Publicación: Método de elementos finitos para un problema de corrientes inducidas axisimetrico
dc.contributor.advisor | Reales, Carlos | spa |
dc.contributor.author | Otero Pantoja, Jean Carlos | |
dc.date.accessioned | 2022-03-28T02:11:20Z | |
dc.date.available | 2022-03-28T02:11:20Z | |
dc.date.issued | 2022-03-25 | |
dc.description.abstract | In this work a Finite Element Method for an Axisymmetric Eddy Current problem will be studied. A variational formulation of the problem will be established and the existence and uniqueness of the solution will be proved, making use of some results of the Functional Analysis. Next, a discretization of the variational problem will be established and error estimates will be tested. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Matemático(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | En este trabajo se estudiará un Método de Elementos Finitos para un problema de Corrientes Inducidas Axisimétrico. Se establecerá una formulación variacional del problema y se probará la existencia y unicidad de la solución, haciendo uso de algunos resultados del Análisis Funcional. Seguidamente, se establecerá una discretización del problema variacional y se probarán estimativos de error. | |
dc.description.tableofcontents | Resumen iv | spa |
dc.description.tableofcontents | Abstract v | spa |
dc.description.tableofcontents | 1. Preliminares 5 | spa |
dc.description.tableofcontents | 1.1. Espacios de Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 | spa |
dc.description.tableofcontents | 1.2. Espacios de Sobolev ponderados . . . . . . . . . . . . . . . . . . . . . 14 | spa |
dc.description.tableofcontents | 2. Problema de corrientes inducidas 18 | spa |
dc.description.tableofcontents | 2.1. Coordenadas Cilíndricas y Espacios de Sobolev . . . . . . . . . . . . 18 | spa |
dc.description.tableofcontents | 2.2. Planteamiento del Problema . . . . . . . . . . . . . . . . . . . . . . . 20 | spa |
dc.description.tableofcontents | 2.3. Formulación variacional . . . . . . . . . . . . . . . . . . . . . . . . . 25 | spa |
dc.description.tableofcontents | 3. Discretización por Elementos Finitos 34 | spa |
dc.description.tableofcontents | 3.1. Problema Discreto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 | spa |
dc.description.tableofcontents | 3.2. Análisis del error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 | spa |
dc.description.tableofcontents | 3.3. Estimaciones de Error de las variables físicas. . . . . . . . . . . . . . 39 | spa |
dc.description.tableofcontents | Bibliografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5056 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Matemática | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Variational formulation | spa |
dc.subject.proposal | Formulación variacional | spa |
dc.title | Método de elementos finitos para un problema de corrientes inducidas axisimetrico | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Alberty, J., Carstensen, C., Funken, S., & Klose, R. (2004) Matlab Implementation of the Finite Element Methods in Elasticity, Computing 69, 239– 263. | spa |
dcterms.references | [2] Brenner, S. & Scott, L.(2007)The Mathematical Theory of Finite Element Methods. Springer, New York. | spa |
dcterms.references | [3] Ciarlet, P.(1978) The Finite Element Method for Elliptic Problems. North Holland Pu | spa |
dcterms.references | [4] Eriksson, K., Hansbo, P., & and C. Johnson.(1996) Computational Di | spa |
dcterms.references | [5] Gatica, G.(2014)Introducción al Analisis Funcional. Teoria y Aplicaciones. Edi toria | spa |
dcterms.references | [6] Larson, M. & Bengzon, F.(2013)The Finite Element Method: Theory, Imple m | spa |
dcterms.references | [7] Marsden, J. & Hughes, T.(1994)Mathematical foundations of elasticity, Dover Publications, Inc., New York. | spa |
dcterms.references | [8] Amrouche, C., Bernardi, C., Dauge, M. & Girault, V. (1998) Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21, 823–864. | spa |
dcterms.references | [9] Assous, F., Ciarlet Jr., P. & Labrunie, S. (2002) Theoretical tools to solve the axisymmetric Maxwell equations, Math. Methods Appl. Sci. 25, 49–78. | spa |
dcterms.references | [10] Assous, F., Ciarlet Jr, P., Labrunie, S. & Segré, J. (2003) Numeri cal solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, J. Comput. Phys. 191, 147–176. | spa |
dcterms.references | [11] Belhachmi, Z., Bernardi, C. & Deparis, S. (2002) Weighted Clément ope rator and application to the finite element discretization of the axisymmetric Sto kes | spa |
dcterms.references | [12] Bermúdez, A., Gómez, D., Muñiz, M.C. & Salgado, P. (2007a) Transient numerical simulation of a thermoelectrical problem in cylindrical induction hea ting furnaces, Adv | spa |
dcterms.references | [13] Bermúdez, A., Gómez, D., Muñiz, M.C. & Salgado, P. (2007b) A FEM/BEM for axisymmetric electromagnetic and thermal modelling of induc tio | spa |
dcterms.references | [14] Bermúdez, A., Gómez, D., Muñiz, M.C., Salgado, P. & Vázquez, R. (2008) Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace (submitted). | spa |
dcterms.references | [15] Bermúdez, A., Reales, C., Rodríguez, R.& Salgado, P.(2010) Numeri cal analysis of a finite-element method for the axisymmetric eddy current model of an induction furnaceIMA J. Numer. Anal.30, 654–676. | spa |
dcterms.references | [16] 2002Ci Ciarlet, P. (2002) The Finite Element Method for Elliptic Problems. New York: SIAM. | spa |
dcterms.references | [17] Chaboudez, C. & Clain, S. (1997) Numerical modeling in induction heating for axisymmetric geometries, IEEE Trans. Magn. 33, 739–745. | spa |
dcterms.references | [18] Ern, A. & Guermond, J. (2004) Theory and Practice of Finite Elements. New York: Springer. | spa |
dcterms.references | [19] Hochstadt, H. (1967) The mean convergence of Fourier-Bessel series, SIAM Rev. 9, 211–218. | spa |
dcterms.references | [20] González-Velasco, E.A. (1996) Fourier Analysis and Boundary Value Pro blems. San | spa |
dcterms.references | [21] Gopalakrishnan, J. & Pasciak, J. (2006) The convergence of V-cycle mul tigrid algorithms for axisymmetric Laplace and Maxwell equations, Math. Comp. 75, 1697–1719. | spa |
dcterms.references | [22] Kufner, A. (1983) Weighted Sobolev Spaces. New York: Wiley. | spa |
dcterms.references | [23] Lacoste, P. (2000) Solution of Maxwell equation in axisymmetric geometry by Fourier series decomposition and by use of H(rot) conforming finite element, Numer. Math. 84, 577–609. | spa |
dcterms.references | [24] Mercier, B. & Raugel, G. (1982) Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en ◊, RAIRO, Anal. Numér. 16, 405–461. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: