Publicación:
Acoplamiento molecular: una herramienta computacional para el estudio de complejos quimioterapéuticos anticancerosos basados en paladio (II)

dc.contributor.advisorLópez Ochoa, Jesús Manuelspa
dc.contributor.authorArrieta Galindo, José David
dc.date.accessioned2022-07-19T16:19:21Z
dc.date.available2022-07-19T16:19:21Z
dc.date.issued2020-07-18
dc.description.abstractEl acoplamiento molecular ha tomado gran relevancia en investigaciones farmacológicas de complejos metálicos con capacidad anticancerosa. Tal es el caso para los compuestos metálicos de paladio (II) que han demostrado tener características similares a las del cisplatino y, por ende, resultados prometedores en investigaciones contra el cáncer. De acuerdo con esto, en esta revisión se estudió la funcionalidad del acoplamiento molecular en el diseño de complejos de paladio (II) con actividades citotóxicas prometedoras. Pudiendo establecer ventajas al compararlos con resto de los complejos estudiados. También, se dieron a conocer las bases teóricas del acoplamiento molecular in silico. En el que analizamos algoritmos de búsqueda, funciones de puntuación, paquetes computacionales de cálculo, etc. Lo anterior implicó una búsqueda exhaustiva en la literatura científica de toda la información referente a esta herramienta computacional, encontrando estudios teóricos-experimentales de una amplia variedad de compuestos de paladio, donde un complejo dinuclear, mostro un comportamiento farmacológico sobresaliente, con mejores afinidades de unión frente a los demás, con datos de acoplamiento y experimentales que lo respaldan. Al final, se pudo concluir que la elección del ligando es de gran importancia, ya que, sus características intrínsecas, les confieren estabilidad a los complejos sintetizados, como en el caso del complejo trinuclear sintetizado por Karami y colaboradores.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityMonografíasspa
dc.description.tableofcontentsLISTA DE FIGURAS .......................................................................................................... 1spa
dc.description.tableofcontentsLISTA DE TABLAS ............................................................................................................ 2spa
dc.description.tableofcontentsRESUMEN ...................................................................................................................... 3spa
dc.description.tableofcontentsABSTRACT ...................................................................................................................... 4spa
dc.description.tableofcontentsINTRODUCCIÓN ............................................................................................................. 5spa
dc.description.tableofcontentsOBJETIVOS ..................................................................................................................... 7spa
dc.description.tableofcontentsCAPITULO I: ACOPLAMIENTO MOLECULAR ................................................................. 8spa
dc.description.tableofcontents1.1 Generalidades.................................................................................................................................. 8spa
dc.description.tableofcontents1.2 Definición ........................................................................................................................................ 8spa
dc.description.tableofcontents1.3 Tipos de Acoplamiento Molecular .................................................................................................... 9spa
dc.description.tableofcontents1.3.1 Acoplamiento rígido .................................................................................................................. 10spa
dc.description.tableofcontents1.3.2 Acoplamiento flexible ............................................................................................................... 11spa
dc.description.tableofcontents1.4 Algoritmos de Búsqueda. ............................................................................................................... 12spa
dc.description.tableofcontents1.4.1 Emparejamiento rápido de forma (SM) ..................................................................................... 13spa
dc.description.tableofcontents1.4.2 Construcción Incremental (IC) ................................................................................................... 13spa
dc.description.tableofcontents1.4.3 Simulación de Monte Carlo (MC)............................................................................................... 14spa
dc.description.tableofcontents1.4.4 algoritmo genético (GA) ............................................................................................................ 15spa
dc.description.tableofcontents1.5 Funciones de Puntuación ............................................................................................................... 15spa
dc.description.tableofcontents1.5.1 Funciones de puntuación basadas en la física ........................................................................... 17spa
dc.description.tableofcontents1.5.2 Funciones de puntuación empíricas .......................................................................................... 18spa
dc.description.tableofcontents1.5.3 Funciones de puntuación basadas en conocimientos. ............................................................... 18spa
dc.description.tableofcontents1.6 Software para Acoplamiento Molecular ......................................................................................... 19spa
dc.description.tableofcontents1.7 Limitaciones .................................................................................................................................. 21spa
dc.description.tableofcontentsCAPITULO II: COMPLEJOS METÁLICOS CON ACTIVIDAD ANTICANCEROSA ............... 23spa
dc.description.tableofcontents2.1 Generalidades................................................................................................................................ 23spa
dc.description.tableofcontents2.2 Complejos de Platino. .................................................................................................................... 23spa
dc.description.tableofcontents2.3 Complejos de Rutenio (II). .............................................................................................................. 28spa
dc.description.tableofcontents2.4 Complejo de Oro (III). ..................................................................................................................... 31spa
dc.description.tableofcontents2.4.1 Complejos N-C. ......................................................................................................................... 31spa
dc.description.tableofcontents2.5 Complejos de Cobre. ...................................................................................................................... 35spa
dc.description.tableofcontents2.5.1 Generalidades. .......................................................................................................................... 35spa
dc.description.tableofcontents2.5.2 Sistemas 𝛋-N, S de Tiosemicarbazonas (TSCs). ........................................................................ 36spa
dc.description.tableofcontents2.5.3 Sistemas 𝛋-N, O, S. ................................................................................................................. 37spa
dc.description.tableofcontents2.5.5 Complejos de cobre como inhibidores del proteosoma ............................................................. 39spa
dc.description.tableofcontentsCAPITULO III: ACOPLAMIENTO MOLECULAR DE COMPLEJOS DE PALADIO ............... 41spa
dc.description.tableofcontents3.1 Generalidades................................................................................................................................ 41spa
dc.description.tableofcontents3.2 Complejos de paladio con ligandos de nitrógeno (N) ...................................................................... 42spa
dc.description.tableofcontents3.3 Complejos de paladio con ligando de oxígeno (O) .......................................................................... 45spa
dc.description.tableofcontents3.4 Complejos de paladio di y trinucleares ........................................................................................... 47spa
dc.description.tableofcontentsCONCLUSIONES ............................................................................................................ 53spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS .................................................................................... 55spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6146
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsMolecular dockingeng
dc.subject.keywordsScoring functionseng
dc.subject.keywordsSearch algorithmseng
dc.subject.keywordsPalladium (II) complexeseng
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalFunciones de puntuaciónspa
dc.subject.proposalAlgoritmos de búsquedaspa
dc.subject.proposalComplejos de paladio (II).spa
dc.titleAcoplamiento molecular: una herramienta computacional para el estudio de complejos quimioterapéuticos anticancerosos basados en paladio (II)spa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesChaudhary KK, Mishra N. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem. 2016;4(3):1029. www.pdb.org.spa
dcterms.referencesDasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.025spa
dcterms.referencesMukherjee S, Chowdhury S, Chattapadhyay AP, Bhattacharya A. Spectroscopic, cytotoxic and DFT studies of a luminescent palladium(II) complex of a hydrazone ligand that induces apoptosis in human prostate cancer cells. Inorganica Chim Acta. 2011;373(1):40–46. doi:10.1016/j.ica.2011.03.048spa
dcterms.referencesTorres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):4574. doi:10.3390/ijms20184574spa
dcterms.referencesBanaganapalli B, Morad FA, Khan M, et al. Molecular Docking. En: Essentials of Bioinformatics, Volume I. Springer International Publishing; 2019:335–353. doi:10.1007/978-3-030-02634-9_15spa
dcterms.referencesVelásquez M, Drosos J, Gueto C, Márquez J, Vivas–Reyes R. Metodo acoplado Autodock-PM6 para seleccionar la mejor pose en estudios. Rev Colomb Quim. 2013;42(1):1–8.spa
dcterms.referencesDastmalchi S, Hamzeh-Mivehroud M, Sokouti B. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery (Advances in Chemical and Materials Engineering). 2016;(February 2018):456.spa
dcterms.referencesLiu W, Liu G, Zhou H, Fang X, Fang Y, Wu J. Computer prediction of paratope on antithrombotic antibody 10B12 and epitope on platelet glycoprotein VI via molecular dynamics simulation. Biomed Eng Online. 2016;15(S2):152. doi:10.1186/s12938-016-0272-0spa
dcterms.referencesTao X, Huang Y, Wang C, et al. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol. 2020;55(1):33–45. doi:10.1111/ijfs.14325spa
dcterms.referencesPagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. 56 Biophys Rev. 2017;9(2):91–102. doi:10.1007/s12551-016-0247-1spa
dcterms.referencesYuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit. 2011;24(2):149–164. doi:10.1002/jmr.1077spa
dcterms.referencesSousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: Current status and future challenges. Proteins Struct Funct Genet. 2006;65(1):15–26. doi:10.1002/prot.21082spa
dcterms.referencesFerreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–13421. doi:10.3390/molecules200713384spa
dcterms.referencesGorelik B, Goldblum A. High quality binding modes in docking ligands to proteins. Proteins Struct Funct Genet. 2008;71(3):1373–1386. doi:10.1002/prot.21847spa
dcterms.referencesDias R, Filgueira W, Jr DA. Molecular Docking Algorithms. Published online 2008:1040–1047.spa
dcterms.referencesChen R, Li L, Weng Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins Struct Funct Genet. 2003;52(1):80–87. doi:10.1002/prot.10389spa
dcterms.referencesLang PT, Brozell SR, Mukherjee S, et al. DOCK 6: Combining techniques to model RNA–small molecule complexes. RNA. 2009;15(6):1219–1230. doi:10.1261/RNA.1563609spa
dcterms.referencesHuang S-Y, Zou X. Advances and Challenges in Protein-Ligand Docking. Int J Mol Sci. 2010;11:3016–3034. doi:10.3390/ijms11083016spa
dcterms.referencesSethi A, Joshi K, Sasikala K, Alvala M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications. En: Drug Discovery and Development - New Advances. IntechOpen; 2020. doi:10.5772/intechopen.85991spa
dcterms.referencesMeng X-Y, Zhang H-X, Mezei M, Cui M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr Comput Aided-Drug Des. 2012;7(2):146–157. doi:10.2174/157340911795677602spa
dcterms.referencesLiao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem. 2011;3(8):1057–1085. 57 doi:10.4155/fmc.11.63spa
dcterms.referencesLi J, Fu A, Zhang L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdiscip Sci Comput Life Sci. 2019;11(2):320–328. doi:10.1007/s12539-019-00327-wspa
dcterms.referencesChen F, Liu H, Sun H, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys. 2016;18(32):22129–22139. doi:10.1039/c6cp03670hspa
dcterms.referencesKulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys. 2018;20(31):20650–20660. doi:10.1039/c8cp03871fspa
dcterms.referencesChaskar P, Zoete V, Röhrig UF. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: Development and benchmark of a scoring function. J Chem Inf Model. 2014;54(11):3137–3152. doi:10.1021/ci5004152spa
dcterms.referencesZheng Z, Merz KM. Ligand Identification Scoring Algorithm (LISA). J Chem Inf Model. 2011;51(6):1296–1306. doi:10.1021/ci2000665spa
dcterms.referencesKadukova M, Grudinin S. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J Comput Aided Mol Des. 2017;31(10):943–958. doi:10.1007/s10822-017-0068-8spa
dcterms.referencesMurray CW, Auton TR, Eldridge MD. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J Comput Aided Mol Des. 1998;12(5):503–519. doi:10.1023/A:1008040323669spa
dcterms.referencesLiu J, Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482. doi:10.1021/ci500731aspa
dcterms.referencesCross JB, Thompson DC, Rai BK, et al. Comparison of several molecular docking programs: Pose prediction and virtual screening accuracy. J Chem Inf Model. 2009;49(6):1455–1474. doi:10.1021/CI900056C/SUPPL_FILE/CI900056C_SI_001.PDFspa
dcterms.referencesLiu Z, Liu Y, Zeng G, et al. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere. 2018;203:139–150. doi:10.1016/J.CHEMOSPHERE.2018.03.179spa
dcterms.referencesSci-Hub | Challenges and advances in computational docking: 2009 in review. Journal of Molecular Recognition, 24(2), 149–164 | 10.1002/jmr.1077. Consultado diciembre 16, 2021. https://sci-hub.se/10.1002/jmr.1077spa
dcterms.referencesVerkhivker GM, Bouzida D, Gehlhaar DK, et al. Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Mol Des 2000 148. 2000;14(8):731–751. doi:10.1023/A:1008158231558spa
dcterms.referencesSehnal D, Bittrich S, Deshpande M, et al. Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. RAT TRANSTHYRETIN COMPLEX WITH THYROXINE. 2021;49(W1):W431–W437. doi:10.1093/NAR/GKAB314spa
dcterms.referencesBruijnincx PC, Sadler PJ, David S, Meggers E. New trends for metal complexes with anticancer activity This review comes from a themed issue on Bioinorganic Chemistry Edited by. Curr Opin Chem Biol. 2008;12:197–206. doi:10.1016/j.cbpa.2007.11.013spa
dcterms.referencesDorotíková S, Kožíšková J, Malček M, et al. Copper(II) complexes with new fluoroquinolones: Synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity. J Inorg Biochem. 2015;150:160–173. doi:10.1016/j.jinorgbio.2015.06.017spa
dcterms.referencesRodríguez Gómez M, Rodríguez Gómez M. Uso de cisplatino y derivados de platino en quimioterapia. Published online 2017.spa
dcterms.referencesCutillas N, Yellol GS, Haro C De, Vicente C, Rodríguez V, Ruiz J. Ac ce p te us ip t. Coord Chem Rev. Published online 2013. doi:10.1016/j.ccr.2013.03.024spa
dcterms.referencesAbazari O, Shafaei Z, Divsalar A, et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. J Iran Chem Soc. 2020;17(7):1601–1614. doi:10.1007/S13738-020-01879-1spa
dcterms.referencesAntonarakis ES, Emadi A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 2010 661. 2010;66(1):1–9. doi:10.1007/S00280-010-1293-1spa
dcterms.referencesRademaker-Lakhai JM, Van Den Bongard D, Pluim D, Beijnen JH, Schellens JHM. A Phase I and Pharmacological Study with Imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a Novel Ruthenium Anticancer Agent. Clin Cancer Res. 2004;10(11):3717–3727. doi:10.1158/1078-0432.CCR-03-0746spa
dcterms.referencesTang B, Shen F, Wan D, et al. DNA-binding, molecular docking studies and biological activity studies of ruthenium(II) polypyridyl complexes †. Published online 2017. doi:10.1039/c7ra05103dspa
dcterms.referencesThioredoxin reductase and cancer cell growth inhibition by o... : Anti-Cancer Drugs. Consultado marzo 1, 2022. https://journals.lww.com/anti-cancerdrugs/Abstract/2006/06000/Thioredoxin_reductase_and_cancer_cell_growth.7.aspxspa
dcterms.referencesZhang J-J, Sun RW-Y, Che C-M. A dual cytotoxic and anti-angiogenic water-soluble gold(III) complex induces endoplasmic reticulum damage in HeLa cells. Chem Commun. 2012;48(28):3388–3390. doi:10.1039/C2CC00029Fspa
dcterms.referencesVela L, Contel M, Palomera L, Azaceta G, Marzo I. Iminophosphorane–organogold(III) complexes induce cell death through mitochondrial ROS production. J Inorg Biochem. 2011;105(10):1306–1313. doi:10.1016/J.JINORGBIO.2011.06.004spa
dcterms.referencesSankarganesh M, Raja JD, Revathi N, Solomon RV, Kumar RS. Gold(III) complex from pyrimidine and morpholine analogue Schiff base ligand: Synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. J Mol Liq. 2019;294. doi:10.1016/J.MOLLIQ.2019.111655spa
dcterms.referencesJia P, Ouyang R, Cao P, et al. Review: recent advances and future development of metal complexes as anticancer agents. J Coord Chem. 2017;70(13):2175–2201. doi:10.1080/00958972.2017.1349313spa
dcterms.referencesSantini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Chem Rev. 2014;114(1):815–862. 60 doi:10.1021/CR400135Xspa
dcterms.referencesTardito S, Isella C, Medico E, et al. The thioxotriazole copper (II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009;284(36):24306–24319. doi:10.1074/JBC.M109.026583/ATTACHMENT/C66D84DE-BF81-4D31-A1BB-672A33D50675/MMC1.ZIPspa
dcterms.referencesKeswani T, Chowdhury S, Mukherjee S, Bhattacharyya A. Palladium(II) complex induces apoptosis through ROS-mediated mitochondrial pathway in human lung adenocarcinoma cell line (A549). Curr Sci. 2014;107(10):1711–1719.spa
dcterms.referencesGao E, Liu C, Zhu M, Lin H, Wu Q, Liu L. Current Development of Pd(II) Complexes as Potential Antitumor Agents. Consultado octubre 19, 2019. https://www.ingentaconnect.com/content/ben/acamc/2009/00000009/00000003/art00008spa
dcterms.referencesDehkhodaei M, Sahihi M, Rudbari HA, et al. Multi experimental and computational studies for DNA and HSA interaction of new nano-scale ultrasound-assisted synthesized Pd(II) complex as a potent anticancer drug. J Mol Liq. 2018;264:386–397. doi:10.1016/j.molliq.2018.05.077spa
dcterms.referencesVarshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH. Ligand binding strategies of human serum albumin: How can the cargo be utilized? Chirality. 2010;22(1):77–87. doi:10.1002/CHIR.20709spa
dcterms.referencesJoksimović N, Janković N, Petronijević J, et al. Synthesis, Anticancer Evaluation and Synergistic Effects with cis platin of Novel Palladium Complexes: DNA, BSA Interactions and Molecular Docking Study . Med Chem (Los Angeles). 2019;16(1):78–92. doi:10.2174/1573406415666190128095732spa
dcterms.referencesCócíć D, Jovanović-Stević S, Jelić R, et al. Homo- And hetero-dinuclear Pt(ii)/Pd(ii) complexes: Studies of hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions, DFT calculations, molecular docking and cytotoxic activity. Dalt Trans. 2020;49(41):14411–14431. doi:10.1039/d0dt02906hspa
dcterms.referencesKarami K, Mehri Lighvan Z, Alizadeh AM, Poshteh-Shirani M, Khayamian T, Lipkowski J. Synthesis of a novel trinuclear palladium complex: The influence of an oxime chelate ligand on biological evaluation towards double-strand DNA, BSA protein and molecular modeling studies. RSC Adv. 2016;6(82):78424–78435. doi:10.1039/c6ra08744bspa
dcterms.referencesSubhani S, Jayaraman A, Jamil K. Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomed Pharmacother. 2015;71:37–45. doi:10.1016/j.biopha.2015.02.009spa
dcterms.referencesFan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83–89. doi:10.1007/s40484-019-0172-yspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
arrietagalindojosedavid.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación1..pdf
Tamaño:
500.51 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: