Publicación: Acoplamiento molecular: una herramienta computacional para el estudio de complejos quimioterapéuticos anticancerosos basados en paladio (II)
dc.contributor.advisor | López Ochoa, Jesús Manuel | spa |
dc.contributor.author | Arrieta Galindo, José David | |
dc.date.accessioned | 2022-07-19T16:19:21Z | |
dc.date.available | 2022-07-19T16:19:21Z | |
dc.date.issued | 2020-07-18 | |
dc.description.abstract | El acoplamiento molecular ha tomado gran relevancia en investigaciones farmacológicas de complejos metálicos con capacidad anticancerosa. Tal es el caso para los compuestos metálicos de paladio (II) que han demostrado tener características similares a las del cisplatino y, por ende, resultados prometedores en investigaciones contra el cáncer. De acuerdo con esto, en esta revisión se estudió la funcionalidad del acoplamiento molecular en el diseño de complejos de paladio (II) con actividades citotóxicas prometedoras. Pudiendo establecer ventajas al compararlos con resto de los complejos estudiados. También, se dieron a conocer las bases teóricas del acoplamiento molecular in silico. En el que analizamos algoritmos de búsqueda, funciones de puntuación, paquetes computacionales de cálculo, etc. Lo anterior implicó una búsqueda exhaustiva en la literatura científica de toda la información referente a esta herramienta computacional, encontrando estudios teóricos-experimentales de una amplia variedad de compuestos de paladio, donde un complejo dinuclear, mostro un comportamiento farmacológico sobresaliente, con mejores afinidades de unión frente a los demás, con datos de acoplamiento y experimentales que lo respaldan. Al final, se pudo concluir que la elección del ligando es de gran importancia, ya que, sus características intrínsecas, les confieren estabilidad a los complejos sintetizados, como en el caso del complejo trinuclear sintetizado por Karami y colaboradores. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | LISTA DE FIGURAS .......................................................................................................... 1 | spa |
dc.description.tableofcontents | LISTA DE TABLAS ............................................................................................................ 2 | spa |
dc.description.tableofcontents | RESUMEN ...................................................................................................................... 3 | spa |
dc.description.tableofcontents | ABSTRACT ...................................................................................................................... 4 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ............................................................................................................. 5 | spa |
dc.description.tableofcontents | OBJETIVOS ..................................................................................................................... 7 | spa |
dc.description.tableofcontents | CAPITULO I: ACOPLAMIENTO MOLECULAR ................................................................. 8 | spa |
dc.description.tableofcontents | 1.1 Generalidades.................................................................................................................................. 8 | spa |
dc.description.tableofcontents | 1.2 Definición ........................................................................................................................................ 8 | spa |
dc.description.tableofcontents | 1.3 Tipos de Acoplamiento Molecular .................................................................................................... 9 | spa |
dc.description.tableofcontents | 1.3.1 Acoplamiento rígido .................................................................................................................. 10 | spa |
dc.description.tableofcontents | 1.3.2 Acoplamiento flexible ............................................................................................................... 11 | spa |
dc.description.tableofcontents | 1.4 Algoritmos de Búsqueda. ............................................................................................................... 12 | spa |
dc.description.tableofcontents | 1.4.1 Emparejamiento rápido de forma (SM) ..................................................................................... 13 | spa |
dc.description.tableofcontents | 1.4.2 Construcción Incremental (IC) ................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.4.3 Simulación de Monte Carlo (MC)............................................................................................... 14 | spa |
dc.description.tableofcontents | 1.4.4 algoritmo genético (GA) ............................................................................................................ 15 | spa |
dc.description.tableofcontents | 1.5 Funciones de Puntuación ............................................................................................................... 15 | spa |
dc.description.tableofcontents | 1.5.1 Funciones de puntuación basadas en la física ........................................................................... 17 | spa |
dc.description.tableofcontents | 1.5.2 Funciones de puntuación empíricas .......................................................................................... 18 | spa |
dc.description.tableofcontents | 1.5.3 Funciones de puntuación basadas en conocimientos. ............................................................... 18 | spa |
dc.description.tableofcontents | 1.6 Software para Acoplamiento Molecular ......................................................................................... 19 | spa |
dc.description.tableofcontents | 1.7 Limitaciones .................................................................................................................................. 21 | spa |
dc.description.tableofcontents | CAPITULO II: COMPLEJOS METÁLICOS CON ACTIVIDAD ANTICANCEROSA ............... 23 | spa |
dc.description.tableofcontents | 2.1 Generalidades................................................................................................................................ 23 | spa |
dc.description.tableofcontents | 2.2 Complejos de Platino. .................................................................................................................... 23 | spa |
dc.description.tableofcontents | 2.3 Complejos de Rutenio (II). .............................................................................................................. 28 | spa |
dc.description.tableofcontents | 2.4 Complejo de Oro (III). ..................................................................................................................... 31 | spa |
dc.description.tableofcontents | 2.4.1 Complejos N-C. ......................................................................................................................... 31 | spa |
dc.description.tableofcontents | 2.5 Complejos de Cobre. ...................................................................................................................... 35 | spa |
dc.description.tableofcontents | 2.5.1 Generalidades. .......................................................................................................................... 35 | spa |
dc.description.tableofcontents | 2.5.2 Sistemas 𝛋-N, S de Tiosemicarbazonas (TSCs). ........................................................................ 36 | spa |
dc.description.tableofcontents | 2.5.3 Sistemas 𝛋-N, O, S. ................................................................................................................. 37 | spa |
dc.description.tableofcontents | 2.5.5 Complejos de cobre como inhibidores del proteosoma ............................................................. 39 | spa |
dc.description.tableofcontents | CAPITULO III: ACOPLAMIENTO MOLECULAR DE COMPLEJOS DE PALADIO ............... 41 | spa |
dc.description.tableofcontents | 3.1 Generalidades................................................................................................................................ 41 | spa |
dc.description.tableofcontents | 3.2 Complejos de paladio con ligandos de nitrógeno (N) ...................................................................... 42 | spa |
dc.description.tableofcontents | 3.3 Complejos de paladio con ligando de oxígeno (O) .......................................................................... 45 | spa |
dc.description.tableofcontents | 3.4 Complejos de paladio di y trinucleares ........................................................................................... 47 | spa |
dc.description.tableofcontents | CONCLUSIONES ............................................................................................................ 53 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS .................................................................................... 55 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6146 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Molecular docking | eng |
dc.subject.keywords | Scoring functions | eng |
dc.subject.keywords | Search algorithms | eng |
dc.subject.keywords | Palladium (II) complexes | eng |
dc.subject.proposal | Acoplamiento molecular | spa |
dc.subject.proposal | Funciones de puntuación | spa |
dc.subject.proposal | Algoritmos de búsqueda | spa |
dc.subject.proposal | Complejos de paladio (II). | spa |
dc.title | Acoplamiento molecular: una herramienta computacional para el estudio de complejos quimioterapéuticos anticancerosos basados en paladio (II) | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Chaudhary KK, Mishra N. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem. 2016;4(3):1029. www.pdb.org. | spa |
dcterms.references | Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.025 | spa |
dcterms.references | Mukherjee S, Chowdhury S, Chattapadhyay AP, Bhattacharya A. Spectroscopic, cytotoxic and DFT studies of a luminescent palladium(II) complex of a hydrazone ligand that induces apoptosis in human prostate cancer cells. Inorganica Chim Acta. 2011;373(1):40–46. doi:10.1016/j.ica.2011.03.048 | spa |
dcterms.references | Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):4574. doi:10.3390/ijms20184574 | spa |
dcterms.references | Banaganapalli B, Morad FA, Khan M, et al. Molecular Docking. En: Essentials of Bioinformatics, Volume I. Springer International Publishing; 2019:335–353. doi:10.1007/978-3-030-02634-9_15 | spa |
dcterms.references | Velásquez M, Drosos J, Gueto C, Márquez J, Vivas–Reyes R. Metodo acoplado Autodock-PM6 para seleccionar la mejor pose en estudios. Rev Colomb Quim. 2013;42(1):1–8. | spa |
dcterms.references | Dastmalchi S, Hamzeh-Mivehroud M, Sokouti B. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery (Advances in Chemical and Materials Engineering). 2016;(February 2018):456. | spa |
dcterms.references | Liu W, Liu G, Zhou H, Fang X, Fang Y, Wu J. Computer prediction of paratope on antithrombotic antibody 10B12 and epitope on platelet glycoprotein VI via molecular dynamics simulation. Biomed Eng Online. 2016;15(S2):152. doi:10.1186/s12938-016-0272-0 | spa |
dcterms.references | Tao X, Huang Y, Wang C, et al. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol. 2020;55(1):33–45. doi:10.1111/ijfs.14325 | spa |
dcterms.references | Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. 56 Biophys Rev. 2017;9(2):91–102. doi:10.1007/s12551-016-0247-1 | spa |
dcterms.references | Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24(2):149–164. doi:10.1002/jmr.1077 | spa |
dcterms.references | Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: Current status and future challenges. Proteins Struct Funct Genet. 2006;65(1):15–26. doi:10.1002/prot.21082 | spa |
dcterms.references | Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–13421. doi:10.3390/molecules200713384 | spa |
dcterms.references | Gorelik B, Goldblum A. High quality binding modes in docking ligands to proteins. Proteins Struct Funct Genet. 2008;71(3):1373–1386. doi:10.1002/prot.21847 | spa |
dcterms.references | Dias R, Filgueira W, Jr DA. Molecular Docking Algorithms. Published online 2008:1040–1047. | spa |
dcterms.references | Chen R, Li L, Weng Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins Struct Funct Genet. 2003;52(1):80–87. doi:10.1002/prot.10389 | spa |
dcterms.references | Lang PT, Brozell SR, Mukherjee S, et al. DOCK 6: Combining techniques to model RNA–small molecule complexes. RNA. 2009;15(6):1219–1230. doi:10.1261/RNA.1563609 | spa |
dcterms.references | Huang S-Y, Zou X. Advances and Challenges in Protein-Ligand Docking. Int J Mol Sci. 2010;11:3016–3034. doi:10.3390/ijms11083016 | spa |
dcterms.references | Sethi A, Joshi K, Sasikala K, Alvala M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. En: Drug Discovery and Development - New Advances. IntechOpen; 2020. doi:10.5772/intechopen.85991 | spa |
dcterms.references | Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr Comput Aided-Drug Des. 2012;7(2):146–157. doi:10.2174/157340911795677602 | spa |
dcterms.references | Liao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem. 2011;3(8):1057–1085. 57 doi:10.4155/fmc.11.63 | spa |
dcterms.references | Li J, Fu A, Zhang L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdiscip Sci Comput Life Sci. 2019;11(2):320–328. doi:10.1007/s12539-019-00327-w | spa |
dcterms.references | Chen F, Liu H, Sun H, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys. 2016;18(32):22129–22139. doi:10.1039/c6cp03670h | spa |
dcterms.references | Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys. 2018;20(31):20650–20660. doi:10.1039/c8cp03871f | spa |
dcterms.references | Chaskar P, Zoete V, Röhrig UF. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: Development and benchmark of a scoring function. J Chem Inf Model. 2014;54(11):3137–3152. doi:10.1021/ci5004152 | spa |
dcterms.references | Zheng Z, Merz KM. Ligand Identification Scoring Algorithm (LISA). J Chem Inf Model. 2011;51(6):1296–1306. doi:10.1021/ci2000665 | spa |
dcterms.references | Kadukova M, Grudinin S. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J Comput Aided Mol Des. 2017;31(10):943–958. doi:10.1007/s10822-017-0068-8 | spa |
dcterms.references | Murray CW, Auton TR, Eldridge MD. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J Comput Aided Mol Des. 1998;12(5):503–519. doi:10.1023/A:1008040323669 | spa |
dcterms.references | Liu J, Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482. doi:10.1021/ci500731a | spa |
dcterms.references | Cross JB, Thompson DC, Rai BK, et al. Comparison of several molecular docking programs: Pose prediction and virtual screening accuracy. J Chem Inf Model. 2009;49(6):1455–1474. doi:10.1021/CI900056C/SUPPL_FILE/CI900056C_SI_001.PDF | spa |
dcterms.references | Liu Z, Liu Y, Zeng G, et al. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere. 2018;203:139–150. doi:10.1016/J.CHEMOSPHERE.2018.03.179 | spa |
dcterms.references | Sci-Hub | Challenges and advances in computational docking: 2009 in review. Journal of Molecular Recognition, 24(2), 149–164 | 10.1002/jmr.1077. Consultado diciembre 16, 2021. https://sci-hub.se/10.1002/jmr.1077 | spa |
dcterms.references | Verkhivker GM, Bouzida D, Gehlhaar DK, et al. Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Mol Des 2000 148. 2000;14(8):731–751. doi:10.1023/A:1008158231558 | spa |
dcterms.references | Sehnal D, Bittrich S, Deshpande M, et al. Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. RAT TRANSTHYRETIN COMPLEX WITH THYROXINE. 2021;49(W1):W431–W437. doi:10.1093/NAR/GKAB314 | spa |
dcterms.references | Bruijnincx PC, Sadler PJ, David S, Meggers E. New trends for metal complexes with anticancer activity This review comes from a themed issue on Bioinorganic Chemistry Edited by. Curr Opin Chem Biol. 2008;12:197–206. doi:10.1016/j.cbpa.2007.11.013 | spa |
dcterms.references | Dorotíková S, Kožíšková J, Malček M, et al. Copper(II) complexes with new fluoroquinolones: Synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity. J Inorg Biochem. 2015;150:160–173. doi:10.1016/j.jinorgbio.2015.06.017 | spa |
dcterms.references | Rodríguez Gómez M, Rodríguez Gómez M. Uso de cisplatino y derivados de platino en quimioterapia. Published online 2017. | spa |
dcterms.references | Cutillas N, Yellol GS, Haro C De, Vicente C, Rodríguez V, Ruiz J. Ac ce p te us ip t. Coord Chem Rev. Published online 2013. doi:10.1016/j.ccr.2013.03.024 | spa |
dcterms.references | Abazari O, Shafaei Z, Divsalar A, et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. J Iran Chem Soc. 2020;17(7):1601–1614. doi:10.1007/S13738-020-01879-1 | spa |
dcterms.references | Antonarakis ES, Emadi A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 2010 661. 2010;66(1):1–9. doi:10.1007/S00280-010-1293-1 | spa |
dcterms.references | Rademaker-Lakhai JM, Van Den Bongard D, Pluim D, Beijnen JH, Schellens JHM. A Phase I and Pharmacological Study with Imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a Novel Ruthenium Anticancer Agent. Clin Cancer Res. 2004;10(11):3717–3727. doi:10.1158/1078-0432.CCR-03-0746 | spa |
dcterms.references | Tang B, Shen F, Wan D, et al. DNA-binding, molecular docking studies and biological activity studies of ruthenium(II) polypyridyl complexes †. Published online 2017. doi:10.1039/c7ra05103d | spa |
dcterms.references | Thioredoxin reductase and cancer cell growth inhibition by o... : Anti-Cancer Drugs. Consultado marzo 1, 2022. https://journals.lww.com/anti-cancerdrugs/Abstract/2006/06000/Thioredoxin_reductase_and_cancer_cell_growth.7.aspx | spa |
dcterms.references | Zhang J-J, Sun RW-Y, Che C-M. A dual cytotoxic and anti-angiogenic water-soluble gold(III) complex induces endoplasmic reticulum damage in HeLa cells. Chem Commun. 2012;48(28):3388–3390. doi:10.1039/C2CC00029F | spa |
dcterms.references | Vela L, Contel M, Palomera L, Azaceta G, Marzo I. Iminophosphorane–organogold(III) complexes induce cell death through mitochondrial ROS production. J Inorg Biochem. 2011;105(10):1306–1313. doi:10.1016/J.JINORGBIO.2011.06.004 | spa |
dcterms.references | Sankarganesh M, Raja JD, Revathi N, Solomon RV, Kumar RS. Gold(III) complex from pyrimidine and morpholine analogue Schiff base ligand: Synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. J Mol Liq. 2019;294. doi:10.1016/J.MOLLIQ.2019.111655 | spa |
dcterms.references | Jia P, Ouyang R, Cao P, et al. Review: recent advances and future development of metal complexes as anticancer agents. J Coord Chem. 2017;70(13):2175–2201. doi:10.1080/00958972.2017.1349313 | spa |
dcterms.references | Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Chem Rev. 2014;114(1):815–862. 60 doi:10.1021/CR400135X | spa |
dcterms.references | Tardito S, Isella C, Medico E, et al. The thioxotriazole copper (II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009;284(36):24306–24319. doi:10.1074/JBC.M109.026583/ATTACHMENT/C66D84DE-BF81-4D31-A1BB-672A33D50675/MMC1.ZIP | spa |
dcterms.references | Keswani T, Chowdhury S, Mukherjee S, Bhattacharyya A. Palladium(II) complex induces apoptosis through ROS-mediated mitochondrial pathway in human lung adenocarcinoma cell line (A549). Curr Sci. 2014;107(10):1711–1719. | spa |
dcterms.references | Gao E, Liu C, Zhu M, Lin H, Wu Q, Liu L. Current Development of Pd(II) Complexes as Potential Antitumor Agents. Consultado octubre 19, 2019. https://www.ingentaconnect.com/content/ben/acamc/2009/00000009/00000003/art00008 | spa |
dcterms.references | Dehkhodaei M, Sahihi M, Rudbari HA, et al. Multi experimental and computational studies for DNA and HSA interaction of new nano-scale ultrasound-assisted synthesized Pd(II) complex as a potent anticancer drug. J Mol Liq. 2018;264:386–397. doi:10.1016/j.molliq.2018.05.077 | spa |
dcterms.references | Varshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH. Ligand binding strategies of human serum albumin: How can the cargo be utilized? Chirality. 2010;22(1):77–87. doi:10.1002/CHIR.20709 | spa |
dcterms.references | Joksimović N, Janković N, Petronijević J, et al. Synthesis, Anticancer Evaluation and Synergistic Effects with cis platin of Novel Palladium Complexes: DNA, BSA Interactions and Molecular Docking Study . Med Chem (Los Angeles). 2019;16(1):78–92. doi:10.2174/1573406415666190128095732 | spa |
dcterms.references | Cócíć D, Jovanović-Stević S, Jelić R, et al. Homo- And hetero-dinuclear Pt(ii)/Pd(ii) complexes: Studies of hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions, DFT calculations, molecular docking and cytotoxic activity. Dalt Trans. 2020;49(41):14411–14431. doi:10.1039/d0dt02906h | spa |
dcterms.references | Karami K, Mehri Lighvan Z, Alizadeh AM, Poshteh-Shirani M, Khayamian T, Lipkowski J. Synthesis of a novel trinuclear palladium complex: The influence of an oxime chelate ligand on biological evaluation towards double-strand DNA, BSA protein and molecular modeling studies. RSC Adv. 2016;6(82):78424–78435. doi:10.1039/c6ra08744b | spa |
dcterms.references | Subhani S, Jayaraman A, Jamil K. Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomed Pharmacother. 2015;71:37–45. doi:10.1016/j.biopha.2015.02.009 | spa |
dcterms.references | Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83–89. doi:10.1007/s40484-019-0172-y | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: