Publicación: Aplicación de las ecuaciones diferenciales con retardos, para modelar y simular numéricamente la propagación del virus SARS-CoV-2
dc.contributor.advisor | Arenas Tawil, Abraham J. | spa |
dc.contributor.author | Miranda Guzmán, Julio César | |
dc.date.accessioned | 2023-08-30T01:15:06Z | |
dc.date.available | 2024-08-27 | |
dc.date.available | 2023-08-30T01:15:06Z | |
dc.date.issued | 2023-08-29 | |
dc.description.abstract | Se propone un modelo en ecuaciones diferenciales parciales con retardo discreto, específicamente, un sistema de ecuaciones en derivadas parciales reacción-difusión con retardo temporal (SIAR compartimental), con el cual se busca analizar de una forma más realista la dinámica espacio-temporal de virus causantes de epidemias, como en el caso del virus SARSCoV-2. Se ha realizado un estudio analítico, donde se demostró la existencia de soluciones de ondas viajeras en un dominio acotado, usando el método da las soluciones superiores e inferiores acopladas mostrado en [17, 18, 20], de igual forma se realizó el análisis para determinar la existencia y estabilidad asintótica local de los estados de equilibrios endémico (Ee) y libre de enfermedad (E0). Además hicimos una breve introducción numérica del modelo, con la cual se ilustraron los resultados teóricos, observando en cada caso la convergencia de las soluciones hacia los estados estacionarios del sistema, con lo cual se observa numéricamente la estabilidad del modelo. También se observa que el retardo y la difusión influyen en el comportamiento de las ondas viajeras. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Matemáticas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Introducción | spa |
dc.description.tableofcontents | Marco Teórico | spa |
dc.description.tableofcontents | Modelos clásicos en epidemiología | spa |
dc.description.tableofcontents | Ecuaciones diferenciales ordinarias con retardos | spa |
dc.description.tableofcontents | Ecuación reacción-difusión con retardo | spa |
dc.description.tableofcontents | Modelo | spa |
dc.description.tableofcontents | Existencia de estados de equilibrio | spa |
dc.description.tableofcontents | Existencia y unicidad de la solución del Modelo | spa |
dc.description.tableofcontents | Estabilidad local de los estados de equilibrio | spa |
dc.description.tableofcontents | Simulación numérica para el Modelo | spa |
dc.description.tableofcontents | Conclusión | spa |
dc.description.tableofcontents | A. Teoría de EDR | spa |
dc.description.tableofcontents | A.1. Ecuaciones diferenciales con retardo | spa |
dc.description.tableofcontents | A.1.1. Teorema de existencia y unicidad | spa |
dc.description.tableofcontents | A.1.2. EDR con retardo discreto | spa |
dc.description.tableofcontents | A.1.3. Definición de estabilidad | spa |
dc.description.tableofcontents | A.2. Análisis Cualitativo de las EDR | spa |
dc.description.tableofcontents | A.2.1. Sistemas lineales autónomos | spa |
dc.description.tableofcontents | A.2.2. La ecuación característica | spa |
dc.description.tableofcontents | A.3. Ecuación escalar para el caso de una EDR con un retardo discreto | spa |
dc.description.tableofcontents | Referencias bibliográficas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7786 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Matemáticas | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | COVID-19 | eng |
dc.subject.keywords | Reaction-diffusion system | eng |
dc.subject.keywords | SIAR model | eng |
dc.subject.keywords | Partial differential equations with delay | eng |
dc.subject.keywords | EDPR | eng |
dc.subject.keywords | Traveling waves | eng |
dc.subject.keywords | Equilibrium states | eng |
dc.subject.keywords | Equilibrium stability | eng |
dc.subject.keywords | Numerical simulations | eng |
dc.subject.keywords | EDR | eng |
dc.subject.proposal | COVID-19 | spa |
dc.subject.proposal | Sistema reacción-difusión | spa |
dc.subject.proposal | Modelo SIAR | spa |
dc.subject.proposal | Ecuaciones diferenciales parciales con retardo | spa |
dc.subject.proposal | EDPR | spa |
dc.subject.proposal | Ondas viajeras | spa |
dc.subject.proposal | Estados de equilibrio | spa |
dc.subject.proposal | Estabilidad de los equilibrios | spa |
dc.subject.proposal | Simulaciones numéricas | spa |
dc.subject.proposal | Modelo compartimental | spa |
dc.subject.proposal | Compartmental model | spa |
dc.subject.proposal | EDR | spa |
dc.title | Aplicación de las ecuaciones diferenciales con retardos, para modelar y simular numéricamente la propagación del virus SARS-CoV-2 | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Jonathan Adam Sherratt and JD Murray. Mathematical analysis of a basic model for epidermal wound healing. Journal of mathematical biology, 29:389–404, 1991. | spa |
dcterms.references | [2] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772):700–721, 1927. | spa |
dcterms.references | [3] Alison P Galvani and Robert M May. Dimensions of superspreading. Nature, 438(7066):293–295, 2005. | spa |
dcterms.references | [4] Nikola˘ı Azbelev. Stability of differential equations with aftereffect. | spa |
dcterms.references | [5] Alfredo Bellen and Marino Zennaro. Numerical methods for delay differential equations. Numerical Mathematics and Scie, 2013. | spa |
dcterms.references | [6] Kenneth L Cooke and Rendiconti Del Circolo Matematico Di. Differentialdifference equations. The Bellman Continuum: A Collection of the Works of Richard E. Bellman, 45:71, 1986 | spa |
dcterms.references | [7] Odo Diekmann, Stephan A Van Gils, Sjoerd MV Lunel, and Hans-Otto Walther. Delay equations: functional-, complex-, and nonlinear analysis, volume 110. Springer Science & Business Media, 201 | spa |
dcterms.references | [8] T Erneux. Surveys and tutorials in the applied mathematical sciences. Applied Delay Differential Equations, 2009. | spa |
dcterms.references | [9] Jack K Hale. Functional differential equations. In Analytic Theory of Differential Equations: The Proceedings of the Conference at Western Michigan University, Kalamazoo, from 30 April to 2 May 1970, pages 9–22. Springer, 2006. | spa |
dcterms.references | [10] Jack K Hale and Sjoerd M Verduyn Lunel. Introduction to functional differential equations, volume 99. Springer Science & Business Media, 2013. | spa |
dcterms.references | [11] Vladimir Kolmanovskii and Anatolii Myshkis. Applied theory of functional differential equations, volume 85. Springer Science & Business Media, 2012. | spa |
dcterms.references | [12] Yang Kuang. Delay differential equations: with applications in population dynamics. Academic press, 1993 | spa |
dcterms.references | [13] Wim Michiels and Silviu-Iulian Niculescu. Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM, 2007. | spa |
dcterms.references | [14] Hal Smith. An introduction to delay differential equations with applications to the life sciences. springer, 2011 | spa |
dcterms.references | [15] Ovide Arino, Moulay Lhassan Hbid, and E Ait Dads. Delay Differential Equations and Applications: Proceedings of the NATO Advanced Study Institute held in Marrakech, Morocco, 9-21 September 2002, volume 205. Springer Science & Business Media, 2007. | spa |
dcterms.references | [16] Canrong Tian and Zhigui Lin. Traveling wave solutions for delayed reactiondiffusion systems. arXiv preprint arXiv:1007.3429, 2010. | spa |
dcterms.references | [17] JianhongWu and Xingfu Zou. Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations | spa |
dcterms.references | [18] Zhigui Lin, Michael Pedersen, and Canrong Tian. Traveling wave solutions for reaction–diffusion systems. Nonlinear Analysis: Theory, Methods & Applications, 73(10):3303–3313, 2010 | spa |
dcterms.references | [19] Zhi-Xian Yu and Rong Yuan. Traveling waves of delayed reaction–diffusion systems with applications. Nonlinear Analysis: Real World Applications, 12(5):2475– 2488, 2011. | spa |
dcterms.references | [20] Jing Yang, Siyang Liang, and Yi Zhang. Travelling waves of a delayed sir epidemic model with nonlinear incidence rate and spatial diffusion. PLoS One, 6(6):e21128, 2011. | spa |
dcterms.references | [21] Walter Rudin. Principles of mathematical analysis | spa |
dcterms.references | [22] Eberhard Zeidler and Peter RWadsack. Nonlinear functional analysis and its applications: Fixed-point theorems/transl. by Peter R. Wadsack. Springer-Verlag, 1993 | spa |
dcterms.references | [23] Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al. Report 9: Impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand. 2020. | spa |
dcterms.references | [24] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato Casagrandi, and Andrea Rinaldo. Spread and dynamics of the covid-19 epidemic in italy: Effects of emergency containment measures. Proceedings of the National Academy of Sciences, 117(19):10484–10491, 2020. | spa |
dcterms.references | [25] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo, Angela Di Matteo, and Marta Colaneri. Modelling the covid-19 epidemic and implementation of population-wide interventions in italy. Nature medicine, 26(6):855–860, 2020 | spa |
dcterms.references | [26] Tailei Zhang and Zhidong Teng. Global asymptotic stability of a delayed seirs epidemic model with saturation incidence. Chaos, Solitons & Fractals, 37(5):1456– 1468, 2008 | spa |
dcterms.references | [27] Alex Viguerie, Guillermo Lorenzo, Ferdinando Auricchio, Davide Baroli, Thomas JR Hughes, Alessia Patton, Alessandro Reali, Thomas E Yankeelov, and Alessandro Veneziani. Simulating the spread of covid-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (seird) model with heterogeneous diffusion. Applied Mathematics Letters, 111:106617, 2021. ( | spa |
dcterms.references | [28] Eduardo Hernández and Sergei Trofimchuk. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral kpp–fisher equation. Journal of Dynamics and Differential Equations, 32:921–939, 2020 | spa |
dcterms.references | [29] Fred Brauer. Absolute stability in delay equations. Journal of differential equations, 69(2):185–191, 1987 | spa |
dcterms.references | [30] AK Aziz. Ordinary differential equations (wolfgang walter). SIAM REVIEW, 41:610–610, 1999 | spa |
dcterms.references | [31] Jerrold E Marsden and Michael J Hoffman. Basic complex analysis. Macmillan, 1999. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Tesis.pdf
- Tamaño:
- 1.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo principal
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación.pdf
- Tamaño:
- 303.27 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización diligenciada y firmada
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: