Publicación:
Contaminantes emergentes (productos farmacéuticos y de cuidado personal) en aguas y sedimentos de ecosistemas acuáticos del departamento de Córdoba-Colombia

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorMárquez Méndez, Daniela Sofía
dc.date.accessioned2022-03-30T02:11:21Z
dc.date.available2023-03-29
dc.date.available2022-03-30T02:11:21Z
dc.date.issued2022-03-29
dc.description.abstractEn este trabajo se analizaron 9 CE en muestras de agua, material suspendido y sedimentos de tres ecosistemas acuáticos del departamento de Córdoba-Colombia, las muestras fueron tomadas en dos temporadas climáticas de lluvia y sequía, el análisis de riesgo se realizó teniendo en cuanta la concentración previa sin efecto y por último el análisis de componentes principales y la distribución se obtuvo mediante la utilización del programa estadístico R studio. Los resultados arrojados en este estudio nos demuestran la presencia de estos CE en dichos ecosistemas además que algunos de ellos en concentraciones que podrían estar afectando al ecosistema. La máxima concentración encontrada en las muestras de agua fue en la bahía de Cispatá en el primer muestreo correspondiente a 15354.15 ng/L de Ibuprofeno, para las muestras de material suspendido fue de 251.69 ng/g de Triclosán detectado en el primer muestreo en la bahía de Cispatá en el caño Zarapa y para los sedimentos la máxima concentración se encontró en Después de playa Blanca con 164.74 ng/g de NPX. En el análisis de componentes principales se determinó una máxima correlación entre los CE del 40.9% en la bahía de Cispatá correspondiente a la componente 1 de dicho análisis. Para el análisis de riesgo ecológico se encontró que en la temporada de lluvia es decir el primer muestreo la bahía de Cispatá en la zona estuarina, la ciénaga de Ayapel en la gran mayoría de sus puntos y la ciénaga de Lorica 3 puntos estaban en riesgo alto. Para el segundo muestreo en la temporada seca la bahía de Cispatá disminuyo el riesgo a casi nulo en todos los puntos, la ciénaga de Ayapel el riesgo se mantuvo alto para todos los puntos y para la ciénaga de Lorica fue alto en tres puntos de muestreo.spa
dc.description.abstract In this work, 9 CE were analyzed in samples of water, suspended material and sediments from three aquatic ecosystems of the department of Córdoba-Colombia, the samples were taken in two climatic seasons of rain and drought, the risk analysis was carried out taking into account the previous concentration without effect and finally the analysis of principal components and the distribution was obtained by using the statistical program R studio. The results obtained in this study show us the presence of these ECs in these ecosystems as well as some of them in concentrations that could be affecting the ecosystem. The maximum concentration found in the water samples was in the Cispatá bay in the first sampling corresponding to 15354.15 ng / L of Ibuprofen, for the suspended material samples it was 251.69 ng / g of Triclosan detected in the first sampling in the bay. of Cispatá in the Zarapa channel and for the sediments the maximum concentration was found in After Playa Blanca with 164.74 ng / g of NPX. In the analysis of principal components, a maximum correlation between the EC of 40.9% was determined in the Cispatá bay corresponding to component 1 of said analysis. For the ecological risk analysis, it was found that in the rainy season, that is, the first sampling the Cispatá Bay in the estuarine zone, the Ayapel swamp in the vast majority of its points and the Lorica swamp 3 points were at high riskeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN................................................................................ 13spa
dc.description.tableofcontentsINTRODUCCIÓN 11.....................................................................................11spa
dc.description.tableofcontentsOBJETIVOS..............................................................................................13spa
dc.description.tableofcontentsOBJETIVO GENERAL..............................................................................13spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECÍFICOS...................................................... 13spa
dc.description.tableofcontentsANTECEDENTES Y MARCO TEORICO................................... 14spa
dc.description.tableofcontentsANTECEDENTES........................................................................ 14spa
dc.description.tableofcontents3.2. MARCO TEORICO......................................................................... 18spa
dc.description.tableofcontents3.2.1 Contaminantes emergentes...............................................................18spa
dc.description.tableofcontents3.2.2. Contaminación de aguas superficiales por contaminantes emergentes.....23spa
dc.description.tableofcontents3.2.3. Contaminación de sedimentos por emergentes....................24spa
dc.description.tableofcontents3.2.4. Contaminantes emergentes en solidos suspendidos.......... 24spa
dc.description.tableofcontents3.2.5. Vías de entrada de los CE a los ecosistemas acuáticos................25spa
dc.description.tableofcontents3.3.5. Normativa de los CE................................................. 27spa
dc.description.tableofcontents3.3.6. Métodos de Extracción, detección y cuantificación..............28spa
dc.description.tableofcontents4. METODOLOGÍA............................................................ 33spa
dc.description.tableofcontents4.1. ÁREAS DE ESTUDIO......................................................... 33spa
dc.description.tableofcontents4.1.1 Zona estuarina bahía de Cispatá.......................... 33spa
dc.description.tableofcontents4.1.2 Ciénaga De Ayapel......................................... 33spa
dc.description.tableofcontents4.1.3 Ciénaga De Lorica............................................................. 34spa
dc.description.tableofcontents4.2. TOMA DE MUESTRAS..................................................... 35spa
dc.description.tableofcontents4.2.1. Recolección de muestras de agua y sedimento......................36spa
dc.description.tableofcontents4.3 ANÁLISIS Y EXTRACCIÓN DE LAS MUESTRAS PARA EL ANALISIS DE CE...........37spa
dc.description.tableofcontents4.3.1. Aguas......................................................................................37spa
dc.description.tableofcontents4.3.2. Sedimentos....................................................................37spa
dc.description.tableofcontents4.3.3. Solidos suspendidos........................................38spa
dc.description.tableofcontents4.3.4 Control de calidad analítica.............................................38spa
dc.description.tableofcontents4.3.5. Condiciones cromatográficas............................................38spa
dc.description.tableofcontents4.4. ANALISIS DE RIESGO ECOLOGICO......................................39spa
dc.description.tableofcontents4.5. ANÁLISIS ESTADÍSTICO...................................................41spa
dc.description.tableofcontents4.6. DISTRIBUCIÓN DE LOS CONTAMINANTES..................... 41spa
dc.description.tableofcontents5. RESULTADOS................................................................. 42spa
dc.description.tableofcontents5.1. ANALISIS Y RESULTADOS DE LOS CE EN LAS MATRICES DE ESTUDIO.......42spa
dc.description.tableofcontents5.1.1 Contaminantes emergentes en la bahía de Cispatá............ 42spa
dc.description.tableofcontents5.1.2 Ayapel....................................................................... 51spa
dc.description.tableofcontents5.1.3 Lorica.................................................57spa
dc.description.tableofcontents5.2. ANALISIS DE CORRELACIÓN...................... 63spa
dc.description.tableofcontents5.2.1 Aguas......................................................................... 63spa
dc.description.tableofcontents5.2.2 Sedimentos................................................................66spa
dc.description.tableofcontents5.3. COEFICIENTES DE RIESGO EN AGUAS........................70spa
dc.description.tableofcontents5.4. DISTRIBUCIÓN ESPACIAL DE LOS COMPUESTOS........... 73spa
dc.description.tableofcontents6. CONCLUSIONES.........................................................................94spa
dc.description.tableofcontents7. RECOMENDACIONES...................................................96spa
dc.description.tableofcontents8. REFERENCIAS BIBLIÓGRAFICAS.............................97spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5098
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsEstuaryeng
dc.subject.keywordsSwampeng
dc.subject.keywordsDdrugseng
dc.subject.keywordsHormoneseng
dc.subject.keywordsLipid regulatorseng
dc.subject.keywordsChromatographyeng
dc.subject.keywordsecological riskeng
dc.subject.proposalEstuariospa
dc.subject.proposalCiénagaspa
dc.subject.proposalFármacosspa
dc.subject.proposalHormonasspa
dc.subject.proposalRegulador de lípidosspa
dc.subject.proposalCromatografíaspa
dc.subject.proposalRiesgo ecológicospa
dc.titleContaminantes emergentes (productos farmacéuticos y de cuidado personal) en aguas y sedimentos de ecosistemas acuáticos del departamento de Córdoba-Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAguilar CM, Chairez I, Rodriguez JL, Tiznado H, Santillan R, Arrieta D, Poznyak T (2019) Inhibition effect of ethanol in naproxen degradation by catalytic ozonation with NiO. RSC Adv 9:14822–14833.spa
dcterms.referencesAl Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. (2012). Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. The Science of the Total Environment, v. 438, p. 15-25.spa
dcterms.referencesÁlvarez-Ruiz, R., & Picó, Y. (2020). Analysis of emerging and related pollutants in aquatic biota. Trends in Environmental Analytical Chemistry, 25.spa
dcterms.referencesAmin, M. M., Bina, B., Ebrahimi, A., Yavari, Z., Mohammadi, F., & Rahimi, S. (2018). The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran. Chinese Journal of Chemical Engineering, 26(5), 1132-1139.spa
dcterms.referencesAPHA, (2005). Standard Methods for the Examination of Water and Wastewater 21th Ed. American Water Works Association. Water Environment Federation, Washington, DC.spa
dcterms.referencesBarrios-Estrada C., de Jesús Rostro-Alanis, M., Parra, A.L., Belleville, M.P., Sanchez Marcano, J., Iqbal, H.M., Parra-Saldívar, R., (2018b). Potentialities of active membranas with immobilized laccase for bisphenol A degradation. Int. J. Biol. Macromol. 108, 837–844.spa
dcterms.referencesBatista, B. L., Rodrigues, J. L., De Souza, S. S., Souza, V. C. O., & Barbosa Jr, F. (2011). Mercury speciation in seafood samples by LC–ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples. Food chemistry, 126(4), 2000-2004.spa
dcterms.referencesBattaglin, W. A., Bradley, P. M., Iwanowicz, L., Journey, C. A., Walsh, H. L., & Blazer, V. S. (2018). Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Science of the Total Environment, 643, 651-673.spa
dcterms.referencesBayona-Termens, J. (2019). Presencia e impacto de los contaminantes emergentes en aguas superficiales, in: Navarro Frómeta, A. Leyva -Inzunza, Z. Mendoza Hernández, J. (Eds.), Tópicos sobre contaminantes y contaminación del agua. CONACYT. México. pp 31-52.spa
dcterms.referencesBedoya-Ríos, D. F., Lara-Borrero, J. A., Duque-Pardo, V., Madera-Parra, C. A., Jimenez, E. M., & Toro, A. F. (2018). Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. Journal of Environmental Science and Health, Part A, 53(4), 317-325.spa
dcterms.referencesBelfroid, A., van Velzen, M., van der Horst, B., & Vethaak, D. (2002). Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements. Chemosphere, 49(1), 97-103spa
dcterms.referencesBell, C. H., Gentile, M., Kalve, E., Ross, I., Horst, J., & Suthersan, S. (Eds). (2019). Emerging contaminants handbook. CRC Press.spa
dcterms.referencesBhandari A., Surampalli, R. Y., Adams, C. D., Champagne, P., Ong, S. K., Tyagi, R. D., & Zhang, T. C. (2009). Contaminants of emerging environmental concern.spa
dcterms.referencesBilal, M., Iqbal, H. M., & Barceló, D. (2019). Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues–a review. Science of the Total Environment, 689, 160-177.spa
dcterms.referencesBlair, B.D., et al., (2013). Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93, 2116e2123.spa
dcterms.referencesBotero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., ... & Hernández, F. (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842-853.spa
dcterms.referencesBritish Geological Survey. (2011). Science Briefing: Emerging Contaminants in Groundwater. British Geological Survey.spa
dcterms.referencesBrumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., & Nizzetto, L. (2017). Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environmental Pollution, 229, 976-983.spa
dcterms.referencesBurgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine pollution bulletin, 120(1-2), 379-386.spa
dcterms.referencesBuszewski B., Jezierska-Świtała, M., & Kowalska, S. (2003). Stationary phase with specific surface properties for the separation of estradiol diastereoisomers. Journal of Chromatography B, 792(2), 279-286.spa
dcterms.referencesBuszewski B., & Szultka, M. (2012). Past, present, and future of solid phase extraction: a review. Critical Reviews in Analytical Chemistry, 42(3), 198-213.spa
dcterms.referencesCaldwell D.J., Mastrocco, F., Anderson, P.D., Länge, R., Sumpter, J.P. (2012). Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ. Toxicol. Chem. 31, 1396–1406.spa
dcterms.referencesCBG. (2013). www.cbg-meb.nl. 10.spa
dcterms.referencesChalarca-Rodríguez, D. A., Mejía-Ruiz, R., & Aguirre-Ramírez, N. J. (2007). Aproximación a la determinación del impacto de los vertimientos de las aguas residuales domésticas del municipio de Ayapel, sobre la calidad del agua de la ciénaga. Revista Facultad de Ingeniería Universidad de Antioquia, (40), 41-58.spa
dcterms.referencesChemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications. A review. Ultrasonics sonochemistry, 34, 540-560.spa
dcterms.referencesChen, Z. F., Wen, H. B., Dai, X., Yan, S. C., Zhang, H., Chen, Y. Y., ... & Cai, Z. (2018). Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. Journal of hazardous materials, 357, 376-383.spa
dcterms.referencesChristensen, A. M.; Markussen, B.; Baun, A.; Halling-Sorensen, B. (2009). Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges. Chemosphere, v. 77, n. 3, p. 351-358.spa
dcterms.referencesClinCalc.com. (October 1, 2019). ClinCalc DrugStats database. clincalc.com/DrugStats. Accessed.spa
dcterms.referencesComtois-Marotte S., Chappuis, T., Duy, S. V., Gilbert, N., Lajeunesse, A., Taktek, S., ... & Sauvé, S. (2017). Analysis of emerging contaminants in water and solid samples using high resolution mass spectrometry with a Q Exactive orbital ion trap and estrogenic activity with YES-assay. Chemosphere, 166, 400-411.spa
dcterms.referencesCorrea P, J. I. (2006). Metodología de balance hídrico y de sedimentos como herramienta de apoyo para la gestión integral del complejo lagunar. Universidad Nacional de Colombia.spa
dcterms.referencesCruz, S., & Barceló, D. (2015). Personal care products in the aquatic environment. Springer.spa
dcterms.referencesCubadda, F., Aureli, F., Ciardullo, S., D’Amato, M., Raggi, A., Acharya, R., ... & Prakash, N. T. (2010). Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. Journal of agricultural and food chemistry, 58(4), 2295-2301.spa
dcterms.referencesRompinelli, M. T. (2019). Contaminantes emergentes: origen y destino. Máster universitario en hidrología y gestión de los recursos hídricos (Tesis de maestría). Universidad de Alcalá, España.spa
dcterms.referencesCunha, D. L. D., Silva, S. M. C. D., Bila, D. M., Oliveira, J. L. D. M., Sarcinelli, P. D. N., & Larentis, A. L. (2016). Regulation of the synthetic estrogen 17α-ethinylestradiol in water bodies in Europe, the United States, and Brazil. Cadernos de saude publica, 32, e00056715.spa
dcterms.referencesCunliffe, D. (2008) Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies; Environment Protection and Heritage Council: Canberra, Australia; National Health and Medical Research Council: Canberra, Australia; Natural Resource Management Ministerial Council: Canberra, Australia.spa
dcterms.referencesCunningham, V. L., Binks, S. P., & Olson, M. J. (2009). Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regulatory toxicology and pharmacology, 53(1), 39-45.spa
dcterms.referencesDa Silva, B. F., Jelic, A., López-Serna, R., Mozeto, A. A., Petrovic, M., & Barceló, D. (2011). Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River basin, Spain. Chemosphere, 85(8), 1331-1339.spa
dcterms.referencesDabadie, M., Pérez, C., Arturi, M., Goya, J., & Sandoval, M. (2018). Calibración del método de pérdida de peso por ignición para la estimación del carbono orgánico en Inceptisoles del NE de Entre Ríos. Revista de la Facultad de Agronomía, 117(1), 157-162.spa
dcterms.referencesDahane, S., Gil Garcıa, M. D., Martınez Bueno, M. J., Ucles Moreno, A., Martınez Galera, M., and Derdour, A. (2013). Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. Journal of Chromatogrphy A. 1297:17–28.spa
dcterms.referencesDai, X., Yang, X., Xie, B., Jiao, J., Jiang, X., Chen, C., ... & Li, Y. (2021). Sorption and desorption of sex hormones in soil-and sediment-water systems: A review. Soil Ecology Letters, 1-17.spa
dcterms.referencesDavid, M.B. (1988). Use of loss‐on‐ignition to assess soil organic carbon in forest soils. Communications in Soil Science & Plant Analysis 19: 1593-1599.spa
dcterms.referencesDe La Calle, I., Cabaleiro, N., Costas, M., Pena, F., Gil, S., Lavilla, I., & Bendicho, C. (2011). Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchemical Journal, 97(2), 93-100.spa
dcterms.referencesDecreto 356 de 2018. "Por el cual se adiciona una sección al Decreto 1076 de 2015, con el fin de designar al Complejo Cenagoso de Ayapel para ser incluido en la lista de Humedales de Importancia Internacional Ramsar, en cumplimiento de lo dispuesto en la Ley 357 de 1997" Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, D.C-Colombia.spa
dcterms.referencesDerksen, J. G. M., Rijs, G. B. J., & Jongbloed, R. H. (2004). Diffuse pollution of surface water by pharmaceutical products. Water Science and Technology, 49(3), 213-221.spa
dcterms.referencesDiego F. Bedoya-Ríos, Jaime A. Lara-Borrero, Verónica Duque- Pardo, Carlos A. Madera-Parra, Eliana M. Jimenez & Andrés F. Toro (2017): Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. Journal of Environmental Science and Health, Part A.spa
dcterms.referencesDos Santos, D. M., Buruaem, L., Gonçalves, R. M., Williams, M., Abessa, D. M., Kookana, R., & de Marchi, M. R. R. (2018). Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Marine pollution bulletin, 129(1), 299-307.spa
dcterms.referencesDzionek A, Wojcieszyńska D, Hupert-Kocurek K, Adamczyk-Habrajska M, Guzik U (2018). Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 8:176.spa
dcterms.referencesEdwards, Q. A., Kulikov, S. M., & Garner-O’Neale, L. D. (2015). Caffeine in surface and wastewaters in Barbados, West Indies. SpringerPlus, 4(1), 1-12.spa
dcterms.referencesEllis, J.B. (2006) Pharmaceutical and Personal Care Products (PPCPs) in Urban Receiving Waters. Environmental Pollution, 144, 184-189.spa
dcterms.referencesEPA, Method 1694. (2007). Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. Washington, DC.spa
dcterms.referencesEPA. (2021). Technical Support Document for the Draft Fifth Contaminant Candidate List (CCL 5). Office of Water.spa
dcterms.referencesEsteban-Fernández, D., Mirat, M., de la Hinojosa, M. I. M., & Alonso, J. I. G. (2012). Double spike isotope dilution GC-ICP-MS for evaluation of mercury species transformation in real fish samples using ultrasound-assisted extraction. Journal of agricultural and food chemistry, 60(34), 8333-8339.spa
dcterms.referencesFairbairn D. J., Karpuzcu, M. E., Arnold, W. A., Barber, B. L., Kaufenberg, E. F., Koskinen, W. C., ... & Swackhamer, D. L. (2015). Sediment–water distribution of contaminants of emerging concern in a mixed use watershed. Science of the Total Environment, 505, 896-904.spa
dcterms.referencesFang, T. H., Lin, C. W., & Kao, C. H. (2019). Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait. Marine pollution bulletin, 146, 509-520.spa
dcterms.referencesFang, Y., Karnjanapiboonwong, A., Chase, D. A., Wang, J., Morse, A. N., & Anderson, T. A. (2012). Occurrence, fate, and persistence of gemfibrozil in water and soil. Environmental toxicology and chemistry, 31(3), 550-555.spa
dcterms.referencesFerrari, B., Mons, R., Vollat, B., Fraysse, B., Paxeus, N., Lo Giudice, R., Pollio, A. and Garric, J. (2004). Environmental risk assessment of six human pharmaceuticals: ¿Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ. Toxicol. Chem. 23(5), 1344-1354.spa
dcterms.referencesFerrer, I.; Thurman, E.M. (2012). Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr A, 1259, 148–157.spa
dcterms.referencesG.G. Ying, X.Y. Yu, R.S. Kookana, (2007). Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modeling, Environ. Pollut. 150, 300–305.spa
dcterms.referencesGarcía. M, & Yusa M. (2016). HPLC instrumental. Colección Manual de referencia. Garg D., Ng, S. S. M., Baig, K. M., Driggers, P., & Segars, J. (2017). Progesterone-mediated non-classical signaling. Trends in Endocrinology & Metabolism, 28(9), 656-668.spa
dcterms.referencesGatidou, G., Thomaidis, N. S., Stasinakis, A. S., & Lekkas, T. D. (2007). Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry. Journal of Chromatography A, 1138(1-2), 32-41.spa
dcterms.referencesGavrilescu M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnology, 32(1), 147-156.spa
dcterms.referencesGermaine, A. O., & Joseph, K. S. (2020). Seasonal occurrence of ibuprofen in sediment, water, and biota in river owena and ogbese, and its ecological risk assessment. Ann. Sci. Technol, 5, 11-19.spa
dcterms.referencesGomes, I. B., Simões, L. C., & Simões, M. (2018). The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Science of the total environment, 643, 1348-1356.spa
dcterms.referencesGritti, F., Kazakevich, Y. V., & Guiochon, G. (2007). Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography. Journal of Chromatography A, 1169(1-2), 111-124.spa
dcterms.referencesGrung, M., Kallqvist, T., Sakshaug, S., Skurtveit, S. and Thomas, K. V., (2008). Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotox. Environ. Safe. 71(2), 328-340.spa
dcterms.referencesHai, F. I., Yang, S., Asif, M. B., Sencadas, V., Shawkat, S., Sanderson-Smith, M., ... & Yamamoto, K. (2018). Carbamazepine as a possible anthropogenic marker in water: occurrences, toxicological effects, regulations, and removal by wastewater treatment technologies. Water, 10(2), 107.spa
dcterms.referencesHai, F.I.; Nghiem, L.D.; Khan, S.J.; Price, W.E.; Yamamoto, K. (2014) Wastewater reuse: Removal of emerging trace organic contaminants. In Membrane biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse; Hai, F.I., Yamamoto, K., Lee, C., Eds.; IWA publishing: London, UK; pp. 165–205. ISBN 9781780400655.spa
dcterms.referencesHajj-Mohamad, M., Darwano, H., Duy, S. V., Sauvé, S., Prévost, M., Arp, H. P. H., & Dorner, S. (2017). The distribution dynamics and desorption behaviour of mobile pharmaceuticals and caffeine to combined sewer sediments. Water research, 108, 57-67.spa
dcterms.referencesHalling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lu¨tzhøft HC, Jørgensen SE (1998) Occurrence, fate, and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357.spa
dcterms.referencesHarris, C.A. et al (2011). The consequences of feminisation in breeding groups of wild fish. Environ Health Perspect, 119, 306–311.spa
dcterms.referencesHaybar, H., Goudarzi, M., Mehrzadi, S., Aminzadeh, A., Khodayar, M. J., Kalantar, M., & Fatemi, I. (2019). Effect of gemfibrozil on cardiotoxicity induced by doxorubicin in male experimental rats. Biomedicine & Pharmacotherapy, 109, 530-535.spa
dcterms.referencesHealth Canada Environment Canada. (2012). Triclosan:Preliminary Assessment. Chemical Abstracts Service Registry Number 3380-34-5.spa
dcterms.referencesHernando, M. D., Mezcua, M., Fernandez-Alba, A. R. and Barcelo, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2), 334-342.spa
dcterms.referencesHerrera -Cárdenas, J. Navarro-Frómeta, A. Burgos-Núñez, S. Marrugo-Negrete, J. Hu, R., Yang, Z., & Zhang, L. (2011). Trace analysis of acidic pharmaceutical residues in waters with isotope dilution gas chromatography–mass spectrometry via methylation derivatization. Talanta, 85(4), 1751-1759.spa
dcterms.referencesInvemar-Geo. (2015). Aportes sedimentarios del río Sinú y su relación con los procesos costeros del departamento de Córdoba: Santa Marta. Invemar;. p. 85-87.spa
dcterms.referencesJiang J. J., Lee, C. L., & Fang, M. D. (2014). Emerging organic contaminants in coastal waters: Anthropogenic impact, environmental release, and ecological risk. Marine pollution bulletin, 85(2), 391-399.spa
dcterms.referencesJiang, H., Zhang, Y., Qiu, B., & Li, W. (2012). Ultrasound‐Assisted Emulsification–Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry for the Determination of Trace Lead in Water. CLEAN–Soil, Air, Water, 40(4), 438-443.spa
dcterms.referencesJin, H., & Zhu, L. (2016). Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Research, 103, 343-351spa
dcterms.referencesJohnson, A.C., Dumont, E., Williams, R.J., Oldenkamp, R., Cisowska, I., and Sumpter, J.P. (2014). Do concentrations of ethinylestradiol, estradiol, ¿and diclofenac in European rivers exceed proposed EU environmental quality standards? Environ. Sci. Technol. 47, 12297–12304.spa
dcterms.referencesKarnjanapiloonwong, A., Morse, A.N., Maul, J.D., Anderson, T.A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. J. Soils Sediments 10, 1300–1307.spa
dcterms.referencesKim, E., Jung, C., Han, J., Her, N., Park, C.M., Jang, M., Son, A., Yoon, Y. (2016). Sorptive removal of selected emerging contaminants using biochar in aqueous solution. J. Ind. Eng. Chem. 36, 364–371.spa
dcterms.referencesKlosterhaus, S. L., Grace, R., Hamilton, M. C., & Yee, D. (2013). Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environment international, 54, 92-99.spa
dcterms.referencesKoba, O., Grabicova, K., Cerveny, D., Turek, J., Kolarova, J., Randak, T., ... & Grabic, R. (2018). Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. Journal of hazardous materials, 342, 401-407.spa
dcterms.referencesKolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B. and Buxton, H.T. (2002) Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in US Streams, 1999-2000: A National Reconnaissance. Environmental Science and Technology, 36, 1202-1211.spa
dcterms.referencesKomori, K., Suzuki, Y., Minamiyama, M. And Harada, A., (2013). Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environmental Monitoring and Assessment, vol. 185, no. 6, pp. 4529-4536.spa
dcterms.referencesLai, K.M., Johnson, K.L., Scrimshaw, M.D., Lester, J.N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ. Sci. Technol. 34, 3890e3894.spa
dcterms.referencesLee, S., Kang, S. I., Lim, J. L., Huh, Y. J., Kim, K. S., & Cho, J. (2011). Evaluating controllability of pharmaceuticals and metabolites in biologically engineered processes, using corresponding octanol–water distribution coefficient. Ecological Engineering, 37(10), 1595-1600.spa
dcterms.referencesLiao, C., Liu, F., Moon, H. B., Yamashita, N., Yun, S., & Kannan, K. (2012). Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environmental science & technology, 46(21), 11558-11565.spa
dcterms.referencesLiu F, Mielsen AH, Vollertsen J (2019) Sorption and degradation potential of pharmaceuticals in sediments form a stormwater retention pond. Water, 11:526.spa
dcterms.referencesLiu, D., et al., 2017a. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China. Environ. Sci. Pollut. Res. Int. 24, 5773e5780.spa
dcterms.referencesLiu, D., Liu, J., Guo, M., Xu, H., Zhang, S., Shi, L., & Yao, C. (2016). Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Marine pollution bulletin, 112(1-2), 142-150.spa
dcterms.referencesLiu, S., Ying, G.G., Zhao, J.L., Zhou, L.J., Yang, B., Chen, Z.F. and Lai, H.J., (2012b). Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants. Journal of Environmental Monitoring,14(2), pp.482-491.spa
dcterms.referencesLiu, S., Ying, G.G., Zhou, L.J., Zhang, R.Q., Chen, Z.F. and Lai, H.J., (2012a). Steroids in a typical swine farm and their release into the environment. Water research, 46(12), pp.3754- 3768.spa
dcterms.referencesLiu, Z.H., Kanjo, Y. and Mizutani, S., (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Science of the total environment, 407(2), pp.731-748.spa
dcterms.referencesLlorca, M., Farré, M., Eljarrat, E., Díaz‐Cruz, S., Rodríguez‐Mozaz, S., Wunderlin, D., & Barcelo, D. (2017). Review of emerging contaminants in aquatic biota from Latin America: 2002–2016. Environmental toxicology and chemistry, 36(7), 1716-1727.spa
dcterms.referencesLöffler, D., Römbke, J., Meller, M., & Ternes, T. A. (2005). Environmental fate of pharmaceuticals in water/sediment systems. Environmental science & technology, 39(14), 5209-5218.spa
dcterms.referencesLofgren, H.; Boer, R.D. (2004). Pharmaceuticals in Australia: Developments in regulation and governance. Soc. Sci. Med. 58, 2397–2407.spa
dcterms.referencesLyndall, J., Barber, T., Mahaney, W., Bock, M., & Capdevielle, M. (2017). Evaluation of triclosan in Minnesota lakes and rivers: part I–ecological risk assessment. Ecotoxicology and environmental safety, 142, 578-587.spa
dcterms.referencesMadikizela LM, Mdluli PS, Chimuka L (2017) An initial assessment of naproxen, ibuprofen and diclofenac in Ladysmith water resources in South Africa using molecularly imprinted solid-phase extraction followed by high performance liquid chromatography-photodiode array detection. S Afr J Chem 70:145–153.spa
dcterms.referencesMaruya, K. A., Vidal‐Dorsch, D. E., Bay, S. M., Kwon, J. W., Xia, K., & Armbrust, K. L. (2012). Organic contaminants of emerging concern in sediments and flatfish collected near outfalls discharging treated wastewater effluent to the Southern California Bight. Environmental Toxicology and Chemistry, 31(12), 2683-2688.spa
dcterms.referencesMDH. (2011). Carbamazepine in Drinking Water; Health Risk Assessment Unit, Environmental Health Division: St. Paul, MN, USA.spa
dcterms.referencesMijangos, L., Ziarrusta, H., Ros, O., Kortazar, L., Fernández, L. A., Olivares, M., ... & Etxebarria, N. (2018). Occurrence of emerging pollutants in estuaries of the Basque Country: analysis of sources and distribution, and assessment of the environmental risk. Water research, 147, 152-163.spa
dcterms.referencesMohareb, R. M., & Hana, H. Y. (2008). Synthesis of progesterone heterocyclic derivatives of potential antimicrobial activity.spa
dcterms.referencesNaidu, R.; Arias Espana, V.A.; Liu, Y.; Jit, J. (2016) Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, 350–357.spa
dcterms.referencesNet, S., Rabodonirina, S., Sghaier, R. B., Dumoulin, D., Chbib, C., Tlili, I., & Ouddane, B. (2015). Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium). Science of the total environment, 521, 152-159.spa
dcterms.referencesNgubane, N. P., Naicker, D., Ncube, S., Chimuka, L., & Madikizela, L. M. (2019). Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: a case of northern Durban in KwaZulu–Natal Province of South Africa. Regional Studies in Marine Science, 29, 100675.spa
dcterms.referencesNiell, S., Colazzo, M., Besil, N., Cesio, V., & Heinzen, H. (2013). Evaluación preliminar de la ocurrencia de contaminantes emergentes en aguas residuales de Montevideo, Uruguay. In VII Congreso de Medio Ambiente.spa
dcterms.referencesNORMAN. (2012). Emerging Substances. Accessed June 6, 2018. www.norman-network. net/?q=node/19.spa
dcterms.referencesOh S, Wang Q, Shin WS, Song DI (2013) Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment. Chem Eng J, 225:84–92.spa
dcterms.referencesOh, S., Shin, W. S., & Kim, H. T. (2016). Effects of pH dissolved organic matter, and salinity on ibuprofen sorption on sediment. Environmental Science and Pollution Research, 23(22), 22882-22889spa
dcterms.referencesOmar, T. F. T., Aris, A. Z., Yusoff, F. M., & Mustafa, S. (2018). Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Marine pollution bulletin, 131, 284-293.spa
dcterms.referencesOmar, T.F.T., Aris, A.Z., Yuso ff, F.M., Mustafa, S. (2017). An improved SPE-LC-MS/MS method for multiclass endocrine disrupting compound determination in tropical estuarine sediments. Talanta, 173, 151–159.spa
dcterms.referencesOsorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment, 540, 267-277.spa
dcterms.referencesPal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the total environment, 408(24), 6062-6069.spa
dcterms.referencesPalma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I. R., De Alda, M. L., & Barceló, D. (2014). Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment, 488, 208-219.spa
dcterms.referencesPatel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical reviews, 119(6), 3510-3673.spa
dcterms.referencesPauwels B, Wille K, Noppe H, De Brabandar H, de Wiele TV, Verstraete W, et al. (2008).17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β- estradiol and estriol. Biodegradation; 19:683–93spa
dcterms.referencesPemberthy, D., Padilla, Y., Echeverri, A., & Peñuela, G. A. (2020). Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon, 6(6), e04215.spa
dcterms.referencesPeng, X., Wang, Z., Yang, C., Chen, F., & Mai, B. (2006). Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. Journal of chromatography A, 1116(1-2), 51-56.spa
dcterms.referencesPeña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of environmental management, 237, 408-423.spa
dcterms.referencesPereira, C. D. S., Maranho, L. A., Cortez, F. S., Pusceddu, F. H., Santos, A. R., Ribeiro, D. A., ... & Guimarães, L. L. (2016). Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Science of the Total Environment, 548, 148-154.spa
dcterms.referencesPetrovic M, Barcelo D (2007) LC-MS for identifying photodegradation products of pharmaceuticals in the environment. Trends Anal Chem, 26:486–493.spa
dcterms.referencesPetrovic, M., Sabater, S., Elosegi, A., & Barceló, D. (2016). Emerging contaminants in river ecosystems. The Handbook of Environmental Chemistry, 46(10.1007), 978-3.spa
dcterms.referencesPi, N., Ng, J. Z., and Kelly, B. C. (2017). Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Science of the Total Environment, 601–602:812–820.spa
dcterms.referencesPico, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC Trends in Analytical Chemistry, 43, 84-99.spa
dcterms.referencesPintado-Herrera, M. G., González-Mazo, E., & Lara-Martín, P. A. (2014). Determining the distribution of triclosan and methyl triclosan in estuarine settings. Chemosphere, 95, 478-485.spa
dcterms.referencesPojana G, Gomiero A, Jonkers N, Marcomini A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment, and biota of a coastal lagoon. Environ Int; 33:929–36.spa
dcterms.referencesQuadra, G. R., Paranaíba, J. R., Vilas-Boas, J., Roland, F., Amado, A. M., Barros, N., ... & Cardoso, S. J. (2020). A global trend of caffeine consumption over time and related-environmental impacts. Environmental Pollution, 256, 113343.spa
dcterms.referencesQuinn B, Gagné F, Blaise C. (2008) An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Total Environ; 389: 306-314.spa
dcterms.referencesQuirós y Arias. (2013). Taxocenosis de Moluscos y Crustáceos en raíces de Rhizophora mangle (Rhizophoraceae) en la Bahía de Cispatá, Córdoba, Colombia. Acta biol Colomb.;18(2):239-340.spa
dcterms.referencesRamírez Correa J, Molina Grajales E, Escobar Bernal M. (2010). Anillos anuales y clima en Rhizophora mangle L. de la Bahía de Cispatá, Colombia. Rev Fac Nal Agr Medellín.;63(2):5639-5650.spa
dcterms.referencesRangel-CH J y Arellano H. Clima. (2010). Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad, ecología y manejo ambiental. Instituto de Ciencias Naturales. Universidad Nacional de Colombia-CVS. Bogotá, D.C. p. 1-14.spa
dcterms.referencesRathi B. S., Kumar, P. S., & Show, P. L. (2021). A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. Journal of Hazardous Materials, 409, 124413.spa
dcterms.referencesReyes, M. N., Cervera, M. L., & Guardia, M. D. L. (2011). Determination of inorganic species of Sb and Te in cereals by hydride generation atomic fluorescence spectrometry. Journal of the Brazilian Chemical Society, 22(2), 197-203.spa
dcterms.referencesRojas Giraldo, X., y Sierra Correa, P. (2010). Plan integral de manejo del Distrito de Manejo Integrado (DMI) bahía de Cispatá-La Balsa-Tinajones y sectores aledaños del delta estuarino del río Sinú, departamento de Córdoba.spa
dcterms.referencesRosenfeld, P., & Feng, L. (2011). Emerging Contaminants, p, 215-222. Sadílek P, Šatínský, D., & Solich, P. (2007). Using restricted-access materials and column switching in high-performance liquid chromatography for direct analysis of biologically-active compounds in complex matrices. TrAC Trends in Analytical Chemistry, 26(5), 375-384.spa
dcterms.referencesSalazar Mejía, I. (2011). La economía de la Ciénaga Grande del Bajo Sinú: lugar encantado de las aguas. Capítulo 3. La economía de la ciénaga Grande del Bajo Sinú: lugar encantado de las aguas. Banco de la República. Pág.: 96-134.spa
dcterms.referencesSanchez, W.; Egea, E. (2018) Health and environmental risks associated with emerging pollutants and novel green processes. Environ. Sci. Pollut. Res., 25, 6085–6086.spa
dcterms.referencesSanderson H, Johnson D, Wilson C, Brain R, Solomon K (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnias, and algae by ECOSAR screening. Toxicol Lett,144:383–395.spa
dcterms.referencesSantos JL, Aparicio I, Alonso E, & Callejón M. (2005). Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and highperformance liquid chromatography with diode array and fluorescence detectors. Analytica Chimical Acta; 550(1-2), 116-122.spa
dcterms.referencesSantos, J. L., Aparicio, I. and Alonso, E., (2007). Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ. Int. 33(4), 596-601.spa
dcterms.referencesSantos, M. M. D., Brehm, F. D. A., Filippe, T. C., Knapik, H. G., & Azevedo, J. C. R. D. (2016). Occurrence and risk assessment of parabens and triclosan in surface waters of southern Brazil: a problem of emerging compounds in an emerging country. RBRH, 21(3), 603-617.spa
dcterms.referencesSauvé, S., & Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal, 8(1), 15.spa
dcterms.referencesSmital, T. (2008). Acute and chronic effects of emerging contaminants. Handbook of Environmental Chemistry, 5(S/1), 105-142.spa
dcterms.referencesSnyder, S.A.; Vanderford, B.J.; Drewes, J.; Dickenson, E.; Snyder, E.M.; Bruce, G.M.; Pleus, R.C. (2008). State of Knowledge of Endocrine Disruptors and Pharmaceuticals in Drinking Water; IWA Publishing: London, UK, p. 264. ISBN 9781843392415.spa
dcterms.referencesSong L, Xia Y, Wang X (2014).The in vitro estrogenic activities of triclosan and triclocarban. J Appl Toxicol 34(9):1060–1067.spa
dcterms.referencesSouverain, S., Rudaz, S., & Veuthey, J. L. (2004). Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. Journal of Chromatography B, 801(2), 141-156.spa
dcterms.referencesStaniszewska, M.; Soko, A.; Nehring, I.; Wasik, A.; Jendzul, A. (2017). Factors determining accumulation of bisphenol A and alkylphenols at a low trophic level as exempli fi ed by mussels Mytilus trossulus. Environ. Pollut. 220, 1147–1159.spa
dcterms.referencesTavera Escobar H, Gil Torres W, Sánchez Páez H, Ulloa Delgado A. (2005). Plan de manejo de los manglares de la zona de uso sostenible del sector estuarino de la Bahía de Cispatá departamento de Córdoba Colombia. Colombia. Inter Solugráficas LTDA.; 202 pp.spa
dcterms.referencesTernes T.; Jos, A.; Siegrist, H. (2004) Scrutinizing pharmaceutical and personal care products in wastewater treatment. Environ Sci Technol., 393-399.spa
dcterms.referencesTernes T.A.; Meisenheimer, M.; McDowell, D.; Sacher, F.; Brauch, H.-J.; HasteGulde, B.; Preuss, G.; Wilme, U. and Zulei-Seibert, N. (2002) Removal of Pharmaceuticals During Drinking Water Treatment. Environmental Science and Technology, 36, 3855-3863.spa
dcterms.referencesTernes T.A.; Meisenheimer, M.; McDowell, D.; Sacher, F.; Brauch, H.-J.; HasteGulde, B.; Preuss, G.; Wilme, U. and Zulei-Seibert, N. (2002) Removal of Pharmaceuticals During Drinking Water Treatment. Environmental Science and Technology, 36, 3855-3863.spa
dcterms.referencesTerzic, S., Senta, I., Ahel, M., Gros, M., Petrovi´c, M., Barcelo, D., et al. (2008). Occurrence ´ and fate of emerging wastewater contaminants in Western Balkan Region. The Science of the Total Environment, 399(1-3), 66-77.spa
dcterms.referencesTete, V. S., Nyoni, H., Mamba, B. B., & Msagati, T. A. (2020). Occurrence and spatial distribution of statins, fibrates, and their metabolites in aquatic environments. Arabian Journal of Chemistry, 13(2), 4358-4373.spa
dcterms.referencesTogola, A., & Budzinski, H. (2007). Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Analytical and Bioanalytical Chemistry, 388(3), 627-635.spa
dcterms.referencesTremblay L, Kohl SD, Rice JA, Gagne JP (2005) Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Mar Chem, 96:21– 34.spa
dcterms.referencesUSEPA, (2008). Reregistration Eligibility Decision for Triclosan, List B, Case No. 2340, United States Environmental Protection Agency, Washington, DC.spa
dcterms.referencesUSEPA. (2016). User’s Guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software Tool): A Program to Estimate Toxicity from Molecular Structure. Cincinnati, OH: National Risk Management Research Laboratory.spa
dcterms.referencesValcarcel, Y.; Alonso, S. G.; Rodriguez-Gil, J. L.; Gil, A.; Catala, M. (2011). Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere, v. 84, n. 10, p. 1336- 1348.spa
dcterms.referencesVasilachi, I. C., Asiminicesei, D. M., Fertu, D. I., & Gavrilescu, M. (2021). Occurrence and fate of emerging pollutants in water environment and options for their removal. Water, 13(2), 181.spa
dcterms.referencesVerlicchi, P.; Al Aukidy, M.; Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. The Science of the Total Environment, v. 429, p. 123-155.spa
dcterms.referencesVethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A. (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Ch.spa
dcterms.referencesWang, L., Ying, G. G., Zhao, J. L., Yang, X. B., Chen, F., Tao, R., Liu, S. and Zhou, L. J., (2010). Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. Sci. Total Environ. 408(16), 3139-3147.spa
dcterms.referencesWang, Q., Zhang, Y., Feng, Q., Hu, G., Gao, Z., Meng, Q., & Zhu, X. (2021). Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. Environmental Science and Pollution Research, 1-16.spa
dcterms.referencesWang, Y., Wang, Q., Hu, L., Lu, G., & Li, Y. (2015). Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environmental geochemistry and health, 37(1), 147-156.spa
dcterms.referencesWeerasekara, P. (2017). The United Nations World Water Development Report 2017 Wastewater. Future of Food: Journal on Food, Agriculture and Society, 5(2), 80-81.spa
dcterms.referencesWei, J., HUANG, B., Bin, W., Dao-Wei, W., Zhao, S. M., & Xue-Jun, P. (2013). Simultaneous determination of androgens and progestogen in surface water and sediment by gas chromatography-mass spectrometry. Chinese Journal of Analytical Chemistry, 41(2), 205-209.spa
dcterms.referencesWilkinson J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate, and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954-970.spa
dcterms.referencesWilkinson, J. L., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2016). Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Critical Reviews in Environmental Science and Technology, 46(4), 336-381.spa
dcterms.referencesWu W, Sun H (2010) Sorption-desorption hysteresis of phenanthrene— effect of nanopores, solute concentration, and salinity. Chemosphere 81:961–967.spa
dcterms.referencesXia K, Bhandari A, Das K, Pillar G. (2005). Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J Environ Qual 34:91–104.spa
dcterms.referencesXiong, J., Li, G., An, T., Zhang, C., & Wei, C. (2016). Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. Environmental Pollution, 219, 596-603.spa
dcterms.referencesXu, X.R., Wang, Y.X., Li, X.Y. (2008). Sorption behavior of bisphenol A on marine sediments. J. Environ. Sci. Health., Part A- Tox. Hazard Subst. Environ. Eng. 43, 239e246.spa
dcterms.referencesYan, S., Yao, B., Lian, L., Lu, X., Snyder, S. A., Li, R., & Song, W. (2017). Development of fluorescence surrogates to predict the photochemical transformation of pharmaceuticals in wastewater effluents. Environmental science & technology, 51(5), 2738-2747.spa
dcterms.referencesYan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R., ... & Chen, J. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318-328.spa
dcterms.referencesYing GG, Kookana RS, Ru Y-J. (2002). Review article. Occurrence and fate of hormone steroids in the environment. Environ Int; 28:545–51.spa
dcterms.referencesYing, G. G., Kookana, R. S. and Kolpin, D. W., (2009). Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. J. Environ. Monit, 11(8), 1498-1505spa
dcterms.referencesYu, G. M., & Maeda, T. (2017). Inline progesterone monitoring in the dairy industry. Trends in biotechnology, 35(7), 579-582.spa
dcterms.referencesZhang, H., Lee, Z. X., & Qiu, A. (2020). Caffeine intake and cognitive functions in children. Psychopharmacology, 237(10), 3109-3116.spa
dcterms.referencesZhang, Q.Q., Zhao, J.L., Ying, G.G., Liu, Y.S., Pan, C.G. (2014). Emission estimation and multi-media fate modeling of seven steroids at the river basin scale in China. Environ. Sci.Technol. 48, 7982–7992.1356I.B.spa
dcterms.referencesZhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. Journal of Hazardous Materials, 179(1-3), 215-222.spa
dcterms.referencesZhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., Wang, L., ... & Warne, M. S. J. (2010). Occurrence and a screening‐level risk assessment of human pharmaceuticals in the Pearl River system, South China. Environmental Toxicology and Chemistry, 29(6), 1377-1384.spa
dcterms.referencesZhao, J.L., Chen, X.W. (2015). Estrogenic activity and identification of potencial xenoestrogens in a coking wastewater treatment plant. Ecotoxicol. Environ. Saf. 112, 238-246.spa
dcterms.referencesZhao, X., Cui, T., Guo, R., Liu, Y., Wang, X., An, Y. xia, Qiao, X., & Zheng, B. (2019). A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Analytica Chimica Acta, 1047, 71–80.spa
dcterms.referencesZhou, S., Di Paolo, C., Wu, X., Shao, y., Seiler, T. B., & Hollert, H. (2019). Optimization of screening-level risk assessment and priority selection of emerging pollutants–the case of pharmaceuticals in european surface waters. Environment international, 128, 1-10.spa
dcterms.referencesZiarrusta, H., Olivares, M., Delgado, A., Posada-Ureta, O., Zuloaga, O., & Etxebarria, N. (2015). Multiscreening determination of organic pollutants in molluscs using matrix solid phase dispersion. Journal of Chromatography A, 1391(1), 18–30.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
MarquezMendezDaniela.pdf
Tamaño:
839.05 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Autorización (1).pdf
Tamaño:
324.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones