Publicación:
Efectos de la fragmentación per se del bosque seco tropical sobre la riqueza taxonómica y funcional de mamíferos en el Caribe Colombiano

dc.audience
dc.contributor.advisorChacó Pacheco, Julio Javier
dc.contributor.advisorPerez Torres, Jairo
dc.contributor.authorNarváez Barrios, Sebastián
dc.contributor.juryCarrillo Fajardio, Merly Yenedith
dc.contributor.juryPardo Vargas, Lain
dc.contributor.juryRegolín, André Luis
dc.date.accessioned2024-11-16T16:18:44Z
dc.date.available2025-11-14
dc.date.available2024-11-16T16:18:44Z
dc.date.issued2024-11-15
dc.description.abstractLos efectos de la fragmentación sobre la biodiversidad son objeto de debate. Algunos estudios indican que existen efectos positivos de la fragmentación, otros autores argumentan que la fragmentación es la principal causa de la pérdida de biodiversidad. La "fragmentación per se" se refiere a la fragmentación del hábitat independientemente de la cantidad de hábitat disponible, este concepto distingue entre la cantidad de hábitat y el patrón o la configuración del hábitat en el paisaje. Evaluamos los efectos de fragmentación per se del bosque seco tropical (Bs-T) en la región Caribe colombiana sobre la riqueza taxonómica y funcional de mamíferos medianos y grandes. Para esto, utilizamos 34 paisajes con rangos de cobertura forestal entre 5 y 90 % en la región. Calculamos métricas de composición (cobertura forestal, tamaño de parche) y de configuración (densidad de borde del bosque, número de parches) del paisaje. En cada paisaje, estimamos la riqueza taxonómica (S) total, especies que dependen de bosque, especies que no dependen de bosque y la riqueza funcional (FRic) mediante registros de fototrampeo. Nuestros resultados destacan la necesidad de preservar tanto grandes como pequeños remantes de bosque. Encontramos que los efectos de la fragmentación per se son positivos en cuanto a la densidad de bordes (ED) en la riqueza total de especies y con efectos positivos moderados sobre las especies no dependientes de bosques. Mientras que, la riqueza de especies dependientes de los bosques se ve afectada por el número de parches (NP) y beneficiada por la cobertura forestal (CA). Estos hallazgos sugieren que los esfuerzos de conservación no solo deben centrarse en preservar y aumentar la cantidad total de hábitat, si no también tener en cuenta la configuración del paisaje del Bs-T en el Caribe colombiano.spa
dc.description.abstractThe effects of fragmentation on biodiversity are a topic of debate. Some studies indicate positive effects of fragmentation, while others argue that fragmentation is the main cause of biodiversity loss. "Fragmentation per se" refers to habitat fragmentation regardless of the amount of habitat available, distinguishing between habitat amount and the pattern or configuration of the landscape. We evaluated the effects of fragmentation per se of tropical dry forest (TD-F) in the Colombian Caribbean region on the taxonomic and functional richness of medium and large mammals. To do this, we used 34 landscapes with forest cover ranging from 5% to 90% in the region. We calculated landscape composition metrics (forest cover, patch size) and configuration metrics (forest edge density, number of patches). In each landscape, we estimated total taxonomic richness (S), forest-dependent species, not-forestdependent species, and functional richness (FRic) through camera trap records. Our results highlight the need to preserve both large and small forest remnants. We found that the effects of fragmentation per se are positive in terms of edge density (ED) on total species richness and show moderate positive effects on non-forest-dependent species. Meanwhile, the richness of forest-dependent species is affected by the number of patches (NP) and benefits from forest cover (CA). These findings suggest that conservation efforts should not only focus on preserving and increasing the total amount of habitat but also take into account the landscape configuration of TD-F in the Colombian Caribbean region.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityArtículo
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8745
dc.language.isospa
dc.language.isoeng
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesAliaga-Rossel E, Kays RW, Fragoso JMV. (2008). Uso doméstico del agutí centroamericano (Dasyprocta punctata) en la isla de Barro Colorado, Panamá. Revista de Ecología Tropical.;24(4):367-374. doi:10.1017/S0266467408005129
dc.relation.referencesArroyo-Rodríguez, V., Cuesta, E. del M., Mandujano, S., Chapman, C. A., Reyna-Hurtado, R., & Fahrig, L. (2013). Assessing habitat fragmentation effects on primates: The importance of evaluating questions at the correct scale. In Primates in Fragments: Complexity and Resilience (pp. 13–28). Springer New York. https://doi.org/10.1007/978-1-4614-8839-2_2
dc.relation.referencesArroyo-Rodríguez, V., Cuesta, E. del M., Mandujano, S., Chapman, C. A., Reyna-Hurtado, R., & Fahrig, L. (2013). Assessing habitat fragmentation effects on primates: The importance of evaluating questions at the correct scale. In Primates in Fragments: Complexity and Resilience (pp. 13–28). Springer New York. https://doi.org/10.1007/978-1-4614-8839-2_2
dc.relation.referencesArroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. In Ecology Letters (Vol. 23, Issue 9, pp. 1404–1420). Blackwell Publishing Ltd. https://doi.org/10.1111/ele.13535
dc.relation.referencesBallesteros-Correa, J., & Pérez-Torres, J. (2022). Silvopastoral and conventional management of extensive livestock and the diversity of bats in fragments of tropical dry forest in Córdoba, Colombia. Agroforestry Systems, 96(3), 589–601. https://doi.org/10.1007/s10457-021-00698-4
dc.relation.referencesBardavid, S., Rivera, L., Martinuzzi, S., Pidgeon, A. M., Radeloff, V. C., & Politi, N. (2024). Identifying medium- and large-sized mammal species sensitive to anthropogenic impacts for monitoring in subtropical montane forests. Environmental Conservation. https://doi.org/10.1017/S037689292400002X
dc.relation.referencesBarlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., & Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. In Nature (Vol. 559, Issue 7715, pp. 517–526). Nature Publishing Group. https://doi.org/10.1038/s41586-018-0301-1
dc.relation.referencesBarton K (2020) Multi-Model Inference: Package ’MuMIn’. R package version 1.43.17. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
dc.relation.referencesBeca, G., Vancine, M. H., Carvalho, C. S., Pedrosa, F., Alves, R. S. C., Buscariol, D., Peres, C. A., Ribeiro, M. C., & Galetti, M. (2017). High mammal species turnover in forest patches immersed in biofuel plantations. Biological Conservation, 210, 352–359. https://doi.org/10.1016/j.biocon.2017.02.033
dc.relation.referencesBełcik, M., Lenda, M., Amano, T., & Skórka, P. (2020). Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76917-2
dc.relation.referencesBerl, J. L., Kellner, K. F., Flaherty, E. A., & Swihart, R. K. (2018). Spatial Variation in Density of White-footed Mice Along Edges in Fragmented Habitat. American Midland Naturalist, 179(1), 38–50. https://doi.org/10.1674/0003-0031-179.1.38
dc.relation.referencesBivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27(3), 716–748. https://doi.org/10.1007/s11749-018-0599-x
dc.relation.referencesBurnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: a pratical information—theoric approach, 2nd edn. Springer, New York
dc.relation.referencesBorcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R (pp. 132–137). ISBN 978–1–4419–7975–9. Springer. https://doi.org/10.1007/978-1-4419-7976-6
dc.relation.referencesBoscolo, D., Alves Ferreira, P., & Elsinor Lopes ϑ, L. (2016). Da matriz à matiz: em busca de uma abordagem funcional na Ecologia de Paisagens (Issue 11).
dc.relation.referencesBovendorp, R. S., Brum, F. T., McCleery, R. A., Baiser, B., Loyola, R., Cianciaruso, M. V., & Galetti, M. (2019). Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography, 42(1), 23–35. https://doi.org/10.1111/ecog.03504
dc.relation.referencesBrady, M. J., Mcalpine, C. A., Possingham, H. P., Miller, C. J., & Baxter, G. S. (2011). Matrix is important for mammals in landscapes with small amounts of native forest habitat. Landscape Ecology, 26(5), 617–628. https://doi.org/10.1007/s10980-011-9602-6
dc.relation.referencesCastillo-Figueroa, D., & Pérez-Torres, J. (2018). Functional responses of bats associated to tropical dry-forest in Córdoba (Colombia): management implications in extensive livestock systems. Julio-Septiembre, 8(3), 197–211. https://doi.org/10.18636/bioneotropical.v8i3.724
dc.relation.referencesCastillo-Figueroa, D., & Pérez-Torres, J. (2021). On the development of a trait-based approach for studying neotropical bats. Papeis Avulsos de Zoologia, 61. https://doi.org/10.11606/1807-0205/2021.61.24
dc.relation.referencesCarvajal-Cogollo, J. E. (2014). Evaluación a Múltiples Escalas De Los Efectos De La Transformación Del Paisaje Sobre Los Ensamblajes De Reptiles En Localidades De La Región Caribe Colombiana. 121.
dc.relation.referencesChacón-Pacheco, J., LINARES, J., CARRASCAL, J., & BALLESTEROS, J. (2013). Área de acción del chigüiro (Hydrochoerus isthmius) en un sistema agropecuario en Córdoba, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 5(2), 270. https://doi.org/10.24188/recia.v5.n2.2013.291
dc.relation.referencesChacón-Pacheco, J., Figel, J., Rojano, C., Racero-Casarrubia, J., Humanez-López, E., & Padilla, H. (2017). Actualización de la distribución e identificación de áreas prioritarias para la conservación de una especie olvidada: el hormiguero gigante en Colombia. Edentata: The Newsletter of the IUCN/SSC Anteater, Sloth and Armadillo Specialist Group, 18. https://doi.org/10.2305/iucn.ch.2017.edentata-18-1.3.en
dc.relation.referencesChacón-Pacheco,J., Sánchez-Londoño, J.D.,Villada-Cadavid, T. y Ballesteros-Correa, J. (2022). Actualización de la lista de mamíferos silvestres del departamento de Córdoba, Colombia. Biota Colombiana,23(1), e966
dc.relation.referencesChacon-Pacheco, J. J., Salcedo-Rivera, G. A., & Zarrate-Charry, D. A. (2022). Mammals of the Department of Sucre, Colombia. Biota Colombiana, 23(2). https://doi.org/10.21068/2539200X.1022
dc.relation.referencesChacón-Pacheco, J., Ramos Madera, C., & Superina, M. (2021). State of knowledge and updated distribution of the northern naked-tailed armadillo Cabassous centralis Miller, 1899 (Cingulata, Chlamyphoridae). Mammalia, 85(6), 503–514. https://doi.org/10.1515/mammalia-2021-0054
dc.relation.referencesChacón-Pacheco, J.., Sánchez-Londoño, J. D., Villada-Cadavid, T., & Ballesteros-Correa, J. (2022). Update of the list of wild mammals of the department of Córdoba, Colombia. Biota Colombiana, 23(1). https://doi.org/10.21068/2539200X.966
dc.relation.referencesCórdova-Tapia, F., & Zambrano, L. (2015). Functional diversity in community ecology. Ecosistemas, 24(3), 78–87. https://doi.org/10.7818/ecos.2015.24-3.10
dc.relation.referencesCrooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C., & Boitani, L. (2011). Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2642–2651. https://doi.org/10.1098/rstb.2011.0120
dc.relation.referencesCrooks, K. R., & Sanjayan, M. A. (2006). Connectivity conservation. Cambridge University Press.
dc.relation.referencesde Bello, F., Carmona, C. P., Dias, A. T. C., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of Trait-Based Ecology. In Handbook of Trait-Based Ecology. Cambridge University Press. https://doi.org/10.1017/9781108628426
dc.relation.referencesDe Campo, G., Andrés, E., Suárez-Castro, F., Ramírez-Chaves, H. E., De Ciencias, F., & De Bienestar, D. (n.d.). Los carnívoros terrestres y semiacuáticos continentales de Colombia // ÁREA DE ACOMPAÑAMIENTO INTEGRAL PROGRAMA GESTIÓN DE PROYECTOS.
dc.relation.referencesde la Sancha, N. U., González-Maya, J. F., Boyle, S. A., Pérez-Estigarribia, P. E., Urbina-Cardona, J. N., & McIntyre, N. E. (2023). Bioindicators of edge effects within Atlantic Forest remnants: Conservation implications in a threatened biodiversity hotspot. Diversity and Distributions, 29(3), 349–363. https://doi.org/10.1111/ddi.13663
dc.relation.referencesDi Bitetti, Mario Santiago. (2008) Depredadores tope y cascadas tróficas en ambientes terrestres; Asociación Civil Ciencia Hoy; Ciencia Hoy; 18; 108; 12-2008; 32-41
dc.relation.referencesDidham, R. K., Kapos, V., & Ewers, R. M. (2012). Rethinking the conceptual foundations of habitat fragmentation research. Oikos, 121(2), 161–170. https://doi.org/10.1111/j.1600-0706.2011.20273.x
dc.relation.referencesDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
dc.relation.referencesDotta, G., & Verdade, L. M. (2011). Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia, 75(4), 345–352. https://doi.org/10.1515/MAMM.2011.049
dc.relation.referencesDriscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., & Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. In Trends in Ecology and Evolution (Vol. 28, Issue 10, pp. 605–613). https://doi.org/10.1016/j.tree.2013.06.010
dc.relation.referencesEtter, A., McAlpine, C., & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: A regionalized spatial approach. Annals of the Association of American Geographers, 98(1), 2–23. https://doi.org/10.1080/00045600701733911
dc.relation.referencesEwers, R. M., & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. In Biological Reviews of the Cambridge Philosophical Society (Vol. 81, Issue 1, pp. 117–142). https://doi.org/10.1017/S1464793105006949
dc.relation.referencesFahrig, L. (2017.). Ecological Responses to Habitat Fragmentation Per Se. https://doi.org/10.1146/annurev-ecolsys-110316
dc.relation.referencesFahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. In Annual Review of Ecology, Evolution, and Systematics (Vol. 34, pp. 487–515). Annual Reviews Inc. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
dc.relation.referencesFahrig L. (1999). Forest loss and fragmentation: which has the greater effect on persistence of forest-dwelling animals? En: Rochelle J., Lehmann L., Wisniewski J. (eds.), Forest fragmentation: wildlife and management implications, pp. 87-95. Brill, Lieden, Países Bajos
dc.relation.referencesFahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130
dc.relation.referencesFahrig, L. (2020). Why do several small patches hold more species than few large patches? In Global Ecology and Biogeography (Vol. 29, Issue 4, pp. 615–628). Blackwell Publishing Ltd. https://doi.org/10.1111/geb.13059
dc.relation.referencesFahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J. L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity? In Biological Conservation (Vol. 230, pp. 179–186). Elsevier Ltd. https://doi.org/10.1016/j.biocon.2018.12.026
dc.relation.referencesFahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x
dc.relation.referencesFarias, A. A., & Jaksic, F. M. (2011). Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island, Chile. Journal of Animal Ecology, 80(4), 809–817. https://doi.org/10.1111/j.1365-2656.2011.01824.x
dc.relation.referencesFerreira, A. S., Peres, C. A., Bogoni, J. A., & Cassano, C. R. (2018). Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. In Mammal Review (Vol. 48, Issue 4, pp. 312–327). Blackwell Publishing Ltd. https://doi.org/10.1111/mam.12137
dc.relation.referencesFerrer-Paris, J. R., Zager, I., Keith, D. A., Oliveira-Miranda, M. A., Rodríguez, J. P., Josse, C., González-Gil, M., Miller, R. M., Zambrana-Torrelio, C., & Barrow, E. (2019). An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. In Conservation Letters (Vol. 12, Issue 2). Wiley-Blackwell. https://doi.org/10.1111/conl.12623
dc.relation.referencesFischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265–280. https://doi.org/10.1111/j.1466-8238.2006.00287.x
dc.relation.referencesFisher, J. T., Anholt, B., & Volpe, J. P. (2011). Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecology and Evolution, 1(4), 517–528. https://doi.org/10.1002/ece3.45
dc.relation.referencesFletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Holt, R. D., Gonzalez, A., Pardini, R., Damschen, E. I., Melo, F. P. L., Ries, L., Prevedello, J. A., Tscharntke, T., Laurance, W. F., Lovejoy, T., & Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? In Biological Conservation (Vol. 226, pp. 9–15). Elsevier Ltd. https://doi.org/10.1016/j.biocon.2018.07.022
dc.relation.referencesFletcher, Robert & Smith, Thomas & Troy, Savannah & Kortessis, Nicholas & Turner, Edgar & Bruna, Emilio & Holt, Robert. (2024). The Prominent Role of the Matrix in Ecology, Evolution, and Conservation. Annual Review of Ecology, Evolution, and Systematics. 10.1146/annurev-ecolsys-102722-025653.
dc.relation.referencesFish U.S. and Service Wildlife. (2016). Jaguar Draft Recovery Plan (Panthera onca). https://doi.org/10.13140/RG.2.2.19972.53127
dc.relation.referencesFox J, Weisberg S (2019). An R Companion to Applied Regression , tercera edición. Salvia, Thousand Oaks CA.https://socialsciences.mcmaster.ca/jfox/Books/Companion/ .
dc.relation.referencesGagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E. M., Steffan-Dewenter, I., Emmerson, M., Potts, S. G., Tscharntke, T., Weisser, W., & Bommarco, R. (2015). Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 282(1801). https://doi.org/10.1098/rspb.2014.2620
dc.relation.referencesGalindo. J. (2007). Efectos de la fragmentación del paisaje sobre las poblaciones de mamíferos, el caso de los murciélagos de Los Tuxtlas, Veracruz.
dc.relation.referencesGardner, A. L. (ed.). 2007 [2008]. Mammals of South America. Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago, Illinois, and London, United Kingdom, 669 pp. ISBN-13: 978-0-226-28240-4, price (hardbound)
dc.relation.referencesGarcía, Hernando., & González-M., Roy. (2019). Bosque seco Colombia : biodiversidad y gestión. Insitituto Humboldt Colombia.
dc.relation.referencesGarcía Millán, V. E., Sánchez-Azofeifa, A., Málvarez García, G. C., & Rivard, B. (2014). Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA. Remote Sensing of Environment, 144, 120–136. https://doi.org/10.1016/j.rse.2014.01.010
dc.relation.referencesGarcía-Burgos, J., Gallina, S., & González-Romero, A. (2014). Acta Zoológica Mexicana (n.s.). Acta Zool. Mex. (n.s.), 30(2), 337–355.
dc.relation.referencesGarmendia, A., Arroyo-Rodríguez, V., Estrada, A., Naranjo, E. J., & Stoner, K. E. (2013). Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. Journal of Tropical Ecology, 29(4), 331–344. https://doi.org/10.1017/S0266467413000370
dc.relation.referencesGómez-Ortiz, Y., & Moreno, C. E. (2017). Functional diversity in animal communities: A review with emphasizes on vertebrates. Animal Biodiversity and Conservation, 40(2), 165–174. https://doi.org/10.32800/abc.2017.40.0165
dc.relation.referencesGonzález-Maya, J., Romero-Rendón, J. F., Charry, D. Z., Castaño-Uribe, C., González, M., Víquez-R, L. R., & Arias-Alzate, A. (2013). Evaluación geográica y prioridades de conservación de hábitat para felinos en el Caribe colombiano.
dc.relation.referencesGoodchild, M. F. (1992). Geographical information science3. International Journal of Geographical Information Systems, 6(1), 31–45. https://doi.org/10.1080/02693799208901893
dc.relation.referencesGorczynski, D., & Beaudrot, L. (2021). Functional diversity and redundancy of tropical forest mammals over time. Biotropica, 53(1), 51–62. https://doi.org/10.1111/btp.12844
dc.relation.referencesH Mason, N. W., Mouillot, D., Lee, W. G., Bastow Wilson Mason, J., H Mason, N. W., & Wilson, J. B. (n.d.). Functional richness, functional evenness and functional divergence: the primary components of functional diversity.
dc.relation.referencesHaddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2). https://doi.org/10.1126/sciadv.1500052
dc.relation.referencesHaddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J., & Damschen, E. I. (2017). Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 40(1), 48–55. https://doi.org/10.1111/ecog.02535
dc.relation.referencesHalffter & E. Ezcurra (1992), La diversidad biológica de Iberoamérica. CYTED-D, Programa Iberoamericano de Ciencia y Tecnologia para el Desarollo, Instituto de Ecologia, AC, Secretaria de Desarrollo Social.
dc.relation.referencesHanski, I. (2015). Habitat fragmentation and species richness. In Journal of Biogeography (Vol. 42, Issue 5, pp. 989–993). https://doi.org/10.1111/jbi.12478
dc.relation.referencesHartig, F. (2018). DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Packag version 020.
dc.relation.referencesHerrero-Jáuregui, C., Camba, G., Andries, D. M., Aguiar, S., Fahrig, L., & Mastrangelo, M. (2022). Past and present effects of habitat amount and fragmentation per se on plant species richness, composition and traits in a deforestation hotspot. Biological Conservation, 276. https://doi.org/10.1016/j.biocon.2022.109815
dc.relation.referencesHesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography, 42(10), 1648–1657. https://doi.org/10.1111/ecog.04617
dc.relation.referencesHillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C. T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169–184. https://doi.org/10.1111/1365-2664.12959
dc.relation.referencesHuais, P. Y. (2018). multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecology, 33(7), 1023–1028. https://doi.org/10.1007/s10980-018-0657-5
dc.relation.referencesJones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., … Purvis, A. (2009). PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648–2648. https://doi.org/10.1890/08-1494.1
dc.relation.referencesKeinath, D. A., Doak, D. F., Hodges, K. E., Prugh, L. R., Fagan, W., Sekercioglu, C. H., Buchart, S. H. M., & Kauffman, M. (2017). A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 26(1), 115–127. https://doi.org/10.1111/geb.12509
dc.relation.referencesKoper, N., Schmiegelow, F. K. A., & Merrill, E. H. (2007). Residuals cannot distinguish between ecological effects of habitat amount and fragmentation: Implications for the debate. Landscape Ecology, 22(6), 811–820. https://doi.org/10.1007/s10980-007-9083-9
dc.relation.referencesLacher, T. E., Davidson, A. D., Fleming, T. H., Gómez-Ruiz, E. P., McCracken, G. F., Owen-Smith, N., Peres, C. A., & Vander Wall, S. B. (2019). The functional roles of mammals in ecosystems. Journal of Mammalogy, 100(3), 942–964. https://doi.org/10.1093/jmammal/gyy183
dc.relation.referencesLatorre, J. P., Jaramillo, O., & Corredor, L. (2014). Condición de las Unidades Ecobiogeograficas Continentales y Sistema Nacional de Áreas Protegidas en Colombia (Base de Datos Geográfica a Escala 1:100.000).
dc.relation.referencesLozano Zambrano, F. H. (2009). Herramientas de manejo para la conservación de biodiversidad en paisajes rurales. http://hdl.handle.net/20.500.12324/13044
dc.relation.referencesLyra-Jorge, M. C., Ribeiro, M. C., Ciocheti, G., Tambosi, L. R., & Pivello, V. R. (2010). Influence of multi-scale landscape structure on the occurrence of carnivorous mammals in a human-modified savanna, Brazil. European Journal of Wildlife Research, 56(3), 359–368. https://doi.org/10.1007/s10344-009-0324-x
dc.relation.referencesMachado-Aguilera, M. C., Lemus-Mejía, L., Pérez-Torres, J., Zárrate-Charry, D. A., Arias-Alzate, A., & González-Maya, J. F. (2024). Preserving the spots: Jaguar (Panthera onca) distribution and priority conservation areas in Colombia. PLoS ONE, 19(3 March). https://doi.org/10.1371/journal.pone.0300375
dc.relation.referencesMagioli, M., Ferraz, K. M. P. M. de B., Chiarello, A. G., Galetti, M., Setz, E. Z. F., Paglia, A. P., Abrego, N., Ribeiro, M. C., & Ovaskainen, O. (2021). Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. In Perspectives in Ecology and Conservation (Vol. 19, Issue 2, pp. 161–170). Associacao Brasileira de Ciencia Ecologica e Conservacao. https://doi.org/10.1016/j.pecon.2021.02.006
dc.relation.referencesMagioli, M., Moreira, M. Z., Fonseca, R. C. B., Ribeiro, M. C., Rodrigues, M. G., & De Barros Ferraz, K. M. P. M. (2019). Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18466–18472. https://doi.org/10.1073/pnas.1904384116
dc.relation.referencesMagioli, M., Ribeiro, M. C., Ferraz, K. M. P. M. B., & Rodrigues, M. G. (2015). Thresholds in the relationship between functional diversity and patch size for mammals in the Brazilian Atlantic Forest. Animal Conservation, 18(6), 499–511. https://doi.org/10.1111/acv.12201
dc.relation.referencesMagneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E., Mouillot, D., & Villéger, S. (2022). mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography, 2022(1). https://doi.org/10.1111/ecog.05904
dc.relation.referencesMaire, E., Grenouillet, G., Brosse, S., & Villéger, S. (2015). How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 24(6), 728–740. https://doi.org/10.1111/geb.12299
dc.relation.referencesMain-Knorn, M. B. Pflug, J. Louis, V. Debaecker, U. Müller-Wilm, and F. Gascon. (2017). “Sen2Cor for Sentinel-2.”Proc. SPIE 10427, Image and Signal Processing for Remote Sensing XXIII 10427 (4 October 2017): 37–48. https://doi.org/10.1117/12.2278218.
dc.relation.referencesMariano-Neto, E., & Santos, R. A. S. (2023). Changes in the functional diversity of birds due to habitat loss in the Brazil Atlantic Forest. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1041268
dc.relation.referencesMartin, A. E., & Fahrig, L. (2012). Measuring and selecting scales of effect for landscape predictors in species-habitat models. In Ecological Applications (Vol. 22, Issue 8).
dc.relation.referencesMason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097
dc.relation.referencesMason, N. W. H., & Mouillot, D. (2013). Functional Diversity Measures. In Encyclopedia of Biodiversity: Second Edition (pp. 597–608). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384719-5.00356-7
dc.relation.referencesMcgarigal, K., & Cushman, S. A. (2002). COMPARATIVE EVALUATION OF EXPERIMENTAL APPROACHES TO THE STUDY OF HABITAT FRAGMENTATION EFFECTS. In Ecological Applications (Vol. 12, Issue 2).
dc.relation.referencesMelo, M. M., Silva, C. M., Barbosa, C. S., Morais, M. C., D’Anunciação, P. E. R., Da Silva, V. X., & Hasui, É. (2016). Borda e isolamento dos fragmentos afetam a cadeia alimentar: Efeitos sobre a força de interação entre guildas tróficas. Biota Neotropica, 16(2).
dc.relation.referencesMena, J. (2021). Diversidad funcional y estructura de una metacomunidad de mamíferos en un gradiente ambiental en los andes del norte de Perú. [Tesis de doctorado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.
dc.relation.referencesMeza-Joya, F. L., Ramos, E., & Cardona, D. (2020). Forest fragmentation erodes mammalian species richness and functional diversity in a human-dominated landscape in colombia. Mastozoologia Neotropical, 27(2), 338–348. https://doi.org/10.31687/saremMN.20.27.2.0.06
dc.relation.referencesMiles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x
dc.relation.referencesMiller-Rushing, A. J., Primack, R. B., Devictor, V., Corlett, R. T., Cumming, G. S., Loyola, R., Maas, B., & Pejchar, L. (2019). How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. In Biological Conservation (Vol. 232, pp. 271–273). Elsevier Ltd. https://doi.org/10.1016/j.biocon.2018.12.029
dc.relation.referencesMoraga, A. D., Martin, A. E., & Fahrig, L. (2019). The scale of effect of landscape context varies with the species’ response variable measured. Landscape Ecology. https://doi.org/10.1007/s10980-019-00808-9
dc.relation.referencesMortelliti, A., Fagiani, S., Battisti, C., Capizzi, D., & Boitani, L. (2010). Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16(6), 941–951. https://doi.org/10.1111/j.1472-4642.2010.00701.x
dc.relation.referencesMouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. In Trends in Ecology and Evolution (Vol. 28, Issue 3, pp. 167–177). https://doi.org/10.1016/j.tree.2012.10.004
dc.relation.referencesNassar, J., Stoner, K. E., Ávila-Cabadilla, L., Espirito-Santo, M., Aranguren, C. I., González-Carcacía, J. A., Lobato-García, J. M., Olívio-Leite, L., Álvarez-Añorve, M., & de Matos Brandão, H. N. (2014). Fruit-eating bats and birds of three seasonal tropical dry forests in the Americas. Tropical Dry Forests in the Americas: Ecology, Conservation and Management; Sánchez-Azofeifa, A., Powers, JS, Fernandes, GW, Quesada, M., Eds, 173–220.
dc.relation.referencesNegret, P.J., Sonter, L., Watson, J.E.M., Possingham, H.P., Jones, K.R., Suarez, C., Ochoa-Quintero, J.M., Maron, M., 2019. Emerging evidence that armed conflict and coca cultivation influence deforestation patterns. Biol. Conserv 239, 108176. https://doi.org/10.1016/J.BIOCON.2019.07.021.
dc.relation.referencesNewbold, T., Bentley, L. F., Hill, S. L. L., Edgar, M. J., Horton, M., Su, G., Şekercioğlu, Ç. H., Collen, B., & Purvis, A. (2020). Global effects of land use on biodiversity differ among functional groups. Functional Ecology, 34(3), 684–693. https://doi.org/10.1111/1365-2435.13500
dc.relation.referencesNichols, C. A., & Alexander, K. (2018). Creeping in the night: What might ecologists be missing? PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0198277
dc.relation.referencesOfstad, E. G., Herfindal, I., Solberg, E. J., & Sæther, B. E. (2016). Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. In Proceedings of the Royal Society B: Biological Sciences (Vol. 283, Issue 1845). Royal Society Publishing. https://doi.org/10.1098/rspb.2016.1234
dc.relation.referencesParadis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290. https://doi.org/10.1093/bioinformatics/btg412
dc.relation.referencesPardo, L. E., Campbell, M. J., Edwards, W., Clements, G. R., & Laurance, W. F. (2018). Terrestrial mammal responses to oil palm dominated landscapes in Colombia. PLoS ONE, 13(5). https://doi.org/10.1371/journal.pone.0197539
dc.relation.referencesPardo, L. E., Edwards, W., Campbell, M. J., Gómez-Valencia, B., Clements, G. R., & Laurance, W. F. (2021). Effects of oil palm and human presence on activity patterns of terrestrial mammals in the Colombian Llanos. Mammalian Biology, 101(6), 775–789. https://doi.org/10.1007/s42991-021-00153-y
dc.relation.referencesPardo, L. E., Gómez-Valencia, B., Deere, N. J., Varón, Y. H., Soto, C., Noguera-Urbano, E. A., Sánchez-Clavijo, L. M., Romero, L., Díaz-Pulido, A., & Ochoa-Quintero, J. M. (2024). Forest cover is more important than its integrity or landscape configuration in determining habitat use by mammals in a human-modified landscape in Colombia. Global Ecology and Conservation, 55, e03232. https://doi.org/10.1016/j.gecco.2024.e03232
dc.relation.referencesPetchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. In Ecology Letters (Vol. 9, Issue 6, pp. 741–758). https://doi.org/10.1111/j.1461-0248.2006.00924.x
dc.relation.referencesPfeifer, M., Lefebvre, V., Peres, C. A., Banks-Leite, C., Wearn, O. R., Marsh, C. J., Butchart, S. H. M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D’Cruze, N., Faria, D., Hadley, A., Harris, S. M., Klingbeil, B. T., Kormann, U., Lens, L., Medina-Rangel, G. F., … Ewers, R. M. (2017). Creation of forest edges has a global impact on forest vertebrates. Nature, 551(7679), 187–191. https://doi.org/10.1038/nature24457
dc.relation.referencesPineda-Cendales, S., Hernández-Rolong, E., & Carvajal-Cogollo, J. E. (2020). Medium and large-sized mammals in dry forests of the Colombian Caribbean. Universitas Scientiarum, 25(3), 435–461. https://doi.org/10.11144/Javeriana.SC25-3.mals
dc.relation.referencesPineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. https://doi.org/10.5061/dryad.br45b
dc.relation.referencesPizano, C., García, H. (García M., & Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (2014). El bosque seco tropical en Colombia.
dc.relation.referencesPüttker, T., Crouzeilles, R., Almeida-Gomes, M., Schmoeller, M., Maurenza, D., Alves-Pinto, H., Pardini, R., Vieira, M. V., Banks-Leite, C., Fonseca, C. R., Metzger, J. P., Accacio, G. M., Alexandrino, E. R., Barros, C. S., Bogoni, J. A., Boscolo, D., Brancalion, P. H. S., Bueno, A. A., Cambui, E. C. B., … Prevedello, J. A. (2020). Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 241. https://doi.org/10.1016/j.biocon.2019.108368
dc.relation.referencesRacero-Casarrubia, J. J. Ballesteros Correa y J. Pérez-Torres. (2015). Mamíferos del departamento de Córdoba-Colombia: historia y estado de conservación. Biota Colombiana 16 (2): 128-148
dc.relation.referencesRegolin, A. L., Cherem, J. J., Graipel, M. E., Bogoni, J. A., Ribeiro, J. W., Vancine, M. H., Tortato, M. A., Oliveira-Santos, L. G., Fantacini, F. M., Luiz, M. R., Castilho, P. V. de, Ribeiro, M. C., & Cáceres, N. C. (2017). Forest cover influences occurrence of mammalian carnivores within Brazilian Atlantic Forest. Journal of Mammalogy, 98(6), 1721–1731. https://doi.org/10.1093/jmammal/gyx103
dc.relation.referencesRegolin, A. L., Oliveira-Santos, L. G., Ribeiro, M. C., & Bailey, L. L. (2021). Habitat quality, not habitat amount, drives mammalian habitat use in the Brazilian Pantanal. Landscape Ecology, 36(9), 2519–2533. https://doi.org/10.1007/s10980-021-01280-0
dc.relation.referencesRegolin, A. L., Ribeiro, M. C., Martello, F., Melo, G. L., Sponchiado, J., Campanha, L. F. de C., Sugai, L. S. M., Silva, T. S. F., & Cáceres, N. C. (2020). Spatial heterogeneity and habitat configuration overcome habitat composition influences on alpha and beta mammal diversity. Biotropica, 52(5), 969–980. https://doi.org/10.1111/btp.12800
dc.relation.referencesResasco, J., Bruna, E. M., Haddad, N. M., Banks-Leite, C., & Margules, C. R. (2017). The contribution of theory and experiments to conservation in fragmented landscapes. Ecography, 40(1), 109–118. https://doi.org/10.1111/ecog.02546
dc.relation.referencesResende, P. S., Viana-Junior, A. B., & Bovendorp, R. S. (2024). A meta-analysis of the effects of anthropogenic disturbances on tropical mammal functional diversity. In Mammal Review. John Wiley and Sons Inc. https://doi.org/10.1111/mam.12356
dc.relation.referencesRies, L., Fletcher, R. J., Battin, J., & Sisk, T. D. (2004). Ecological responses to habitat edges: Mechanisms, models, and variability explained. In Annual Review of Ecology, Evolution, and Systematics (Vol. 35, pp. 491–522).
dc.relation.referencesRincón-Aranguri, M., Toro-Cardona, F. A., Galeano, S. P., Roa-Fuentes, L., & Urbina-Cardona, N. (2023). Functional diversity of snakes is explained by the landscape composition at multiple areas of influence. Ecology and Evolution, 13(7). https://doi.org/10.1002/ece3.10352
dc.relation.referencesRios, E., Benchimol, M., De Vleeschouwer, K., & Cazetta, E. (2022). Spatial predictors and species’ traits: evaluating what really matters for medium‐sized and large mammals in the Atlantic Forest, Brazil. Mammal Review, 52(2), 236–251. https://doi.org/10.1111/mam.12276
dc.relation.referencesRios, E., Benchimol, M., Dodonov, P., De Vleeschouwer, K., & Cazetta, E. (2021). Testing the habitat amount hypothesis and fragmentation effects for medium- and large-sized mammals in a biodiversity hotspot. Landscape Ecology, 36(5), 1311–1323. https://doi.org/10.1007/s10980-021-01231-9
dc.relation.referencesRiva, F., Koper, N., & Fahrig, L. (2024). Overcoming confusion and stigma in habitat fragmentation research. Biological Reviews, 99(4), 1411–1424. https://doi.org/10.1111/brv.13073
dc.relation.referencesRivas, C. A., Guerrero-Casado, J., & Navarro-Cerillo, R. M. (2021). Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: impact on conservation. Forest Ecosystems, 8(1). https://doi.org/10.1186/s40663-021-00329-5
dc.relation.referencesRojano C, Chacón-Pacheco J, Polo AF. (2016). El oso melero (Tamandua mexicana) en el Caribe colombiano: aportes sobre su ecología y amenazas. Edentata 17:17-24. https://doi.org/10.2305/IUCN.CH.2016.EDENTATA-171.4en
dc.relation.referencesRovero, F., Ahumada, J., Jansen, P. A., Sheil, D., Alvarez, P., Boekee, K., Espinosa, S., Lima, M. G. M., Martin, E. H., O’Brien, T. G., Salvador, J., Santos, F., Rosa, M., Zvoleff, A., Sutherland, C., & Tenan, S. (2020). A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography, 43(1), 75–84. https://doi.org/10.1111/ecog.04773
dc.relation.referencesRuffell, J., Banks-Leite, C., & Didham, R. K. (2016). Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation. Oikos, 125(1), 117–125. https://doi.org/10.1111/oik.01948
dc.relation.referencesRussell, R. E., Swihart, R. K., & Craig, B. A. (2007). The effects of matrix structure on movement decisions of meadow voles (Microtus pennsylvanicus). Journal of Mammalogy, 88(3), 573–579. https://doi.org/10.1644/06-MAMM-A-080R1.1
dc.relation.referencesRytwinski, T., & Fahrig, L. (2012). Do species life history traits explain population responses to roads? A meta-analysis. Biological Conservation, 147(1), 87–98. https://doi.org/10.1016/j.biocon.2011.11.023
dc.relation.referencesSánchez-Cordero, V., Botello, F., Flores-Martínez, J. J., Gómez-Rodríguez, R. A., Guevara, L., Gutiérrez-Granados, G., & Rodríguez-Moreno, Á. (2014). Biodiversity of Chordata (Mammalia) in Mexico. Revista Mexicana de Biodiversidad, 85(SUPPL.). https://doi.org/10.7550/rmb.31688
dc.relation.referencesSAUNDERS, D. A., HOBBS, R. J., & MARGULES, C. R. (1991). Biological Consequences of Ecosystem Fragmentation: A Review. In Conservation Biology (Vol. 5, Issue 1, pp. 18–32). https://doi.org/10.1111/j.1523-1739.1991.tb00384.x
dc.relation.referencesSaura, S. (2021). The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. Journal of Biogeography, 48(1), 11–22. https://doi.org/10.1111/jbi.13958
dc.relation.referencesSaura, S. (2022). The habitat amount hypothesis predicts that fragmentation poses a threat to biodiversity: A reply to Fahrig. In Journal of Biogeography (Vol. 48, Issue 6, pp. 1536–1540). Blackwell Publishing Ltd. https://doi.org/10.1111/jbi.14122
dc.relation.referencesSmith, A. C., Koper, N., Francis, C. M., & Fahrig, L. (2009). Confronting collinearity: Comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology, 24(10), 1271–1285. https://doi.org/10.1007/s10980-009-9383-3
dc.relation.referencesSong, Y., Wang, P., Li, G., & Zhou, D. (2014). Relationships between functional diversity and ecosystem functioning: A review. Acta Ecologica Sinica, 34(2), 85–91. https://doi.org/10.1016/j.chnaes.2014.01.001
dc.relation.referencesSuárez-Castro, A.F., H.E. Ramírez-Chaves (editores). (2015). Los carnívoros terrestres y semiacuáticos continentales de Colombia. Guía de Campo. Bogotá: Editorial Universidad Nacional de Colombia, 224 pp.
dc.relation.referencesThompson, J. J., Velilla, M., Cabral, H., Cantero, N., Bonzi, V. R., Britez, E., Campos Krauer, J. M., McBride, R. T., Ayala, R., & Cartes, J. L. (2022). Jaguar (Panthera onca) population density and landscape connectivity in a deforestation hotspot: The Paraguayan Dry Chaco as a case study. Perspectives in Ecology and Conservation, 20(4), 377–385. https://doi.org/10.1016/j.pecon.2022.09.001
dc.relation.referencesThorington, Jr. R. R. Hoffmann. (2005). Family Sciuridae. Pp. 761 in D Wilson, D Reeder, eds. Mammal Species of the World, Vol. 2, Third Edition. Baltimore, Maryland: The Johns Hopkins University Press.
dc.relation.referencesTinoco, B. A., Santillán, V. E., & Graham, C. H. (2018). Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds. Ecology and Evolution, 8(6), 3478–3490. https://doi.org/10.1002/ece3.3813
dc.relation.referencesTonetti, V., Pena, J. C., Scarpelli, M. D. A., Sugai, L. S. M., Barros, F. M., Anunciação, P. R., Santos, P. M., Tavares, A. L. B., & Ribeiro, M. C. (2023). Landscape heterogeneity: Concepts, quantification, challenges and future perspectives. In Environmental Conservation (Vol. 127). Cambridge University Press. https://doi.org/10.1017/S0376892923000097
dc.relation.referencesTscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. In Ecology Letters (Vol. 8, Issue 8, pp. 857–874). https://doi.org/10.1111/j.1461-0248.2005.00782.x
dc.relation.referencesUlloa l. Rodríguez D. Sánchez PAG. .(1999). Movimientos y uso del tiempo y el espacio por una guartinaja ( Agouti paca ) en la Sierra Nevada De Santa Marta, Colombia.Revista de Academia Colombiana de Ciencias 23:687–694.
dc.relation.referencesValente, J. J., Gannon, D. G., Hightower, J., Kim, H., Leimberger, K. G., Macedo, R., Rousseau, J. S., Weldy, M. J., Zitomer, R. A., Fahrig, L., Fletcher, R. J., Wu, J., & Betts, M. G. (2023). Toward conciliation in the habitat fragmentation and biodiversity debate. In Landscape Ecology (Vol. 38, Issue 11, pp. 2717–2730). Springer Science and Business Media B.V. https://doi.org/10.1007/s10980-023-01708-9
dc.relation.referencesVallecillo, S. (2009). Los cambios en el paisaje y su efecto sobre la distribución de las especies: modelización y aplicación a la conservación de las aves de hábitats abiertos en paisajes mediterráneos. 61.
dc.relation.referencesVillard, M. A., & Metzger, J. P. (2014). Beyond the fragmentation debate: A conceptual model to predict when habitat configuration really matters. In Journal of Applied Ecology (Vol. 51, Issue 2, pp. 309–318). Blackwell Publishing Ltd. https://doi.org/10.1111/1365-2664.12190
dc.relation.referencesVilléger, S., Brosse, S., Mouchet, M., Mouillot, D., & Vanni, M. J. (2017). Functional ecology of fish: current approaches and future challenges. Aquatic Sciences, 79(4), 783–801. https://doi.org/10.1007/s00027-017-0546-z
dc.relation.referencesVilléger, S., Novack-Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561–568. https://doi.org/10.1111/j.1461-0248.2011.01618.x
dc.relation.referencesViolle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
dc.relation.referencesWang, X., Blanchet, F. G., & Koper, N. (2014). Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution, 5(7), 634–646. https://doi.org/10.1111/2041-210X.12198
dc.relation.referencesWatling, J. I., Arroyo-Rodríguez, V., Pfeifer, M., Baeten, L., Banks-Leite, C., Cisneros, L. M., Fang, R., Hamel-Leigue, A. C., Lachat, T., Leal, I. R., Lens, L., Possingham, H. P., Raheem, D. C., Ribeiro, D. B., Slade, E. M., Urbina-Cardona, J. N., Wood, E. M., & Fahrig, L. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. In Ecology Letters (Vol. 23, Issue 4, pp. 674–681). Blackwell Publishing Ltd. https://doi.org/10.1111/ele.13471
dc.relation.referencesWilcove, D.S., McLellan, C.H., Dobson, A.P. 1986. Habitat fragmentation in the temperate zone. En: Soulé, M.E. (ed.), Conservation Biology: The Science of Scarcity and Diversity, pp. 237-256. Sinauer Associates Inc., Sunderland, Estados Unidos.
dc.relation.referencesWillmer, J. N. G., Püttker, T., & Prevedello, J. A. (2022). Global impacts of edge effects on species richness. Biological Conservation, 272. https://doi.org/10.1016/j.biocon.2022.109654
dc.relation.referencesWilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95(7), 2027–2027. https://doi.org/10.1890/13-1917.1
dc.relation.referencesWolf, A., Doughty, C. E., & Malhi, Y. (2013). Lateral Diffusion of Nutrients by Mammalian Herbivores in Terrestrial Ecosystems. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0071352
dc.relation.referencesZárrate-Charry, D. A. (2018). Using Biodiversity Distribution Data to Support Landscape Conservation and Management in Colombia. Oregon State University.
dc.relation.referencesZárrate-Charry, D. A., González-Maya, J. F., Arias-Alzate, A., Jiménez-Alvarado, J. S., Arias, J. D. R., Armenteras, D., & Betts, M. G. (2022). Connectivity conservation at the crossroads: Protected areas versus payments for ecosystem services in conserving connectivity for Colombian carnivores. Royal Society Open Science, 9(1). https://doi.org/10.1098/rsos.201154
dc.relation.referencesZimbres, B., Peres, C. A., & Machado, R. B. (2017). Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biological Conservation, 206, 283–292. https://doi.org/10.1016/j.biocon.2016.11.033
dc.relation.referencesZobel, M. (1997). The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence? In Trends in Ecology and Evolution (Vol. 12, Issue 7, pp. 266–269). Elsevier Ltd. https://doi.org/10.1016/S0169-5347(97)01096-3
dc.relation.referencesZuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GH (2009) Mixed efects models and extensions in ecology with R. Springer, New York
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsHabitat amount
dc.subject.keywordsFunctional diversity
dc.subject.keywordsLandscape configuration
dc.subject.keywordsLandscape composition
dc.subject.keywordsConservation
dc.subject.proposalCantidad de hábitat
dc.subject.proposalDiversidad funcional
dc.subject.proposalConfiguración del paisaje
dc.subject.proposalComposición del paisaje
dc.subject.proposalConservación
dc.titleEfectos de la fragmentación per se del bosque seco tropical sobre la riqueza taxonómica y funcional de mamíferos en el Caribe Colombianospa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
NarvaezBariosSebastian .pdf
Tamaño:
684.91 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
258.59 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: