Publicación: Relación molar Se:Hg en peces continentales en el norte de Colombia
dc.contributor.advisor | Marrugo Negrete, José Luis | |
dc.contributor.author | Padilla Ramírez, Camila Alejandra | |
dc.date.accessioned | 2022-01-26T13:28:33Z | |
dc.date.available | 2022-01-26T13:28:33Z | |
dc.date.issued | 2022-01-25 | |
dc.description.abstract | Heavy metal pollution mainly by Hg in aquatic ecosystems has great spot due the adverse effects and toxicity of Hg by anthropogenic emissions. Therefore, the presence of mercury (Hg) in its different forms (organic, elemental and mineral) poses as a great concern since it leads to bioaccumulation and biomagnification processes in the environmental composition. On the other hand, Selenium (Se) is known to be an essential micronutrient in biota and fish metabolism, but in high concentrations can generate toxicity instead. Therefore, this work determined Hg and Se concentrations and their relations and distribution in continental fishes in North of Colombia. 308 individuals from 30 species were analyzed in six study areas (Ayapel swamp, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio and Unguía). Hg was quantified by the EPA-7473 method (thermal decomposition, amalgamation/atomic absorption spectrometry) in a DMA-80 direct mercury analyzer, and Se was determined by EPA-3052 method HG (hydride generation atomic fluorescence spectrometry). To evaluate relations among Hg and Se general concentrations, body mass and total length in muscle of sampled fishes, Pearson's correlation coefficients (p | eng |
dc.description.abstract | La contaminación por metales pesados especialmente a partir de Hg, ha sido de gran interés debido a los efectos adversos que ocasiona en los ecosistemas, mayoritariamente debido a emisiones antropogénicas. Por lo que la presencia de mercurio (Hg) en sus diferentes formas (orgánico, elemental y mineral), genera gran impacto y preocupación puesto que conlleva a procesos de bioacumulación y biomagnificación en los organismos y en las matrices ambientales. Por otra parte, el Selenio (Se) aunque es un micronutriente esencial en el metabolismo de la biota y los peces en general, en altas concentraciones puede generar toxicidad. Por consiguiente este trabajo determino las concentraciones de Hg y Se, su relación molar y distribución en peces continentales en el Norte de Colombia. En total se analizaron 308 individuos pertenecientes a 30 especies en seis zonas de estudio (Ciénaga de Ayapel, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio y Unguía). El Hg se cuantificó mediante el método EPA-7473 (descomposición térmica, amalgamación, y espectrometría de absorción atómica) utilizando analizador directo de mercurio DMA-80, en tanto que el Se fue determinado a través del método EPA-3052 (generación de hidruros y espectrometría de fluorescencia atómica). Para evaluar la relación entre las concentraciones generales de Se y Hg, la masa corporal, la longitud total en el músculo dorsal de los peces muestreados, se estimaron coeficientes de correlación de Pearson (p | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | La contaminación por metales pesados especialmente a partir de Hg, ha sido de gran interés debido a los efectos adversos que ocasiona en los ecosistemas, mayoritariamente debido a emisiones antropogénicas. Por lo que la presencia de mercurio (Hg) en sus diferentes formas (orgánico, elemental y mineral), genera gran impacto y preocupación puesto que conlleva a procesos de bioacumulación y biomagnificación en los organismos y en las matrices ambientales. Por otra parte, el Selenio (Se) aunque es un micronutriente esencial en el metabolismo de la biota y los peces en general, en altas concentraciones puede generar toxicidad. Por consiguiente este trabajo determino las concentraciones de Hg y Se, su relación molar y distribución en peces continentales en el Norte de Colombia. En total se analizaron 308 individuos pertenecientes a 30 especies en seis zonas de estudio (Ciénaga de Ayapel, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio y Unguía). El Hg se cuantificó mediante el método EPA-7473 (descomposición térmica, amalgamación, y espectrometría de absorción atómica) utilizando analizador directo de mercurio DMA-80, en tanto que el Se fue determinado a través del método EPA-3052 (generación de hidruros y espectrometría de fluorescencia atómica). Para evaluar la relación entre las concentraciones generales de Se y Hg, la masa corporal, la longitud total en el músculo dorsal de los peces muestreados, se estimaron coeficientes de correlación de Pearson (p | spa |
dc.description.tableofcontents | LISTA DE TABLAS…………………………………………………………………...i | spa |
dc.description.tableofcontents | LISTA DE FIGURAS…………………………………………………………………ii | spa |
dc.description.tableofcontents | LISTA DE ANEXOS…………………………………………………………………iii | spa |
dc.description.tableofcontents | RESUMEN …………………………………………………………………………..v | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ......................................................................................... 1 | spa |
dc.description.tableofcontents | 1.1 ANTECEDENTES ................................................................................. 3 | spa |
dc.description.tableofcontents | 2. MARCO TEÓRICO ...................................................................................... 7 | spa |
dc.description.tableofcontents | 2.1 Hg en la biósfera ....................................................................................... 7 | spa |
dc.description.tableofcontents | 2.2 Metabolismo del Hg en el cuerpo humano ................................................ 8 | spa |
dc.description.tableofcontents | 2.3 Especies químicas del Hg ......................................................................... 9 | spa |
dc.description.tableofcontents | 2.4 Ciclo biogeoquímico del Hg .................................................................... 10 | spa |
dc.description.tableofcontents | 2.5 Hg en la biota acuática ............................................................................ 12 | spa |
dc.description.tableofcontents | 2.6 Selenio (Se) ............................................................................................ 13 | spa |
dc.description.tableofcontents | 2.7 Toxicidad del Se ...................................................................................... 13 | spa |
dc.description.tableofcontents | 2.8 Efecto protector del Se ............................................................................ 14 | spa |
dc.description.tableofcontents | 2.9 Ciclo biogeoquímico del Se ..................................................................... 16 | spa |
dc.description.tableofcontents | 3. OBJETIVOS ................................................................................................. 18 | spa |
dc.description.tableofcontents | 3.1 GENERAL ............................................................................................... 18 | spa |
dc.description.tableofcontents | 3.2 ESPECÍFICOS ........................................................................................ 18 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA ........................................................................................... 19 | spa |
dc.description.tableofcontents | 4.1 Área de estudio ....................................................................................... 19 | spa |
dc.description.tableofcontents | 4.3 toma de muestras ................................................................................... 22 | spa |
dc.description.tableofcontents | 4.4 Determinación de Hg en peces ............................................................... 22 | spa |
dc.description.tableofcontents | 4.5 Determinación de Se en peces ............................................................... 23 | spa |
dc.description.tableofcontents | 4.6 Determinación de la relación molar Se: Hg ............................................. 23 | spa |
dc.description.tableofcontents | 4.7 CONTROL DE CALIDAD DEL METODO ANALITICO ............................ 24 | spa |
dc.description.tableofcontents | 4.8 Tratamiento de los resultados ................................................................. 25 | spa |
dc.description.tableofcontents | 5. RESULTADOS ............................................................................................. 26 | spa |
dc.description.tableofcontents | 5.1 Concentraciones de Hg y Se en músculo de los peces muestreados ..... 26 | spa |
dc.description.tableofcontents | 5.2 Correlaciones entre las concentraciones de Hg y Se, la relación molar Se:Hg, la longitud total y la masa corporal en los peces estudiados ............ 31 | spa |
dc.description.tableofcontents | 5.3 Distribución de las concentraciones de Hg y Se, la relación molar Se:Hg, la longitud total y la masa corporal en los peces estudiados ........................ 35 | spa |
dc.description.tableofcontents | 6. DISCUSIÓN ................................................................................................. 40 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES ......................................................................................... 51 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFIA……………............................................................................53 | spa |
dc.description.tableofcontents | ANEXOS .......................................................................................................... 77 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4782 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Continental fishes | eng |
dc.subject.keywords | Aquatic ecosystems | eng |
dc.subject.keywords | Se:Hg molar ratio | eng |
dc.subject.keywords | Heavy metals | eng |
dc.subject.keywords | Colombia | eng |
dc.subject.proposal | Peces continentales | spa |
dc.subject.proposal | Ecosistemas acuáticos | spa |
dc.subject.proposal | Relación molar Se:Hg | spa |
dc.subject.proposal | Metales pesados | spa |
dc.subject.proposal | Colombia | spa |
dc.title | Relación molar Se:Hg en peces continentales en el norte de Colombia | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Acero, A., Acosta-Santos, A. A., Agudelo-Córdoba, E., Agudelo-Zamora, H. D., Ajiaco-Martínez, R. E., Alonso González, J. C., Árvarez-León, R., Ardila-Rodríguez, C., Atencio García, V. J., Barreto Reyes, C., Bonilla-Castillo, C. A., Castellano, C., DoNascimiento, C., Escobar-Lizarazo, M. D., Forero-Useche, J. E., Franco Rojas, H. H., Galvis Vergara, G., Gil-Manrique, B. D., Gómez Hurtado, G. A., … Villa-Navarro, F. A. (2002). Libro Rojo de Peces Dulceacuícolas de Colombia (2012). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/34197 | spa |
dcterms.references | Adebayo, O. L., Adenuga, G. A., & Sandhir, R. (2016). Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sciences, 152, 145–155. doi:10.1016/j.lfs.2016.03.008 | spa |
dcterms.references | Aguirre, L.; Garcia, F.J.; Junca, T., Fontanet, M.; Roca, M.; Carbó, M.; Sanfeliu, A.; Pomar, M.; Pérez, P.; Ochoa, C.; Sánchez, M.; Forn, M.; Serrat, M.; Gonfaus, M. (2001).Validación de Métodos Analíticos. Barcelona: AEFI. | spa |
dcterms.references | Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution (Barking, Essex: 1987), 232, 154-163. https://doi.org/10.1016/j.envpol.2017.09.028 | spa |
dcterms.references | Akiyama, M., Unoki, T., Yoshida, E., Ding, Y., Yamakawa, H., Shinkai, Y., Ishii, I., & Kumagai, Y. (2020). Repression of mercury accumulation and adverse effects of methylmercury exposure is mediated by cystathionine γ-lyase to produce reactive sulfur species in mouse brain. Toxicology Letters, 330, 128-133. https://doi.org/10.1016/j.toxlet.2020.05.007 | spa |
dcterms.references | Alcala-Orozco, M., Caballero-Gallardo, K., & Olivero-Verbel, J. (2020). Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology, 79(3), 354-370. https://doi.org/10.1007/s00244-020-00761-8 | spa |
dcterms.references | Alibabić, V., Vahčić, N., & Bajramović, M. (2007). Bioaccumulation of Metals in Fish of Salmonidae Family and the Impact on Fish Meat Quality. Environmental Monitoring and Assessment, 131(1), 349-364. https://doi.org/10.1007/s10661-006-9480-6. | spa |
dcterms.references | Ali, H., & Khan, E. (2018). Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24(8), 2101–2118. https://doi.org/10.1080/10807039.2018.1438175. | spa |
dcterms.references | Allinson, G., Nishikawa, M., Silva, S. S. D., Laurenson, L. J. B., & Silva, K. D. (2001). Observations on Metal Concentrations in Tilapia (Oreochromis mossambicus) in Reservoirs of South Sri Lanka. Ecotoxicology and Environmental Safety, 51(3), 197-202. https://doi.org/10.1006/eesa.2001.2112 | spa |
dcterms.references | Al-Saleh, I., Abduljabbar, M., Al-Rouqi, R., Elkhatib, R., Alshabbaheen, A., & Shinwari, N. (2013). Mercury (Hg) Exposure in Breast-Fed Infants and Their Mothers and the Evidence of Oxidative Stress. Biological Trace Element Research, 153(1), 145-154. https://doi.org/10.1007/s12011-013-9687-7 | spa |
dcterms.references | Al-Saleh, I., Al-Rouqi, R., Obsum, C. A., Shinwari, N., Mashhour, A., Billedo, G., Al-Sarraj, Y., & Rabbah, A. (2015). Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. International Journal of Hygiene and Environmental Health, 218(1), 66-90. https://doi.org/10.1016/j.ijheh.2014.08.001 | spa |
dcterms.references | Álvarez-León, R., Orozco-Rey, R., Páramo, M., & Restrepo Santamaria, D. (2013). 2013. Álvarez-León et al. Lista de peces fósiles y actuales de Colombia. | spa |
dcterms.references | Alves, A. C., Monteiro, M. S., Machado, A. L., Oliveira, M., Bóia, A., Correia, A., Oliveira, N., Soares, A. M. V. M., & Loureiro, S. (2017). Mercury levels in parturient and newborns from Aveiro region, Portugal. Journal of Toxicology and Environmental Health, Part A, 80(13-15), 697-709. https://doi.org/10.1080/15287394.2017.1286926. | spa |
dcterms.references | Ancora, M. P., Zhang, L., Wang, S., Schreifels, J. J., & Hao, J. (2016). Meeting Minamata: Cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy, 88, 485-494. https://doi.org/10.1016/j.enpol.2015.10.048 | spa |
dcterms.references | Apler, A., Snowball, I., Frogner-Kockum, P., & Josefsson, S. (2019). Distribution and dispersal of metals in contaminated fibrous sediments of industrial origin. Chemosphere, 215, 470-481. https://doi.org/10.1016/j.chemosphere.2018.10.010. | spa |
dcterms.references | Argota, G., González, Y., Argota, H., Fimia, R., & Iannacone, J. (2012). Desarrollo y bioacumulación de metales pesados en Gambusia punctata (Poeciliidae) ante los efectos de la contaminación acuática. REDVET. Revista Electrónica de Veterinaria, 13(5), 1-12. | spa |
dcterms.references | Argumedo, C. D., Gómez, J. & Negrete, J. M. (2017). Metales en sedimento del río Ranchería, La Guaji-ra. Bistua, Revista de la Facultad de Ciencias Bási-cas, 15(2), 64-68. | spa |
dcterms.references | Ascencio, L., & Johanna, L. (2013). Contenido de mercurio en músculo de algunas especies ícticas de interés comercial presentes en ocho sitios de muestreo de la cuenca (baja, medio y alta) del rio Magdalena. http://repository.unimilitar.edu.co/handle/10654/10876 | spa |
dcterms.references | Astani, E., Vahedpour, M., & Dolatyari, L. (2011). Thermodynamic Study of the Extraction of Inorganic Mercury Compounds in Fish Species of the International Anzali Wetland, Iran. Chinese Journal of Chemistry, 29(7), 1341-1346. https://doi.org/10.1002/cjoc.201180252 | spa |
dcterms.references | Avery, J. C., & Hoffmann, P. R. (2018). Selenium, Selenoproteins, and Immunity. Nutrients, 10(9). https://doi.org/10.3390/nu10091203. | spa |
dcterms.references | Ayala, H. J., López, N., Ardila, Y. P., & Instituto de Investigaciones Ambientales del Pacífico. (2005). Diagnóstico situacional de la minería artesanal y en pequeña escala desarrollada por afrocolombianos en territorios colectivos de comunidades negras en el Chocó biogeográfico. Instituto de Investigaciones Ambientales del Pacífico. | spa |
dcterms.references | Azad, A., Frantzen, S., S. Bank, M., M. Nilsen, B., Duinker, A., Madsen, L., & Maage. (2019). Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Science of The Total Environment, 652, 1482-1496. https://doi.org/10.1016/j.scitotenv.2018.10.405 | spa |
dcterms.references | Azcona, R., & Paz, M. (2017). Bioacumulación de distintas especies de selenio y sus efectos en organismos marinos. http://rabida.uhu.es/dspace/handle/10272/15083. | spa |
dcterms.references | Balthasar, C., Stangl, H., Widhalm, R., Granitzer, S., Hengstschläger, M., & Gundacker, C. (2017). Methylmercury Uptake into BeWo Cells Depends on LAT2-4F2hc, a System L Amino Acid Transporter. International Journal of Molecular Sciences, 18(8), 1730. https://doi.org/10.3390/ijms18081730 | spa |
dcterms.references | Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56(4), 471-502. https://doi.org/10.1016/S0141-1136(03)00028-X | spa |
dcterms.references | Barros-Barrios, O., Doria-Argumedo, C., & Marrugo-Negrete, J. (2016). Heavy metals (Pb, Cd, Ni, Zn, Hg) in tissues of Lutjanus synagris and Lutjanus vivanus 56 from the Coast of La Guajira, North Colombia. Veterinaria y Zootecnia, 10(2), 27-41. | spa |
dcterms.references | Beg, M. U., Al-Jandal, N., Al-Subiai, S., Karam, Q., Husain, S., Butt, S. A., Ali, A., Al-Hasan, E., Al-Dufaileej, S., & Al-Husaini, M. (2015). Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits’ marine area. Marine Pollution Bulletin, 100(2), 662-672. https://doi.org/10.1016/j.marpolbul.2015.07.058 | spa |
dcterms.references | Bernhoft, R. A. (2011). Mercury Toxicity and Treatment: A Review of the Literature. Journal of Environmental and Public Health, 2012, e460508. https://doi.org/10.1155/2012/460508 | spa |
dcterms.references | Bjerregaard, P., Fjordside, S., Hansen, M. G., & Petrova, M. B. (2011). Dietary Selenium Reduces Retention of Methyl Mercury in Freshwater Fish. Environmental Science & Technology, 45(22), 9793-9798. https://doi.org/10.1021/es202565g | spa |
dcterms.references | Bjorklund, G., Aaseth, J., Ajsuvakova, O., Nikonorov, A., Skalny, A., Skalnaya, M., & Tinkov, A. (2017). Molecular Interaction between Mercury and Selenium in Neurotoxicity. Coordination Chemistry Reviews, 332, 30-37. https://doi.org/10.1016/j.ccr.2016.10.009 | spa |
dcterms.references | Branfireun, B. A., Cosio, C., Poulain, A. J., Riise, G., & Bravo, A. G. (2020). Mercury cycling in freshwater systems—An updated conceptual model. Science of The Total Environment, 745, 140906. https://doi.org/10.1016/j.scitotenv.2020.140906 | spa |
dcterms.references | Bridges, C. C., Krasnikov, B. F., Joshee, L., Pinto, J. T., Hallen, A., Li, J., Zalups, R. K., & Cooper, A. J. L. (2012). New insights into the metabolism of organomercury compounds: Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine γ-lyase. Archives of Biochemistry and Biophysics, 517(1), 20-29. https://doi.org/10.1016/j.abb.2011.11.002 | spa |
dcterms.references | Bridges, C. C., & Zalups, R. K. (2010). Transport of Inorganic Mercury and Methylmercury in Target Tissues and Organs. Journal of Toxicology and Environmental Health, Part B, 13(5), 385-410. https://doi.org/10.1080/10937401003673750 | spa |
dcterms.references | Budnik, L. T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of The Total Environment, 654, 720-734. https://doi.org/10.1016/j.scitotenv.2018.10.408 | spa |
dcterms.references | Burger, J., Jeitner, C., Donio, M., Pittfield, T., & Gochfeld, M. (2013). Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. The Science of the Total Environment, 443, 278-286. https://doi.org/10.1016/j.scitotenv.2012.10.040 | spa |
dcterms.references | Burger, J., & Gochfeld, M. (2011). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. The Science of the Total Environment, 409(8), 1418-1429. https://doi.org/10.1016/j.scitotenv.2010.12.034 | spa |
dcterms.references | Burger, J., & Gochfeld, M. (2012). Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories. Environmental Research, 114, 12–23. https://doi.org/10.1016/j.envres.2012.02.004 | spa |
dcterms.references | Burger, J., & Gochfeld, M. (2013). Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 57, 235-245. https://doi.org/10.1016/j.fct.2013.03.021 | spa |
dcterms.references | Cabañero Ortiz, A. I. (2006). Acumulación-interacción de especies de mercurio y selenio en tejidos animales desarrollo de nuevas metodologías de análisis [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid, Servicio de Publicaciones]. https://eprints.ucm.es/7128/ | spa |
dcterms.references | Caito, S. W., Zhang, Y., & Aschner, M. (2013). Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 435(4), 546-550. https://doi.org/10.1016/j.bbrc.2013.04.090 | spa |
dcterms.references | Carranza-Lopez, L., Caballero-Gallardo, K., Cervantes-Ceballos, L., Turizo-Tapia, A., & Olivero-Verbel, J. (2019). Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Archives of Environmental Contamination and Toxicology, 76(4), 640-649. https://doi.org/10.1007/s00244-019-00609-w | spa |
dcterms.references | Chen, C. Y., Buckman, K. L., Shaw, A., Curtis, A., Taylor, M., Montesdeoca, M., & Driscoll, C. (2021). The influence of nutrient loading on methylmercury availability in Long Island estuaries. Environmental Pollution, 268, 115510. https://doi.org/10.1016/j.envpol.2020.115510 | spa |
dcterms.references | Chen, C. Y., & Driscoll, C. T. (2018). Integrating mercury research and policy in a changing world. Ambio, 47(2), 111-115. https://doi.org/10.1007/s13280-017-1010-y | spa |
dcterms.references | Chiera, N. M., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Eichler, R., Lebedev, V. Ya., Madumarov, A., Malyshev, O. N., Piguet, D., Popov, Y. A., Sabelnikov, A. V., Steinegger, P., Svirikhin, A. I., Türler, A., Vostokin, G. K., Vögele, A., & Yeremin, A. V. (2017). Interaction of elemental mercury with selenium surfaces: Model experiments for investigations of superheavy elements copernicium and flerovium. Journal of Radioanalytical and Nuclear Chemistry, 311(1), 99-108. https://doi.org/10.1007/s10967-016-5018-8 | spa |
dcterms.references | Chung, Y.-P., Yen, C.-C., Tang, F.-C., Lee, K.-I., Liu, S.-H., Wu, C.-C., Hsieh, S.-S., Su, C.-C., Kuo, C.-Y., & Chen, Y.-W. (2019). Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology, 425, 152245. https://doi.org/10.1016/j.tox.2019.152245 | spa |
dcterms.references | CINEP. (2016). Informe Especial. Minería, conflictos agrarios y ambientales en el sur de La Guajira – Publicaciones CINEP/PPP. https://www.cinep.org.co/publicaciones/es/producto/informe-especial-mineria-conflictos-agrarios-y-ambientales-en-el-sur-de-la-guajira/ | spa |
dcterms.references | Corredor, C. (2013). Estado del arte sobre la presencia de mercurio en peces y su efecto en la salud. Pontificia universidad javeriana. | spa |
dcterms.references | Corpoguajira. (2011). Plan de ordenamiento de la cuenca del Río Ranchería. instname:Unidad Nacional para la Gestión del Riesgo de Desastres. https://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/22606 | spa |
dcterms.references | Cortes, C. (2017). Determinación de mercurio orgánico e inorgánico en muestras ambientales. Universidad Nacional de Colombia. | spa |
dcterms.references | Cosio, C., Flück, R., Regier, N., & Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 33(6), 1225-1237. https://doi.org/10.1002/etc.2499 | spa |
dcterms.references | Crea, F., De Stefano, C., Foti, C., Milea, D., & Sammartano, S. (2014). Chelating Agents for the Sequestration of Mercury(II) and Monomethyl Mercury(II). Current Medicinal Chemistry, 21(33), 3819-3836. | spa |
dcterms.references | Crespo-López, María Elena, Lima de Sá, A., Herculano, A. M., Rodríguez Burbano, R., & Martins do Nascimento, J. L. (2007). Methylmercury genotoxicity: A novel effect in human cell lines of the central nervous system. Environment International, 33(2), 141-146. https://doi.org/10.1016/j.envint.2006.08.005 | spa |
dcterms.references | Crespo-López, Maria Elena, Macêdo, G. L., Arrifano, G. P. F., Pinheiro, M. da C. N., do Nascimento, J. L. M., & Herculano, A. M. (2011). Genotoxicity of mercury: Contributing for the analysis of Amazonian populations. Environment International, 37(1), 136-141. https://doi.org/10.1016/j.envint.2010.08.009 | spa |
dcterms.references | Cusack, L. K., Eagles-Smith, C., Harding, A. K., Kile, M., & Stone, D. (2017). Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. Biological Trace Element Research, 178(1), 136-146. https://doi.org/10.1007/s12011-016-0907-9 | spa |
dcterms.references | Da Silva, D. L. F., da Costa, M. A. P., Silva, L. O. B., & Dos Santos, W. N. L. (2019). Simultaneous determination of mercury and selenium in fish by CVG AFS. Food Chemistry, 273, 24-30. https://doi.org/10.1016/j.foodchem.2018.05.020 | spa |
dcterms.references | De Almeida Rodrigues, P., Ferrari, R. G., dos Santos, L. N., & Conte Junior, C. A. (2019). Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. Journal of Environmental Sciences, 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018 | spa |
dcterms.references | Dhanakumar, S., Solaraj, G., & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, 145-151. https://doi.org/10.1016/j.ecoenv.2014.11.032 | spa |
dcterms.references | Domenichi, Z., & Fernanda, M. (2011). Estado del arte sobre la presencia de metales pesados en tejidos y agallas de peces. instname:Universidad Autónoma de Occidente. http://red.uao.edu.co//handle/10614/1637 | spa |
dcterms.references | DoNascimiento, C., Herrera-Collazos, E. E., Herrera-R, G. A., Ortega-Lara, A., Villa-Navarro, F. A., Oviedo, J. S. U., & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: A Darwin Core alternative to the updating problem. ZooKeys, 708, 25-138. https://doi.org/10.3897/zookeys.708.13897 | spa |
dcterms.references | Drevnick, P. E., Lamborg, C. H., & Horgan, M. J. (2015). Increase in mercury in Pacific yellowfin tuna. Environmental Toxicology and Chemistry, 34(4), 931-934. https://doi.org/10.1002/etc.2883 | spa |
dcterms.references | Drevnick, P. E., Cooke, C. A., Barraza, D., Blais, J. M., Coale, K. H., Cumming, B. F., Curtis, C. J., Das, B., Donahue, W. F., Eagles-Smith, C. A., Engstrom, D. R., Fitzgerald, W. F., Furl, C. V., Gray, J. E., Hall, R. I., Jackson, T. A., Laird, K. R., Lockhart, W. L., Macdonald, R. W., … Wolfe, B. B. (2016). Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Science of 60 The Total Environment, 568, 1157–1170. https://doi.org/10.1016/j.scitotenv.2016.03.167 | spa |
dcterms.references | Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science & Technology, 47(10), 4967-4983. https://doi.org/10.1021/es305071v | spa |
dcterms.references | Eagles-Smith, C. A., Wiener, J. G., Eckley, C. S., Willacker, J. J., Evers, D. C., Marvin-DiPasquale, M., Obrist, D., Fleck, J. A., Aiken, G. R., Lepak, J. M., Jackson, A. K., Webster, J. P., Stewart, A. R., Davis, J. A., Alpers, C. N., & Ackerman, J. T. (2016). Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of The Total Environment, 568, 1213–1226. https://doi.org/10.1016/j.scitotenv.2016.05.094 | spa |
dcterms.references | El-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Alshaal, T. A., Shalaby, T. A., Sztrik, A., Prokisch, J., & Fári, M. (2014). Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 12(4), 495-510. https://doi.org/10.1007/s10311-014-0476-0 | spa |
dcterms.references | El-Ramady, H. R., Domokos-Szabolcsy, É., Shalaby, T. A., Prokisch, J., & Fári, M. (2015). Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), CO2 Sequestration, Biofuels and Depollution (pp. 153-232). Springer International Publishing. https://doi.org/10.1007/978-3-319-11906-9_5 | spa |
dcterms.references | Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., Sun, R., & Sonke, J. E. (2016). Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 50(5), 2405-2412. https://doi.org/10.1021/acs.est.5b06058 | spa |
dcterms.references | EPA Method 3052. (2007). Microwave assisted acid digestion of sileceous and organically based matrices. | spa |
dcterms.references | EPA de EE. UU. Informe sobre la Conferencia Internacional de Investigación y Desarrollo de Descontaminación de la Agencia de Protección Ambiental de los Estados Unidos (EPA) de 2013. Research Triangle Park, NC, del 5 al 7 de noviembre de 2013. Agencia de Protección Ambiental de EE. UU., Washington, DC, EPA / 600 / R-14/210. | spa |
dcterms.references | EPA de EE. UU. (1998). "Método 7473 (SW-846): Mercurio en sólidos y soluciones por descomposición térmica, amalgamación y espectrofotometría de absorción atómica", Revisión 0. Washington, DC. | spa |
dcterms.references | Escribano, S. T. (2011). Bioaccesibilidad de arsénico y mercurio en alimentos con potencial riesgo toxicológico. Recuperado 21 de abril de 2021, de https://core.ac.uk/reader/71005170 | spa |
dcterms.references | Eswayah, A. S., Smith, T. J., & Gardiner, P. H. E. (2016). Microbial Transformations of Selenium Species of Relevance to Bioremediation. Applied and Environmental Microbiology, 82(16), 4848-4859. https://doi.org/10.1128/AEM.00877-16 | spa |
dcterms.references | Eto, K., Marumoto, M., & Takeya, M. (2010). The pathology of methylmercury poisoning (Minamata disease). Neuropathology, no–no. doi:10.1111/j.1440-1789.2010.01119.x | spa |
dcterms.references | FAO. (2017).The State of Food Security and Nutrition in the World. http://www.fao.org/state-of-food-security-nutrition/2017/en/ FAO/WHO (Food and Agricultural Organization / World Health Organization). Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 940. 2007; Recuperado de: http://www.who.int/ipcs/publications/jecfa/reports/ trs940.pdf | spa |
dcterms.references | Farina, M., Aschner, M., & Rocha, J. B. T. (2011). Oxidative stress in MeHg-induced neurotoxicity. Toxicology and Applied Pharmacology, 256(3), 405-417. https://doi.org/10.1016/j.taap.2011.05.001 | spa |
dcterms.references | Filippini, T., Michalke, B., Wise, L. A., Malagoli, C., Malavolti, M., Vescovi, L., Salvia, C., Bargellini, A., Sieri, S., Krogh, V., Ferrante, M., & Vinceti, M. (2018). Diet composition and serum levels of selenium species: A cross-sectional study. Food and Chemical Toxicology, 115, 482-490. https://doi.org/10.1016/j.fct.2018.03.048 | spa |
dcterms.references | Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2018). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health, 40(1), 229-242. https://doi.org/10.1007/s10653-016-9896-z | spa |
dcterms.references | Gandois, L., Tipping, E., Dumat, C., & Probst, A. (2010). Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. 49 Atmospheric Environment, 44(6), 824-833. https://doi.org/10.1016/j.atmosenv.2009.11.028 | spa |
dcterms.references | Gao, X., Tang, B., Liang, H., Yi, L., & Wei, Z. (2019). Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK 62 pathway in the head kidney of carp. Fish & Shellfish Immunology, 91, 284-292. https://doi.org/10.1016/j.fsi.2019.05.039 | spa |
dcterms.references | Garousi, F. (2017). The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. https://doi.org/10.1515/ausal-2017-0005 | spa |
dcterms.references | Gerla, P. J., Sharif, M. U., & Korom, S. F. (2011). Geochemical processes controlling the spatial distribution of selenium in soil and water, west central South Dakota, USA. Environmental Earth Sciences, 62(7), 1551-1560. https://doi.org/10.1007/s12665-010-0641-0 | spa |
dcterms.references | Gómez-Rojas, O. P., Díaz-Lagos, M., Blandón-Montes, A., & Martínez-Ovalle, S. A. (2016). Presencia de elementos contaminantes como Cd, As, Pb, Se y Hg en carbones de la zona Cundiboyacense, Colombia. Revista de investigación, desarrollo e innovación, 7(1), 141. https://doi.org/10.19053/20278306.v7.n1.2016.5604 | spa |
dcterms.references | Golzadeh, N., Barst, B. D., Basu, N., Baker, J. M., Auger, J. C., & McKinney, M. A. (2020). Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta, Canada. Chemosphere, 250, 126285. https://doi.org/10.1016/j.chemosphere.2020.126285 | spa |
dcterms.references | Green, N. W., & Knutzen, J. (2003). Organohalogens and metals in marine fish and mussels and some relationships to biological variables at reference localities in Norway. Marine Pollution Bulletin, 46(3), 362-374. https://dBIBLIOGRAFIA oi.org/10.1016/S0025-326X(02)00515-5 | spa |
dcterms.references | Gribble, M. O., Karimi, R., Feingold, B. J., Nyland, J. F., O’Hara, T. M., Gladyshev, M. I., & Chen, C. Y. (2016). Mercury, selenium and fish oils in marine food webs and implications for human health. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom, 96(1), 43-59. https://doi.org/10.1017/S0025315415001356 | spa |
dcterms.references | He, Y., Xiang, Y., Zhou, Y., Yang, Y., Zhang, J., Huang, H., Shang, C., Luo, L., Gao, J., & Tang, L. (2018). Selenium contamination, consequences and remediation techniques in water and soils: A review. Environmental Research, 164, 288-301. https://doi.org/10.1016/j.envres.2018.02.037 | spa |
dcterms.references | Hilton, J.W., Hodson P.V., Slinger ,S.J. (1980) The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J Nutr; 110: 2527-35. | spa |
dcterms.references | Ekanayaka, P., Jayasinghe, C., & Chandrajith, R. (2016). Heavy metals in Tilapia (Oreochromis sp) from Padaviya and Huruluwewa reservoirs in Sri Lanka. http://localhost//handle/1/796 | spa |
dcterms.references | Hines, M. E., Poitras, E. N., Covelli, S., Faganeli, J., Emili, A., Žižek, S., & Horvat, M. (2012). Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuarine, Coastal and Shelf Science, 113, 85-95. https://doi.org/10.1016/j.ecss.2011.12.021 | spa |
dcterms.references | Hong, Y.-S., Kim, Y.-M., & Lee, K.-E. (2012). Methylmercury Exposure and Health Effects. Journal of Preventive Medicine and Public Health, 45(6), 353-363. https://doi.org/10.3961/jpmph.2012.45.6.353 | spa |
dcterms.references | Islam, G. M. R., Khan, F. E., Hoque, M. M., & Jolly, Y. N. (2014). Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: Heavy metal contamination. Environmental Monitoring and Assessment, 186(11), 7233-7244. https://doi.org/10.1007/s10661-014-3923-2 | spa |
dcterms.references | Ivanov, A. V., Valuev-Elliston, V. T., Tyurina, D. A., Ivanova, O. N., Kochetkov, S. N., Bartosch, B., & Isaguliants, M. G. (2016). Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget, 8(3), 3895-3932. https://doi.org/10.18632/oncotarget.13904 | spa |
dcterms.references | Jain, V. K., & Priyadarsini, K. I. (2017). Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments. Royal Society of Chemistry. | spa |
dcterms.references | Jan, A. T., Ali, A., & Haq, Q. M. R. (2011). Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. Journal of Postgraduate Medicine, 57(1), 72. https://doi.org/10.4103/0022-3859.74298 | spa |
dcterms.references | Janz, D. M., Liber, K., Pickering, I. J., Wiramanaden, C. I., Weech, S. A., Gallego-Gallegos, M., Driessnack, M. K., Franz, E. D., Goertzen, M. M., Phibbs, J., Tse, J. J., Himbeault, K. T., Robertson, E. L., Burnett-Seidel, C., England, K., & Gent, A. (2014). Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. Integrated Environmental Assessment and Management, 10(4), 543–554. https://doi.org/10.1002/ieam.1560 | spa |
dcterms.references | Jonsson, S., Andersson, A., Nilsson, M. B., Skyllberg, U., Lundberg, E., Schaefer, J. K., Åkerblom, S., & Björn, E. (2017). Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 3(1), e1601239. https://doi.org/10.1126/sciadv.1601239 | spa |
dcterms.references | Jordanova, M., Rebok, K., Dragun, Z., Ramani, S., Ivanova, L., Kostov, V., Valić, D., Krasnići, N., Filipović Marijić, V., & Kapetanović, D. (2016). Histopathology investigation on the Vardar chub (Squalius vardarensis) populations captured from the rivers impacted by mining activities. Ecotoxicology and Environmental Safety, 129, 35-42. https://doi.org/10.1016/j.ecoenv.2016.03.006 | spa |
dcterms.references | Kanda, H., Shinkai, Y., & Kumagai, Y. (2014). S-Mercuration of cellular proteins by methylmercury and its toxicological implications. The Journal of Toxicological Sciences, 39(5), 687-700. https://doi.org/10.2131/jts.39.687 | spa |
dcterms.references | Kaneko, J. J., & Ralston, N. V. C. (2007). Selenium and Mercury in Pelagic Fish in the Central North Pacific Near Hawaii. Biological Trace Element Research, 119(3), 242-254. https://doi.org/10.1007/s12011-007-8004-8 | spa |
dcterms.references | Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., & Korrick, S. (2012). Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. Environm | spa |
dcterms.references | Khadra, M., Planas, D., Brodeur, P., & Amyot, M. (2019). Mercury and selenium distribution in key tissues and early life stages of Yellow Perch (Perca flavescens). Environmental Pollution, 254, 112963. https://doi.org/10.1016/j.envpol.2019.112963 | spa |
dcterms.references | Khan, K. U., Zuberi, A., Fernandes, J. B. K., Ullah, I., & Sarwar, H. (2017). An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiology and Biochemistry, 43(6), 1689-1705. https://doi.org/10.1007/s10695-017-0402-z | spa |
dcterms.references | Kieliszek, M. (2019). Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules, 24(7), 1298. https://doi.org/10.3390/molecules24071298 | spa |
dcterms.references | Kim, J.-H., & Kang, J.-C. (2014). The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicology and Environmental Safety, 104, 96-102. https://doi.org/10.1016/j.ecoenv.2014.02.010 | spa |
dcterms.references | Kirk, J. L., Muir, D. C. G., Gleason, A., Wang, X., Lawson, G., Frank, R. A., Lehnherr, I., & Wrona, F. (2014). Atmospheric Deposition of Mercury and Methylmercury to Landscapes and Waterbodies of the Athabasca Oil Sands Region. Environmental Science & Technology, 48(13), 7374-7383. https://doi.org/10.1021/es500986r | spa |
dcterms.references | Kocman, D., Wilson, S. J., Amos, H. M., Telmer, K. H., Steenhuisen, F., Sunderland, E. M., Mason, R. P., Outridge, P., & Horvat, M. (2017). Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. International Journal of Environmental Research and Public Health, 14(2), 138. https://doi.org/10.3390/ijerph14020138 | spa |
dcterms.references | Krause, K. P., Wu, C.-L., Chu, M. L., & Knouft, J. H. (2019). Fish assemblage-environment relationships suggest differential trophic responses to heavy metal contamination. Freshwater Biology, 64(4), 632–642. https://doi.org/10.1111/fwb.13248 | spa |
dcterms.references | Kumar, A. R., & Riyazuddin, P. (2011). Speciation of selenium in groundwater: Seasonal variations and redox transformations. Journal of Hazardous Materials, 192(1), 263-269. https://doi.org/10.1016/j.jhazmat.2011.05.013 | spa |
dcterms.references | Kumar, N., Krishnani, K. K., & Singh, N. P. (2018). Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environmental Science and Pollution Research, 25(9), 8914-8927. https://doi.org/10.1007/s11356-017-1165-x | spa |
dcterms.references | Laird, B. D., Shade, C., Gantner, N., Chan, H. M., & Siciliano, S. D. (2009). Bioaccessibility of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration. Science of The Total Environment, 407(23), 6003-6008. https://doi.org/10.1016/j.scitotenv.2009.08.014 | spa |
dcterms.references | Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 47(23), 13385-13394. https://doi.org/10.1021/es403103t | spa |
dcterms.references | LeBlanc, K. L., & Wallschläger, D. (2016). Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters. Environmental Science & Technology, 50(12), 6164-6171. https://doi.org/10.1021/acs.est.5b05315 | spa |
dcterms.references | Lee, K. J., & Lee, T. G. (2012). A review of international trends in mercury management and available options for permanent or long-term mercury storage. Journal of Hazardous Materials, 241-242, 1-13. https://doi.org/10.1016/j.jhazmat.2012.09.025 | spa |
dcterms.references | Lescord, G. L., Johnston, T. A., Branfireun, B. A., & Gunn, J. M. (2018). Percentage of methylmercury in the muscle tissue of freshwater fish varies with 66 body size and age and among species. Environmental Toxicology and Chemistry, 37(10), 2682-2691. https://doi.org/10.1002/etc.4233 | spa |
dcterms.references | Licona, S. P. V., & Negrete, J. L. M. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: Riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232-242. https://doi.org/10.15446/abc.v24n2.74128 | spa |
dcterms.references | Li, P., Feng, X., & Qiu, G. (2010). Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review. International Journal of Environmental Research and Public Health, 7(6), 2666-2691. https://doi.org/10.3390/ijerph7062666 | spa |
dcterms.references | Li, W. C., & Tse, H. F. (2015). Health risk and significance of mercury in the environment. Environmental Science and Pollution Research, 22(1), 192-201. https://doi.org/10.1007/s11356-014-3544-x | spa |
dcterms.references | Lin, X., Yang, T., Li, H., Ji, Y., Zhao, Y., & He, J. (2020). Interactions Between Different Selenium Compounds and Essential Trace Elements Involved in the Antioxidant System of Laying Hens. Biological Trace Element Research, 193(1), 252-260. https://doi.org/10.1007/s12011-019-01701-x | spa |
dcterms.references | Lino, A. S., Kasper, D., Guida, Y. S., Thomaz, J. R., & Malm, O. (2019). Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere, 235, 690-700. https://doi.org/10.1016/j.chemosphere.2019.06.212 | spa |
dcterms.references | Liu, M., Lu, X., Khan, A., Ling, Z., Wang, P., Tang, Y., Liu, P., & Li, X. (2019). Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides. Journal of Hazardous Materials, 367, 35-42. https://doi.org/10.1016/j.jhazmat.2018.12.058 | spa |
dcterms.references | Lominchar, M. A., Sierra, M. J., Rodríguez, J., & Millán, R. (2014). Estudio del comportamiento y distribución del mercurio presente en muestras de suelo recogidas en la ribera del río Valdeazogues. http://documenta.ciemat.es/handle/123456789/125 | spa |
dcterms.references | Long, G. L., & Winefordner, J. D. (1983). Limit of Detection A Closer Look at the IUPAC Definition. Analytical Chemistry, 55(07), 712A-724A. https://doi.org/10.1021/ac00258a724 | spa |
dcterms.references | Maldonado-Ocampo, J. A. (Ed.). (2005). Peces de los Andes de Colombia: Guía de campo (1. ed). Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. | spa |
dcterms.references | Manceau, A., Lemouchi, C., Enescu, M., Gaillot, A.-C., Lanson, M., Magnin, V., Glatzel, P., Poulin, B. A., Ryan, J. N., Aiken, G. R., Gautier-Luneau, I., & Nagy, K. L. (2015). Formation of Mercury Sulfide from Hg(II)–Thiolate Complexes in Natural Organic Matter. Environmental Science & Technology, 49(16), 9787-9796. https://doi.org/10.1021/acs.est.5b02522 | spa |
dcterms.references | Marrugo, J., Lans, E., & Benítez, L. (2007). FINDING OF MERCURY IN FISH FROM THE AYAPEL MARSH, CORDOBA, COLOMBIA. Revista MVZ Córdoba, 12(1), 878-886. | spa |
dcterms.references | Marrugo-Negrete, J., Benítez, L. N., Olivero-Verbel, J., Lans, E., & Gutierrez, F. V. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International Journal of Environmental Health Research, 20(6), 451-459. https://doi.org/10.1080/09603123.2010.499451 | spa |
dcterms.references | Marrugo, J. L., Ruiz-Guzmán, J. A., & Ruiz-Fernández, A. C. (2018). Biomagnification of Mercury in Fish from Two Gold Mining-Impacted Tropical Marshes in Northern Colombia. Archives of Environmental Contamination and Toxicology, 74(1), 121-130. https://doi.org/10.1007/s00244-017-0459-9 | spa |
dcterms.references | Marrugo Negrete, J., Pinedo-Hernández, J., Paternina–Uribe, R., Quiroz-Aguas, L., & Pacheco-Florez, S. (2018). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 7062–7075. https://doi.org/10.21897/rmvz.1481 | spa |
dcterms.references | Marrugo-Negrete, J., Durango-Hernández, J., Calao-Ramos, C., Urango-Cárdenas, I., & Díez, S. (2019). Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Science of The Total Environment, 664, 899–907. https://doi.org/10.1016/j.scitotenv.2019.01.340 | spa |
dcterms.references | Márquez, A., Senior, W., Fermín, I., Martínez, G., Castañeda, J., & González, Á. (2008). Cuantificación de las concentraciones de metales pesados en tejidos de peces y crustáceos de la Laguna de Unare, estado Anzoátegui, Venezuela. Revista Científica, 18(1), 73-86. | spa |
dcterms.references | Mason, R. P., Laporte, J.-M., & Andres, S. (2000). Factors Controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish. Archives of Environmental Contamination and Toxicology, 38(3), 283-297. https://doi.org/10.1007/s002449910038 | spa |
dcterms.references | Mehdi, Y., Hornick, J.-L., Istasse, L., & Dufrasne, I. (2013). Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules, 18(3), 3292-3311. https://doi.org/10.3390/molecules18033292 | spa |
dcterms.references | Miller, L. L., Rasmussen, J. B., Palace, V. P., Sterling, G., & Hontela, A. (2013). Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines in Alberta, Canada. Environmental Management, 52(1), 72–84. https://doi.org/10.1007/s00267-013-0038-4 | spa |
dcterms.references | Mirlean, N., Alexandre Henrique, F., Elisa Rosa, S.-A., Carlos Francisco, F. A., Larissa, P. C., & Karen H., J. (2019). Mercury and selenium in the Brazilian subtropical marine products: Food composition and safety. Journal of Food Composition and Analysis, 84, 103310. https://doi.org/10.1016/j.jfca.2019.103310 | spa |
dcterms.references | Moiseenko, T. I., & Gashkina, N. A. (2016). Bioaccumulation of mercury in fish as indicator of water pollution. Geochemistry International, 54(6), 485-493. https://doi.org/10.1134/S0016702916060045 | spa |
dcterms.references | Molina-Bolívar, G. E., Jiménez-Pitre, I. A., Acevedo-Correa, D., Molina-Bolívar, G. E., Jiménez-Pitre, I. A., & Acevedo-Correa, D. (2017). QUANTIFICATION OF TOTAL COLIFORMS IN RANCHERÍA RIVER ESTUARY. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(SPE2), 23-29. https://doi.org/10.18684/bsaa(15)ediciónespecial2.575 | spa |
dcterms.references | Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2013). Dietary intake of inorganic mercury: Bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology, 22(3), 446-456. https://doi.org/10.1007/s10646-012-1038-5 | spa |
dcterms.references | Morales Y. W., & Carmona L., (2007). Estudio de algunos elementos traza en la cuenca Cesar - Ranchería, Colombia. Boletín de Ciencias de la Tierra, núm. 20, junio, 2007, pp. 75-88.Universidad Nacional de Colombia-Medellín, Colombia. | spa |
dcterms.references | Morcillo, P., Angeles Esteban, M., & Cuesta, A. (2017). Mercury and its toxic effects on fish. AIMS Environmental Science, 4(3), 386–402. https://doi.org/10.3934/environsci.2017.3.386 | spa |
dcterms.references | Murillo, D. O., León, D. E., & Jiménez, C. (2017). Passive Samplers Deployment in the Ayapel Swamp for Monitoring Temporal Dynamics of Mercury in the Water Column. Journal of Water Resource and Protection, 9(8), 873-880. https://doi.org/10.4236/jwarp.2017.98058 | spa |
dcterms.references | Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A., & Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 113, 191–200. https://doi.org/10.1016/j.ecoenv.2014.12.003 | spa |
dcterms.references | Niedzielski, P., Rudnicka, M., Wachelka, M., Kozak, L., Rzany, M., Wozniak, M., & Kaskow, Z. (2016). Selenium species in selenium fortified dietary supplements. Food Chemistry, 190, 454-459. https://doi.org/10.1016/j.foodchem.2015.05.125 | spa |
dcterms.references | Nogara, P. A., Oliveira, C. S., Schmitz, G. L., Piquini, P. C., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Methylmercury’s chemistry: From the environment to the mammalian brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(12), 129284. https://doi.org/10.1016/j.bbagen.2019.01.006 | spa |
dcterms.references | Ojeda, J. J., Merroun, M. L., Tugarova, A. V., Lampis, S., Kamnev, A. A., & Gardiner, P. H. E. (2020). Developments in the study and applications of bacterial transformations of selenium species. Critical Reviews in Biotechnology, 40(8), 1250-1264. https://doi.org/10.1080/07388551.2020.1811199 | spa |
dcterms.references | Økelsrud, A., Lydersen, E., & Fjeld, E. (2016). Biomagnification of mercury and selenium in two lakes in southern Norway. Science of The Total Environment, 566-567, 596-607. https://doi.org/10.1016/j.scitotenv.2016.05.109 | spa |
dcterms.references | Olivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., & Muñoz-Sosa, D. (2016). Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environmental Science and Pollution Research, 23(20), 20761–20771. https://doi.org/10.1007/s11356-016-7255-3 | spa |
dcterms.references | Palacios-Torres, Y., de la Rosa, J. D., & Olivero-Verbel, J. (2020). Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environmental Pollution, 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290 | spa |
dcterms.references | Pařízek, J., & Ošťádalová, I. (1967). The protective effect of small amounts of selenite in sublimate intoxication. Experientia, 23(2), 142-143. https://doi.org/10.1007/BF02135970 | spa |
dcterms.references | Park, J.-D., & Zheng, W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine and Public Health, 45(6), 344-352. https://doi.org/10.3961/jpmph.2012.45.6.344 | spa |
dcterms.references | Penglase, S., Hamre, K., & Ellingsen, S. (2014). Selenium and mercury have a synergistic negative effect on fish reproduction. Aquatic Toxicology, 149, 16-24. https://doi.org/10.1016/j.aquatox.2014.01.020 | spa |
dcterms.references | Peterson, S. A., Ralston, N. V. C., Peck, D. V., Sickle, J. V., Robertson, J. D., Spate, V. L., & Morris, J. S. (2009). How Might Selenium Moderate the Toxic 70 Effects of Mercury in Stream Fish of the Western U.S.? Environmental Science & Technology, 43(10), 3919-3925. https://doi.org/10.1021/es803203g | spa |
dcterms.references | Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044 | spa |
dcterms.references | Plessl, C., Gilbert, B. M., Sigmund, M. F., Theiner, S., Avenant-Oldewage, A., Keppler, B. K., & Jirsa, F. (2019). Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers. Science of The Total Environment, 659, 1158-1167. https://doi.org/10.1016/j.scitotenv.2018.12.442 | spa |
dcterms.references | PNUD. (2016). Programa de las Naciones Unidas Para el Desarrollo: Objetivos de Desarrollo Sostenible. | spa |
dcterms.references | Polak-Juszczak, L. (2015). Selenium and mercury molar ratios in commercial fish from the Baltic Sea: Additional risk assessment criterion for mercury exposure. Food Control, 50, 881-888. https://doi.org/10.1016/j.foodcont.2014.10.046 | spa |
dcterms.references | Power, M., Klein, G. M., Guiguer, K. R. R. A., & Kwan, M. K. H. (2002). Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5), 819-830. https://doi.org/10.1046/j.1365-2664.2002.00758.x | spa |
dcterms.references | Rae, W., Kitley, J., & Pinto, A. (2018). Selenium Toxicity Associated With Reversible Leukoencephalopathy and Cortical Blindness. JAMA Neurology, 75(10), 1282-1283. https://doi.org/10.1001/jamaneurol.2018.1669 | spa |
dcterms.references | Raimann, X., Rodríguez O, L., Chávez, P., & Torrejón, C. (2014). Mercurio en pescados y su importancia en la salud. Revista médica de Chile, 142(9), 1174-1180. https://doi.org/10.4067/S0034-98872014000900012 | spa |
dcterms.references | Ralston, N. (2014). Selenium status and intake influences mercury exposure risk assessments (pp. 203-205). | spa |
dcterms.references | Ralston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values provide a reliable index of seafood benefits vs. Risks. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 55, 50-57. https://doi.org/10.1016/j.jtemb.2019.05.009 | spa |
dcterms.references | Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 278(1), 112-123. https://doi.org/10.1016/j.tox.2010.06.004 | spa |
dcterms.references | Raucci, R., Colonna, G., Guerriero, E., Capone, F., Accardo, M., Castello, G., & Costantini, S. (2011). Structural and functional studies of the human selenium binding protein-1 and its involvement in hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(4), 513-522. https://doi.org/10.1016/j.bbapap.2011.02.006 | spa |
dcterms.references | Rettinassababady, C., & Jeyalakshmi, C. (2014). Bio-Fungicides: The Best Alternative for Sustainable Food Security and Ecosystem. En R. N. Kharwar, R. S. Upadhyay, N. K. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp. 401-411). Springer India. https://doi.org/10.1007/978-81-322-1801-2_35 | spa |
dcterms.references | Rigby, M. C., Lemly, A. D., & Gerads, R. (2014). Fish toxicity testing with selenomethionine spiked feed – what’s the real question being asked? Environmental Science: Processes & Impacts, 16(3), 511-517. https://doi.org/10.1039/C3EM00612C | spa |
dcterms.references | Robitaille, S., Mailloux, R. J., & Chan, H. M. (2016). Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells. Toxicology Letters, 256, 1-10. https://doi.org/10.1016/j.toxlet.2016.05.013 | spa |
dcterms.references | Rodríguez, O., Padilla, I., Tayibi, H., & López-Delgado, A. (2012). Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage. Journal of Environmental Management, 101, 197-205. https://doi.org/10.1016/j.jenvman.2012.02.013 | spa |
dcterms.references | Rooney, J. P. K. (2014). The retention time of inorganic mercury in the brain—A systematic review of the evidence. Toxicology and Applied Pharmacology, 274(3), 425-435. https://doi.org/10.1016/j.taap.2013.12.011 | spa |
dcterms.references | Roos, D. H., Puntel, R. L., Farina, M., Aschner, M., Bohrer, D., Rocha, J. B. T., & de Vargas Barbosa, N. B. (2011). Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicology and Applied Pharmacology, 252(1), 28-35. https://doi.org/10.1016/j.taap.2011.01.010 | spa |
dcterms.references | Rouleau, C., Borg-Neczak, K., Gottofrey, J., & Tjälve, H. (1999). Accumulation of Waterborne Mercury(II) in Specific Areas of Fish Brain. Environmental Science & Technology, 33(19), 3384-3389. https://doi.org/10.1021/es990001v | spa |
dcterms.references | Ruiz-Guzmán, J. A., Marrugo-Negrete, J. L., & Díez, S. (2014). Human Exposure to Mercury Through Fish Consumption: Risk Assessment of Riverside Inhabitants of the Urrá Reservoir, Colombia. Human and Ecological Risk Assessment: An International Journal, 20(5), 1151-1163. https://doi.org/10.1080/10807039.2013.862068 | spa |
dcterms.references | Rustagi, N., & Singh, R. (2010). Mercury and health care. Indian Journal of Occupational and Environmental Medicine, 14(2), 45. https://doi.org/10.4103/0019-5278.72240 | spa |
dcterms.references | Ryu, J.-H., Gao, S., & Tanji, K. K. (2011). Accumulation and speciation of selenium in evaporation basins in California, USA. Journal of Geochemical Exploration, 110(2), 216-224. https://doi.org/10.1016/j.gexplo.2011.05.011 | spa |
dcterms.references | Saadati, M., Soleimani, M., Sadeghsaba, M., & Hemami, M. R. (2020). Bioaccumulation of heavy metals (Hg, Cd and Ni) by sentinel crab (Macrophthalmus depressus) from sediments of Mousa Bay, Persian Gulf. Ecotoxicology and Environmental Safety, 191, 109986. https://doi.org/10.1016/j.ecoenv.2019.109986 | spa |
dcterms.references | Sánchez, F., & Corredor, S. (2015). Metales tóxicos en Colombia: presencia, origen, distribución y contaminación en componentes bióticos y abióticos. In: Metales tóxicos en el recurso pesquero: implicaciones para la salud ambiental (p. Capítulo II). Bogotá, D.C. | spa |
dcterms.references | Saha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the Soil-Plant Environment: A Review. International Journal of Applied Agricultural Sciences, 3(1), 1. https://doi.org/10.11648/j.ijaas.20170301.11 | spa |
dcterms.references | Sharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Pettine, M., & Zboril, R. (2015). Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 13(1), 49-58. https://doi.org/10.1007/s10311-014-0487-x | spa |
dcterms.references | Shen, W., Chen, J., Yin, J., & Wang, S.-L. (2016). Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure. European Review for Medical and Pharmacological Sciences, 20, 773-780. | spa |
dcterms.references | Shreenath, A. P., Ameer, M. A., & Dooley, J. (2021). Selenium Deficiency. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482260/ | spa |
dcterms.references | Si, Y., Zou, Y., Liu, X., Si, X., & Mao, J. (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122, 206-212. https://doi.org/10.1016/j.chemosphere.2014.11.054 | spa |
dcterms.references | Sørmo, E. G., Ciesielski, T. M., Øverjordet, I. B., Lierhagen, S., Eggen, G. S., Berg, T., & Jenssen, B. M. (2011). Selenium Moderates Mercury Toxicity in Free- 73 Ranging Freshwater Fish. Environmental Science & Technology, 45(15), 6561-6566. https://doi.org/10.1021/es200478b | spa |
dcterms.references | Schreck, C. B., & Moyle, P.B. (1990). Methods for fish biology Bethesda, MD: American Fisheries Society. | spa |
dcterms.references | Spangenberg, J. E., Lavrič, J. V., Meisser, N., & Serneels, V. (2010). Sulfur isotope analysis of cinnabar from Roman wall paintings by elemental analysis/isotope ratio mass spectrometry – tracking the origin of archaeological red pigments and their authenticity. Rapid Communications in Mass Spectrometry, 24(19), 2812-2816. https://doi.org/10.1002/rcm.4705 | spa |
dcterms.references | Spiller, H. A. (2017). Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clinical Toxicology, 56(5), 313–326. doi:10.1080/15563650.2017.1400555 | spa |
dcterms.references | Squadrone, S., Benedetto, A., Brizio, P., Prearo, M., & Abete, M. C. (2015). Mercury and selenium in European catfish (Silurus glanis) from Northern Italian Rivers: Can molar ratio be a predictive factor for mercury toxicity in a top predator? Chemosphere, 119, 24–30. https://doi.org/10.1016/j.chemosphere.2014.05.052 | spa |
dcterms.references | Storelli, M. M., Stuffler, R. G., & Marcotrigiano, G. O. (2002). Total and methylmercury residues in tuna-fish from the Mediterranean sea. Food Additives & Contaminants, 19(8), 715-720. https://doi.org/10.1080/02652030210153569 | spa |
dcterms.references | Sunderman Jr., F.W., (2001). Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann. Clin. Lab. Sci. 31, 3–24. | spa |
dcterms.references | Tang, Z., Fan, F., Deng, S., & Wang, D. (2020). Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury—A critical review. Ecotoxicology and Environmental Safety, 202, 110950. https://doi.org/10.1016/j.ecoenv.2020.110950 | spa |
dcterms.references | Tashjian DH, Teh SJ, Sogomonyan A, Hung SS. (2006) Bioaccumulation and chronic toxicity of dietary L-selenomethionine in juvenile white sturgeon (Acipenser transmontanus). Aquat Toxicol; 79: 401-9 | spa |
dcterms.references | Tipping, E. (2009). Metal contamination in aquatic environments. science and lateral management. - By Samuel N. Luoma and Philip S. Rainbow. Journal of Fish Biology, 75(7), 1911-1912. https://doi.org/10.1111/j.1095-8649.2009.02440_4.x | spa |
dcterms.references | Turner, A. (2013). Selenium in sediments and biota from estuaries of southwest England. Marine Pollution Bulletin, 73(1), 192-198. https://doi.org/10.1016/j.marpolbul.2013.05.023 | spa |
dcterms.references | Ulusoy, Ş., Mol, S., Karakulak, F. S., & Kahraman, A. E. (2019). Selenium-Mercury Balance in Commercial Fish Species from the Turkish Waters. Biological | spa |
dcterms.references | Vinceti, M., Filippini, T., & Rothman, K. J. (2018). Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. European Journal of Epidemiology, 33(9), 789-810. https://doi.org/10.1007/s10654-018-0422-8 | spa |
dcterms.references | Vinchira, J. (2014). Utilización de selenio orgánico e inorgánico en dietas prácticas para crecimiento de tilapia nilótica Oreochromis niloticus. Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Producción Animal. | spa |
dcterms.references | Vinchira, J.E y Muñoz-Ramírez, A.P. (2010). Selenio: nutriente objetivo para mejorar la composición nutricional de los peces de cultivo. Rev. Med. Veterinario. Zoot. [en línea], vol.57, n.1, pp.59-75. ISSN 0120-2952 | spa |
dcterms.references | Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science & Technology, 5(2), 179-182. https://doi.org/10.1007/BF03326011 | spa |
dcterms.references | Vriens, B., Behra, R., Voegelin, A., Zupanic, A., & Winkel, L. H. E. (2016). Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. Environmental Science & Technology, 50(2), 711-720. https://doi.org/10.1021/acs.est.5b04169 | spa |
dcterms.references | Wang, F., & Zhang, J. (2012). Mercury contamination in aquatic ecosystems under a changing environment: Implications for the Three Gorges Reservoir. Chinese Science Bulletin, 58(2), 141–149. doi:10.1007/s11434-012-5490-7 | spa |
dcterms.references | World Health Organization (WHO). (1986). Environmental health criteria 58: selenium. International Program on Chemical Safety; [Geneva, 190 pp.]. http://www.inchem.org/documents/ehc/ehc/ehc58.htm | spa |
dcterms.references | Yang, D.-Y. Y.-Y., Chen, Y.-W. C.-W., Gunn, J. M. G. M., & Belzile, N. B. (2008). Selenium and mercury in organisms: Interactions and mechanisms. Environmental Reviews. https://doi.org/10.1139/A08-001 | spa |
dcterms.references | Yang, S. I., Lawrence, J. R., Swerhone, G. D. W., Pickering, I. J., Yang, S. I., Lawrence, J. R., Swerhone, G. D. W., & Pickering, I. J. (2011). Biotransformation 75 of selenium and arsenic in multi-species biofilm. Environmental Chemistry, 8(6), 543-551. https://doi.org/10.1071/EN11062 | spa |
dcterms.references | Yi, Y.-J., & Zhang, S.-H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989–3996. https://doi.org/10.1007/s11356-012-0840-1 | spa |
dcterms.references | Yin, J., Wang, L., Chen, Y., Zhang, D., Hegazy, A. M., & Zhang, X. (2019). A comparison of accumulation and depuration effect of dissolved hexavalent chromium (Cr6+) in head and muscle of bighead carp (Aristichthys nobilis) and assessment of the potential health risk for consumers. Food Chemistry, 286, 388–394. https://doi.org/10.1016/j.foodchem.2019.01.186 | spa |
dcterms.references | Yu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C.-J., Wu, C., Zhang, Y., He, N., Fu, P., Wang, Z., Shang, L., Sommar, J., Sonke, J. E., Maurice, L., Guinot, B., & Feng, X. (2016). Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 50(17), 9262-9269. https://doi.org/10.1021/acs.est.6b01782 | spa |
dcterms.references | Zapata, L. A., Usma, J. S., Rodriguez, T., Moreno, X., Franco-Jaramillo, M., Garcia, C., & Castellanos, G. A. (2015). Recursos pesqueros de Colombia, principales especies, conservación y pesca responsable. AUNAP y WWF Colombia. | spa |
dcterms.references | Zhang, B.-B., Liu, Y.-M., Hu, A.-L., Xu, S.-F., Fan, L.-D., Cheng, M.-L., Li, C., Wei, L.-X., & Liu, J. (2019). HgS and Zuotai differ from HgCl2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicology and Applied Pharmacology, 379, 114615. https://doi.org/10.1016/j.taap.2019.114615 | spa |
dcterms.references | Zhang, H., Feng, X., Chan, H. M., & Larssen, T. (2014). New Insights into Traditional Health Risk Assessments of Mercury Exposure: Implications of Selenium. Environmental Science & Technology, 48(2), 1206-1212. https://doi.org/10.1021/es4051082 | spa |
dcterms.references | Zhang, H., Feng, X., Chan, H. M., & Larssen, T. (2014). New Insights into Traditional Health Risk Assessments of Mercury Exposure: Implications of Selenium. Environmental Science & Technology, 48(2), 1206-1212. https://doi.org/10.1021/es4051082 | spa |
dcterms.references | Zhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J. A., Louis, V. L. S., & Dalziel, J. (2012). Estimation of speciated and total mercury dry 76 deposition at monitoring locations in eastern and central North America. Atmospheric Chemistry and Physics, 12(9), 4327-4340. https://doi.org/10.5194/acp-12-4327-2012 | spa |
dcterms.references | Zillioux, E. J. (2014). Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Usage. Environmental Indicators, 743–766. doi:10.1007/978-94-017-9499-2_42 | spa |
dcterms.references | Zimmermann, L. T., Santos, D. B., Naime, A. A., Leal, R. B., Dórea, J. G., Barbosa, F., Aschner, M., Rocha, J. B. T., & Farina, M. (2013). Comparative study on methyl- and ethylmercury-induced toxicity in C6 glioma cells and the potential role of LAT-1 in mediating mercurial-thiol complexes uptake. NeuroToxicology, 38, 1-8. https://doi.org/10.1016/j.neuro.2013.05.015 | spa |
dcterms.references | Zimmermann, L. T., Santos, D. B. dos, Colle, D., Santos, A. A. dos, Hort, M. A., Garcia, S. C., Bressan, L. P., Bohrer, D., & Farina, M. (2014). Methionine Stimulates Motor Impairment And Cerebellar Mercury Deposition in Methylmercury-Exposed Mice. Journal of Toxicology and Environmental Health, Part A, 77(1-3), 46-56. https://doi.org/10.1080/15287394.2014.865582 | spa |
dcterms.references | Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants, 7(5), 66. https://doi.org/10.3390/antiox7050066 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: