Publicación: Evaluación del potencial antibacteriano y antibiopelículas del extracto etanólico de hojas de Kalanchoe pinnata frente a aislamientos clínicos del grupo Eskape
dc.contributor.advisor | Contreras Martínez, Orfa Inés | |
dc.contributor.advisor | Angulo Ortiz, Alberto | |
dc.contributor.author | Julio Pretelt, Juan Diego | |
dc.contributor.jury | Lorduy Rodriguez, Alvaro Jose | |
dc.contributor.jury | Villegas Gonzalez, Jazmith Paola | |
dc.date.accessioned | 2025-07-29T16:35:51Z | |
dc.date.available | 2025-07-29T16:35:51Z | |
dc.date.issued | 2025-06-12 | |
dc.description.abstract | Las infecciones causadas por bacterias del grupo ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp.) representan un desafío crítico en el ámbito clínico debido a su creciente resistencia a los antibióticos convencionales y al grave aumento en la morbimortalidad asociada. En este contexto, la búsqueda de nuevas alternativas terapéuticas es esencial, y es aquí donde los productos naturales, especialmente las plantas medicinales, emergen como opciones prometedoras gracias a sus metabolitos secundarios con propiedades antibacterianas reconocidas. El objetivo de esta investigación fue evaluar la actividad antibacteriana y antibiopelículas del extracto etanólico de hojas de Kalanchoe pinnata frente a cinco aislamientos clínicos del grupo ESKAPE. Se empleó el método de microdilución en caldo Mueller Hinton para determinar la concentración mínima inhibitoria (CMI90), y se evaluó la inhibición de biopelículas mediante cuantificación espectrofotométrica. Todos los aislamientos fueron sensibles al extracto evaluado, con valores de CMI90 entre 612.0 y 920.8 μg/mL, siendo Pseudomonas aeruginosa el más susceptible. El extracto inhibió la formación de biopelículas con porcentajes de hasta 63% para el aislamiento de E. faecium y 12% para A. baumannii. Asimismo, se observó que los aislamientos de P. aeruginosa y K. pneumoniae no presentaron inhibición significativa de biopelículas con el extracto, mientras que ciprofloxacino logró reducciones del 80% y 60% respectivamente en estos aislamientos. Los resultados demuestran que el extracto etanólico de K. pinnata posee actividad antibacteriana contra aislamientos clínicos del grupo ESKAPE, aunque con efectividad variable en la inhibición de biopelículas, sugiriendo la necesidad de futuras investigaciones para mejorar la búsqueda de nuevos compuestos con actividad antimicrobiana. | spa |
dc.description.abstract | Infections caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pose a critical challenge in clinical settings due to their increasing resistance to conventional antibiotics and the associated rise in morbidity and mortality. In this context, the search for new therapeutic alternatives is essential, and natural products—especially medicinal plants—emerge as promising options because of their bioactive secondary metabolites with recognized antibacterial properties. The objective of this study was to evaluate the antibacterial and antibiofilm activity of an ethanolic leaf extract of Kalanchoe pinnata against five clinical isolates from the ESKAPE group. The broth microdilution method using Mueller–Hinton medium was employed to determine the minimum inhibitory concentration (CMI90), and biofilm inhibition was assessed by spectrophotometric quantification. All isolates proved sensitive to the extract, with CMI90 values ranging from 612.0 to 920.8 µg/mL, and P. aeruginosa was the most susceptible. The extract inhibited biofilm formation by up to 63% for E. faecium and 12% for A. baumannii, although these values were lower than those achieved by ciprofloxacin as a positive control. Notably, P. aeruginosa and K. pneumoniae isolates showed no significant biofilm inhibition with the extract, while ciprofloxacin achieved reductions of 80% and 60%, respectively. These findings demonstrate that the ethanolic extract of K. pinnata possesses antibacterial activity against clinical ESKAPE isolates, albeit with variable efficacy in biofilm inhibition, indicating the need for further research to identify and optimize novel antimicrobial compounds. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Biólogo(a) | |
dc.description.modality | Artículo | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9510 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Biología | |
dc.relation.references | 1. Herrera-Feijoo RJ, Guamán-Rivera SA, Correa-Delgado ML, Carrión-Salazar BE, Mecías-Herrera NL. Resistencia antimicrobiana de microorganismos del grupo ESKAPE y la importancia del PROA. Código Científico Revista de Investigación. 2023;4(E2):240-54. | |
dc.relation.references | 2. Bunduki GK, Masoamphambe E, Fox T, Musaya J, Musicha P, Feasey N. Prevalence, risk factors, and antimicrobial resistance of endemic healthcare-associated infections in Africa: a systematic review and meta-analysis. BMC Infect Dis. 2024;24(1):158. | |
dc.relation.references | 3. Organización Mundial de la Salud. Antimicrobial resistance [Internet]. WHO; 2020 [citado 2023 Sep 28]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. | |
dc.relation.references | 4. Ibarra Castillo CC, Lobos Gilabert O. Estudio documental de la actividad antimicrobiana de aceites esenciales y extractos de origen natural frente a bacterias multirresistentes. Universidad de Talca (Chile); 2022. Disponible en el repositorio: https://dspace.utalca.cl/handle/1950/13249 | |
dc.relation.references | 5. Donadu MG, Peralta‑Ruiz Y, Usai D, Maggio F, Molina‑Hernandez JB, Rizzo D, et al. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi. 2021;7(5):383. DOI: 10.3390/jof7050383 | |
dc.relation.references | 6. Pabón LC, Granados Flórez J, Rodríguez Álvarez MF, Hernández-Rodríguez P, Velasco WJ. Actividad antimicrobiana de extractos de plantas frente a Staphylococcus aislados de pacientes con conjuntivitis bacteriana. Revista Ciencias de la Salud. 2023;21(1):1-14. | |
dc.relation.references | 7. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Atlanta: CDC; 2019. Available from: https://www.cdc.gov/drugresistance/biggest-threats/2019-AR-threats-report-508.pdf | |
dc.relation.references | 8. Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Crețu IR, Sava M, et al. Prevalence of infections and antimicrobial resistance of ESKAPE group bacteria isolated from patients admitted to the intensive care unit of a county emergency hospital in Romania. Antibiotics (Basel). 2024;13(5):400. Available from: https://doi.org/10.3390/antibiotics13050400 | |
dc.relation.references | 9. Tajudin N, Ismail I. Antimicrobial activity of Kalanchoe pinnata: a review. Malaysian J Sci Health Technol. 2022;8(1):31–37. Available from: https://doi.org/10.33102/mjosht.v8i1.245 | |
dc.relation.references | 10. Tatsimo SJND, Tamokou JDD, Havyarimana L, Csupor D, Forgo P, Hohmann J, et al. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes. 2012;5:158. Available from: https://doi.org/10.1186/1756-0500-5-158 | |
dc.relation.references | 11. Kolodziejczyk-Czepas J, Stochmal A. Bufadienolides of Kalanchoe species: an overview of chemical structure, biological activity and prospects for pharmacological use. Phytochem Rev. 2017;16(6):1155–1171. Available from: https://doi.org/10.1007/s11101-017-9525-1 | |
dc.relation.references | 12. Pattewar SV, Patil DN, Dahikar SB. Antimicrobial potential of extract from leaves of Kalanchoe pinnata. Int J Pharm Sci Res. 2013;4(12):4577–4580. Available from: https://doi.org/10.13040/IJPSR.0975-8232.4(12).4577-80 | |
dc.relation.references | 13. Okwu DE, Nnamdi FU. Two novel flavonoids from Bryophyllum pinnatum and their antimicrobial activity. J Chem Pharm Res. 2011;3(2):1–10. Available from: https://www.jocpr.com/articles/two-novel-flavonoids-from-bryophyllum-pinnatum-and-their-antimicrobial-activity.pdf | |
dc.relation.references | 14. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Clin Infect Dis. 2018;68(12):1813–1822. Available from: https://doi.org/10.1093/cid/ciy112 | |
dc.relation.references | 15. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277–283. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/ | |
dc.relation.references | 16. World Health Organization. Global action plan on antimicrobial resistance. Geneva: WHO; 2016. Available from: https://www.who.int/publications/i/item/9789241509763 | |
dc.relation.references | 17. Anandan J, Shanmugam R. Antioxidant, anti-inflammatory, and antimicrobial activity of the Kalanchoe pinnata and Piper longum formulation against oral pathogens. Dent J (Basel). 2024;12(3):360. Available from: https://doi.org/10.3390/dj120300360 | |
dc.relation.references | 18. Nascimento LdB, Casanova LM, Costa SS, et al. Bioactive compounds from Kalanchoe genus potentially useful for the development of new drugs. Life. 2023;13(3):646. Available from: https://doi.org/10.3390/life13030646 | |
dc.relation.references | 19. Shetty NP, Malini SM, Nirmal B, et al. In vitro antimicrobial activity of crude extracts from Bryophyllum pinnatum and Kalanchoe crenata. Afr J Tradit Complement Altern Med. 2007;4(4):481–488. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816479/ | |
dc.relation.references | 20. United Nations General Assembly. Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance. UN; 2016. Available from: https://digitallibrary.un.org/record/842813 | |
dc.relation.references | 21. World Health Organization. Monitoring and evaluation of the global action plan on antimicrobial resistance: framework and recommended indicators. 2019. Available from: https://www.who.int/publications/i/item/monitoring-and-evaluation-of-the-global-action-plan-on-antimicrobial-resistance | |
dc.relation.references | 22. World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) report: early implementation 2020. 2020. Available from: https://iris.who.int/bitstream/handle/10665/332081/9789240005587-eng.pdf | |
dc.relation.references | 23. Ferreira RT, Coutinho MAS, Malvar DC, Costa EA, Florentino IF, Costa SS, Vanderlinde FA. Mechanisms Underlying the Antinociceptive, Antiedematogenic, and Anti-Inflammatory Activity of the Main Flavonoid from Kalanchoe pinnata. Evid Based Complement Alternat Med. 2014;2014:429256. http://dx.doi.org/10.1155/2014/429256 | |
dc.relation.references | 24. Cryer M, Lane K, Greer M, Cates R, Burt S, Andrus M, Zou J, Rogers P, Hansen MDH, Burgado J. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm Biol. 2017;55(1):1586–1591. http://dx.doi.org/10.1080/13880209.2017.1310907 | |
dc.relation.references | 25. Coutinho MAS, Casanova LM, Santos NLB, Leal D, Palmero C, Toma HK, Santos EP, Nasciutti LE, Costa SS. Wound healing cream formulated with Kalanchoe pinnata major flavonoid is as effective as the aqueous leaf extract cream in a rat model of excisional wound. Nat Prod Res. 2021;35(24):6034–6039. http://dx.doi.org/10.1080/14786419.2020.1817012 | |
dc.relation.references | 26. Singh RK, Garg A, Shrimali K. Botanical description, photochemistry, traditional uses, and pharmacology of the “wonder plant” Kalanchoe pinnata (Linn.) Pers: An updated review. J Pharm Med Chem. 2022;8(1):11–24. http://dx.doi.org/10.21088/jpmc.2395.6615.8122.1 | |
dc.relation.references | 27. Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – Ninth Edition. CLSI document M07-A9. Wayne, PA: CLSI; 2012. https://clsi.org/standards/products/microbiology/documents/m07/ | |
dc.relation.references | 28. Contreras-Martínez, O.I.; Sierra-Quiroz, D.; Angulo-Ortíz, A. Antibacterial and Antibiofilm Potential of Ethanolic Extracts of Duguetia vallicola (Annonaceae) against in-Hospital Isolates of Pseudomonas aeruginosa. Plants 2024, 13, 1412. https://doi.org/10.3390/plants13101412 | |
dc.relation.references | 29. Stefanowicz-Hajduk J, Ochocka R, Malinowska I, Cal K. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. Molecules. 2020;25(18):4314. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7470146/ | |
dc.relation.references | 30. Richwagen N, Rocha R, Bernardes FM, Córdova MM. Antimicrobial activity of Kalanchoe pinnata: A review. ResearchGate. 2022. Disponible en: https://www.researchgate.net/publication/358557062_Antimicrobial_Activity_of_Kalanchoe_Pinnata_A_Review | |
dc.relation.references | 31. Pereira SL, Oliveira DR, Ferreira JMS, et al. Kalanchoe sp. extracts—Phytochemistry, cytotoxic, and antimicrobial activities. Plants. 2023;12(13):2544. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC10305294/ | |
dc.relation.references | 32. Saleem M, Riaz M, Ahmad M, Hussain M. Cytotoxic, antibacterial and antibiofilm activities of aqueous extracts of leaves and flavonoids occurring in Kalanchoe pinnata (Lam.) Pers. Int J Chem Biomed Sci. 2015;1(5):25–30. Disponible en: https://www.iscientific.org/wp-content/uploads/2020/05/5-IJCBS-15-07-27.pdf | |
dc.relation.references | 33. Kadam S, Momin F, Pawar S, et al. From treatise to test: Evaluating traditional remedies for anti-biofilm potential. Front Microbiol. 2020;11:2178. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7656780/ | |
dc.relation.references | 34. Sarkar S, Mandal S, Chakraborty R, Mandal NC. Antimicrobial properties of Kalanchoe blossfeldiana: A focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation. Microb Pathog. 2015;86:38–48. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25827848/. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Antibacterial | eng |
dc.subject.keywords | Antibiofilm | eng |
dc.subject.keywords | ESKAPE | eng |
dc.subject.keywords | Kalanchoe pinnata | eng |
dc.subject.proposal | Antibacteriano | spa |
dc.subject.proposal | Antibiopelículas | spa |
dc.subject.proposal | ESKAPE | spa |
dc.subject.proposal | Kalanchoe pinnata | spa |
dc.title | Evaluación del potencial antibacteriano y antibiopelículas del extracto etanólico de hojas de Kalanchoe pinnata frente a aislamientos clínicos del grupo Eskape | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: