Publicación:
Dinámica del arsénico (As), cadmio (Cd), plomo (Pb), ZINC (Zn) Y mercurio (Hg) humedales de la confluencia de los ríos Cauca y Magdalena, Colombia

dc.audience
dc.contributor.advisorMarrugo Negrete, José Luisspa
dc.contributor.authorBravo Ferro, Eva Melisa
dc.date.accessioned2023-08-28T13:05:19Z
dc.date.available2025-08-08
dc.date.available2023-08-28T13:05:19Z
dc.date.issued2023-04-28
dc.description.abstractEn este estudio se determinaron las concentraciones de cinco elementos potencialmente tóxicos (EPTs) mercurio (Hg-T), plomo (Pb), cadmio (Cd), arsénico total (As-T) y zinc (Zn) en ocho ciénagas de la confluencia de los ríos Cauca y magdalena, su distribución en seis especies de macrófitas (Eichornia crassipes, Neptunia oleracea, Polygonum densiflorum, Paspalum repens, Eichornia azurea y Ludwigia helminthorrhiza) y su concentración en agua y sedimentos, así como también el FBC y FT en las diferentes especies. Las concentraciones de EPTs se trataron de acuerdo con el método EPA 200.2 (USEPA 2007) el caso del agua y se analizaron mediante espectrometría de absorción atómica (APHA 1998). En lo que respecta a los sedimentos fueron procesados siguiendo el método 3051 A (USEPA, 2007) y las macrófitas a través del método EPA 200.3 (USEPA 1991a). Los resultados mostraron una mayor concentración de Zn en agua, sedimentos y macrófitas, la tendencia en concentración siguió el orden decreciente Zn>Cd>As>Pb>Hg en las especies y Zn>Pb>As>Hg>Cd tanto en agua como en sedimentos. La ciénaga la Redonda fue la que registro valores máximos de este elemento (377.45 μg/g sedimento y 211.5 μg/L agua) entre tanto que la especie Ludwigia helminthorrhiza mostro una concentración máxima de 321.83μg/g. Hubo fuertes correlaciones significativas (p < 0.05) entre los EPTs en sedimentos y agua, pero escasas entre estos compartimentos y las especies. En cuanto al FBC y FT en la mayoría de las especies se establecieron resultados análogos entre estos factores solo la especie Neptunia oleracea obtuvo valores de FBC> 1 y TF > 1 para Cd otorgándole la capacidad de fitoextractora.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. INTRODUCCIÓN ........................................................................................ 8spa
dc.description.tableofcontents2. MARCO DE REFERENCIA ................................................................... 10spa
dc.description.tableofcontents2.1 ANTECEDENTES ................................................................ 10spa
dc.description.tableofcontents2.2 MARCO TEÓRICO ................................................ 12spa
dc.description.tableofcontents2.2.1 Elementos potencialmente tóxicos (EPTs) ............................................12spa
dc.description.tableofcontents2.2.2. Elementos esenciales y no esenciales .............................................13spa
dc.description.tableofcontents2.2.3 Contaminación de ecosistemas acuáticos continentales por metales pesados ................................................................................. 16spa
dc.description.tableofcontents2.2.4. Contaminación con elementos potencialmente tóxicos e impactos sobre la biota y ecosistemas de humedales .............................18spa
dc.description.tableofcontents2.2.5 Macrófitas........................................................................................... 20spa
dc.description.tableofcontents2.2.6 Descripciones de las Especies de Macrófitas ................................... 20spa
dc.description.tableofcontents2.2.7. Dinámica de los elementos potencialmente tóxicos en plantas acuáticas............................................................................................... 25spa
dc.description.tableofcontents2.2.8. Factores de Bioconcentración y Traslocación ................................... 26spa
dc.description.tableofcontents3. OBJETIVOS ...................................................................................... 27spa
dc.description.tableofcontents4.1. ÁREA DE ESTUDIO ................................................................. 28spa
dc.description.tableofcontents4.2. Fase de campo.................................................................................... 29spa
dc.description.tableofcontents4.2.1 Colecta de las muestras (macrófitas, agua y sedimentos)............................................................................................30spa
dc.description.tableofcontents4.3. Fase de Laboratorio ................................................................................. 31spa
dc.description.tableofcontents4.4. Control de calidad de los métodos............................................................... 31spa
dc.description.tableofcontents4.5. Análisis de datos ..................................................................................................... 32spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN ......................................................................... 32spa
dc.description.tableofcontents5.1. Composición y abundancia de plantas vasculares acuáticas en ocho ciénagas de la cuenca del Magdalena .............................................. 32spa
dc.description.tableofcontents5.2. Concentraciones de EPTs en las diferentes especies de macrófitas de ocho ciénagas de la confluencia de los ríos Cauca y Magdalena .............................................................................................................. 35spa
dc.description.tableofcontents5.3. Concentraciones de elementos potencialmente tóxicos en agua de ocho ciénagas del Magdalena, Bolívar .................................................. 39spa
dc.description.tableofcontents5.4. Concentraciones de elementos potencialmente tóxicos en sedimentos de 8 ciénagas del Magdalena, Bolívar .............................. 41spa
dc.description.tableofcontents5.5. Factor de Bioconcentración (BAF) y de Translocación (FT) ............................................................................................................... 42spa
dc.description.tableofcontents5.6. Correlación de las concentraciones de elementos potencialmente tóxicos en agua, sedimentos con especies de macrófitas ..................................................................................................... 48spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7759
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsEPTsspa
dc.subject.keywordsMacrophytesspa
dc.subject.keywordsSwampsspa
dc.subject.keywordsCauca riverspa
dc.subject.keywordsMagdalena riverspa
dc.subject.proposalEPTsspa
dc.subject.proposalMacrófitasspa
dc.subject.proposalCiénagasspa
dc.subject.proposalRio Caucaspa
dc.subject.proposalRio Magdalenaspa
dc.titleDinámica del arsénico (As), cadmio (Cd), plomo (Pb), ZINC (Zn) Y mercurio (Hg) humedales de la confluencia de los ríos Cauca y Magdalena, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAboelkassem, A., Alzamel, N. M., Alzain, M. N., Loutfy, N., 2022. Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) PH Raven Physiology and Phytoremediation Performance. Plants, 11(5), 636.spa
dcterms.referencesAchary, M, Satpathy, K, Panigrahi, S., Mohanty, A., Padhi, R, Biswas, S., & Panigrahy, R., 2017. Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control, 72, 232-243.spa
dcterms.referencesAhmed, M., Ali, S., El-Dek, S., & Galal, A. (2013). Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Materials Science and Engineering: B, 178(10), 744-751.spa
dcterms.referencesAhmad, M., Lee, S., Yang, J., Ro, M., Lee, Y., Ok, Y., 2012. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and environmental safety, 79, 225-231.spa
dcterms.referencesAli, H., Khan, E., 2018. Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum Ecol Risk Assess (in press). doi:10.1080/10807039.2018.1438175spa
dcterms.referencesAli., H, Khan., E, Sajad M., 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881spa
dcterms.referencesAli, H., Khan, E., 2018. Trophic transfer, bioaccumulation, andbiomagnification of non-essential hazardous heavy metals and metalloids in food chains/ webs—Concepts and implications for wildlife and human health, Human and Ecological Risk Assessment: An International Journal, DOI: 10.1080/10807039.2018.1469398spa
dcterms.referencesAlipour, H., Pourkhabbaz, A., Hassanpour, M., 2014. Estimation of potential health risks for some metallic elements by consumption of fsh. Water Qual. Expos. Hea. 7, 179–185. https://doi.org/10.1007/s12403-014-0137-3.spa
dcterms.referencesÁlvarez, M., Domini, C., Garrido, M., Lista, A., Fernández, B., 2011. Singlestep chemical extraction procedures and chemometrics for assessment of heavy metal behaviour in sediment samples from the Bahía Blanca estuary, Argentina. J. Soils Sediments 11, 657–666. https://doi.org/10.1007/s11368-011-0350-7.spa
dcterms.referencesAngarita, H., Delgado, B. Wickel, & M. Escobar (2016). Biodiversidad, ecosistemas de humedal y riesgo de inundación: Implicaciones de la expansión hidroeléctrica en la cuenca del río Magdalena. SEI, The Nature Conservancy and USAID fact sheetspa
dcterms.referencesAPHA. (1998). Standard methods for the examination of wáter and wastewater (20th ed.). Washington: American Public Health Association.spa
dcterms.referencesAzzam, A., El-Wakeel, S., Mostafa, B., El-Shahat, M (2016.) Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. 4, 2196–2206. https://doi.org/10.1016/j.jece.2016.03.048.spa
dcterms.referencesBadr, N., Fawzy M., and Al-Qahtani, K. M. (2012). Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil and Evaluation of Plant Removal Ability. World Applied Sciences Journal 16 (9): 1292-1301.spa
dcterms.referencesBai J., Xiao R., Cui B., Zhang K., Wang Q., Liu X., Gao H., Huang L. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Env. Poll. 159: 817-824.spa
dcterms.referencesBeckers F., Rinklebe J., 2017. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology; 47: 693-794.spa
dcterms.referencesBhattacharya, A., Bhattacharya, S., 2016. Unraveling the role of vacancies in the potentially promising thermoelectric clathrates Ba 8 Zn x Ge 46− x− y□ y. Physical Review B, 94(9), 094305.spa
dcterms.referencesBonanno, G. y Cirelli, G. (2017). Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety, 143 (1), 92-101spa
dcterms.referencesBonanno, G. & Lo Giudice, R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639-645.spa
dcterms.referencesBurks, R., Mulderij, G., Gross, E., Jones, I., Jacobsen, L., Jeppesen, E. y Van Donk, E. (2006). Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Wetlands: functioning, biodiversity conservation, and restoration (pp. 37-59). Springer Berlin Heidelbergspa
dcterms.referencesBurton, I., Huq, S., Lim, B., Pilifosova, O., Schipper, E. (2002). From impacts assessment to adaptation priorities: the shaping of adaptation policy. Climate policy, 2(2-3), 145-159.spa
dcterms.referencesBurzynski, M. (1988). The uptake and accumulation of phosphorous and nitrates and the activity of nitrate reductase in cucumber seedlings treated with Pb and Cd. Acta Soc. Bot. Pol. 57, 349– 359.spa
dcterms.referencesCañas, A., Marrugo., J. (2017). Metales pesados en sedimentos de la Cuenca Baja del río Magdalena, Colombia. In 2017spa
dcterms.referencesCeschin S, Zuccarello V, Caneva G (2010) Role of macrophyte communities as bioindicators of water quality: application on the Tiber River basin (Italy). Plant Biosyst 144(3):528–536.spa
dcterms.referencesCeschin, S., Aleffi, M., Bisceglie, S., Savo, V., Zuccarello, V., (2012) Aquatic bryophytes as ecological indicators of water quality in the Tiber basin, Italy. Ecol Indic 14(1):74–81.spa
dcterms.referencesChabukdhara, M., Munjal, A., Nema, A., Gupta, S., Kaushal, R., (2016). Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human and Ecological Risk Assessment: An International Journal, 22(3), 736-752.spa
dcterms.referencesChen, J., Qin, Y., Zhu, Lorenzo., V., Rosen, B. 2013. Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl. Environ. Microbiol. 79: 4493-4505.spa
dcterms.referencesChibuike, G.U., Obiora, S.C., 2014. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. https://doi.org/ 10.1155/2014/752708.spa
dcterms.referencesClemens, S., Ma, J. (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 489–512. https://doi.org/10.1146/annurevarplant-043015-112301spa
dcterms.referencesCortese, B. (2021). Amortiguación de metales pesados en macrófitas y sedimentos como servicio ecosistémico de bañados de desborde fluvial (Doctoral dissertation, Universidad Nacional de La Plata).spa
dcterms.referencesCruz, Á., Marrugo, J., & Calao, C. (2019). Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia. Environmental Science and Pollution Research, 26(11), 10961-10971. https://doi.org/10.1007/s11356-019-04527-1spa
dcterms.referencesCukrowska, E., Tutu, H., Chimuka, L., Mbanga, O. (2017). Mercury Accumulation and Bio-transportation in Wetlands Biota Affected by Gold Mining-Modelling and Remediation.spa
dcterms.referencesDefensoría del pueblo de Colombia., (2015). La minería sin control un enfoque desde la vulneración de los derechos humanos.spa
dcterms.referencesDhir, B., Sharmila, P., Saradhi, P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781.spa
dcterms.referencesDrevnick, P., Cooke, C., Barraza, D., Blais, J., Coale, K., Cumming, B., Wolfe, B. (2016). Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Science of the Total Environment, 568, 1157-1170.spa
dcterms.referencesEbrahimbabaie, P., Meeinkuirt, W., Pichtel, J. (2020). Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility. Journal of Environmental Sciences, 93, 151-163.spa
dcterms.referencesEnamorado, G., Tirado, J., Marrugo, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37), 37005 pp. 1–15.spa
dcterms.referencesEid, E, Shaltout, K., (2014). Monthly variations of trace elements accumulation and distribution in above-and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecological Engineering, 73, 17-25.spa
dcterms.referencesEid, E., Shaltout, K., Al-Sodany, Y., Haroun, S., Galal, T., Ayed, H., Jensen, K. (2020). Seasonal potential of Phragmites australis in nutrient removal to eliminate the eutrophication in Lake Burullus, Egypt. Journal of Freshwater Ecology, 35(1), 135-155.spa
dcterms.referencesEverard, M. y Denny, P., 1985. Flux of lead in submerged plants and its relevance in a freshwater system. Aquat. Bot., 21: 181-193.spa
dcterms.referencesFeng, W., Wang, Z., Xu, H., Zhang, D., Zhang, H., Zhu, W. (2020). Species-specific bioaccumulation of trace metals among fish species from Xincun Lagoon, South China Sea. Scientific reports, 10(1), 1-11.spa
dcterms.referencesFernández R., Albornoz, B., Larsen, K., Najle, R., (2018). Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals. Environmental Earth Sciences, 77(11), 1-8.spa
dcterms.referencesFontalvo, A & Marrugo, J., 2017. Metales pesados en sedimentos de la Cuenca Baja del río Magdalena, Colombia. Memorias III seminario internacional de ciencias ambientales SUE- Caribe. (P 67 – 70). Barranquilla. Recuperado https://es.scribd.com/document/391382169/Metales-en-Riosspa
dcterms.referencesFuentes, F., Pinedo, J., Gutiérrez, E., Marrugo, J., Díez, S., 2021. Heavy metal pollution and toxicity assessment in Mallorquin swamp: A natural protected heritage in the Caribbean Sea, Colombia. Marine Pollution Bulletin, 167(December 2020). https://doi.org/10.1016/j.marpolbul.2021.112271spa
dcterms.referencesGao, J., Sun, X., Jiang, W., Wei, Y., Guo, J., Liu, Y., Zhang, K., 2016. Heavy metals in N. Geng, et al. Environment International 131 (2019) 105015 7 sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China. Environ. Sci. Pollut. Res. 23, 10415–10425. https://doi.org/ 10.1007/s11356-016-6587-3spa
dcterms.referencesGeng, N., Wang, C., Wang, P., Qi, N., Ren, L., 2015. Cadmium accumulation and metallothionein response in the freshwater bivalve Corbicula fluminea under hydrodynamic conditions. Biol. Trace Elem. Res. 165, 222–232. https://doi.org/10.1007/ s12011-015-0266-yspa
dcterms.referencesGeng, N., Wu, Y., Zhang, M., Tsang, D., Rinklebe, J., Xia, Y., Ok, Y. (2019). Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment international, 131, 105015.spa
dcterms.referencesGómez Rodríguez AM, Valderrama Valderrama LT, Rivera-Rondón CA. Comunidades de macrófitas en ríos andinos: composición y relación con factores ambientales. Acta biol. Colomb. 2017;22(1):45-58.spa
dcterms.referencesGuevara, María., Ramírez, L., (2015) Eichhornia crassipes, su invasividad y potencial fitorremediador la granja. Revista de Ciencias de la Vida, vol. 22, núm. 2, pp. 5-11spa
dcterms.referencesGuilizzoni, P. (1991). The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes. Aquatic Botany, 41(1-3), 87-109.spa
dcterms.referencesGuittonny, A., Monnier, Y., Malleret, L., Coulomb, B., Combroux, I., Baumberger, T., Laffont, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Journal of Environmental Management., 147 (1), 108–123.spa
dcterms.referencesHaghnazar, H., Hudson, K., Kumar, V., Pourakbar, M., Mahdavianpour, M., Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285(July), 131446. https://doi.org/10.1016/j.chemosphere.2021.131446spa
dcterms.referencesHerrera, L. F., Sarmiento, G., Romero, F., Botero, P. J., & Berrío, J. C. (2001). Evolución ambiental de la Depresión Momposina (Colombia) desde el Pleistoceno Tardío a los paisajes actuales. Geología Colombiana, 26, 95-121.spa
dcterms.referencesHerrera, L. F., Sarmiento, G., Romero, F., Botero, P. J., & Berrío, J. C. (2001). Evolución ambiental de la Depresión Momposina (Colombia) desde el Pleistoceno Tardío a los paisajes actuales. Geología Colombiana, 26, 95-121.spa
dcterms.referencesHernández, B, Y., Rodríguez, H, Peña, I, Meriño, Y, & Rubio, O. (2019). Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: El tomate. Cultivos Tropicales, 40(3).spa
dcterms.referencesIDEAM y Ministerio de Ambiente y Desarrollo Sostenible 2017. Reducción del riesgo y de la vulnerabilidad frente al cambio climático en la región de La Depresión Momposina en Colombia.spa
dcterms.referencesIslam GMR, Habib MR, Waid JL, et al. 2017. Heavy metal contamination of freshwater prawn (Macrobrachium rosenbergii) and prawn feed in Bangladesh: A market-based study to highlight probable health risks. Chemosphere 170:282–9. doi: 10.1016/j.chemosphere.2016.11.163spa
dcterms.referencesINVEMAR (2004), Informe del Estado de los Ambientes Marinos y Costeros en Colombia, Santa Marta.spa
dcterms.referencesJacob, D., Borchardt, J., Navaratnam, L., Otte, M., & Bezbaruah, A. (2013). Uptake and Translocation of Ti From Nanoparticles in Crops and Wetland Plants. International Journal of Phytoremediation, 15(2), 142-153. https://doi.org/10.1080/15226514.2012.683209spa
dcterms.referencesJamshaid, M., Khan, A. A., Ahmed, K., Saleem, M. (2018). Heavy metal in drinking water its effect on human health and its treatment techniques-a review. Int. J. Biosci, 12(4), 223-240.spa
dcterms.referencesJaved, M., Usmani, N., 2011. Accumulation of heavy metals in fishes: a human health concern. Int J Environ Sci 2(2):671–82. doi:10.6088/ijes.00202020026spa
dcterms.referencesJaved, M., Tanwir, K., Akram, M, Shahid, M., Niazi, N., Lindberg, S. (2019). Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In Cadmium toxicity and tolerance in plants (pp. 495-529). Academic Press.spa
dcterms.referencesRose, M., Fernandes, A, Mortimer D, et al. 2015. Contamination of fish in UK fresh wáter systems: risk assessment for human consumption. Chemosphere 122:183–9. doi:10.1016/j. chemosphere.2014.11.046spa
dcterms.referencesKalisiska Elbieta, Salicki Wiesaw, Mysek PiotrKavetska, Katarzyna M. and Jackowski Andrzej. 2004. Using the Mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Science of the total environment. vol. 320, issues 2-3. pp. 145-61.spa
dcterms.referencesKang, S., Huang, J., Wang, F., Zhang, Q., Zhang, Y., Li, C., Guo, J. (2016). Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental science & technology, 50(6), 2859-2869.spa
dcterms.referencesKambe, T., Nishito, Y., Fukue, K., 2017. Chapter 23—Zinc transporters in health and disease A2. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals (ed. Collins, J. F.) (Academic Press, New York,).spa
dcterms.referencesKayee, J., Bureekul, S., Sompongchaiyakul, P., Wang, X., Das, R. (2021). Sources of atmospheric lead (Pb) after quarter century of phasing outspa
dcterms.referencesKinimo, K. C., Yao, K. M., Marcotte, S., & Trokourey, A. (2018). Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central-southern and southeastern Côte d'Ivoire. Journal of Geochemical Exploration, 190, 265-280.spa
dcterms.referencesKravchenko, J., Lyerly, H. K. (2018). The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carolina Medical Journal, 79(5), 289-300.spa
dcterms.referencesKumari, B., Kumar, V., Sinha, AK, Ahsan, J., Ghosh, AK, Wang, H. y DeBoeck, G. (2016). Toxicología del arsénico en peces y sistemas acuáticos. Cartas de química ambiental, 15 (1), 43–64. https://doi.org/10.1007/s10311-016-0588-9spa
dcterms.referencesLidsky, T., Schneider, J. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126(1), 5-19.spa
dcterms.referencesLin, H., Liu, J., Dong, Y., Ren, K., & Zhang, Y. (2018). Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environmental Science and Pollution Research, 1-10.spa
dcterms.referencesLu, S., Ren, L., Fang, J., Ji, J., Liu, G., Zhang, J., Zhang, H., Luo, R., Lin, K., Fan, R., 2016. Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: a case study of college students in Guangzhou, China. Environ. Sci. Pollut. Res. 23, 8484–8491.spa
dcterms.referencesMbanga, O., Ncube, S., Tutu, H., Chimuka, L., & Cukrowska, E. (2019). Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental monitoring and assessment, 191(3), 1-12spa
dcterms.referencesMedina, K., Montano, Y., (2014) Determinación de bioconcentración y traslocación de metales pesados en el juncus arcticus wild. Y cortaderia rudiuscula Stapf. De áreas contaminadas con l pasivo ambiental minero alianza – ANCASH 2013. Proyecto de título, universidad Nacional Santiago Antúnez de Mayolo.spa
dcterms.referencesMalar, S., Shivendra Vikram, S., JC Favas, P., Perumal, V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths Eichhornia crassipes (Mart.). Bot. Stud. 55, 54. https://doi.org/10.1186/ s40529-014-0054-6spa
dcterms.referencesMajid, S. N., Khwakaram, A. I., Rasul, G. A. M., & Ahmed, Z. H. (2014). Bioaccumulation, Enrichment and Translocation Factors of some Heavy Metals in Typha Angustifolia and Phragmites Australis Species Growing along Qalyasan Stream in Sulaimani City/IKR. Journal of Zankoy Sulaimani-Part A, 16(4).spa
dcterms.referencesManios T. Stentiford E., Millner P. 2003. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with mateliferus water. Ecological engineering. 20(1), 65-74.spa
dcterms.referencesMareri, B., Kitur, E., Obade, P. (2021). Bioaccumulation of zinc, lead, cadmium in water hyacinth, hippo grass and papyrus reed as water quality indicator in River Kisat in Kisumu County, Kenya. African Journal of Pure and Applied Sciences, 2(2), 100-107.spa
dcterms.referencesMarrugo, J., Benitez L., Olivero, J., 2008. Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol. 55:305–316.spa
dcterms.referencesMarrugo, J., Benítez, L., Olivero, L., Gutiérrez, F., (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International journal of environmental health research, 20(6), 451-459.spa
dcterms.referencesMarrugo, J., Marrugo, S., Pinedo, J., Durango, J., Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment, 542, 809-816.spa
dcterms.referencesMarrugo, J., Pinedo, Paternina, Quiroz, y Pacheco, (2018). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 23(S), 7062-7075.spa
dcterms.referencesMcCartney, M., Rebelo, L., Senaratna, S., de Silva, S., 2010. Wetlands, agriculture and poverty reduction. In: IWMI Research Report 137. International Water Management Institute, Colombo, Sri Lanka. 230. (39 pp.).spa
dcterms.referencesMedina, K., Montano, Y., (2014) Determinación de bioconcentración y traslocación de metales pesados en el juncus arcticus wild. Y cortaderia rudiuscula Stapf. De áreas contaminadas con l pasivo ambiental minero alianza – ANCASH 2013. Proyecto de título, universidad Nacional Santiago Antúnez de Mayolo.spa
dcterms.referencesMelignani, E., de Cabo, L., Faggi, A., (2015). Copper uptake by Eichhornia crassipes exposed at high level concentrations. Environmental Science and Pollution Research, 22(11), 8307-8315.spa
dcterms.referencesMéndez. I., González, R., (2020). Expansión de Ludwigia helminthorrhiza (Onagraceae) en Cuba. In Anales del Jardín Botánico de Madrid (Vol. 77, No. 2, p. 7). Real Jardín Botánico.spa
dcterms.referencesMerian, E., Clarkson, T. W. (1991). Metals and their compounds in the environment. Vch.spa
dcterms.referencesMishra, V., Upadhyaya, A, Pandey, S., Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource technology, 99(5), 930-936.spa
dcterms.referencesMitsch, W., Gosselink J., (2007) Wetlands. 4th Edition, John Wiley & Sons, Inc., Hoboken.spa
dcterms.referencesMohamed, A, Castagna, A., Ranieri, A., di Toppi, L., (2012). Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15-22.spa
dcterms.referencesMoriarty F. 1999. Ecotoxicology: The study of pollutants in ecosystems. Academic Press. Third Edition. London.spa
dcterms.referencesNabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509.spa
dcterms.referencesNan, G., Peifang, W., Chao, W., Jun, H., Jin, Q., Lingzhan, M (2016) Mechanisms of cadmium accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea under hydrodynamic conditions. Environ. Pollut. 212, 550–558. https://doi.org/10.1016/j.envpol.2016.01.091.spa
dcterms.referencesNagajyoti, P.C., K.D. Lee and T.V.M. Sreekanth (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8: 199–216.spa
dcterms.referencesNematollahi, M.J., Keshavarzi, B., Zaremoaiedi, F., Rajabzadeh, M.A., Moore, F., 2020. Ecological-health risk assessment and bioavailability of potentially toxic elements (PTEs) in soil and plant around a copper smelter. Environ. Monit. Assess. 192 (10),1–19.spa
dcterms.referencesNgole-Jeme, V.P., Fantke, P., 2017. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE 12, e0172517. http://dx. doi.org/10.1371/journal.pone.0172517spa
dcterms.referencesPalacio, J. (2007). Ecotoxicología Acuática. 1a ed. Medellín, Colombia: Imprenta Universidad de Antioquiaspa
dcterms.referencesParihar, J.K., Parihar, P.K., Pakade, Y.B., Katnoria, J.K., 2021. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environ. Sci. Pollut. Control Ser. 28, 2426–2442.spa
dcterms.referencesPinedo, J., Marrugo, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289-1295.spa
dcterms.referencesP. Trivedi and L. Axe. 2000. “Modeling Cd and Zn sorption to hydrous metal oxides,” Environ. Sci. Technol., vol. 34, no. 11, pp. 2215–2223.spa
dcterms.referencesPirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964.spa
dcterms.referencesPosada et al., 2011. Plantas Acuáticas del Altiplano del Oriente Antioqueño, Colombia. Dirección de Investigación y Desarrollo Universidad Católica de Oriente Rionegro, Antioquiaspa
dcterms.referencesRamos, C., Cárdenas, N., Herrera, Y. (2013). Caracterización de la comunidad de Macrófitas acuáticas en lagunas del Páramo de La Rusia (Boyacá-Colombia). Ciencia en desarrollo, 4(2), 73-82.spa
dcterms.referencesRangel, E., Balagurusamy, N 2015. Bioprospección de bacterias oxidantes de arsenito de suelo de la comarca lagunera. Rev. Chapingo Serie Cienc. Forest. Amb. 21: 41-56. DOI: 10.5154/r.rchscfa.2014.05.024.spa
dcterms.referencesRangel, 2010. Vegetación acuática caracterización inicial. En: J.O. Rangel-Ch. (ed). Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad Ecología y manejo ambiental: 325-339. Corporación Autónoma Regional de los valles del Sinú y del San Jorge-CVS, Universidad Nacional de Colombia, Instituto de Ciencias Naturales. Bogotá D.Cspa
dcterms.referencesRegino et al., 2009. Composición y estructura de las comunidades de plantas vasculares acuáticas asociadas a las ciénagas de María Arriba y San Sebastian, complejo cenagoso del bajo Sinú, Departamento de Córdoba.spa
dcterms.referencesReyes, Y., Vergara, I., Torres, O., Lagos, M. D., & Jiménez, E. E. G. (2016). Contaminación por metales pesados: implicaciones en Salud, ambiente y seguridad alimentaria. Ingeniería Investigación y Desarrollo: I2+ D, 16(2), 66-77.spa
dcterms.referencesRezania, S., Taib, S., Md Din, M.F., Dahalan, F., Kamyab, H., 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 318, 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053spa
dcterms.referencesRinklebe, J., Shaheen, S., Yu, K., 2016. Release of As, Ba, Cd, Cu, Pb, and Sr under predefinite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. In: Geoderma, Integrated Management Strategies for Arsenic and Cadmium in Rice Paddy Environments. 270. pp. 21–32. https://doi.org/10.1016/j.geodermaspa
dcterms.referencesRoesijadi & Robinson, 1994 Metals regulation in aquatic animals; mechanisms of uptake, accumulation and release. In: D.C. Malins amd G.K. Ostrander, editors, Aquatic toxicology (molecular, biochemical and cellular perspectives), Lewis publishers, London. 539 pp.spa
dcterms.referencesROLDAN, G., Fundamentos de Limonología Tropical. 1era Ed. ed. 1992, Medellín, Colombia: Universidad de Antioquia. 529spa
dcterms.referencesRomero., S, Marrugo., J, Arias., J, Hadad., H (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, & Soil Pollution, 216(1-4), 361-373.spa
dcterms.referencesRomero, S., Marrugo, J., Arias, J., Hadad, H., Maine, M., (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, & Soil Pollution, 216(1), 361-373.spa
dcterms.referencesSalisbury, F. B., & Ross, C. W. (1992). Plant Physiology. 4th. Edn. Belmont, CA. Wadsworth. pp 23-52.spa
dcterms.referencesSánchez-López, A.S., Carrillo-González, R., González-Chávez, M. del C.A., Rosas-Saito, G.H., Vangronsveld, J., 2015. Phytobarriers: plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ. Pollut. 205, 33–42. https://doi.org/10.1016/j.envpol.2015.05.010.spa
dcterms.referencesSamecka-Cymerman, A., & Kempers, A. J. (2007). Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Archives of environmental contamination and toxicology, 53(2), 198-206.spa
dcterms.referencesSen, I., Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the Earth’s surface. Environmental science & technology, 46(16), 8601-8609.spa
dcterms.referencesSchneider, L., Maher, W. A., Potts, J., Taylor, A. M., Batley, G. E., Krikowa, F., ... & Gruber, B. (2018). Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non-essential metals. Marine pollution bulletin, 131, 468-480.spa
dcterms.referencesSemlitsch RD, Bridges CM & Welch AM. 2000. Genetic variation ad fitness tradeoff in the tolerance of gray treefrog (Hyla versicolori) tadpoles to the nsecticide carbaryl. Decologia125:19-185.spa
dcterms.referencesSchoch, S. and Brown, J., 1987. The action of chlorophyllase on chlorophyll–protein complexes. J. Plant Physiol. 129, pp. 242–249.spa
dcterms.referencesSculthorpe, The biology of aquatic vascular plants. Königstein: Koeltz Scientific Books, p. 610, 1958.spa
dcterms.referencesSCHMIDT-MUMM, Capítulo 5: Métodos para el estudio taxonómico de macrófitos acuáticos y palustres, in Manual de Métodos de Limnología, G. Rueda-Delgado, Editor. 2002, Asociación Colombiana de Limnología ACL-Limnos. p. 37-40. Schneider, S., Lawniczak, A., Picińska-Faltynowicz, J., Szoszkiewicz, K. (2012). Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland.Limnologica-Ecology and Management of Inland Waters, 42(3), 204-211.spa
dcterms.referencesSchuster, P., Krabbenhoft, D., Naftz, D. Cecil, D., Olson, M., Dewild, F., Susong, D., Green, D., Abbott., M., 2002. Atmospheric mercury deposition during the last 270 Years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology 36(11):2303-2310.spa
dcterms.referencesSalomons W., Főrstner U. 1984. Metals in the hydrocycle. Springer-Verlag, Berlin, 688pp.spa
dcterms.referencesSong, X., Xu, L., Dai, Y., 2017. Yangtze River: The potential ecological risk of heavy metals in sediment from 1996 to 2012. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, pp. 12030. Srivastava, S., Agrawal, S.B., Mondal, M.K., 2015. A revi Pollut. 205, 33-42. https://doi.org/10.1016/j.envpol.2015.05.010.spa
dcterms.referencesSondergaard, M., Johansson, L, Lauridsen, T. L., Jorgensen, T., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(4), 893-908.spa
dcterms.referencesTirado, A., González, F., Martínez, F., Wilches, L., Celedón Suárez, J. N. (2015). Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional De Odontología, 11(21). https://doi.org/10.16925/od.v11i21.895spa
dcterms.referencesTrivedi, P., Axe, L. (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environmental science & technology, 34(11), 2215-2223.spa
dcterms.referencesUSEPA. 2007a. “Method 3015A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts,” Revision 1. Washington, DC.spa
dcterms.referencesUSEPA. (1991a). Method 200.2. Sample preparation procedure for spectrochemical determination of total recoverable elements, revision 2.3. EPA-600/4-91-010. Washington: United States Environmental Protection Agencyspa
dcterms.referencesUSEPA. (1991b). Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues, revision 1.0. EPA-600/4-91- 010. Washington: United States Environmental Protection Agency.spa
dcterms.referencesVu, C. T., Lin, C., Yeh, G., Villanueva, M., 2017 Bioaccumulation and potential sources of heavy metal contamination in fsh species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. Int. 24, 19422–19434. https://doi. org/10.1007/s11356-017-9590-4spa
dcterms.referencesWang, Z., Yao, L., Liu, G., Liu, W., 2014. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf. 107, 200–206. https://doi.org/10.1016/j.ecoenv.2014.06.002.spa
dcterms.referencesWang, P.F., Geng, N., Wang, C., Qian, J., Hou, J., Qi, N (2016) Evaluating the impact of long term hydrodynamic conditions on the release of metals from contaminated sediments in Taihu Lake, China. J. Environ. Inform. https://doi.org/10.3808/jei. 201500318.spa
dcterms.referencesWeis J., Weis P., 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30: 685-700.spa
dcterms.referencesWHO (World Health Organization). 2011 guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda. WHO, Ginebra.spa
dcterms.referencesWu M., Wang X., Jia Z., De Schamphelaere Ji D., Li X. y Chen X. (2017). Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method. Sci Rep 7(1):9443.spa
dcterms.referencesXing, W., Wu, H., Hao, B., Huang, W., Liu, G., 2013. Bioaccumulation of heavy metals by submerged Macrophytes: looking for hyperaccumulators in Eutrophic Lakes. Environ. Sci. Technol. 47, 4695–4703. https://doi.org/10.1021/es303923wspa
dcterms.referencesYadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological engineering, 120, 274-298.spa
dcterms.referencesYoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2), 456-464.spa
dcterms.referencesZibret, G., Van Tonder, D., Zibret, L. (2013). Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environmental science and pollution research, 20(7), 4455-4468.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Autorización.pdf
Tamaño:
409.72 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Eva Bravo Ferro.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones