Publicación:
Identificación molecular de ADN Anaplasma spp y Dirofilaria Immitis en murciélagos del departamento de Córdoba

dc.audience
dc.contributor.advisorMartínez Bravo, Caty Milena
dc.contributor.authorBertel Pacheco, Valeria
dc.contributor.juryContreras Cogollo, Verónica
dc.contributor.juryCalderón Rangel, Alfonso
dc.date.accessioned2024-07-10T22:52:22Z
dc.date.available2025-07-10
dc.date.available2024-07-10T22:52:22Z
dc.date.issued2024-07-10
dc.description.abstractDebido a características biológicas y evolutivas, como la longevidad, supervivencia, grandes densidades de población, comportamiento de descanso y la capacidad de volar; los murciélagos son considerados como potenciales reservorios de patógenos zoonóticos en todo el mundo. Estudios recientes identificaron a los murciélagos como hospederos potenciales del filo de las proteobacterias y de nematodos filariales. El objetivo de este estudio fue determinar por medio de pruebas moleculares la presencia de ADN de Anaplasma spp. y Dirofilaria immitis en murciélagos del departamento de Córdoba. En este estudio se analizaron muestras de tejidos de murciélagos mediante detección del gen ARNr 16s de la familia Anaplasmataceae y el gen Citocromo oxidasa para Dirofilaria immitis. El 2,42% (5/206) muestras de bazo fueron positivas para el gen ARN 16s y el 26,34% (54/205) muestras de tejido de corazón para el gen (COX). Murciélagos del género Artibeus fueron los huéspedes con mayor presencia de infección por los distintos hemotrópicos. Se evidenció una coinfección en dos individuos de las especies Artibeus phaeotis y Phyllostomus hastatus, registrados en los municipios de Montelíbano y Moñitos, respectivamente. Nuestro estudio presenta la primera detección de D. immitis en murciélagos en el departamento de Córdoba. Factores como los cambios en el uso del suelo (agricultura, deforestación, urbanización, ganadería, etc.), se encontraron relacionados con la circulación de hemotrópicos con potencial zoonótico en murciélagos del departamento de Córdoba. Estos resultados fortalecen el esquema de salud unificada mediante la prevención y detección de enfermedades zoonóticas integrando la salud animal y el bienestar ecosistémico que sin duda repercute en el bienestar y salud humana. Palabras clave: PCR convencional, secuenciación, Anaplasma spp, Dirofilaria immitis, murciélagos.spa
dc.description.abstractDue to biological and evolutionary characteristics such as longevity, survival, high population densities, resting behavior, and the ability to fly, bats are considered potential reservoirs of zoonotic pathogens worldwide. Recent studies have identified bats as potential hosts of the Proteobacteria phylum and filarial nematodes. The aim of this study was to determine, through molecular testing, the presence of DNA of Anaplasma spp. and Dirofilaria immitis in bats from the department of Córdoba. In this study, bat tissue samples were analyzed by detecting the 16s rRNA gene of the Anaplasmataceae family and the Cytochrome oxidase gene for Dirofilaria immitis. 2.42% (5/206) spleen samples were positive for the 16s rRNA gene and 26.34% (54/205) heart tissue samples for the (COX) gene. Bats of the genus Artibeus were the hosts with the highest presence of infection by the different hemotropics. A co-infection was evidenced in two individuals of the species Artibeus phaeotis and Phyllostomus hastatus, recorded in the municipalities of Montelíbano and Moñitos, respectively. Our study presents the first detection of D. immitis in bats in the department of Córdoba. Factors such as changes in land use (agriculture, deforestation, urbanization, livestock, etc.), were found to be related to the circulation of hemotropics with zoonotic potential in bats in the department of Córdoba. These results strengthen the unified health scheme through the prevention and detection of zoonotic diseases by integrating animal health and ecosystem well-being, which undoubtedly impacts human health and well-being. Keywords: Conventional PCR, sequencing, Anaplasma spp, Dirofilaria immitis, bats.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. INTRODUCCIÓN...9
dc.description.tableofcontents2. OBJETIVOS...12
dc.description.tableofcontents2.1. OBJETIVO GENERAL...12
dc.description.tableofcontents2.2. OBJETIVOS ESPECÍFICOS...12
dc.description.tableofcontents3. MARCO TEÓRICO Y ANTECEDENTES...13
dc.description.tableofcontents3.1. Anaplasma spp. 13
dc.description.tableofcontents3.1.1. Estado del arte...13
dc.description.tableofcontents3.2. Dirofilaria spp...15
dc.description.tableofcontents3.2.1. Estado del arte...16
dc.description.tableofcontents3.3. Zoonosis como problema de salud pública...17
dc.description.tableofcontents3.4. Antecedentes de los murciélagos como potenciales reservorios zoonóticos...19
dc.description.tableofcontents4. MATERIALES Y MÉTODOS...22
dc.description.tableofcontents4.1. Área de estudio...22
dc.description.tableofcontents4.2. Muestreo en campo y toma de muestras...23
dc.description.tableofcontents4.3. Protocolos de laboratorio...23
dc.description.tableofcontents4.3.1. Extracción de ADN...23
dc.description.tableofcontents4.3.2. Estandarización de protocolo para PCR...23
dc.description.tableofcontents4.3.3. Revelación de productos por electroforesis...24
dc.description.tableofcontents4.4. Secuenciación...25
dc.description.tableofcontents4.5. Elaboración árbol filogenético...25
dc.description.tableofcontents4.6. Georreferenciación...25
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN...26
dc.description.tableofcontents5.1. Resultados para el cumplimiento del objetivo específico 1...26
dc.description.tableofcontents5.1.1 Extracción de ácidos nucleicos...26
dc.description.tableofcontents5.1.2. Ensayo de PCR por multiplexación para la detección molecular de ADN hemotrópicos...27
dc.description.tableofcontents5.1.3. Estandarización de protocolo para la detección de ADN Anaplasma spp...28
dc.description.tableofcontents5.1.4. Estandarización de protocolo para la detección de ADN Dirofilaria immitis...29
dc.description.tableofcontents5.2. Resultados para el cumplimiento del objetivo específico 2...30
dc.description.tableofcontents5.2.1. Detección de Anaplasma spp...30
dc.description.tableofcontents5.2.2. Detección de Dirofilaria immitis...33
dc.description.tableofcontents5.2.3. Análisis filogenéticos...36
dc.description.tableofcontents5.3. Resultados para el cumplimiento del objetivo 3...37
dc.description.tableofcontents6. CONCLUSIONES...41
dc.description.tableofcontents7. RECOMENDACIONES...42
dc.description.tableofcontents8. BIBLIOGRAFÍA...43
dc.description.tableofcontents9. ANEXOS...53
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8370
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesAlcantara, D. C., Ikeda, P., Souza, C. S., Mello, V. V., Torres, J. M., Lourenço, E. C., Bassini-Silva, R., Herrera, H. M., & Rosangela Zacarias Machado 2, D. M. (2022). Multilayer Networks Assisting to Untangle Direct and Indirect Pathogen Transmission in Bats. Microbial ecology(36166070), 1292-1306. https://doi.org/10.1007/s00248-022-02108-3
dc.relation.referencesAlfonso, E., & Goydadin, A. (2018). Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat (Rhinolophus hipposideros) guano. Epidemiol Infect(29843834), 1253-1258. https://doi.org/10.1017/S0950268818001279
dc.relation.referencesAlho, A., Marcelino, I., Colella, V., Flanagan, C., Silva, N., Correia, J., Latrofa, M., Otranto, D., & Madeira de Carvalho, L. (2017). Dirofilaria immitis in pinnipeds and a new host record. Parasit Vectors(PMC5347183). https://doi.org/10.1186/s13071-017-2073-0
dc.relation.referencesAndré, M. R., Ikeda, P., Lee, D. A., Amaral, R. B., Carvalho, L. A., Pinheiro, D. G., Torres, J. M., Mello, V. V., Rice, G., & Cer, R. (2023). Characterization of the bacterial microbiome of non-hematophagous bats and associated ectoparasites from Brazil. Front Microbiol(37928691). https://doi.org/10.3389/fmicb.2023.1261156
dc.relation.referencesAtif, F. A. (2016). Alpha proteobacteria of genus Anaplasma (Rickettsiales: Anaplasmataceae): Epidemiology and characteristics of Anaplasma species related to veterinary and public health importance. Parasitology(26932580). https://doi.org/10.1017/S0031182016000238
dc.relation.referencesAvena, C., Parfrey, L. W., Leff, J., Archer, H., Frick, W., Langwig, K., Kilpatrick, A. M., Powers, K. E., Foster, J., & McKenzie, V. J. (2016). Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Front Microbiol(27909426). https://doi.org/https://doi.org/10.3389/fmicb.2016.01753
dc.relation.referencesBakken, J. S., & Dumler, J. S. (2015). Human granulocytic anaplasmosis. Infect Dis Clin North Am(25999228). https://doi.org/10.1016/j.idc.2015.02.007
dc.relation.referencesBallesteros, J., Racero, J., & Núñez, M. (2007). BATS DIVERSITY IN FOUR TOWNS OF COASTAL AREA IN CÓRDOBA DEPARTMENT-COLOMBIA. MVZ, 1013-1019. https://doi.org/https://revistamvz.unicordoba.edu.co/article/view/421/489
dc.relation.referencesBattilani, M., Arcangeli, S. D., Balboni, A., & Dondi, F. (2017). Genetic diversity and molecular epidemiology of Anaplasma. Infect Genet Evol(28122249). https://doi.org/ 10.1016/j.meegid.2017.01.021
dc.relation.referencesBolivar, A. M., Rojas, A., & Garcia-Lugo, P. (2013). PCR y PCR-Múltiple: parámetros críticos y protocolo de estandarización. Instituto de Inmunología Clínica, 3(1)(2244-7881), 25-33. https://doi.org/PPI201102ME3935
dc.relation.referencesCapelli, G., Genchi, C., Baneth, G., Bourdeau, P., Brianti, E., Cardoso, L., Danesi, P., Fuehrer, H.-P., Giannelli, A., Ionică, A. M., Maia, C., Modrý, D., Montarsi, F., Krücken, J., & Papadopoulos, E. (2018). Recent advances on Dirofilaria repens in dogs and humans in Europe. Parasit Vectors(30567586). https://doi.org/10.1186/s13071-018-3205-x
dc.relation.referencesCasiraghi, M., Anderson, T., Bandi, C., Bazzocchi, C., & Genchi, C. (2001). A phylogenetic analysis of filarial nematodes: Comparison with the phylogeny of Wolbachia endosymbionts. Parasitology, 93-103.
dc.relation.referencesCDC. (2019, Junio 27). Dirofilariasis. Salud Global , División de Enfermedades Parasitarias y Malaria: https://www.cdc.gov/dpdx/dirofilariasis/index.html
dc.relation.referencesCicuttin, G. L., De Salvo, M. N., La Rosa, I., & Gury, D. F. (2017). Neorickettsia risticii, Rickettsia sp. and Bartonella sp. in Tadarida brasiliensis bats from Buenos Aires, Argentina. Comparative Immunology, Microbiology, 52, 1-5. https://doi.org/www.elsevier.com/locate/cimid
dc.relation.referencesConga, D., Araújo, C., Souza, N., Corrêa, J., Santo, J., EC, F., Bernal, M., Andrade, S., Silva, N., Pereira, W., Gardner, S., & Notarnicola, J. (2024). Cerebral filariasis infection with Litomosoides in Molossus barnesi (Chiroptera: Molossidae) in the Brazilian eastern Amazon, with comments on Molossinema wimsatti Georgi, Georgi, Jiang and Fronguillo, 1987. Parasitol Res(38326631). https://doi.org/ 10.1007/s00436-024-08139-8
dc.relation.referencesCVS. (2024, Mayo 27). CVS.GOV.CO. Cobertura geográfica : https://cvs.gov.co/cobertura-geografica/#1618430401496-be8715c0-308b
dc.relation.referencesde Echaide, S. T., Bono, M. F., Lugaresi, C., Aguirre, N., Mangold, A., Moretta, R., Farber, M., & Mondillo, C. (2005). Detection of antibodies against Anaplasma marginale in milk using a recombinant MSP5 indirect ELISA. Vet Microbiol(15778035). https://doi.org/10.1016/j.vetmic.2004.12.026
dc.relation.referencesDimkić, I., Fira, D., Janákiev, T., Kabic, J., Miloš, E., Nenadić, M., Unković, N., & Grbić, M. L. (2021). The microbiome of bat guano: for what is this knowledge important? Appl Microbiol Biotechnol(33512572), 1407-1419. https://doi.org/10.1007/s00253-021-11143
dc.relation.referencesEraso-Cadena, M. P., Molina-Guzmán, L. P., Cardona, X., Cardona-Arias, J. A., Ríos-Osorio, L. A., & Gutierrez-Builes, L. A. (2018). Serological evidence of exposure to some zoonotic microorganisms in cattle and humans with occupational exposure to livestock in Antioquia, Colombia. Cad Saude Publica(30329003). https://doi.org/ 10.1590/0102-311X00193617
dc.relation.referencesFerreira, C., Afonso, A., Calado, M., Maurício, I., Margarida, A., Alho, Meireles, J., Carvalho, L. M., & Belo, S. (2017). Molecular characterization of Dirofilaria spp. circulating in Portugal. Parasit Vectors(28526036). https://doi.org/10.1186/s13071-017-2180-y
dc.relation.referencesFlorez, A. A., Martinez, A. R., & Pinilla, J. C. (2020). Prevalence of Dirofilaria immitis in shelter dogs in Bucaramanga metropolitan area, Colombia. Veterinary Parasitology, 22(100489). https://doi.org/https://ezproxyucor.unicordoba.edu.co:2129/10.1016/j.vprsr.2020.100489
dc.relation.referencesGarcía, G. J., & Celis, J. C. (2023). DETECCIÓN DE HEMOTRÓPICOS EN MURCIÉLAGOS (Mammalia:Chiroptera) EN EL DEPARTAMENTO DE CÓRDOBA, COLOMBIA.
dc.relation.referencesGenchi, C. K. (2020). La prevalencia de Dirofilaria immitis y D. repens en el Viejo Mundo. Parasitología Veterinaria. Volumen 280.
dc.relation.referencesGenchi, C., Rinaldi, L., Mortarino, M., Genchi, M., & Cringol, G. (2009). Climate and Dirofilaria infection in Europe. Veterinary Parasitology,(19398159), 286-292. https://doi.org/10.1016/j.vetpar.2009.03.026
dc.relation.referencesGiangaspero, A., Marangi, M., Latrofa, M. S., Martinelli, D., Traversa, D., Otranto, D., & Genchi, C. (2013). Evidences of increasing risk of dirofilarioses in southern Italy. Parasitol Res(23224639), 1357–1361. https://doi.org/10.1007/s00436-012-3206-1
dc.relation.referencesGibson, K., Rikihisa, Y., Zhang, C., & Martin, C. (2005). Neorickettsia risticii is vertically transmitted in the trematode Acanthatrium oregonense and horizontally transmitted to bats. Environmental Microbiology, 7(15658987), 203-212. https://doi.org/10.1111/j.1462-2920.2004.00683.x
dc.relation.referencesGleim, E. R., Garrison, L. E., Vello, M., Salvaje, M. Y., López, G., Berghaus, R., & Yabsley, M. (2016). Factors associated with tick bites and pathogen prevalence in ticks parasitizing humans in Georgia, USA. Parasit Vectors(PMC4776404). https://doi.org/10.1186/s13071-016-1408-6
dc.relation.referencesGuo, W. P., Tian, J.-H., Lin, X.-D., Ni, X. B., Chen, X. P., Liao, Y., Yang, S.-Y., Dumler, S., Holmes, E., & Zhang, Y.-Z. (2016). Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci Rep(27934910). https://doi.org/10.1038/srep38770
dc.relation.referencesHayman, D. T., Bowen, R. A., Cryan, P. M., McCracken, G. F., O'Shea, T. J., Peel, A. J., Gilbert, A., Webb, C. T., & Wood, J. L. (2013). Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health(PMC3600532). https://doi.org/ 10.1111/zph.12000
dc.relation.referencesHornok, S., Szőke, K., Estók, P., Krawczyk, A., Haarsma, A.-J., Kováts, D., Boldogh, S., Morandini, P., Szekeres, S., Takács, N., Kontschán, J., Meli, M., Fernández de Mera, I., de la Fuente, J., Gyuranecz, M., Sulyok, K., Weibel, B., Gönczi, E., & de Bruin, A. (2018). Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe(Article). Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(29492770), 1707-1717. https://doi.org/10.1007/s10482-018-1043-7
dc.relation.referencesHornok, S., Szőke, K., Meli, M. L., Sándor, A. D., Görföl, T., Estók, P., Wang, Y., Tu, V. T., Kováts, D., Boldogh, S. A., Corduneanu, A., Sulyok, K. M., Gyuranecz, M., Kontschán, J., Takács, N., & Halajian, A. (2019). Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the Old and New Worlds. Parasit Vectors(30670048). https://doi.org/10.1186/s13071-019-3303-4
dc.relation.referencesHoyos, L. R., Suaza, V. J., Rúa, U. G., Uribe, S., & Gallego, G. J. (2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Mem. Inst. Oswaldo Cruz, 111, 625-634. https://doi.org/https://doi.org/10.1590/0074-02760160096
dc.relation.referencesJaimes, D. J., Tique, O. M., Arias, V. L., Edinson Castiblanco, D. E., Rivero, R. L., Marin, C. L., Gongora, O. A., & Jimenez, L. A. (2024). Epidemiological assessment of Anaplasma marginale, Babesia bigemina, and Babesia bovis infections in Colombian creole cattle breeds: A molecular survey in northeastern Colombia. Veterinary Parasitology, 50. https://doi.org/https://doi.org/10.1016/j.vprsr.2024.101011
dc.relation.referencesLee, H., Seo, M., Lee, S., Oem, J., Kim, S., Jeong, H., Kim, Y., Jheong, W., Kwon, O., & Kwak, D. (2021). Relationship among bats, parasitic bat flies, and associated pathogens in Korea. Parasit Vectors(34579766). https://doi.org/10.1186/s13071-021-05016-6
dc.relation.referencesLiu, Z., Liu, Q., Wang, H., & Yao, X. (2023). Severe zoonotic viruses carried by different species of bats and their regional distribution. Clinical Microbiology and Infection(37805032), 206-210. https://doi.org/https://doi.org/10.1016/j.cmi.2023.09.025
dc.relation.referencesLutz, H., Gilbert, J., & Dick, C. (2022). Associations between Afrotropical bats, eukaryotic parasites, and microbial symbionts. Molecular ecology(34181795), 1939–1950. https://doi.org/https://doi.org/10.1111/mec.16044
dc.relation.referencesMendoza, E., Arcila, Q. M., Albarracín, N. V., Hernández, J., Flechas, A. I., & Morchón, R. M. (2020). Current Situation of the Presence of Dirofilaria immitis in Dogs and Humans in Bucaramanga, Colombia. Front Vet Sci(32851048). https://doi.org/10.3389/fvets.2020.00488
dc.relation.referencesMiranda, J., & Mattar, S. (2015). Molecular detection of Anaplasma sp. and Ehrlichia sp. in ticks collected in domestical animals, Colombia. Trop Biomed(33557465), 726-735.
dc.relation.referencesMoreira, H. R., Madeira, E. A., Cunha, D. N., Scofield, A., Góes-Cavalcante, G., Abel, I., Guimarães, R. J., & Fernandes, J. I. (2019). Dirofilaria immitis infection in dogs in Algodoal Island, Brazilian Amazon. SMALL ANIMAL DISEASES. https://doi.org/ https://doi.org/10.1590/1678-6160-PVB-5916
dc.relation.referencesNoaman, V., & Shayan, P. (2010). Comparison of Microscopy and PCR-RFLP for detection of Anaplasma marginale in carrier cattle. Iran J Microbiol(22347555), 89-94.
dc.relation.referencesOh, I. Y., Kim, K. T., & Sung, H. J. (2017). Molecular Detection of Dirofilaria immitis Specific Gene from Infected Dog Blood Sample Using Polymerase Chain Reaction. Iran J Parasitol(PMC5623924), 433-440.
dc.relation.referencesOMS. (1982). Informe de un comité de expertos de la salud (OMS), con participación de la FAO. Ginebra: Organización Mundial de la Salud;.
dc.relation.referencesOtálora, Ó., Couto, G., Benavides, J., CarlosMucha, & Morchón, R. (2022). Current distribution of selected canine vector-borne diseases in domestic dogs from Barranquilla and Puerto Colombia, Atlántico, Colombia. Vet Med Sci(34861101). https://doi.org/ 10.1002/vms3.673
dc.relation.referencesPearce, R., & O'Shea, T. (2007). Ectoparasites in an urban population of big brown bats (Eptesicus fuscus) in Colorado. J Parasitol(17626343). https://doi.org/10.1645/GE-973R.1
dc.relation.referencesPesapane, R., Foley, J., Thomas, R., & Castro, L. (2019). Molecular detection and characterization of Anaplasma platys and Ehrlichia canis in dogs from northern Colombia. Vet Microbiol(31176406), 184-189. https://doi.org/10.1016/j.vetmic.2019.05.002
dc.relation.referencesPusterla, N., Johnson, E., Chae, J., & Madigan, J. (2003). Digenetic trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever. Journal of Helminthology, 77(14627451), 335-339. https://doi.org/10.1079/JOH2003181
dc.relation.referencesRahman, M., Faruque, M., Rahman, M., & Elahi Chowdhury, M. (2022). Epidemiology and molecular detection of Anaplasma spp. in goats from Chattogram district, Bangladesh. Vet Med Sci.( 35218684), 1240-1249. https://doi.org/10.1002/vms3.775
dc.relation.referencesRamírez-Fráncel, L., García-Herrera, L., Losada-Prado, S., Reinoso-Flórez, G., Sánchez-Hernández, A., Estrada-Villegas, S., Lim, B., & Guevara, G. (2022). Los murciélagos y sus servicios ecosistémicos vitales: una revisión global. Zoológico integral, 2–23.
dc.relation.referencesRamos, R. A., Rêgo, A. G., Firmino, E. D., Ramos, C. A., Carvalho, G. A., Dantas-Torres, F., Otranto, D., & Alves, L. C. (2016). Filarioids infecting dogs in northeastern Brazil. Veterinary Parasitology, 226, 26 - 29. https://doi.org/https://doi.org/10.1016/j.vetpar.2016.06.025
dc.relation.referencesRar, V., Tkachev, S., & Tikunova, N. (2021). Genetic diversity of Anaplasma bacteria: Twenty years later. Infect Genet Evol(33794351). https://doi.org/10.1016/j.meegid.2021.104833
dc.relation.referencesReeves, W. k., Beck, J., V, O. M., Daly, J. L., Pippin, K., Revan, F., & D Loftis, A. (2016). Ecology of Bats, Their Ectoparasites, and Associated Pathogens on Saint Kitts Island. J Med Entomol(27282816), 1218-1225. https://doi.org/10.1093/jme/tjw078
dc.relation.referencesRendón-Franco, E., López-Díaz, O., Martínez-Hernández, F., Villalobos, G., Muñoz-García, C. I., Aréchiga-Ceballos, N., Alfonso-Toledo, J. A., Flores, M. M., & Setién, A. A. (2019). Litomosoides sp. (Filarioidea: Onchocercidae) Infection in Frugivorous Bats (Artibeus spp.): Pathological Features, Molecular Evidence, and Prevalence. Tropical medicine and infectious disease( PMC6631640). https://doi.org/ 10.3390/tropicalmed4020077
dc.relation.referencesRenz, A., & Wenk, P. (1981). Intracellular development of the cotton-rat filaria Litomosoides carinii in the vector mite Ornithonyssus bacoti. Trans R Soc Trop Med Hyg(7268858), 166-8. https://doi.org/ 10.1016/0035-9203(81)90056-0
dc.relation.referencesRodríguez, I., Burri, C., Noda, A., Douet, V., & Gern, L. (2015). Multiplex PCR for molecular screening of Borrelia burgdorferi sensu lato, Anaplasma spp. and Babesia spp. Ann Agric Environ Med(26706969). https://doi.org/10.5604/12321966.1185767
dc.relation.referencesSaid, M. S., Tirthani, E., & Lesho, E. (2023). Animal Zoonotic Related Diseases. (34033321). https://www.ncbi.nlm.nih.gov/books/NBK570559/
dc.relation.referencesSoares, L. A., Matias, I. C., Silva, S. S., Ramos, M. E., Silva, A. P., Barretto, M. L., Brasil, A. W., Silva, M. L., Galiza, G. J., & Maia, L. A. (2022). Parasitological, serological and molecular diagnosis of Dirofilaria immitis in dogs in Northeastern Brazil. Experimental Parasitology(108233). https://doi.org/https://doi.org/10.1016/j.exppara.2022.108233
dc.relation.referencesSocolovschi, C., Kernif, T., Raoult, D., & Parola, P. (2012). Borrelia, Rickettsia, and Ehrlichia species in bat ticks, France,. Emerg Infect Dis(23171714). https://doi.org/10.3201/eid1812.111237.
dc.relation.referencesUpton, K., Sobotyk, C., Edwards, E., & Verocai, G. (2022). Dirofilaria immitis in an Asian small-clawed otter (Aonyx cinereus) from southeastern Louisiana, United States. Vet Parasitol Reg Stud Reports(35256129). https://doi.org/ 10.1016/j.vprsr.2022.100703 Upton, K., Sobotyk, C., Edwards, E., & Verocai, G. (2022). Dirofilaria immitis in an Asian small-clawed otter (Aonyx cinereus) from southeastern Louisiana, United States. Veterinary Parasitology, 29. https://doi.org/https://doi.org/10.1016/j.vprsr.2022.100703
dc.relation.referencesVega, R. L. (2009). Zoonosis emergentes y reemergentes y principios básicos de control de zoonosis. Medicina Veterinaria, 85-97. https://doi.org/https://ciencia.lasalle.edu.co/mv/vol1/iss17/7/
dc.relation.referencesVláschenko, A., Răileanu, C., Tauchman, O., Muzyka, D., Bohodista, V., Filatov, S., Rodenko, O., Tovstukha, I., & Silaghi, C. (2020). First data on bacteria associated with bat ectoparasites collected in Kharkiv oblast, Northeastern Ukraine. Parasit Vectors.(36434644). https://doi.org/ 10.1186/s13071-022-05582-3
dc.relation.referencesWicht, B., Yanagida, T., Scholz, T., Ito, A., Jiménez, J. A., & Brabec, J. (2010). Multiplex PCR for differential identification of broad tapeworms (Cestoda: Diphyllobothrium) infecting humans. J Clin Microbiol. https://doi.org/10.1128/JCM.00445-10
dc.relation.referencesWilliams, R. (1948). Studies on the life cycle of Litomosoides carinii, filariid parasite of the cotton rat, Sigmodon hispidus litoralis. Parasitol(18903614), 24-43
dc.relation.referencesYounes, L., Barré-Cardi, H., Bedjaoui, S., Ayhan, N., Varloud, M., Mediannikov, O., Otranto, D., & Davoust, B. (2021). Dirofilaria immitis and Dirofilaria repens in mosquitoes from Corsica Island, France. Parasit Vectors(34446069). https://doi.org/ 10.1186/s13071-021-04931-y
dc.relation.referencesZahn, A., Holzhaider, J., Kriner, E., Maier, A., & & Kayikcioglu, A. (2008). Foraging activity of Rhinolophus hipposideros on the island of Herrenchiemsee, Upper Bavaria. Mammalian Biology, 73, 222-229.
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsConventional PCR
dc.subject.keywordsSequencing
dc.subject.keywordsAnaplasma spp
dc.subject.keywordsDirofilaria immitis
dc.subject.keywordsBats
dc.subject.proposalPCR convencional
dc.subject.proposalSecuenciación
dc.subject.proposalAnaplasma spp
dc.subject.proposalDirofilaria immitis
dc.subject.proposalMurciélagos
dc.titleIdentificación molecular de ADN Anaplasma spp y Dirofilaria Immitis en murciélagos del departamento de Córdobaspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
TESIS.pdf
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización Publicación..pdf
Tamaño:
255.22 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: