Publicación: Encalamiento e incubación de un alfisol en condiciones semicontroladas en Montería
dc.contributor.advisor | Cabrales Herrera, Eliecer Miguel | |
dc.contributor.author | López Manjarrez, Ángel Gabriel | |
dc.contributor.jury | Novoa Yanez, Rafael Segundo | |
dc.contributor.jury | Vergara Carvajal, Amir David | |
dc.date.accessioned | 2025-06-29T01:02:00Z | |
dc.date.available | 2025-06-29T01:02:00Z | |
dc.date.issued | 2025-06-28 | |
dc.description.abstract | La acidez del suelo es una limitante agronómica en los Alfisoles tropicales, y este orden de suelos se encuentra ampliamente distribuido en el departamento de Córdoba, Colombia, limitando la diversidad de cultivos que se pueden implementar en dichos suelos, producto de la baja disponibilidad nutrimental y la baja actividad biológica de estos suelos. El encalado es quizás la mejor alternativa para mejorar químicamente estos suelos, la cual debe hacerse con base en la relación calcio/magnesio del suelo. Este estudio tuvo como objetivo evaluar el efecto de diferentes dosis de cal dolomita sobre el pH de un Alfisol ácido representativo del municipio de Montería (Córdoba), investigación que se hizo en condiciones semicontroladas en el umbráculo de la Universidad de Córdoba. Para esta investigación se utilizaron bolsas de polietileno de 5 kg de capacidad, una vez llenas de suelo, se les aplicaron cal en la superficie, la cual se incorporó literalmente con movimiento manual del suelo. Se evaluaron siete (7) dosis o tratamientos (0.0, 0.5, 1.0, 2.0, 3.0, 4.0 y 5.0 t.ha⁻¹ de cal dolomita), que se dejaron en incubación por 45 días en condiciones semicontroladas, en la que se mantuvo la humedad en el suelo muy cercana a capacidad de campo. Se utilizó un diseño completamente al azar con siete tratamientos y tres (3) repeticiones. El pH inicial del suelo fue de 4.4, después del periodo de incubación se pudo lograr pH´s se hasta 5.6 en el tratamiento con mayor dosis de cal. Estadísticamente se encontró que hubo diferencias significativas (p < 0.001), entre los pH´s obtenidos. Se concluye que la cal dolomita neutraliza eficazmente la acidez de este Alfisol en 45 días bajo condiciones semicontroladas, con lo que se puede superar los umbrales críticos de pH donde el aluminio puede ser toxico para la planta. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero(a) Agronómico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. INTRODUCCIÓN. 13 | spa |
dc.description.tableofcontents | 2. DEFINICIÓN DEL PROBLEMA 15 | spa |
dc.description.tableofcontents | 3. JUSTIFICACIÓN 18 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO 20 | spa |
dc.description.tableofcontents | 4.1 LOS ALFISOLES 20 | spa |
dc.description.tableofcontents | 4.2 ACIDEZ DEL SUELO 21 | spa |
dc.description.tableofcontents | 4.2.1 Formas químicas de la acidez. 22 | spa |
dc.description.tableofcontents | 4.2.2 Hidrólisis del aluminio. 22 | spa |
dc.description.tableofcontents | 4.2.3 Capacidad Buffer y su relación con la acidez. 22 | spa |
dc.description.tableofcontents | 4.3 IMPACTO DE LA ACIDEZ EDÁFICA EN LAS PROPIEDADES DEL SUELO Y LAS PLANTAS 23 | spa |
dc.description.tableofcontents | 4.3.1 Reducción de la disponibilidad de cationes básicos. 23 | spa |
dc.description.tableofcontents | 4.3.2 Efecto sobre la disponibilidad de molibdeno (Mo). 23 | spa |
dc.description.tableofcontents | 4.3.3 Fitotoxicidad por aluminio. La toxicidad por Al³⁺ 23 | spa |
dc.description.tableofcontents | 4.3.4 Fitotoxicidad por manganeso. 24 | spa |
dc.description.tableofcontents | 4.4 ENCALADO PARA LA CORRECCIÓN DE LA ACIDEZ 25 | spa |
dc.description.tableofcontents | 4.4.1 Reacciones químicas fundamentales. 25 | spa |
dc.description.tableofcontents | 4.4.2 Cal dolomita (CaMg(CO₃)₂). 26 | spa |
dc.description.tableofcontents | 4.5 FACTORES QUE AFECTAN LA EFICACIA Y CINÉTICA DEL ENCALADO 26 | spa |
dc.description.tableofcontents | 4.5.1 Tamaño de Partícula de la Enmienda. 26 | spa |
dc.description.tableofcontents | 4.5.2 Propiedades del Suelo. 26 | spa |
dc.description.tableofcontents | 5. OBJETIVOS 28 | spa |
dc.description.tableofcontents | 5.1 OBJETIVO GENERAL 28 | spa |
dc.description.tableofcontents | 5.2 OBJETIVOS ESPECÍFICOS 28 | spa |
dc.description.tableofcontents | 6. HIPOTESIS 29 | spa |
dc.description.tableofcontents | 7. MATERIALES Y MÉTODOS 30 | spa |
dc.description.tableofcontents | 7.1 LOCALIZACIÓN Y CONDICIONES AMBIENTALES. 30 | spa |
dc.description.tableofcontents | 7.2 MATERIAL EDAFOLÓGICO. 30 | spa |
dc.description.tableofcontents | 7.3 MONTAJE DEL ENSAYO. 31 | spa |
dc.description.tableofcontents | 7.4 ENCALAMIENTO. 32 | spa |
dc.description.tableofcontents | 7.5 PROCESO DE INCUBACIÓN. 33 | spa |
dc.description.tableofcontents | 7.6 MEDICIÓN DEL pH DEL SUELO. 33 | spa |
dc.description.tableofcontents | 7.7 DISEÑO EXPERIMENTAL. 33 | spa |
dc.description.tableofcontents | 8. RESULTADOS Y DISCUSION 35 | spa |
dc.description.tableofcontents | 9. CONCLUSIONES 40 | spa |
dc.description.tableofcontents | 10. RECOMENDACIONES 41 | spa |
dc.description.tableofcontents | REFERENCIAS 42 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9240 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Ingeniería Agronómica | |
dc.relation.references | Adekiya, A., Agbede, T., Olayanju, A., Ejue, W., Adekanye, T., Adenusi, T., & Ayeni, J. (2020). Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. The Scientific World Journal, 2020. https://doi.org/10.1155/2020/9391630 | |
dc.relation.references | Adekiya, A., Ayorinde, B., & Ogunbode, T. (2024). Combined lime and biochar application enhances cowpea growth and yield in tropical Alfisol. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-52102-7 | |
dc.relation.references | Age, A., Ghatole, A., Jadhao, S., Lahriya, G., Sarap, P., Hadole, S., & Lakhe, S. (2020). Assessment of molybdenum status in soil of Sindhudurg district of Maharashtra. Journal of Pharmacognosy and Phytochemistry, 9, 1633-1637. | |
dc.relation.references | Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M., Beyene, S., & Sileshi, G. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71, 852 - 869. https://doi.org/10.1080/09064710.2021.1954239 | |
dc.relation.references | Alam, K., Biswas, D., Bhattacharyya, R., Das, D., Suman, A., Das, T., Paul, R., Ghosh, A., Sarkar, A., Kumar, R., & Chawla, G. (2022). Recycling of silicon-rich agro-wastes by their combined application with phosphate solubilizing microbes to solubilize the native soil phosphorus in a sub-tropical Alfisol. Journal of environmental management, 318, 115559. https://doi.org/10.1016/j.jenvman.2022.115559 | |
dc.relation.references | Arrobas, M., Conceição, N., Pereira, E., Martins, S., Raimundo, S., Brito, C., Correia, C., & Rodrigues, M. (2023). Dolomitic limestone was more effective than calcitic limestone in increasing soil pH in an untilled olive orchard. Soil Use and Management, 39, 1437 - 1452. https://doi.org/10.1111/sum.12948 | |
dc.relation.references | Azman, E., Ismail, R., Ninomiya, S., Jusop, S., & Tongkaemkaew, U. (2023). The effect of calcium silicate and ground magnesium limestone (GML) on the chemical characteristics of acid sulfate soil. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0290703 | |
dc.relation.references | Badía-Villas, D., Poch, R., Longares, L., Yuste, A., & Bauluz, B. (2022). Genesis and stability of textural pedofeatures along a soil transect in the siliceous Iberian Chain (NE Spain). CATENA. https://doi.org/10.1016/j.catena.2021.105965 | |
dc.relation.references | Barros, V., Chandnani, R., De Sousa, S., Maciel, L., Tokizawa, M., Guimarães, C., Magalhaes, J., & Kochian, L. (2020). Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.565339 | |
dc.relation.references | Barrow, N., Debnath, A., & Sen, A. (2020). Measurement of the effects of pH on phosphate availability. Plant and Soil, 454, 217 - 224. https://doi.org/10.1007/s11104-020-04647-5 | |
dc.relation.references | Bekele, M., Haile, W., & Kebede, F. (2022). Effects of minimum tillage and liming on maize (Zea mays L.) yield components and selected properties of acid soils in Assosa Zone, West Ethiopia. Journal of Agriculture and Food Research. https://doi.org/10.1016/j.jafr.2022.100301 | |
dc.relation.references | Bolan, N., Sarmah, A., Bordoloi, S., Bolan, S., Padhye, L., Van Zwieten, L., Sooriyakumar, P., Khan, B., Ahmad, M., Solaiman, Z., Rinklebe, J., Wang, H., Singh, B., & Siddique, K. (2022). Soil acidification and the liming potential of biochar. Environmental pollution, 120632. https://doi.org/10.1016/j.envpol.2022.120632 | |
dc.relation.references | Bossolani, J., Crusciol, C., Momesso, L., Portugal, J., Moretti, L., Garcia, A., De Cássia Da Fonseca, M., Rodrigues, V., Calonego, J., & Reis, A. (2022). Surface liming triggers improvements in subsoil fertility and root distribution to boost maize crop physiology, yield and revenue. Plant and Soil, 477, 319 - 341. https://doi.org/10.1007/s11104-022-05432-2 | |
dc.relation.references | Bouray, M., Moir, J., Condron, L., Lehto, N., Bayad, M., Gharous, M., & Mejahed, K. (2022). Effect of phosphogypsum application on aluminum speciation in acid pasture soils. Journal of Soils and Sediments, 22, 1959 - 1975. https://doi.org/10.1007/s11368-022-03215-x | |
dc.relation.references | Boyko, R., Paton, G., Walker, R., Watson, C., & Norton, G. (2023). A comparison of soil liming requirement methodologies in temperate, Northern European pedo‐climates. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1002/jpln.202300065 | |
dc.relation.references | Chandra, J., & Keshavkant, S. (2021). Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies: A review. Chemosphere, 278, 130384. https://doi.org/10.1016/j.chemosphere.2021.130384 | |
dc.relation.references | Chatterjee, D., Vikramjeet, K., Adak, T., Kikon, Z., Mukherjee, S., Kuotsu, R., Deka, B., & Das, S. (2022). Modelling Release Kinetics and Path Analysis of Phosphorus in Acid Soil as Influenced by Phosphorus Solubilizers. Journal of Soil Science and Plant Nutrition, 22, 5049 - 5067. https://doi.org/10.1007/s42729-022-00981-y | |
dc.relation.references | Chauhan, D., Yadav, V., Vaculík, M., Gassmann, W., Pike, S., Arif, N., Singh, V., Deshmukh, R., Sahi, S., & Tripathi, D. (2021). Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Critical Reviews in Biotechnology, 41, 715 - 730. https://doi.org/10.1080/07388551.2021.1874282 | |
dc.relation.references | Consoli, N., Marín, E., Samaniego, R., Filho, H., & Cristelo, N. (2020). Field and laboratory behaviour of fine-grained soil stabilized with lime. Canadian Geotechnical Journal. https://doi.org/10.1139/CGJ-2019-0271 | |
dc.relation.references | Court, M., Van Der Heijden, G., Louvat, P., Bolou-Bi, E., Caro, G., Bouchez, J., Pollier, B., Didier, S., Nys, C., Saint-André, L., & Legout, A. (2021). Mg isotope composition in beech forest ecosystems and variations induced by liming: insights from four experimental sites in Northern France. Biogeochemistry, 153, 115 - 134. https://doi.org/10.1007/s10533-021-00766-y | |
dc.relation.references | Dai, X., Wang, J., Xiao, X., Dong, X., Shen, R., & Zhao, X. (2023). Aluminum-Tolerant Wheat Genotype Changes Root Microbial Taxa and Nitrogen Uptake According to Soil pH Levels and Nitrogen Rates. Journal of Soil Science and Plant Nutrition, 23, 1360-1373. https://doi.org/10.1007/s42729-023-01128-3 | |
dc.relation.references | Dash, M., Thiyageshwari, S., Selvi, D., Anandham, R., Rajan, K., Maduraimuthu, D., Singh, S., Muthumani, J., Singh, S., & Pramanick, B. (2023). Unravelling the Release Kinetics of Exchangeable Magnesium in Acid Soil of Nilgiris. Sustainability. https://doi.org/10.3390/su15129848 | |
dc.relation.references | Dash, M., Thiyageshwari, S., Selvi, D., Johnson, H., Ariyan, M., Rajan, K., & Anandham, R. (2025). Unveiling microbial diversity in slightly and moderately magnesium deficient acidic soils. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-87943-3 | |
dc.relation.references | De Oliveira, V., & De Andrade, S. (2020). Manganese accumulation and tolerance in Eucalyptus globulus and Corymbia citriodora seedlings under increasing soil Mn availability. New Forests, 52, 697-711. https://doi.org/10.1007/s11056-020-09819-w | |
dc.relation.references | Devi, M., Bhattacharyya, D., Das, K., & Devi, K. (2023). Distribution Study of the Different Forms of Soil Acidity and Available Nutrients in Upper Brahmaputra Valley Zone (UBVZ) of Assam. International Journal of Plant & Soil Science. https://doi.org/10.9734/ijpss/2023/v35i183328 | |
dc.relation.references | Ding, Z., Ren, B., Chen, Y., Yang, Q., & Zhang, M. (2023). Chemical and Biological Response of Four Soil Types to Lime Application: An Incubation Study. Agronomy. https://doi.org/10.3390/agronomy13020504 | |
dc.relation.references | Dong, Y., Yang, J., Zhao, X., Yang, S., & Zhang, G. (2021). Contribution of different proton sources to the acidification of red soil with maize cropping in subtropical China. Geoderma. https://doi.org/10.1016/J.GEODERMA.2021.114995 | |
dc.relation.references | Dugalić, G., Dugalić, M., Bošković-Rakočević, L., & Rajičić, V. (2022). The values of different types of acidity of pseudogley soils in the Kraljevo basin under forest, meadow and arable land uses. Zemljiste i biljka. https://doi.org/10.5937/zembilj2202076d | |
dc.relation.references | Dvořáčková, H., Dvořáček, J., González, P., & Vlček, V. (2022). Effect of different soil amendments on soil buffering capacity. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0263456 | |
dc.relation.references | Enesi, R., Dyck, M., Chang, S., Thilakarathna, M., Fan, X., Strelkov, S., & Gorim, L. (2023). Liming remediates soil acidity and improves crop yield and profitability - a meta-analysis. **, 5. https://doi.org/10.3389/fagro.2023.1194896 | |
dc.relation.references | Erans, M., Nabavi, S., & Manović, V. (2020). Carbonation of lime-based materials under ambient conditions for direct air capture. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118330 | |
dc.relation.references | Ferrarezi, R., Lin, X., Neira, G., Zambon, F., Hu, H., Wang, X., Huang, J., & Fan, G. (2022). Substrate pH Influences the Nutrient Absorption and Rhizosphere Microbiome of Huanglongbing-Affected Grapefruit Plants. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.856937 | |
dc.relation.references | Ferreira, A., Queiroz, H., Barcellos, D., Otero, X., Nóbrega, G., Bernardino, Â., & Ferreira, T. (2022). Screening for natural manganese scavengers: Divergent phytoremediation potentials of wetland plants. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2022.132811 | |
dc.relation.references | Fitrani, M., Wudtisin, I., & Kaewnern, M. (2020). The impacts of the single-use of different lime materials on the pond bottom soil with acid sulfate content. Aquaculture, 527, 735471. https://doi.org/10.1016/j.aquaculture.2020.735471 | |
dc.relation.references | Ghatole, A., Age, A., Lahriya, G., Hadole, S., & Gawhale, B. (2020). Assessment of molybdenum status in soil of Ratnagiri district. International Journal of Chemical Studies, 8, 1624-1628. https://doi.org/10.22271/chemi.2020.v8.i2y.8991 | |
dc.relation.references | Gillespie, D., Papio, G., & Kubota, C. (2021). High Nutrient Concentrations of Hydroponic Solution Can Improve Growth and Nutrient Uptake of Spinach (Spinacia oleracea L.) Grown in Acidic Nutrient Solution. HortScience. https://doi.org/10.21273/HORTSCI15777-21 | |
dc.relation.references | Guo, Y., Song, B., Li, A., Wu, Q., Huang, H., Li, N., Yang, Y., Adams, J., & Yang, L. (2022). Higher pH is associated with enhanced co-occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environmental microbiology. https://doi.org/10.1111/1462-2920.16185 | |
dc.relation.references | Haile, G., Berihun, H., Abera, H., Agegnehu, G., & Lemenih, M. (2023). Soil Properties, Crop Yield, and Economic Return in Response to Lime Application on Acidic Nitisols of Southern Highlands of Ethiopia. International Journal of Agronomy. https://doi.org/10.1155/2023/6105725 | |
dc.relation.references | Hajiboland, R., Panda, C., Lastochkina, O., Gavassi, M., Habermann, G., & Pereira, J. (2022). Aluminum Toxicity in Plants: Present and Future. Journal of Plant Growth Regulation, 42, 3967 - 3999. https://doi.org/10.1007/s00344-022-10866-0 | |
dc.relation.references | Hamidi, N., Ahmed, O., Omar, L., & Ch’ng, H. (2021). Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity. Agronomy. https://doi.org/10.3390/agronomy11091799 | |
dc.relation.references | Han, Y., Qu, C., Hu, X., Wang, P., Wan, D., Cai, P., Rong, X., Chen, W., & Huang, Q. (2021). Warming and humidification mediated changes of DOM composition in an Alfisol.. The Science of the total environment, 805, 150198. https://doi.org/10.1016/j.scitotenv.2021.150198 | |
dc.relation.references | He, L., Huang, D., Zhang, Q., Zhu, H., Xu, C., Li, B., & Zhu, Q. (2021). Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops. Ecotoxicology and environmental safety, 223, 112621. https://doi.org/10.1016/j.ecoenv.2021.112621 | |
dc.relation.references | Heinrich, A., Sullivan, D., & Moore, A. (2020). Indicators of lime reactivity in soil: particle size, carbon dioxide evolution, and citric acid titration. Archives of Agronomy and Soil Science, 68, 732 - 748. https://doi.org/10.1080/03650340.2020.1852551 | |
dc.relation.references | Hijbeek, R., Loon, M., Ouaret, W., Boekelo, B., & Ittersum, M. (2021). Liming agricultural soils in Western Kenya: Can long-term economic and environmental benefits pay off short term investments. Agricultural Systems. https://doi.org/10.1016/J.AGSY.2021.103095 | |
dc.relation.references | Hu, Y., Chen, J., Hui, D., Wang, Y., Li, J., Chen, J., Chen, G., Zhu, Y., Zhang, L., Zhang, D., & Deng, Q. (2022). Mycorrhizal fungi alleviate acidification‐induced phosphorus limitation: Evidence from a decade‐long field experiment of simulated acid deposition in a tropical forest in south China. Global Change Biology, 28, 3605 - 3619. https://doi.org/10.1111/gcb.16135 | |
dc.relation.references | Hume, R., Marschner, P., Mason, S., Schilling, R., Hughes, B., & Mosley, L. (2023). Measurement of lime movement and dissolution in acidic soils using mid-infrared spectroscopy. Soil and Tillage Research. https://doi.org/10.1016/j.still.2023.105807 | |
dc.relation.references | Jansone, L., Wilpert, K., & Hartmann, P. (2020). Natural Recovery and Liming Effects in Acidified Forest Soils in SW-Germany. Soil Systems. https://doi.org/10.3390/soilsystems4030038 | |
dc.relation.references | Jayaprakash, S., Chidanandappa, H., Dhananjaya, B., Thippeshappa, G., Shetty, Y., & Hanumanthappa, M. (2020). Characterization of Soil Acidity under Paddy Land Use Cover of Coastal Karnataka. International Journal of Current Microbiology and Applied Sciences, 9, 1879-1884. https://doi.org/10.20546/ijcmas.2020.910.230 | |
dc.relation.references | Jiang, Z., Owens, P., Zhang, C., Brye, K., Weindorf, D., Adhikari, K., Sun, Z., Sun, F., & Wang, Q. (2021). Towards a dynamic soil survey: Identifying and delineating soil horizons in-situ using deep learning. Geoderma, 401, 115341. https://doi.org/10.1016/J.GEODERMA.2021.115341 | |
dc.relation.references | Jiménez‐Ballesta, R., Bravo, S., Amorós, J., Pérez-De-Los-Reyes, C., García-Pradas, J., Sanchez, M., & García-Navarro, F. (2021). A morphological approach to evaluating the nature of vineyard soils in semiarid Mediterranean environment. European Journal of Soil Science, 73. https://doi.org/10.1111/ejss.13201 | |
dc.relation.references | Jing, T., Li, J., He, Y., Shankar, A., Saxena, A., Tiwari, A., Maturi, K., Solanki, M., Singh, V., Eissa, M., Ding, Z., Xie, J., & Awasthi, M. (2024). Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. Plant physiology and biochemistry : PPB, 210, 108602. https://doi.org/10.1016/j.plaphy.2024.108602 | |
dc.relation.references | Kaczmarska, K., Gąsior, J., Alvarez, B., & Nowak, M. (2020). Kształtowanie się chemicznych właściwości gleby brunatnej pod wpływem symulowanego kwaśnego opadu w doświadczeniu lizymetrycznym. Polish Journal for Sustainable Development. https://doi.org/10.15584/pjsd.2020.24.2.1 | |
dc.relation.references | Kang, F., Lv, Q., Liu, J., Meng, Y., Wang, Z., Ren, X., & Hu, S. (2022). Organic–inorganic calcium lignosulfonate compounds for soil acidity amelioration. Environmental Science and Pollution Research, 29, 74118 - 74132. https://doi.org/10.1007/s11356-022-20461-1 | |
dc.relation.references | Kharel, S., d’Abbadie, C., Ghadim, A., Gazey, C., & Kingwell, R. (2024). Liming acidic soils creates profits, land use options but often more emissions. Crop & Pasture Science. https://doi.org/10.1071/cp24227 | |
dc.relation.references | Kocjan, A., Kwasniewska, J., & Szurman-Zubrzycka, M. (2024). Understanding plant tolerance to aluminum: exploring mechanisms and perspectives. Plant and Soil. https://doi.org/10.1007/s11104-024-06745-0 | |
dc.relation.references | Kundu, A., & Ganesan, M. (2023). Low pH stress activates several genes for lateral root formation and detoxification of aluminum ions in Cotton plants. Plant Stress. https://doi.org/10.1016/j.stress.2023.100188 | |
dc.relation.references | Li, K., Lu, H., Nkoh, J., Hong, Z., & Xu, R. (2022). Aluminum mobilization as influenced by soil organic matter during soil and mineral acidification: A constant pH study. Geoderma. https://doi.org/10.1016/j.geoderma.2022.115853 | |
dc.relation.references | Li, X., Zhang, X., Zhao, Q., & Liao, H. (2023). Genetic improvement of legume roots for adaption to acid soils. The Crop Journal. https://doi.org/10.1016/j.cj.2023.04.002 | |
dc.relation.references | Li, Y., Abdo, A., Shi, Z., Merwad, A., & Zhang, J. (2023). Biochar derived from invasive plants improved the pH, macronutrient availability and biological properties better than liming for acid rain-affected soil. Biochar, 5, 1-16. https://doi.org/10.1007/s42773-023-00251-9 | |
dc.relation.references | Liao, P., Huang, S., Zeng, Y., Shao, H., Zhang, J., & Van Groenigen, K. (2021). Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis. Plant and Soil, 465, 157 - 169. https://doi.org/10.1007/s11104-021-05004-w | |
dc.relation.references | Liao, P., Ros, M., Gestel, N., Sun, Y., Zhang, J., Huang, S., Zeng, Y., Wu, Z., & Van Groeningen, K. (2020). Liming reduces soil phosphorus availability but promotes yield and P uptake in a double rice cropping system. Journal of Integrative Agriculture, 19, 2807-2814. https://doi.org/10.1016/s2095-3119(20)63222-1 | |
dc.relation.references | Ligowe, I., Young, S., Ander, E., Kabambe, V., Chilimba, A., Bailey, E., Lark, R., & Nalivata, P. (2020). Agronomic biofortification of leafy vegetables grown in an Oxisol, Alfisol and Vertisol with isotopically labelled selenium (77Se). Geoderma, 361, 114106. https://doi.org/10.1016/j.geoderma.2019.114106 | |
dc.relation.references | Lin, Q., Huai, Z., Riaz, L., Peng, X., Wang, S., Liu, B., Yu, F., & , J. (2023). Aluminum phytotoxicity induced structural and ultrastructural changes in submerged plant Vallisneria natans. Ecotoxicology and environmental safety, 250, 114484. https://doi.org/10.1016/j.ecoenv.2022.114484 | |
dc.relation.references | Litvinovich, A., Lavrishchev, A., Bure, V., Zhapparova, A., Kenzhegulova, S., Tleppayeva, A., Issayeva, Z., Turebayeva, S., & Saljnikov, E. (2024). Comparative Study of Fertilization Value and Neutralizing Power of Lime Materials of Carbonate and Silicate Natures on Plants of the Families Gramíneae, Brassicáceae, and Leguminósae. Sustainability. https://doi.org/10.3390/su16177717 | |
dc.relation.references | Liu, J., Wang, Y., Zhang, L., Xia, Y., Bai, K., & Gao, H. (2024). Plant Rho GTPase ROP6 Is Essential for Manganese Homeostasis in Arabidopsis. Plant, cell & environment. https://doi.org/10.1111/pce.15237 | |
dc.relation.references | Lokya, T., Mishra, A., & Saren, S. (2022). Characterization and Taxonomic Classification of Soils under a Toposequence Located at North-Eastern Ghat Agro-Climatic Zone of Odisha, India. International Journal of Plant & Soil Science. https://doi.org/10.9734/ijpss/2022/v34i530870 | |
dc.relation.references | Long, R., Bailey, S., Horsley, S., & Hall, T. (2021). Thirty-year effects of liming on soil and foliage chemistry and growth of northern hardwoods in Pennsylvania, USA. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2021-0246 | |
dc.relation.references | Masud, M., Baquy, M., Akhter, S., Sen, R., Barman, A., & Khatun, M. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and environmental safety, 202, 110865. https://doi.org/10.1016/j.ecoenv.2020.110865 | |
dc.relation.references | Maulana, A., Herviyanti, H., & Prasetyo, T. (2020). PENGARUH BERBAGAI JENIS KAPUR DALAM APLIKASI PENGAPURAN UNTUK MEMPERBAIKI SIFAT KIMIA ULTISOL. Jurnal Tanah dan Sumberdaya Lahan. https://doi.org/10.21776/ub.jtsl.2020.007.2.04 | |
dc.relation.references | Meetei, T., Devi, Y., Chanu, T., H., &, U. (2020). Acid soil: Unwanted but unavoidable consequences of natural processes. **. Minato, E., Brignoli, F., Neto, M., Besen, M., Cassim, B., Lima, R., Tormena, C., Inoue, T., & Batista, M. (2023). Lime and gypsum application to low-acidity soils: Changes in soil chemical properties, residual lime content and crop agronomic performance. Soil and Tillage Research. https://doi.org/10.1016/j.still.2023.105860 | |
dc.relation.references | Mkhonza, N., Buthelezi‐Dube, N., & Muchaonyerwa, P. (2020). Effects of lime application on nitrogen and phosphorus availability in humic soils. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-65501-3 | |
dc.relation.references | Moreira, W., De Souza, E., Beneduzzi, H., Nóbrega, L., Bazzi, C., Maggi, M., Rodrigues, M., & Gavioli, A. (2022). Methods to Recommend Corrective Measures for Agricultural Soils: A Systematic Literature Study. Communications in Soil Science and Plant Analysis, 54, 1102 - 1133. https://doi.org/10.1080/00103624.2022.2137194 | |
dc.relation.references | Ng, J., Ahmed, O., Jalloh, M., Omar, L., Kwan, Y., Musah, A., & Poong, K. (2022). Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy. https://doi.org/10.3390/agronomy12010219 | |
dc.relation.references | Ofoe, R., Thomas, R., Asiedu, S., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1085998 | |
dc.relation.references | Olifir, Y., Habryel, A., Partyka, T., Havryshko, O., Konyk, G., Kozak, N., & Lykhochvor, V. (2023). An acid-base buffering model to describe pH buffering capacity of an acid albic stagnic luvisol under long-term agricultural land use and management. Agricultural Science and Practice. https://doi.org/10.15407/agrisp9.03.018 | |
dc.relation.references | Pal, D., Chandran, P., Paul, R., & Datta, A. (2023). Ultisols with Unique Soil Properties and their Implications in Carbon Enhancement Strategies for Indian Tropical Soils. Agropedology. https://doi.org/10.47114/j.agroped.2023.jun2 | |
dc.relation.references | Palencia, G., Mercado, T., & Combatt, E. (2006). Estudio agroclimático del departamento de Córdoba. Editorial Gráficas el Caribe, Montería, 126. https://n9.cl/agroclimatico | |
dc.relation.references | Paramisparam, P., Ahmed, O., Omar, L., Ch’ng, H., Johan, P., & Hamidi, N. (2021). Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils. Agronomy. https://doi.org/10.3390/agronomy11102081 | |
dc.relation.references | Patra, A., Sharma, V., Nath, D., Ghosh, A., Purakayastha, T., Barman, M., Kumar, S., Chobhe, K., Anil, A., & Rekwar, R. (2021). Impact of Soil Acidity Influenced by Long-term Integrated Use of Enriched Compost, Biofertilizers, and Fertilizer on Soil Microbial Activity and Biomass in Rice Under Acidic Soil. Journal of Soil Science and Plant Nutrition, 21, 756-767. https://doi.org/10.1007/s42729-020-00398-5 | |
dc.relation.references | Poder, L., Mercier, C., Février, L., Duong, N., David, P., Pluchon, S., Nussaume, L., & Desnos, T. (2022). Uncoupling Aluminum Toxicity From Aluminum Signals in the STOP1 Pathway. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.785791 | |
dc.relation.references | Queiroz, H., Ying, S., Abernathy, M., Barcellos, D., Gabriel, F., Otero, X., Nóbrega, G., Bernardino, Â., & Ferreira, T. (2020). Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environment international, 146, 106284 - 106284. https://doi.org/10.1016/j.envint.2020.106284 | |
dc.relation.references | Rahman, R., & Upadhyaya, H. (2020). Aluminium Toxicity and Its Tolerance in Plant: A Review. Journal of Plant Biology, 64, 101 - 121. https://doi.org/10.1007/s12374-020-09280-4 | |
dc.relation.references | Rahman, S., Han, J., Ahmad, M., Ashraf, M., Khaliq, M., Yousaf, M., Wang, Y., Yasin, G., Nawaz, M., Khan, K., & Du, Z. (2023). Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. Ecotoxicology and environmental safety, 269, 115791. https://doi.org/10.1016/j.ecoenv.2023.115791 | |
dc.relation.references | Ranjan, A., Sinha, R., Sharma, T., Pattanayak, A., & Singh, A. (2021). Alleviating aluminum toxicity in plants: implications of reactive oxygen species signalling and crosstalk with other signaling pathways. Physiologia plantarum. https://doi.org/10.1111/ppl.13382 | |
dc.relation.references | Reyes-Ardila, W., Vélez-Martínez, G., Duque-Zapata, J., Rugeles-Silva, P., Flórez, J., & López-Álvarez, D. (2024). Exploring soil bacterial and fungal communities in Colombian terrestrial ecosystems modulated by altitude-influenced factors. PLOS ONE, 19. https://doi.org/10.1371/journal.pone.0312842 | |
dc.relation.references | Seema, S., Ghosh, A., & Yadav, S. (2020). Characterization and fertility assessment of soils of Chandauli district of Eastern Uttar Pradesh for sustainable land use planning. The Indian Journal of Agricultural Sciences. https://doi.org/10.56093/ijas.v90i8.105954 | |
dc.relation.references | Shaaban, M., Wang, X., Song, P., Hu, R., & Wu, Y. (2024). Impact of Dolomite Liming on Ammonia-Oxidizing Microbial Populations and Soil Biochemistry in Acidic Rice Paddy Soils. Agronomy. https://doi.org/10.3390/agronomy14092070 | |
dc.relation.references | Shi, Y., Cui, J., Zhang, F., Li, K., Jiang, J., & Xu, R. (2023). Effects of soil pH and organic carbon content on in vitro Cr bioaccessibility in Ultisol, Alfisol, and Inceptisol. Chemosphere, 139274. https://doi.org/10.1016/j.chemosphere.2023.139274 | |
dc.relation.references | Sokolova, T. (2020). Low-Molecular-Weight Organic Acids in Soils: Sources, Composition, Concentrations, and Functions: A Review. Eurasian Soil Science, 53, 580-594. https://doi.org/10.1134/S1064229320050154 | |
dc.relation.references | Sridhar, B., Lawrence, G., Debenport, S., Fahey, T., Buckley, D., Wilhelm, R., & Goodale, C. (2022). Watershed-scale liming reveals the short- and long-term effects of pH on the forest soil microbiome and carbon cycling. Environmental microbiology. https://doi.org/10.1111/1462-2920.16119 | |
dc.relation.references | Tahat, M., Alananbeh, K., Othman, Y., & Leskovar, D. (2020). Soil Health and Sustainable Agriculture. Sustainability. https://doi.org/10.3390/su12124859 | |
dc.relation.references | Taye, G., Bedadi, B., & Wogi, L. (2020). Comparison of Lime Requirement Determination Methods to Amend Acidic Nitisols in Central Highlands of Ethiopia. Ethiopian Journal of Agricultural Sciences, 30, 35-48. Thakur, A., Sharma, R., Sankhyan, N., & Sepehya, S. (2022). Effect of 46 years' application of fertilizers, FYM and lime on physical, chemical and biological properties of soil under maize–wheat system in an acid Alfisol of northwest Himalayas. Soil Use and Management, 39, 357 - 367. https://doi.org/10.1111/sum.12821 | |
dc.relation.references | Tian, Z., Yang, Z., Lu, Z., Luo, B., Hao, Y., Wang, X., Yang, F., Wang, S., Chen, C., & Dong, R. (2023). Effect of genotype and environment on agronomical characters of alfalfa (Medicago sativa L.) in a typical acidic soil environment in southwest China. **, 7. https://doi.org/10.3389/fsufs.2023.1144061 | |
dc.relation.references | Trivedi, A., Bhattacharyya, R., Ghosh, A., Saha, N., Biswas, D., Mahapatra, P., Verma, S., Shahi, D., Khan, S., Bhatia, A., Agnihorti, R., & Sharma, C. (2021). 60 years of fertilization and liming impacts on soil organic carbon stabilization in a sub-tropical Alfisol. Environmental Science and Pollution Research, 28, 45946 - 45961. https://doi.org/10.1007/s11356-021-14019-w | |
dc.relation.references | Trujillo-González, J., Torres-Mora, M., Ballesta, R., & Brevik, E. (2022). Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia. Environmental Earth Sciences, 81. https://doi.org/10.1007/s12665-022-10235-w | |
dc.relation.references | Tutivén, J., Suarez, H., & Montúfar, G. (2022). Buffer capacity as a method to estimate the dose of liming in acid soils. Agro Productividad. https://doi.org/10.32854/agrop.v15i10.2256 | |
dc.relation.references | Udeh, B. (2021). Effects of process variables on the reactivity of slaked lime produced from Shuk quicklime. Global Journal of Engineering and Technology Advances. https://doi.org/10.30574/gjeta.2021.9.3.0161 | |
dc.relation.references | Vogel, S., Bönecke, E., Kling, C., Kramer, E., Lück, K., Philipp, G., Rühlmann, J., Schröter, I., & Gebbers, R. (2021). Direct prediction of site-specific lime requirement of arable fields using the base neutralizing capacity and a multi-sensor platform for on-the-go soil mapping. Precision Agriculture, 23, 127-149. https://doi.org/10.1007/s11119-021-09830-x | |
dc.relation.references | Wan, W., Tan, J., Wang, Y., Qin, Y., He, H., Wu, H., Zuo, W., & He, D. (2020). Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function.. The Science of the total environment, 700, 134418. https://doi.org/10.1016/j.scitotenv.2019.134418 | |
dc.relation.references | Wang, C., & Kuzyakov, Y. (2024). Soil organic matter priming: The pH effects. Global Change Biology, 30. https://doi.org/10.1111/gcb.17349 | |
dc.relation.references | Wang, M., Chen, S., Shi, H., & Liu, Y. (2021). Redox dependence of manganese controls cadmium isotope fractionation in a paddy soil-rice system under unsteady pe + pH conditions. The Science of the total environment, 150675. https://doi.org/10.1016/j.scitotenv.2021.150675 | |
dc.relation.references | Wang, M., Liu, Y., Shi, H., Li, S., & Chen, S. (2021). Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems. Environmental pollution, 118311. https://doi.org/10.1016/j.envpol.2021.118311 | |
dc.relation.references | Wang, M., Wang, L., Zhao, S., Li, S., Lei, X., Qin, L., Sun, X., & Chen, S. (2021). Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH.. Journal of hazardous materials, 416, 126079. https://doi.org/10.1016/J.JHAZMAT.2021.126079 | |
dc.relation.references | Wang, T., Cao, X., Chen, M., Lou, Y., Wang, H., Yang, Q., Pan, H., & Zhuge, Y. (2022). Effects of Soil Acidification on Bacterial and Fungal Communities in the Jiaodong Peninsula, Northern China. Agronomy. https://doi.org/10.3390/agronomy12040927 | |
dc.relation.references | Wang, Y., Yao, Z., Zhan, Y., Zheng, X., Zhou, M., Yan, G., Wang, L., Werner, C., & Butterbach‐Bahl, K. (2021). Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 27. https://doi.org/10.1111/gcb.15607 | |
dc.relation.references | Weerasekara, M., Hartemink, A., Zhang, Y., & Stevenson, A. (2024). Spectral signatures of soil horizons and soil orders from Wisconsin. Soil Science Society of America Journal. https://doi.org/10.1002/saj2.20766 | |
dc.relation.references | Wu, H., Hu, J., Shaaban, M., Xu, P., Zhao, J., & Hu, R. (2021). The effect of dolomite amendment on soil organic carbon mineralization is determined by the dolomite size. Ecological Processes, 10, 1-12. https://doi.org/10.1186/s13717-020-00278-x | |
dc.relation.references | Xia, H., Riaz, M., Zhang, M., Liu, B., El-Desouki, Z., & Jiang, C. (2020). Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil.. Ecotoxicology and environmental safety, 196, 110531. https://doi.org/10.1016/j.ecoenv.2020.110531 | |
dc.relation.references | Xiong, J., Liu, Z., Yan, Y., Xu, J., Liu, D., Tan, W., & Feng, X. (2022). Role of clay minerals in controlling phosphorus availability in a subtropical Alfisol. Geoderma. https://doi.org/10.1016/j.geoderma.2021.115592 | |
dc.relation.references | Xiong, R., He, X., Gao, N., Li, Q., Qiu, Z., Hou, Y., & Shen, W. (2024). Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils. Microbiology Spectrum, 12. https://doi.org/10.1128/spectrum.04165-23 | |
dc.relation.references | Xu, D., Zhu, Q., Ros, G., Cai, Z., Wen, S., Xu, M., Zhang, F., & De Vries, W. (2021). Calculation of spatially explicit amounts and intervals of agricultural lime applications at county-level in China.. The Science of the total environment, 150955. https://doi.org/10.1016/j.scitotenv.2021.150955 | |
dc.relation.references | Yadav, D., Jaiswal, B., Gautam, M., & Agrawal, M. (2020). Soil Acidification and its Impact on Plants. **, 1-26. https://doi.org/10.1007/978-981-15-4964-9_1 | |
dc.relation.references | Yan, L., Riaz, M., Liu, J., Yu, M., & Cuncang, J. (2021). The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Critical Reviews in Environmental Science and Technology, 52, 1491 - 1527. https://doi.org/10.1080/10643389.2020.1859306 | |
dc.relation.references | Yang, Y., Wang, Y., Peng, Y., Cheng, P., Li, F., & Liu, T. (2020). Acid-base buffering characteristics of non-calcareous soils: Correlation with physicochemical properties and surface complexation constants. Geoderma, 360, 114005. https://doi.org/10.1016/j.geoderma.2019.114005 | |
dc.relation.references | Ying, Z., Cui, Y., Benahmed, N., & Duc, M. (2021). Changes in microstructure and water retention property of a lime-treated saline soil during curing. Acta Geotechnica, 17, 319 - 326. https://doi.org/10.1007/s11440-021-01218-5 | |
dc.relation.references | Ylivainio, K., Leta, R., Esala, M., Jauhiainen, L., Peltovuori, T., & Chernet, T. (2024). Liming improves wheat nutrient use efficiency, yield, and quality on acid soils in Ethiopia. Nutrient Cycling in Agroecosystems. https://doi.org/10.1007/s10705-024-10369-2 | |
dc.relation.references | Zhang, L., Zhao, Z., Jiang, B., Baoyin, B., Cui, Z., Wang, H., Li, Q., & Cui, J. (2024). Effects of Long-Term Application of Nitrogen Fertilizer on Soil Acidification and Biological Properties in China: A Meta-Analysis. Microorganisms, 12. https://doi.org/10.3390/microorganisms12081683 | |
dc.relation.references | Zhang, S., Zhu, Q., De Vries, W., Ros, G., Chen, X., Muneer, M., Zhang, F., & Wu, L. (2023). Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. Journal of environmental management, 345, 118531. https://doi.org/10.1016/j.jenvman.2023.118531 | |
dc.relation.references | Zhao, W., Shi, R., Hong, Z., & Xu, R. (2022). Critical values of soil solution Al3+ activity and pH for canola and maize cultivation in two acidic soils.. Journal of the science of food and agriculture. https://doi.org/10.1002/jsfa.12060 | |
dc.relation.references | Zhou, H., Huang, S., Zhang, Z., Li, T., Li, Y., Zhuang, G., Liu, G., Fu, B., & Kuang, X. (2024). Network and stoichiometry analysis revealed a fast magnesium and calcium deficiency of mulched Phyllostachys violascens. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1492137 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Soil liming | eng |
dc.subject.keywords | Lime requirement curve | eng |
dc.subject.keywords | Dolomitic lime | eng |
dc.subject.keywords | Lime in soil | eng |
dc.subject.keywords | Acidity neutralization | eng |
dc.subject.proposal | Encalado de suelos | spa |
dc.subject.proposal | Curva de requerimiento de cal | spa |
dc.subject.proposal | Cal dolomita | spa |
dc.subject.proposal | Cal en el suelo | spa |
dc.subject.proposal | Neutralización de acidez | spa |
dc.title | Encalamiento e incubación de un alfisol en condiciones semicontroladas en Montería | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: