spa |
dcterms.references | Cortese, B. (2021). Amortiguación de metales pesados en macrófitas y sedimentos como servicio ecosistémico de bañados de desborde fluvial (Doctoral dissertation, Universidad Nacional de La Plata). | spa |
dcterms.references | Cruz, Á., Marrugo, J., & Calao, C. (2019). Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia. Environmental Science and Pollution Research, 26(11), 10961-10971. https://doi.org/10.1007/s11356-019-04527-1 | spa |
dcterms.references | Cukrowska, E., Tutu, H., Chimuka, L., Mbanga, O. (2017). Mercury Accumulation and Bio-transportation in Wetlands Biota Affected by Gold Mining-Modelling and Remediation. | spa |
dcterms.references | Defensoría del pueblo de Colombia., (2015). La minería sin control un enfoque desde la vulneración de los derechos humanos. | spa |
dcterms.references | Dhir, B., Sharmila, P., Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781. | spa |
dcterms.references | Drevnick, P., Cooke, C., Barraza, D., Blais, J., Coale, K., Cumming, B., Wolfe, B. (2016). Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Science of the Total Environment, 568, 1157-1170. | spa |
dcterms.references | Ebrahimbabaie, P., Meeinkuirt, W., Pichtel, J. (2020). Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility. Journal of Environmental Sciences, 93, 151-163. | spa |
dcterms.references | Enamorado, G., Tirado, J., Marrugo, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37), 37005 pp. 1–15. | spa |
dcterms.references | Eid, E, Shaltout, K., (2014). Monthly variations of trace elements accumulation and distribution in above-and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecological Engineering, 73, 17-25. | spa |
dcterms.references | Eid, E., Shaltout, K., Al-Sodany, Y., Haroun, S., Galal, T., Ayed, H., Jensen, K. (2020). Seasonal potential of Phragmites australis in nutrient removal to eliminate the eutrophication in Lake Burullus, Egypt. Journal of Freshwater Ecology, 35(1), 135-155. | spa |
dcterms.references | Everard, M. y Denny, P., 1985. Flux of lead in submerged plants and its relevance in a freshwater system. Aquat. Bot., 21: 181-193. | spa |
dcterms.references | Feng, W., Wang, Z., Xu, H., Zhang, D., Zhang, H., Zhu, W. (2020). Species-specific bioaccumulation of trace metals among fish species from Xincun Lagoon, South China Sea. Scientific reports, 10(1), 1-11. | spa |
dcterms.references | Fernández R., Albornoz, B., Larsen, K., Najle, R., (2018). Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals. Environmental Earth Sciences, 77(11), 1-8. | spa |
dcterms.references | Fontalvo, A & Marrugo, J., 2017. Metales pesados en sedimentos de la Cuenca Baja del río Magdalena, Colombia. Memorias III seminario internacional de ciencias ambientales SUE- Caribe. (P 67 – 70). Barranquilla. Recuperado https://es.scribd.com/document/391382169/Metales-en-Rios | spa |
dcterms.references | Fuentes, F., Pinedo, J., Gutiérrez, E., Marrugo, J., Díez, S., 2021. Heavy metal pollution and toxicity assessment in Mallorquin swamp: A natural protected heritage in the Caribbean Sea, Colombia. Marine Pollution Bulletin, 167(December 2020). https://doi.org/10.1016/j.marpolbul.2021.112271 | spa |
dcterms.references | Gao, J., Sun, X., Jiang, W., Wei, Y., Guo, J., Liu, Y., Zhang, K., 2016. Heavy metals in N. Geng, et al. Environment International 131 (2019) 105015 7 sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China. Environ. Sci. Pollut. Res. 23, 10415–10425. https://doi.org/ 10.1007/s11356-016-6587-3 | spa |
dcterms.references | Geng, N., Wang, C., Wang, P., Qi, N., Ren, L., 2015. Cadmium accumulation and metallothionein response in the freshwater bivalve Corbicula fluminea under hydrodynamic conditions. Biol. Trace Elem. Res. 165, 222–232. https://doi.org/10.1007/ s12011-015-0266-y | spa |
dcterms.references | Geng, N., Wu, Y., Zhang, M., Tsang, D., Rinklebe, J., Xia, Y., Ok, Y. (2019). Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment international, 131, 105015. | spa |
dcterms.references | Gómez Rodríguez AM, Valderrama Valderrama LT, Rivera-Rondón CA. Comunidades de macrófitas en ríos andinos: composición y relación con factores ambientales. Acta biol. Colomb. 2017;22(1):45-58. | spa |
dcterms.references | Guevara, María., Ramírez, L., (2015) Eichhornia crassipes, su invasividad y potencial fitorremediador la granja. Revista de Ciencias de la Vida, vol. 22, núm. 2, pp. 5-11 | spa |
dcterms.references | Guilizzoni, P. (1991). The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes. Aquatic Botany, 41(1-3), 87-109. | spa |
dcterms.references | Guittonny, A., Monnier, Y., Malleret, L., Coulomb, B., Combroux, I., Baumberger, T., Laffont, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management., 147 (1), 108–123. | spa |
dcterms.references | Haghnazar, H., Hudson, K., Kumar, V., Pourakbar, M., Mahdavianpour, M., Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285(July), 131446. https://doi.org/10.1016/j.chemosphere.2021.131446 | spa |
dcterms.references | Herrera, L. F., Sarmiento, G., Romero, F., Botero, P. J., & Berrío, J. C. (2001). Evolución ambiental de la Depresión Momposina (Colombia) desde el Pleistoceno Tardío a los paisajes actuales. Geología Colombiana, 26, 95-121. | spa |
dcterms.references | Herrera, L. F., Sarmiento, G., Romero, F., Botero, P. J., & Berrío, J. C. (2001). Evolución ambiental de la Depresión Momposina (Colombia) desde el Pleistoceno Tardío a los paisajes actuales. Geología Colombiana, 26, 95-121. | spa |
dcterms.references | Hernández, B, Y., Rodríguez, H, Peña, I, Meriño, Y, & Rubio, O. (2019). Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: El tomate. Cultivos Tropicales, 40(3). | spa |
dcterms.references | IDEAM y Ministerio de Ambiente y Desarrollo Sostenible 2017. Reducción del riesgo y de la vulnerabilidad frente al cambio climático en la región de La Depresión Momposina en Colombia. | spa |
dcterms.references | Islam GMR, Habib MR, Waid JL, et al. 2017. Heavy metal contamination of freshwater prawn (Macrobrachium rosenbergii) and prawn feed in Bangladesh: A market-based study to highlight probable health risks. Chemosphere 170:282–9. doi: 10.1016/j.chemosphere.2016.11.163 | spa |
dcterms.references | INVEMAR (2004), Informe del Estado de los Ambientes Marinos y Costeros en Colombia, Santa Marta. | spa |
dcterms.references | Jacob, D., Borchardt, J., Navaratnam, L., Otte, M., & Bezbaruah, A. (2013). Uptake and Translocation of Ti From Nanoparticles in Crops and Wetland Plants. International Journal of Phytoremediation, 15(2), 142-153. https://doi.org/10.1080/15226514.2012.683209 | spa |
dcterms.references | Jamshaid, M., Khan, A. A., Ahmed, K., Saleem, M. (2018). Heavy metal in drinking water its effect on human health and its treatment techniques-a review. Int. J. Biosci, 12(4), 223-240. | spa |
dcterms.references | Javed, M., Usmani, N., 2011. Accumulation of heavy metals in fishes: a human health concern. Int J Environ Sci 2(2):671–82. doi:10.6088/ijes.00202020026 | spa |
dcterms.references | Javed, M., Tanwir, K., Akram, M, Shahid, M., Niazi, N., Lindberg, S. (2019). Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In Cadmium toxicity and tolerance in plants (pp. 495-529). Academic Press. | spa |
dcterms.references | Rose, M., Fernandes, A, Mortimer D, et al. 2015. Contamination of fish in UK fresh wáter systems: risk assessment for human consumption. Chemosphere 122:183–9. doi:10.1016/j. chemosphere.2014.11.046 | spa |
dcterms.references | Kalisiska Elbieta, Salicki Wiesaw, Mysek PiotrKavetska, Katarzyna M. and Jackowski Andrzej. 2004. Using the Mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Science of the total environment. vol. 320, issues 2-3. pp. 145-61. | spa |
dcterms.references | Kang, S., Huang, J., Wang, F., Zhang, Q., Zhang, Y., Li, C., Guo, J. (2016). Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental science & technology, 50(6), 2859-2869. | spa |
dcterms.references | Kambe, T., Nishito, Y., Fukue, K., 2017. Chapter 23—Zinc transporters in health and disease A2. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals (ed. Collins, J. F.) (Academic Press, New York,). | spa |
dcterms.references | Kayee, J., Bureekul, S., Sompongchaiyakul, P., Wang, X., Das, R. (2021). Sources of atmospheric lead (Pb) after quarter century of phasing out | spa |
dcterms.references | Kinimo, K. C., Yao, K. M., Marcotte, S., & Trokourey, A. (2018). Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central-southern and southeastern Côte d'Ivoire. Journal of Geochemical Exploration, 190, 265-280. | spa |
dcterms.references | Kravchenko, J., Lyerly, H. K. (2018). The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carolina Medical Journal, 79(5), 289-300. | spa |
dcterms.references | Kumari, B., Kumar, V., Sinha, AK, Ahsan, J., Ghosh, AK, Wang, H. y DeBoeck, G. (2016). Toxicología del arsénico en peces y sistemas acuáticos. Cartas de química ambiental, 15 (1), 43–64. https://doi.org/10.1007/s10311-016-0588-9 | spa |
dcterms.references | Lidsky, T., Schneider, J. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126(1), 5-19. | spa |
dcterms.references | Lin, H., Liu, J., Dong, Y., Ren, K., & Zhang, Y. (2018). Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environmental Science and Pollution Research, 1-10. | spa |
dcterms.references | Lu, S., Ren, L., Fang, J., Ji, J., Liu, G., Zhang, J., Zhang, H., Luo, R., Lin, K., Fan, R., 2016. Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: a case study of college students in Guangzhou, China. Environ. Sci. Pollut. Res. 23, 8484–8491. | spa |
dcterms.references | Mbanga, O., Ncube, S., Tutu, H., Chimuka, L., & Cukrowska, E. (2019). Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental monitoring and assessment, 191(3), 1-12 | spa |
dcterms.references | Medina, K., Montano, Y., (2014) Determinación de bioconcentración y traslocación de metales pesados en el juncus arcticus wild. Y cortaderia rudiuscula Stapf. De áreas contaminadas con l pasivo ambiental minero alianza – ANCASH 2013. Proyecto de título, universidad Nacional Santiago Antúnez de Mayolo. | spa |
dcterms.references | Malar, S., Shivendra Vikram, S., JC Favas, P., Perumal, V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths Eichhornia crassipes (Mart.). Bot. Stud. 55, 54. https://doi.org/10.1186/ s40529-014-0054-6 | spa |
dcterms.references | Majid, S. N., Khwakaram, A. I., Rasul, G. A. M., & Ahmed, Z. H. (2014). Bioaccumulation, Enrichment and Translocation Factors of some Heavy Metals in Typha Angustifolia and Phragmites Australis Species Growing along Qalyasan Stream in Sulaimani City/IKR. Journal of Zankoy Sulaimani-Part A, 16(4). | spa |
dcterms.references | Manios T. Stentiford E., Millner P. 2003. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with mateliferus water. Ecological engineering. 20(1), 65-74. | spa |
dcterms.references | Mareri, B., Kitur, E., Obade, P. (2021). Bioaccumulation of zinc, lead, cadmium in water hyacinth, hippo grass and papyrus reed as water quality indicator in River Kisat in Kisumu County, Kenya. African Journal of Pure and Applied Sciences, 2(2), 100-107. | spa |
dcterms.references | Marrugo, J., Benitez L., Olivero, J., 2008. Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol. 55:305–316. | spa |
dcterms.references | Marrugo, J., Benítez, L., Olivero, L., Gutiérrez, F., (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International journal of environmental health research, 20(6), 451-459. | spa |
dcterms.references | Marrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816. | spa |
dcterms.references | Marrugo, J., Pinedo, Paternina, Quiroz, y Pacheco, (2018). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 23(S), 7062-7075. | spa |
dcterms.references | McCartney, M., Rebelo, L., Senaratna, S., de Silva, S., 2010. Wetlands, agriculture and poverty reduction. In: IWMI Research Report 137. International Water Management Institute, Colombo, Sri Lanka. 230. (39 pp.). | spa |
dcterms.references | Medina, K., Montano, Y., (2014) Determinación de bioconcentración y traslocación de metales pesados en el juncus arcticus wild. Y cortaderia rudiuscula Stapf. De áreas contaminadas con l pasivo ambiental minero alianza – ANCASH 2013. Proyecto de título, universidad Nacional Santiago Antúnez de Mayolo. | spa |
dcterms.references | Melignani, E., de Cabo, L., Faggi, A., (2015). Copper uptake by Eichhornia crassipes exposed at high level concentrations. Environmental Science and Pollution Research, 22(11), 8307-8315. | spa |
dcterms.references | Méndez. I., González, R., (2020). Expansión de Ludwigia helminthorrhiza (Onagraceae) en Cuba. In Anales del Jardín Botánico de Madrid (Vol. 77, No. 2, p. 7). Real Jardín Botánico. | spa |
dcterms.references | Merian, E., Clarkson, T. W. (1991). Metals and their compounds in the environment. Vch. | spa |
dcterms.references | Mishra, V., Upadhyaya, A, Pandey, S., Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource technology, 99(5), 930-936. | spa |
dcterms.references | Mitsch, W., Gosselink J., (2007) Wetlands. 4th Edition, John Wiley & Sons, Inc., Hoboken. | spa |
dcterms.references | Mohamed, A, Castagna, A., Ranieri, A., di Toppi, L., (2012). Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15-22. | spa |
dcterms.references | Moriarty F. 1999. Ecotoxicology: The study of pollutants in ecosystems. Academic Press. Third Edition. London. | spa |
dcterms.references | Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. | spa |
dcterms.references | Nan, G., Peifang, W., Chao, W., Jun, H., Jin, Q., Lingzhan, M (2016) Mechanisms of cadmium accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea under hydrodynamic conditions. Environ. Pollut. 212, 550–558. https://doi.org/10.1016/j.envpol.2016.01.091. | spa |
dcterms.references | Nagajyoti, P.C., K.D. Lee and T.V.M. Sreekanth (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8: 199–216. | spa |
dcterms.references | Nematollahi, M.J., Keshavarzi, B., Zaremoaiedi, F., Rajabzadeh, M.A., Moore, F., 2020. Ecological-health risk assessment and bioavailability of potentially toxic elements (PTEs) in soil and plant around a copper smelter. Environ. Monit. Assess. 192 (10),1–19. | spa |
dcterms.references | Ngole-Jeme, V.P., Fantke, P., 2017. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE 12, e0172517. http://dx. doi.org/10.1371/journal.pone.0172517 | spa |
dcterms.references | Palacio, J. (2007). Ecotoxicología Acuática. 1a ed. Medellín, Colombia: Imprenta Universidad de Antioquia | spa |
dcterms.references | Parihar, J.K., Parihar, P.K., Pakade, Y.B., Katnoria, J.K., 2021. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environ. Sci. Pollut. Control Ser. 28, 2426–2442. | spa |
dcterms.references | Pinedo, J., Marrugo, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289-1295. | spa |
dcterms.references | P. Trivedi and L. Axe. 2000. “Modeling Cd and Zn sorption to hydrous metal oxides,” Environ. Sci. Technol., vol. 34, no. 11, pp. 2215–2223. | spa |
dcterms.references | Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964. | spa |
dcterms.references | Posada et al., 2011. Plantas Acuáticas del Altiplano del Oriente Antioqueño, Colombia. Dirección de Investigación y Desarrollo Universidad Católica de Oriente Rionegro, Antioquia | spa |
dcterms.references | Ramos, C., Cárdenas, N., Herrera, Y. (2013). Caracterización de la comunidad de Macrófitas acuáticas en lagunas del Páramo de La Rusia (Boyacá-Colombia). Ciencia en desarrollo, 4(2), 73-82. | spa |
dcterms.references | Rangel, E., Balagurusamy, N 2015. Bioprospección de bacterias oxidantes de arsenito de suelo de la comarca lagunera. Rev. Chapingo Serie Cienc. Forest. Amb. 21: 41-56. DOI: 10.5154/r.rchscfa.2014.05.024. | spa |
dcterms.references | Rangel, 2010. Vegetación acuática caracterización inicial. En: J.O. Rangel-Ch. (ed). Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad Ecología y manejo ambiental: 325-339. Corporación Autónoma Regional de los valles del Sinú y del San Jorge-CVS, Universidad Nacional de Colombia, Instituto de Ciencias Naturales. Bogotá D.C | spa |
dcterms.references | Regino et al., 2009. Composición y estructura de las comunidades de plantas vasculares acuáticas asociadas a las ciénagas de María Arriba y San Sebastian, complejo cenagoso del bajo Sinú, Departamento de Córdoba. | spa |
dcterms.references | Reyes, Y., Vergara, I., Torres, O., Lagos, M. D., & Jiménez, E. E. G. (2016). Contaminación por metales pesados: implicaciones en Salud, ambiente y seguridad alimentaria. Ingeniería Investigación y Desarrollo: I2+ D, 16(2), 66-77. | spa |
dcterms.references | Rezania, S., Taib, S., Md Din, M.F., Dahalan, F., Kamyab, H., 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 318, 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053 | spa |
dcterms.references | Rinklebe, J., Shaheen, S., Yu, K., 2016. Release of As, Ba, Cd, Cu, Pb, and Sr under predefinite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. In: Geoderma, Integrated Management Strategies for Arsenic and Cadmium in Rice Paddy Environments. 270. pp. 21–32. https://doi.org/10.1016/j.geoderma | spa |
dcterms.references | Roesijadi & Robinson, 1994 Metals regulation in aquatic animals; mechanisms of uptake, accumulation and release. In: D.C. Malins amd G.K. Ostrander, editors, Aquatic toxicology (molecular, biochemical and cellular perspectives), Lewis publishers, London. 539 pp. | spa |
dcterms.references | ROLDAN, G., Fundamentos de Limonología Tropical. 1era Ed. ed. 1992, Medellín, Colombia: Universidad de Antioquia. 529 | spa |
dcterms.references | Romero., S, Marrugo., J, Arias., J, Hadad., H (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, & Soil Pollution, 216(1-4), 361-373. | spa |
dcterms.references | Romero, S., Marrugo, J., Arias, J., Hadad, H., Maine, M., (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, & Soil Pollution, 216(1), 361-373. | spa |
dcterms.references | Salisbury, F. B., & Ross, C. W. (1992). Plant Physiology. 4th. Edn. Belmont, CA. Wadsworth. pp 23-52. | spa |
dcterms.references | Sánchez-López, A.S., Carrillo-González, R., González-Chávez, M. del C.A., Rosas-Saito, G.H., Vangronsveld, J., 2015. Phytobarriers: plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ. Pollut. 205, 33–42. https://doi.org/10.1016/j.envpol.2015.05.010. | spa |
dcterms.references | Samecka-Cymerman, A., & Kempers, A. J. (2007). Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Archives of environmental contamination and toxicology, 53(2), 198-206. | spa |
dcterms.references | Sen, I., Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the Earth’s surface. Environmental science & technology, 46(16), 8601-8609. | spa |
dcterms.references | Schneider, L., Maher, W. A., Potts, J., Taylor, A. M., Batley, G. E., Krikowa, F., ... & Gruber, B. (2018). Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non-essential metals. Marine pollution bulletin, 131, 468-480. | spa |
dcterms.references | Semlitsch RD, Bridges CM & Welch AM. 2000. Genetic variation ad fitness tradeoff in the tolerance of gray treefrog (Hyla versicolori) tadpoles to the nsecticide carbaryl. Decologia125:19-185. | spa |
dcterms.references | Schoch, S. and Brown, J., 1987. The action of chlorophyllase on chlorophyll–protein complexes. J. Plant Physiol. 129, pp. 242–249. | spa |
dcterms.references | Sculthorpe, The biology of aquatic vascular plants. Königstein: Koeltz Scientific Books, p. 610, 1958. | spa |
dcterms.references | SCHMIDT-MUMM, Capítulo 5: Métodos para el estudio taxonómico de macrófitos acuáticos y palustres, in Manual de Métodos de Limnología, G. Rueda-Delgado, Editor. 2002, Asociación Colombiana de Limnología ACL-Limnos. p. 37-40. Schneider, S., Lawniczak, A., Picińska-Faltynowicz, J., Szoszkiewicz, K. (2012). Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland.Limnologica-Ecology and Management of Inland Waters, 42(3), 204-211. | spa |
dcterms.references | Schuster, P., Krabbenhoft, D., Naftz, D. Cecil, D., Olson, M., Dewild, F., Susong, D., Green, D., Abbott., M., 2002. Atmospheric mercury deposition during the last 270 Years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology 36(11):2303-2310. | spa |
dcterms.references | Salomons W., Főrstner U. 1984. Metals in the hydrocycle. Springer-Verlag, Berlin, 688pp. | spa |
dcterms.references | Song, X., Xu, L., Dai, Y., 2017. Yangtze River: The potential ecological risk of heavy metals in sediment from 1996 to 2012. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, pp. 12030. Srivastava, S., Agrawal, S.B., Mondal, M.K., 2015. A revi Pollut. 205, 33-42. https://doi.org/10.1016/j.envpol.2015.05.010. | spa |
dcterms.references | Sondergaard, M., Johansson, L, Lauridsen, T. L., Jorgensen, T., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(4), 893-908. | spa |
dcterms.references | Tirado, A., González, F., Martínez, F., Wilches, L., Celedón Suárez, J. N. (2015). Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional De Odontología, 11(21). https://doi.org/10.16925/od.v11i21.895 | spa |
dcterms.references | Trivedi, P., Axe, L. (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environmental science & technology, 34(11), 2215-2223. | spa |
dcterms.references | USEPA. 2007a. “Method 3015A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts,” Revision 1. Washington, DC. | spa |
dcterms.references | USEPA. (1991a). Method 200.2. Sample preparation procedure for spectrochemical determination of total recoverable elements, revision 2.3. EPA-600/4-91-010. Washington: United States Environmental Protection Agency | spa |
dcterms.references | USEPA. (1991b). Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues, revision 1.0. EPA-600/4-91- 010. Washington: United States Environmental Protection Agency. | spa |
dcterms.references | Vu, C. T., Lin, C., Yeh, G., Villanueva, M., 2017 Bioaccumulation and potential sources of heavy metal contamination in fsh species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. Int. 24, 19422–19434. https://doi. org/10.1007/s11356-017-9590-4 | spa |
dcterms.references | Wang, Z., Yao, L., Liu, G., Liu, W., 2014. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf. 107, 200–206. https://doi.org/10.1016/j.ecoenv.2014.06.002. | spa |
dcterms.references | Wang, P.F., Geng, N., Wang, C., Qian, J., Hou, J., Qi, N (2016) Evaluating the impact of long term hydrodynamic conditions on the release of metals from contaminated sediments in Taihu Lake, China. J. Environ. Inform. https://doi.org/10.3808/jei. 201500318. | spa |
dcterms.references | Weis J., Weis P., 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30: 685-700. | spa |
dcterms.references | WHO (World Health Organization). 2011 guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda. WHO, Ginebra. | spa |
dcterms.references | Wu M., Wang X., Jia Z., De Schamphelaere Ji D., Li X. y Chen X. (2017). Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method. Sci Rep 7(1):9443. | spa |
dcterms.references | Xing, W., Wu, H., Hao, B., Huang, W., Liu, G., 2013. Bioaccumulation of heavy metals by submerged Macrophytes: looking for hyperaccumulators in Eutrophic Lakes. Environ. Sci. Technol. 47, 4695–4703. https://doi.org/10.1021/es303923w | spa |
dcterms.references | Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological engineering, 120, 274-298. | spa |
dcterms.references | Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2), 456-464. | spa |
dcterms.references | Zibret, G., Van Tonder, D., Zibret, L. (2013). Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environmental science and pollution research, 20(7), 4455-4468. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: