Publicación: Concentraciones de metales pesados en productos agropecuarios en la región de La de Mojana: evaluación del riesgo en la salud humana
dc.contributor.advisor | Marrugo Negrete, José Luis | |
dc.contributor.author | Montiel-Díaz, Yesit Felipe | |
dc.date.accessioned | 2021-12-01T22:13:16Z | |
dc.date.available | 2021-12-01T22:13:16Z | |
dc.date.issued | 2021-12-01 | |
dc.description.abstract | En la región de la Mojana se ha evidenciado una seria amenaza a la seguridad alimentaria debido a la contaminación por metales pesados, que se ha evidenciado en suelos, aguas y sedimentos y ha llegado a contaminar productos agropecuarios como el arroz y pescado. Se propuso evaluar las concentraciones y el riesgo para la salud humana de metales pesados (Mercurio, Plomo, Arsénico y Cadmio) en productos alimenticios consumidos en la región de La Mojana (Colombia). Se evaluaron factores asociados al consumo de productos alimenticios a través de una encuesta incluyendo datos socioeconómicos, y frecuencia de consumo de alimentos. Se colectaron 7.645 muestras de los productos alimenticios cereales, carnes, frutas, hortalizas, leche, y tubérculos. La concentración de mercurio se determinó mediante un analizador directo de mercurio (Mylestone DMA Tri Cell). La concentración de arsénico se cuantificó con el método de espectrometría de absorción atómica con generador de hidruros (HGAAS). La concentración de cadmio y plomo fueron cuantificada con espectroscopía de absorción atómica con horno de grafito (GFAAS). El orden en función de las medias de concentraciones de metales pesados fue Pb=635.25, As 179.87, Cd=57.19 y Hg=19.52 en productos alimenticios. Las hortalizas presentan una tendencia a mayores concentraciones de metales pesados estudiados frente al resto de los productos alimenticios. | spa |
dc.description.abstract | In the region of La Mojana, a serious threat to food security has been evidenced due to contamination by heavy metals, which has been evidenced in soils, water and sediments and has come to contaminate agricultural products such as rice and fish. It was proposed to evaluate the concentrations and the risk to human health of heavy metals (Mercury, Lead, Arsenic and Cadmium) in food products consumed in the region of La Mojana (Colombia). Factors associated with the consumption of food products were evaluated through a survey including socioeconomic data, and frequency of food consumption. 7,645 samples of cereal food products, meats, fruits, vegetables, milk, and tubers were collected. Mercury concentration was determined using a direct mercury analyzer (Mylestone DMA Tri Cell). The arsenic concentration was quantified with the hydride generator atomic absorption spectrometry (HGAAS) method. The concentration of cadmium and lead were quantified with graphite furnace atomic absorption spectroscopy (GFAAS). The order as a function of the mean concentrations of heavy metals was Pb = 635.25, As 179.87, Cd = 57.19 and Hg = 19.52 in food products. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. RESUMEN ...................................................................................................9 | spa |
dc.description.tableofcontents | 2. ABSTRACT ...............................................................................................10 | spa |
dc.description.tableofcontents | 3. INTRODUCCIÓN .......................................................................................11 | spa |
dc.description.tableofcontents | 4. OBJETIVOS ...............................................................................................13 | spa |
dc.description.tableofcontents | 4.1. Objetivo general .........................................................................................13 | spa |
dc.description.tableofcontents | 4.2 Objetivos específicos ..................................................................................13 | spa |
dc.description.tableofcontents | 5. MARCO REFERENCIAL ............................................................................14 | spa |
dc.description.tableofcontents | 5.1 Antecedentes ........................................................................................14 | spa |
dc.description.tableofcontents | 5.2 Metales pesados...................................................................................16 | spa |
dc.description.tableofcontents | 5.3 Toxicología de metales pesados ...........................................................27 | spa |
dc.description.tableofcontents | 6. MATERIALES Y MÉTODOS ......................................................................30 | spa |
dc.description.tableofcontents | 6.1 Tipo de estudio ........................................................................................30 | spa |
dc.description.tableofcontents | 6.2 Área de estudio ........................................................................................30 | spa |
dc.description.tableofcontents | 6.3 Caracterización de factores asociados al consumo de alimentos agropecuarios ...............................................................................................31 | spa |
dc.description.tableofcontents | 6.4 Criterios de selección para la población de la región de la Mojana. .........32 | spa |
dc.description.tableofcontents | 6.5 Concentraciones de los metales pesados en matrices de alimentos agropecuarios ................................................................................................33 | spa |
dc.description.tableofcontents | 6.6 Determinación de las concentraciones de mercurio, plomo, arsénico y cadmio en matrices ........................................................................................33 | spa |
dc.description.tableofcontents | 6.7 Control de calidad del método evaluado ..................................................34 | spa |
dc.description.tableofcontents | 6.8 Evaluación del nivel de riesgo por exposición a mercurio total, plomo, arsénico y cadmio. .........................................................................................35 | spa |
dc.description.tableofcontents | 6.9 Consideraciones éticas ............................................................................36 | spa |
dc.description.tableofcontents | 6.10 Procesamiento y análisis de los datos....................................................37 | spa |
dc.description.tableofcontents | 7. RESULTADOS Y DISCUSIÓN ..........................................................................38 | spa |
dc.description.tableofcontents | 7.1 Caracterización de algunos factores asociados al consumo de los alimentos y su relación con la exposición a metales pesados en habitantes de la Mojana Colombiana. .................................................38 | spa |
dc.description.tableofcontents | 7.2 Determinación de concentraciones de los metales pesados (Hg, As, Pb y Cd) en productos alimenticios por los habitantes de la Mojana Colombiana. .45 | spa |
dc.description.tableofcontents | 7.3 Determinación del riesgo potencial de la salud humana por consumo de los alimentos contaminados metales pesados (Hg, As, Pb y Cd) en habitantes de la Mojana Colombiana. .................................................49 | spa |
dc.description.tableofcontents | 8. CONCLUSIONES ......................................................................................57 | spa |
dc.description.tableofcontents | 9. REFERENCIAS BIBLIOGRÁFICAS ...........................................................59 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4722 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Potentially toxic elements | eng |
dc.subject.keywords | Environmental pollution | eng |
dc.subject.keywords | Human health | eng |
dc.subject.keywords | Colombia | eng |
dc.subject.proposal | Elementos potencialmente tóxicos | spa |
dc.subject.proposal | Contaminación ambiental | spa |
dc.subject.proposal | Salud humana | spa |
dc.subject.proposal | Colombia | spa |
dc.title | Concentraciones de metales pesados en productos agropecuarios en la región de La de Mojana: evaluación del riesgo en la salud humana | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abbasi, H. et al. (2020) ‘Quantification of heavy metals and health risk assessment in processed fruits’ products’, Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2020.10.020. | spa |
dcterms.references | Afonne, O. J. and Ifediba, E. C. (2020) ‘Heavy metals risks in plant foods – need to step up precautionary measures’, Current Opinion in Toxicology. doi: 10.1016/j.cotox.2019.12.006. | spa |
dcterms.references | Aguilera-Díaz, M. M. (2004) ‘La Mojana : riqueza natural y potencial económico’, Documentos de Trabajo Sobre Economía Regional y Urbana ; No. 48, (48). Available at: http://repositorio.banrep.gov.co/handle/20.500.12134/3204. | spa |
dcterms.references | Amer, M. M. et al. (2019) ‘Exposure assessment of heavy metal residues in some Egyptian fruits’, Toxicology Reports. doi: 10.1016/j.toxrep.2019.06.007. | spa |
dcterms.references | Antoniadis, V. et al. (2019) ‘Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece’, Environment International. doi: 10.1016/j.envint.2018.12.053. | spa |
dcterms.references | Arruda-Neto, J. D. T. et al. (2010) ‘Study of metals transfer from environment using teeth as biomonitor’, Environment International. doi: 10.1016/j.envint.2009.12.003. | spa |
dcterms.references | ATSDR (2012) ‘Public Health Statement for Cadmium’, Public Health Statement. | spa |
dcterms.references | Berg, T., Fjeld, E. and Steinnes, E. (2006) ‘Atmospheric mercury in Norway: Contributions from different sources’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2005.09.059. | spa |
dcterms.references | Berkowitz, B., Dror, I. and Yaron, B. (2014) Contaminant geochemistry: Interactions and transport in the subsurface environment: Second edition, Contaminant Geochemistry: Interactions and Transport in the Subsurface Environment: Second Edition. doi: 10.1007/978-3-642-54777-5. | spa |
dcterms.references | Bi, C. et al. (2018) ‘Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2017.11.177. | spa |
dcterms.references | Blas, E. and Kurup, A. S. (2010) ‘Equity, social determinants and public health programmes’, Who. | spa |
dcterms.references | Bolte, G., Tamburlini, G. and Kohlhuber, M. (2010) ‘Environmental inequalities among children in Europe - Evaluation of scientific evidence and policy implications’, European Journal of Public Health. doi: 10.1093/eurpub/ckp213. | spa |
dcterms.references | Bone, S. E. et al. (2007) ‘Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?’, Environmental Science and Technology. doi: 10.1021/es0622453. | spa |
dcterms.references | Bookman, R. et al. (2008) ‘Local to regional emission sources affecting mercury fluxes to New York lakes’, Atmospheric Environment. doi: 10.1016/j.atmosenv.2008.03.045. | spa |
dcterms.references | BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA) (2013) ‘Resolução RDC no 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos’, Diário Oficial da República Federativa do Brasil. | spa |
dcterms.references | Briffa, J., Sinagra, E. and Blundell, R. (2020) ‘Heavy metal pollution in the environment and their toxicological effects on humans’, Heliyon. doi:10.1016/j.heliyon.2020.e04691. | spa |
dcterms.references | Caggiano, R. et al. (2005) ‘Metal levels in fodder, milk, dairy products, and tissues sampled in ovine farms of Southern Italy’, Environmental Research. doi: 10.1016/j.envres.2004.11.002. | spa |
dcterms.references | Calao, C. R. and Marrugo, J. L. (2015) ‘Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013’, Biomedica. doi: 10.7705/biomedica.v35i0.2392. | spa |
dcterms.references | Chen, M. et al. (2019) ‘Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China’, Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2019.07.029. | spa |
dcterms.references | CODEX ALIMENTARIUS (2013) ‘Norma General para los aditivos alimentarios’, Journal of Chemical Information and Modeling. doi: 10.1017/CBO9781107415324.004. | spa |
dcterms.references | Crout, N. M. J. et al. (2004) ‘The transfer of 73As, 109Cd and 203Hg to the milk and tissues of dairy cattle’, Journal of Agricultural Science. doi: 10.1017/S0021859604004186. | spa |
dcterms.references | Csuros, C. and Csuros, M. (2002) ‘Graphite Furnace Atomic Absorption Spectrometry’, in Environmental Sampling and Analysis for Metals. doi: 10.1201/9781420032345.ch9. | spa |
dcterms.references | Domingo, J. L. (1994) ‘Metal-induced developmental toxicity in mammals: A review’, Journal of Toxicology and Environmental Health. doi: 10.1080/15287399409531868. | spa |
dcterms.references | Echeverry, G. et al. (2015) ‘Valoración del riesgo en salud en un grupo de población de Cali , Colombia , por exposición a plomo , cadmio , mercurio , de agua potable y alimentos’, Biomédica, 35 (2), pp. 110–119. doi:http://dx.doi.org/10.7705/biomedica.v35i0.2464. | spa |
dcterms.references | EFSA (2010) ‘Scientific Opinion on Arsenic in Food’, EFSA Journal. doi: 10.2903/j.efsa.2009.1351. | spa |
dcterms.references | Eid, A. and Zawia, N. (2016) ‘Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain’, NeuroToxicology. doi: 10.1016/j.neuro.2016.04.006. | spa |
dcterms.references | El-Kady, A. A. and Abdel-Wahhab, M. A. (2018) ‘Occurrence of trace metals in foodstuffs and their health impact’, Trends in Food Science and Technology. doi: 10.1016/j.tifs.2018.03.001. | spa |
dcterms.references | Environmental Protection Agency USEPA (1998) ‘Method 7010: Graphite Furnace Atomic Absorption Spectrophotometry’, US Environmental Protection Agency. doi: 10.1104/pp.125.4.2154. | spa |
dcterms.references | Epa, U. S. (2009) ‘Arsenic, inorganic (CASRN 7440-38-2)’, Health (San Francisco). | spa |
dcterms.references | Ercilla-Montserrat, M. et al. (2018) ‘A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona)’, Journal of Cleaner Production. doi: 10.1016/j.jclepro.2018.05.183. | spa |
dcterms.references | Evans, G. W. and Kantrowitz, E. (2002) ‘Socioeconomic Status and Health: The Potential Role of Environmental Risk Exposure’, Annual Review of Public Health. doi: 10.1146/annurev.publhealth.23.112001.112349. | spa |
dcterms.references | Fang, B. and Zhu, X. (2014) ‘High content of five heavy metals in four fruits: Evidence from a case study of pujiang county, zhejiang province, china’, Food Control. doi: 10.1016/j.foodcont.2013.10.039. | spa |
dcterms.references | FAO, FIDA, UNICEF, PMA, O. (2019) El estado de la seguridad alimentaria y la nutrición en el mundo 2019. Protegerse frente a la desaceleración y el debilitamientode la economía., Informe. Roma. Available at: http://www.fao.org/3/ca5162es/ca5162es.pdf%0Ahttp://www.fao.org/publications/es%0Ahttp://www.fao.org/3/a-I7695s.pdf. | spa |
dcterms.references | FAO/WHO - Food and Agriculture Organization of the United Nations / World Health Organization (2016) ‘Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos.’, Codex Stan 193-1995. | spa |
dcterms.references | Figueroa, R. et al. (2017) ‘Condición socioeconómica, patrones de alimentación y exposición a metales pesados en mujeres en edad fértil de Cali, Colombia’, Biomedica. doi: 10.7705/biomedica.v34i2.3286. | spa |
dcterms.references | Filippini, T. et al. (2019) ‘Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population’, Exposure and Health. doi: 10.1007/s12403-019-00324-w. | spa |
dcterms.references | Flora, S. J. S. (2015) Handbook of Arsenic Toxicology, Handbook of Arsenic Toxicology. doi: 10.1016/C2013-0-08322-3. | spa |
dcterms.references | Fox, N. and Hunn, A. (2009) ‘Sampling and Sample Size Calculation’, The NIHR RDS for East Midlands. | spa |
dcterms.references | Friberg, L., Piscator, M. and Nordberg, G. (2018) Cadmium in the environment, Cadmium in the Environment. doi: 10.1201/9781351070379. | spa |
dcterms.references | Fuentes-Gandara, F. et al. (2018) ‘Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea’, Environmental Geochemistry and Health. doi: 10.1007/s10653-016-9896-z. | spa |
dcterms.references | González, N. et al. (2019) ‘Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food’, Food and Chemical Toxicology. doi: 10.1016/j.fct.2019.01.021. | spa |
dcterms.references | Gracia H., L., Marrugo N., J. and Alvis R., E. (2010) ‘Contaminación por mercurio en humanos y peces en el municipio de Ayapel, Córdoba, Colombia, 2009’, Facultad Nacional de Salud Pública: El escenario para la salud pública desde la ciencia. | spa |
dcterms.references | Guo, G. et al. (2018) ‘Accumulation of as, cd, and pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment’, International Journal of Environmental Research and Public Health. doi: 10.3390/ijerph15112601. | spa |
dcterms.references | Gustin, M. S. et al. (2000) ‘Assessing the contribution of natural sources to regional atmospheric mercury budgets’, Science of the Total Environment. doi: 10.1016/S0048-9697(00)00556-8. | spa |
dcterms.references | Gustin, M. S. (2003) ‘Are mercury emissions from geologic sources significant? A status report’, in Science of the Total Environment. doi: 10.1016/S0048-9697(02)00565-X. | spa |
dcterms.references | Gustin, M. S., Lindberg, S. E. and Weisberg, P. J. (2008) ‘An update on the natural sources and sinks of atmospheric mercury’, Applied Geochemistry. doi: 10.1016/j.apgeochem.2007.12.010. | spa |
dcterms.references | Han, Z. et al. (2017) ‘Heavy metal contamination and risk assessment of human exposure near an e-waste processing site’, Acta Agriculturae Scandinavica Section B: Soil and Plant Science. doi: 10.1080/09064710.2016.1229016. | spa |
dcterms.references | Heshmati, A. et al. (2020) ‘Concentration and risk assessment of potentially toxic elements, lead and cadmium, in vegetables and cereals consumed in western Iran’, Journal of Food Protection. doi: 10.4315/0362-028X.JFP-19-312. | spa |
dcterms.references | Hughes, M. F. et al. (2011) ‘Arsenic exposure and toxicology: A historical perspective’, Toxicological Sciences. doi: 10.1093/toxsci/kfr184. | spa |
dcterms.references | IARC (2018) ‘List of Classifications by cancer sites with sufficient or limited evidencein humans, Volumes 1 to 123’, IARC Monograpghs. | spa |
dcterms.references | Igbiri, S. et al. (2018) ‘Edible Mushrooms from Niger Delta, Nigeria with Heavy Metal Levels of Public Health Concern: A Human Health Risk Assessment’, Recent Patents on Food, Nutrition & Agriculture. doi: 10.2174/2212798409666171129173802. | spa |
dcterms.references | Jiang, G.-B., Shi, J.-B. and Feng, X.-B. (2006) ‘Mercury Pollution in China’, Environmental Science & Technology. doi: 10.1021/es062707c. | spa |
dcterms.references | Khan, Z. I. et al. (2010) ‘Assessment of chromium concentrations in soil-plant-animal continuum: Possible risk for grazing cattle’, Pakistan Journal of Botany. | spa |
dcterms.references | Lim, S. et al. (2015) ‘Disparities in children’s blood lead and mercury levels according to community and individual socioeconomic positions’, International Journal of Environmental Research and Public Health. doi: 10.3390/ijerph120606232. | spa |
dcterms.references | Luo, C. et al. (2011) ‘Heavy metal contamination in soils and vegetables near an e-waste processing site, south China’, Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2010.11.024. | spa |
dcterms.references | Mandal, B. K. and Suzuki, K. T. (2002) ‘Arsenic round the world: A review’, Talanta. doi: 10.1016/S0039-9140(02)00268-0. | spa |
dcterms.references | Marrugo-Negrete, J. et al. (2010) ‘Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia’, International Journal of Environmental Health Research. doi: 10.1080/09603123.2010.499451. | spa |
dcterms.references | Marrugo-Negrete, J. et al. (2019) ‘Flood-induced metal contamination in the topsoil of floodplain agricultural soils: A case-study in Colombia’, Land Degradation and Development. doi: 10.1002/ldr.3398. | spa |
dcterms.references | Marrugo-Negrete, J. et al. (2020) ‘Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia’, Environmental Research. doi: 10.1016/j.envres.2019.109050. | spa |
dcterms.references | Martorell, I. et al. (2011) ‘Human exposure to arsenic, cadmium, mercury, and lead from foods in catalonia, Spain: Temporal trend’, Biological Trace Element Research. doi: 10.1007/s12011-010-8787-x. | spa |
dcterms.references | Ministerio de Salud y Protección Social (2013) ‘Resolución Número 4506 De 2013’, ‘Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones’. | spa |
dcterms.references | Nava-Ruíz, C. and Méndez-Armenta, M. (2011) ‘Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio)’, Archivos de Neurociencias. | spa |
dcterms.references | Pinedo-Hernández, J., Marrugo-Negrete, J. and Díez, S. (2015) ‘Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia’, Chemosphere. doi: 10.1016/j.chemosphere.2014.09.044. | spa |
dcterms.references | Reyes, Y. C. et al. (2016) ‘CONTAMINACIÓN POR METALES PESADOS: IMPLICACIONES EN SALUD, AMBIENTE Y SEGURIDAD ALIMENTARIA’, Ingeniería Investigación y Desarrollo. doi: 10.19053/1900771x.v16.n2.2016.5447. | spa |
dcterms.references | Sawut, R. et al. (2018) ‘Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2018.06.034. | spa |
dcterms.references | Sayo, S., Kiratu, J. M. and Nyamato, G. S. (2020) ‘Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya’, Scientific African. doi: 10.1016/j.sciaf.2020.e00337. | spa |
dcterms.references | Sharma, B., Dangi, A. K. and Shukla, P. (2018) ‘Contemporary enzyme based technologies for bioremediation: A review’, Journal of Environmental Management. doi: 10.1016/j.jenvman.2017.12.075. | spa |
dcterms.references | Silva, I. dos S. (2000) ‘Epidemiología del cáncer: principios y métodos’, Revista Española de Salud Pública. doi: 10.1590/s1135-57272000000200010. | spa |
dcterms.references | Sysalova, J. and Spevackova, V. (2006) ‘A study of sample mineralization methods for arsenic analysis of blood and urine by hydride generation and graphite furnace atomic absorption spectrometry’, Open Chemistry. doi: 10.2478/bf02479263. | spa |
dcterms.references | Tong, S., Von Schirnding, Y. E. and Prapamontol, T. (2000) ‘Environmental lead exposure: A public health problem of global dimensions’, Bulletin of the World Health Organization. doi: 10.1590/S0042-96862000000900003. | spa |
dcterms.references | United States Environmental Protection Agency (2011) Mercury, elemental (CASRN 7439-97-6), Integrated Risk Information System (IRIS). | spa |
dcterms.references | USEPA (2001) ‘Risk Assessment Guidance for Superfund (RAGS) Volume III - Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B’, Office of Emergency and Remedial Response U.S. Environmental Protection Agency. | spa |
dcterms.references | Vargas Licona, S. P. and Marrugo Negrete, J. L. (2019) ‘Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta’, Acta Biológica Colombiana. doi: 10.15446/abc.v24n2.74128. | spa |
dcterms.references | Veiga, M. M. and Baker, R. (2004) Protocols for Environmental and Health Assesment of Merucyr Released by Artisanal and Small-Scale Gold Miners, Unido. | spa |
dcterms.references | World Health Organization (2016) ‘The Public Health Impact of Chemicals: Knowns and Unknowns’, Who/Fwc/Phe/Epe/16.01. | spa |
dcterms.references | Yard, E. E. et al. (2012) ‘Mercury Exposure Among Artisanal Gold Miners in Madre de Dios, Peru: A Cross-sectional Study’, Journal of Medical Toxicology. doi: 10.1007/s13181-012-0252-0. | spa |
dcterms.references | Zheng, S. et al. (2020) ‘Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China’, Food Chemistry. doi: 10.1016/j.foodchem.2020.126213. | spa |
dcterms.references | Zhong, W. et al. (2018) ‘Health risk assessment of heavy metals in freshwater fish in the central and eastern North China’, Ecotoxicology and Environmental Safety. doi: 10.1016/j.ecoenv.2018.03.048. | spa |
dcterms.references | Zubero Oleagoitia, M. B. et al. (2008) ‘Metales pesados (Pb, Cd, Cr y Hg) en población general adulta próxima a una planta de tratamiento de residuos urbanos de Bizkaia’, Revista Española de Salud Pública. doi: 10.1590/s1135-57272008000500004. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: