Publicación:
Concentraciones de metales pesados en productos agropecuarios en la región de La de Mojana: evaluación del riesgo en la salud humana

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorMontiel-Díaz, Yesit Felipe
dc.date.accessioned2021-12-01T22:13:16Z
dc.date.available2021-12-01T22:13:16Z
dc.date.issued2021-12-01
dc.description.abstractIn the region of La Mojana, a serious threat to food security has been evidenced due to contamination by heavy metals, which has been evidenced in soils, water and sediments and has come to contaminate agricultural products such as rice and fish. It was proposed to evaluate the concentrations and the risk to human health of heavy metals (Mercury, Lead, Arsenic and Cadmium) in food products consumed in the region of La Mojana (Colombia). Factors associated with the consumption of food products were evaluated through a survey including socioeconomic data, and frequency of food consumption. 7,645 samples of cereal food products, meats, fruits, vegetables, milk, and tubers were collected. Mercury concentration was determined using a direct mercury analyzer (Mylestone DMA Tri Cell). The arsenic concentration was quantified with the hydride generator atomic absorption spectrometry (HGAAS) method. The concentration of cadmium and lead were quantified with graphite furnace atomic absorption spectroscopy (GFAAS). The order as a function of the mean concentrations of heavy metals was Pb = 635.25, As 179.87, Cd = 57.19 and Hg = 19.52 in food products. Vegetables shows a tendency to higher concentrations of heavy metals studied compared to the rest of food products. The food products with the highest daily intake were milk and cereals (ID = 0.35; 0.25 respectively). The EDI values decreased in the following order Cereals> Fruits> Vegetables> Tubers> Milk> Meats> Eggs. The consumption of cereals and milk are the most important contributors to the total intake of As within the food products studied. The carcinogenic and non-carcinogenic risk values of the total intake evaluated were above the maximum permissible level (HQHg = 5.004; HQCd = 1.82; HQAs = 6.24; HQPb = 1.05). Heavy metals should be monitored in the La Mojana region and strategies should be implemented in food consumption to minimize the associated risk.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEn la región de la Mojana se ha evidenciado una seria amenaza a la seguridad alimentaria debido a la contaminación por metales pesados, que se ha evidenciado en suelos, aguas y sedimentos y ha llegado a contaminar productos agropecuarios como el arroz y pescado. Se propuso evaluar las concentraciones y el riesgo para la salud humana de metales pesados (Mercurio, Plomo, Arsénico y Cadmio) en productos alimenticios consumidos en la región de La Mojana (Colombia). Se evaluaron factores asociados al consumo de productos alimenticios a través de una encuesta incluyendo datos socioeconómicos, y frecuencia de consumo de alimentos. Se colectaron 7.645 muestras de los productos alimenticios cereales, carnes, frutas, hortalizas, leche, y tubérculos. La concentración de mercurio se determinó mediante un analizador directo de mercurio (Mylestone DMA Tri Cell). La concentración de arsénico se cuantificó con el método de espectrometría de absorción atómica con generador de hidruros (HGAAS). La concentración de cadmio y plomo fueron cuantificada con espectroscopía de absorción atómica con horno de grafito (GFAAS). El orden en función de las medias de concentraciones de metales pesados fue Pb=635.25, As 179.87, Cd=57.19 y Hg=19.52 en productos alimenticios. Las hortalizas presentan una tendencia a mayores concentraciones de metales pesados estudiados frente al resto de los productos alimenticios. Los productos alimenticios de mayor ingesta diaria fueron la leche y los cereales (ID=0,35; 0,25 respectivamente). Los valores de IDE decrecieron en el siguiente orden Cereales> Frutas> Hortalizas> Tubérculos> Leche> Carnes> Huevos. El consumo de cereales y leche son los más importantes contribuyentes a la ingesta total de As dentro de los productos alimenticios estudiados. Los valores de riesgo cancerígeno y no cancerígeno del total de la ingesta evaluada estuvieron por encima del nivel máximo permisible (HQHg=5,004; HQCd=1,82; HQAs=6,24; HQPb=1,05). Se debe monitorear los metales pesados en la región de La Mojana e implementar estrategias en el consumo de alimentos para minimizar el riesgo asociado.spa
dc.description.tableofcontents1. RESUMEN ...................................................................................................9spa
dc.description.tableofcontents2. ABSTRACT ...............................................................................................10spa
dc.description.tableofcontents3. INTRODUCCIÓN .......................................................................................11spa
dc.description.tableofcontents4. OBJETIVOS ...............................................................................................13spa
dc.description.tableofcontents4.1. Objetivo general .........................................................................................13spa
dc.description.tableofcontents4.2 Objetivos específicos ..................................................................................13spa
dc.description.tableofcontents5. MARCO REFERENCIAL ............................................................................14spa
dc.description.tableofcontents5.1 Antecedentes ........................................................................................14spa
dc.description.tableofcontents5.2 Metales pesados...................................................................................16spa
dc.description.tableofcontents5.3 Toxicología de metales pesados ...........................................................27spa
dc.description.tableofcontents6. MATERIALES Y MÉTODOS ......................................................................30spa
dc.description.tableofcontents6.1 Tipo de estudio ........................................................................................30spa
dc.description.tableofcontents6.2 Área de estudio ........................................................................................30spa
dc.description.tableofcontents6.3 Caracterización de factores asociados al consumo de alimentos agropecuarios ...............................................................................................31spa
dc.description.tableofcontents6.4 Criterios de selección para la población de la región de la Mojana. .........32spa
dc.description.tableofcontents6.5 Concentraciones de los metales pesados en matrices de alimentos agropecuarios ................................................................................................33spa
dc.description.tableofcontents6.6 Determinación de las concentraciones de mercurio, plomo, arsénico y cadmio en matrices ........................................................................................33spa
dc.description.tableofcontents6.7 Control de calidad del método evaluado ..................................................34spa
dc.description.tableofcontents6.8 Evaluación del nivel de riesgo por exposición a mercurio total, plomo, arsénico y cadmio. .........................................................................................35spa
dc.description.tableofcontents6.9 Consideraciones éticas ............................................................................36spa
dc.description.tableofcontents6.10 Procesamiento y análisis de los datos....................................................37spa
dc.description.tableofcontents7. RESULTADOS Y DISCUSIÓN ..........................................................................38spa
dc.description.tableofcontents7.1 Caracterización de algunos factores asociados al consumo de los alimentos y su relación con la exposición a metales pesados en habitantes de la Mojana Colombiana. ...................................................................................................38spa
dc.description.tableofcontents7.2 Determinación de concentraciones de los metales pesados (Hg, As, Pb y Cd) en productos alimenticios por los habitantes de la Mojana Colombiana. .45spa
dc.description.tableofcontents7.3 Determinación del riesgo potencial de la salud humana por consumo de los alimentos contaminados metales pesados (Hg, As, Pb y Cd) en habitantes de la Mojana Colombiana. ..................................................................................49spa
dc.description.tableofcontents8. CONCLUSIONES ......................................................................................57spa
dc.description.tableofcontents9. REFERENCIAS BIBLIOGRÁFICAS ...........................................................59spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4722
dc.language.isospaspa
dc.publisherFONDO ADAPTACIÓNspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPotentially toxic elementseng
dc.subject.keywordsEnvironmental pollutioneng
dc.subject.keywordsHuman healtheng
dc.subject.keywordsColombiaeng
dc.subject.proposalElementos potencialmente tóxicosspa
dc.subject.proposalContaminación ambientalspa
dc.subject.proposalSalud humanaspa
dc.subject.proposalColombiaspa
dc.titleConcentraciones de metales pesados en productos agropecuarios en la región de La de Mojana: evaluación del riesgo en la salud humanaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbbasi, H. et al. (2020) ‘Quantification of heavy metals and health risk assessment in processed fruits’ products’, Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2020.10.020.spa
dcterms.referencesAfonne, O. J. and Ifediba, E. C. (2020) ‘Heavy metals risks in plant foods – need to step up precautionary measures’, Current Opinion in Toxicology. doi: 10.1016/j.cotox.2019.12.006.spa
dcterms.referencesAguilera-Díaz, M. M. (2004) ‘La Mojana : riqueza natural y potencial económico’, Documentos de Trabajo Sobre Economía Regional y Urbana ; No. 48, (48). Available at: http://repositorio.banrep.gov.co/handle/20.500.12134/3204.spa
dcterms.referencesAmer, M. M. et al. (2019) ‘Exposure assessment of heavy metal residues in some Egyptian fruits’, Toxicology Reports. doi: 10.1016/j.toxrep.2019.06.007.spa
dcterms.referencesAntoniadis, V. et al. (2019) ‘Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece’, Environment International. doi: 10.1016/j.envint.2018.12.053.spa
dcterms.referencesArruda-Neto, J. D. T. et al. (2010) ‘Study of metals transfer from environment using teeth as biomonitor’, Environment International. doi: 10.1016/j.envint.2009.12.003.spa
dcterms.referencesATSDR (2012) ‘Public Health Statement for Cadmium’, Public Health Statement.spa
dcterms.referencesBerg, T., Fjeld, E. and Steinnes, E. (2006) ‘Atmospheric mercury in Norway: Contributions from different sources’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2005.09.059.spa
dcterms.referencesBerkowitz, B., Dror, I. and Yaron, B. (2014) Contaminant geochemistry: Interactions and transport in the subsurface environment: Second edition, Contaminant Geochemistry: Interactions and Transport in the Subsurface Environment: Second Edition. doi: 10.1007/978-3-642-54777-5.spa
dcterms.referencesBi, C. et al. (2018) ‘Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2017.11.177.spa
dcterms.referencesBlas, E. and Kurup, A. S. (2010) ‘Equity, social determinants and public health programmes’, Who.spa
dcterms.referencesBolte, G., Tamburlini, G. and Kohlhuber, M. (2010) ‘Environmental inequalities among children in Europe - Evaluation of scientific evidence and policy implications’, European Journal of Public Health. doi: 10.1093/eurpub/ckp213.spa
dcterms.referencesBone, S. E. et al. (2007) ‘Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?’, Environmental Science and Technology. doi: 10.1021/es0622453.spa
dcterms.referencesBookman, R. et al. (2008) ‘Local to regional emission sources affecting mercury fluxes to New York lakes’, Atmospheric Environment. doi: 10.1016/j.atmosenv.2008.03.045.spa
dcterms.referencesBRASIL. Agência Nacional de Vigilância Sanitária (ANVISA) (2013) ‘Resolução RDC no 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos’, Diário Oficial da República Federativa do Brasil.spa
dcterms.referencesBriffa, J., Sinagra, E. and Blundell, R. (2020) ‘Heavy metal pollution in the environment and their toxicological effects on humans’, Heliyon. doi:10.1016/j.heliyon.2020.e04691.spa
dcterms.referencesCaggiano, R. et al. (2005) ‘Metal levels in fodder, milk, dairy products, and tissues sampled in ovine farms of Southern Italy’, Environmental Research. doi: 10.1016/j.envres.2004.11.002.spa
dcterms.referencesCalao, C. R. and Marrugo, J. L. (2015) ‘Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013’, Biomedica. doi: 10.7705/biomedica.v35i0.2392.spa
dcterms.referencesChen, M. et al. (2019) ‘Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China’, Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2019.07.029.spa
dcterms.referencesCODEX ALIMENTARIUS (2013) ‘Norma General para los aditivos alimentarios’, Journal of Chemical Information and Modeling. doi: 10.1017/CBO9781107415324.004.spa
dcterms.referencesCrout, N. M. J. et al. (2004) ‘The transfer of 73As, 109Cd and 203Hg to the milk and tissues of dairy cattle’, Journal of Agricultural Science. doi: 10.1017/S0021859604004186.spa
dcterms.referencesCsuros, C. and Csuros, M. (2002) ‘Graphite Furnace Atomic Absorption Spectrometry’, in Environmental Sampling and Analysis for Metals. doi: 10.1201/9781420032345.ch9.spa
dcterms.referencesDomingo, J. L. (1994) ‘Metal-induced developmental toxicity in mammals: A review’, Journal of Toxicology and Environmental Health. doi: 10.1080/15287399409531868.spa
dcterms.referencesEcheverry, G. et al. (2015) ‘Valoración del riesgo en salud en un grupo de población de Cali , Colombia , por exposición a plomo , cadmio , mercurio , de agua potable y alimentos’, Biomédica, 35 (2), pp. 110–119. doi:http://dx.doi.org/10.7705/biomedica.v35i0.2464.spa
dcterms.referencesEFSA (2010) ‘Scientific Opinion on Arsenic in Food’, EFSA Journal. doi: 10.2903/j.efsa.2009.1351.spa
dcterms.referencesEid, A. and Zawia, N. (2016) ‘Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain’, NeuroToxicology. doi: 10.1016/j.neuro.2016.04.006.spa
dcterms.referencesEl-Kady, A. A. and Abdel-Wahhab, M. A. (2018) ‘Occurrence of trace metals in foodstuffs and their health impact’, Trends in Food Science and Technology. doi: 10.1016/j.tifs.2018.03.001.spa
dcterms.referencesEnvironmental Protection Agency USEPA (1998) ‘Method 7010: Graphite Furnace Atomic Absorption Spectrophotometry’, US Environmental Protection Agency. doi: 10.1104/pp.125.4.2154.spa
dcterms.referencesEpa, U. S. (2009) ‘Arsenic, inorganic (CASRN 7440-38-2)’, Health (San Francisco).spa
dcterms.referencesErcilla-Montserrat, M. et al. (2018) ‘A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona)’, Journal of Cleaner Production. doi: 10.1016/j.jclepro.2018.05.183.spa
dcterms.referencesEvans, G. W. and Kantrowitz, E. (2002) ‘Socioeconomic Status and Health: The Potential Role of Environmental Risk Exposure’, Annual Review of Public Health. doi: 10.1146/annurev.publhealth.23.112001.112349.spa
dcterms.referencesFang, B. and Zhu, X. (2014) ‘High content of five heavy metals in four fruits: Evidence from a case study of pujiang county, zhejiang province, china’, Food Control. doi: 10.1016/j.foodcont.2013.10.039.spa
dcterms.referencesFAO, FIDA, UNICEF, PMA, O. (2019) El estado de la seguridad alimentaria y la nutrición en el mundo 2019. Protegerse frente a la desaceleración y el debilitamientode la economía., Informe. Roma. Available at: http://www.fao.org/3/ca5162es/ca5162es.pdf%0Ahttp://www.fao.org/publications/es%0Ahttp://www.fao.org/3/a-I7695s.pdf.spa
dcterms.referencesFAO/WHO - Food and Agriculture Organization of the United Nations / World Health Organization (2016) ‘Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos.’, Codex Stan 193-1995.spa
dcterms.referencesFigueroa, R. et al. (2017) ‘Condición socioeconómica, patrones de alimentación y exposición a metales pesados en mujeres en edad fértil de Cali, Colombia’, Biomedica. doi: 10.7705/biomedica.v34i2.3286.spa
dcterms.referencesFilippini, T. et al. (2019) ‘Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population’, Exposure and Health. doi: 10.1007/s12403-019-00324-w.spa
dcterms.referencesFlora, S. J. S. (2015) Handbook of Arsenic Toxicology, Handbook of Arsenic Toxicology. doi: 10.1016/C2013-0-08322-3.spa
dcterms.referencesFox, N. and Hunn, A. (2009) ‘Sampling and Sample Size Calculation’, The NIHR RDS for East Midlands.spa
dcterms.referencesFriberg, L., Piscator, M. and Nordberg, G. (2018) Cadmium in the environment, Cadmium in the Environment. doi: 10.1201/9781351070379.spa
dcterms.referencesFuentes-Gandara, F. et al. (2018) ‘Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea’, Environmental Geochemistry and Health. doi: 10.1007/s10653-016-9896-z.spa
dcterms.referencesGonzález, N. et al. (2019) ‘Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food’, Food and Chemical Toxicology. doi: 10.1016/j.fct.2019.01.021.spa
dcterms.referencesGracia H., L., Marrugo N., J. and Alvis R., E. (2010) ‘Contaminación por mercurio en humanos y peces en el municipio de Ayapel, Córdoba, Colombia, 2009’, Facultad Nacional de Salud Pública: El escenario para la salud pública desde la ciencia.spa
dcterms.referencesGuo, G. et al. (2018) ‘Accumulation of as, cd, and pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment’, International Journal of Environmental Research and Public Health. doi: 10.3390/ijerph15112601.spa
dcterms.referencesGustin, M. S. et al. (2000) ‘Assessing the contribution of natural sources to regional atmospheric mercury budgets’, Science of the Total Environment. doi: 10.1016/S0048-9697(00)00556-8.spa
dcterms.referencesGustin, M. S. (2003) ‘Are mercury emissions from geologic sources significant? A status report’, in Science of the Total Environment. doi: 10.1016/S0048-9697(02)00565-X.spa
dcterms.referencesGustin, M. S., Lindberg, S. E. and Weisberg, P. J. (2008) ‘An update on the natural sources and sinks of atmospheric mercury’, Applied Geochemistry. doi: 10.1016/j.apgeochem.2007.12.010.spa
dcterms.referencesHan, Z. et al. (2017) ‘Heavy metal contamination and risk assessment of human exposure near an e-waste processing site’, Acta Agriculturae Scandinavica Section B: Soil and Plant Science. doi: 10.1080/09064710.2016.1229016.spa
dcterms.referencesHeshmati, A. et al. (2020) ‘Concentration and risk assessment of potentially toxic elements, lead and cadmium, in vegetables and cereals consumed in western Iran’, Journal of Food Protection. doi: 10.4315/0362-028X.JFP-19-312.spa
dcterms.referencesHughes, M. F. et al. (2011) ‘Arsenic exposure and toxicology: A historical perspective’, Toxicological Sciences. doi: 10.1093/toxsci/kfr184.spa
dcterms.referencesIARC (2018) ‘List of Classifications by cancer sites with sufficient or limited evidencein humans, Volumes 1 to 123’, IARC Monograpghs.spa
dcterms.referencesIgbiri, S. et al. (2018) ‘Edible Mushrooms from Niger Delta, Nigeria with Heavy Metal Levels of Public Health Concern: A Human Health Risk Assessment’, Recent Patents on Food, Nutrition & Agriculture. doi: 10.2174/2212798409666171129173802.spa
dcterms.referencesJiang, G.-B., Shi, J.-B. and Feng, X.-B. (2006) ‘Mercury Pollution in China’, Environmental Science & Technology. doi: 10.1021/es062707c.spa
dcterms.referencesKhan, Z. I. et al. (2010) ‘Assessment of chromium concentrations in soil-plant-animal continuum: Possible risk for grazing cattle’, Pakistan Journal of Botany.spa
dcterms.referencesLim, S. et al. (2015) ‘Disparities in children’s blood lead and mercury levels according to community and individual socioeconomic positions’, International Journal of Environmental Research and Public Health. doi: 10.3390/ijerph120606232.spa
dcterms.referencesLuo, C. et al. (2011) ‘Heavy metal contamination in soils and vegetables near an e-waste processing site, south China’, Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2010.11.024.spa
dcterms.referencesMandal, B. K. and Suzuki, K. T. (2002) ‘Arsenic round the world: A review’, Talanta. doi: 10.1016/S0039-9140(02)00268-0.spa
dcterms.referencesMarrugo-Negrete, J. et al. (2010) ‘Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia’, International Journal of Environmental Health Research. doi: 10.1080/09603123.2010.499451.spa
dcterms.referencesMarrugo-Negrete, J. et al. (2019) ‘Flood-induced metal contamination in the topsoil of floodplain agricultural soils: A case-study in Colombia’, Land Degradation and Development. doi: 10.1002/ldr.3398.spa
dcterms.referencesMarrugo-Negrete, J. et al. (2020) ‘Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia’, Environmental Research. doi: 10.1016/j.envres.2019.109050.spa
dcterms.referencesMartorell, I. et al. (2011) ‘Human exposure to arsenic, cadmium, mercury, and lead from foods in catalonia, Spain: Temporal trend’, Biological Trace Element Research. doi: 10.1007/s12011-010-8787-x.spa
dcterms.referencesMinisterio de Salud y Protección Social (2013) ‘Resolución Número 4506 De 2013’, ‘Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones’.spa
dcterms.referencesNava-Ruíz, C. and Méndez-Armenta, M. (2011) ‘Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio)’, Archivos de Neurociencias.spa
dcterms.referencesPinedo-Hernández, J., Marrugo-Negrete, J. and Díez, S. (2015) ‘Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia’, Chemosphere. doi: 10.1016/j.chemosphere.2014.09.044.spa
dcterms.referencesReyes, Y. C. et al. (2016) ‘CONTAMINACIÓN POR METALES PESADOS: IMPLICACIONES EN SALUD, AMBIENTE Y SEGURIDAD ALIMENTARIA’, Ingeniería Investigación y Desarrollo. doi: 10.19053/1900771x.v16.n2.2016.5447.spa
dcterms.referencesSawut, R. et al. (2018) ‘Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China’, Science of the Total Environment. doi: 10.1016/j.scitotenv.2018.06.034.spa
dcterms.referencesSayo, S., Kiratu, J. M. and Nyamato, G. S. (2020) ‘Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya’, Scientific African. doi: 10.1016/j.sciaf.2020.e00337.spa
dcterms.referencesSharma, B., Dangi, A. K. and Shukla, P. (2018) ‘Contemporary enzyme based technologies for bioremediation: A review’, Journal of Environmental Management. doi: 10.1016/j.jenvman.2017.12.075.spa
dcterms.referencesSilva, I. dos S. (2000) ‘Epidemiología del cáncer: principios y métodos’, Revista Española de Salud Pública. doi: 10.1590/s1135-57272000000200010.spa
dcterms.referencesSysalova, J. and Spevackova, V. (2006) ‘A study of sample mineralization methods for arsenic analysis of blood and urine by hydride generation and graphite furnace atomic absorption spectrometry’, Open Chemistry. doi: 10.2478/bf02479263.spa
dcterms.referencesTong, S., Von Schirnding, Y. E. and Prapamontol, T. (2000) ‘Environmental lead exposure: A public health problem of global dimensions’, Bulletin of the World Health Organization. doi: 10.1590/S0042-96862000000900003.spa
dcterms.referencesUnited States Environmental Protection Agency (2011) Mercury, elemental (CASRN 7439-97-6), Integrated Risk Information System (IRIS).spa
dcterms.referencesUSEPA (2001) ‘Risk Assessment Guidance for Superfund (RAGS) Volume III - Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B’, Office of Emergency and Remedial Response U.S. Environmental Protection Agency.spa
dcterms.referencesVargas Licona, S. P. and Marrugo Negrete, J. L. (2019) ‘Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta’, Acta Biológica Colombiana. doi: 10.15446/abc.v24n2.74128.spa
dcterms.referencesVeiga, M. M. and Baker, R. (2004) Protocols for Environmental and Health Assesment of Merucyr Released by Artisanal and Small-Scale Gold Miners, Unido.spa
dcterms.referencesWorld Health Organization (2016) ‘The Public Health Impact of Chemicals: Knowns and Unknowns’, Who/Fwc/Phe/Epe/16.01.spa
dcterms.referencesYard, E. E. et al. (2012) ‘Mercury Exposure Among Artisanal Gold Miners in Madre de Dios, Peru: A Cross-sectional Study’, Journal of Medical Toxicology. doi: 10.1007/s13181-012-0252-0.spa
dcterms.referencesZheng, S. et al. (2020) ‘Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China’, Food Chemistry. doi: 10.1016/j.foodchem.2020.126213.spa
dcterms.referencesZhong, W. et al. (2018) ‘Health risk assessment of heavy metals in freshwater fish in the central and eastern North China’, Ecotoxicology and Environmental Safety. doi: 10.1016/j.ecoenv.2018.03.048.spa
dcterms.referencesZubero Oleagoitia, M. B. et al. (2008) ‘Metales pesados (Pb, Cd, Cr y Hg) en población general adulta próxima a una planta de tratamiento de residuos urbanos de Bizkaia’, Revista Española de Salud Pública. doi: 10.1590/s1135-57272008000500004.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
montieldiazyesitfelipe.pdf
Tamaño:
1.23 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato_Autorización.pdf
Tamaño:
399.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones