Publicación:
Relación molar Se:Hg en peces continentales en el norte de Colombia

dc.contributor.advisorMarrugo Negrete, José Luis
dc.contributor.authorPadilla Ramírez, Camila Alejandra
dc.date.accessioned2022-01-26T13:28:33Z
dc.date.available2022-01-26T13:28:33Z
dc.date.issued2022-01-25
dc.description.abstractHeavy metal pollution mainly by Hg in aquatic ecosystems has great spot due the adverse effects and toxicity of Hg by anthropogenic emissions. Therefore, the presence of mercury (Hg) in its different forms (organic, elemental and mineral) poses as a great concern since it leads to bioaccumulation and biomagnification processes in the environmental composition. On the other hand, Selenium (Se) is known to be an essential micronutrient in biota and fish metabolism, but in high concentrations can generate toxicity instead. Therefore, this work determined Hg and Se concentrations and their relations and distribution in continental fishes in North of Colombia. 308 individuals from 30 species were analyzed in six study areas (Ayapel swamp, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio and Unguía). Hg was quantified by the EPA-7473 method (thermal decomposition, amalgamation/atomic absorption spectrometry) in a DMA-80 direct mercury analyzer, and Se was determined by EPA-3052 method HG (hydride generation atomic fluorescence spectrometry). To evaluate relations among Hg and Se general concentrations, body mass and total length in muscle of sampled fishes, Pearson's correlation coefficients (peng
dc.description.abstractLa contaminación por metales pesados especialmente a partir de Hg, ha sido de gran interés debido a los efectos adversos que ocasiona en los ecosistemas, mayoritariamente debido a emisiones antropogénicas. Por lo que la presencia de mercurio (Hg) en sus diferentes formas (orgánico, elemental y mineral), genera gran impacto y preocupación puesto que conlleva a procesos de bioacumulación y biomagnificación en los organismos y en las matrices ambientales. Por otra parte, el Selenio (Se) aunque es un micronutriente esencial en el metabolismo de la biota y los peces en general, en altas concentraciones puede generar toxicidad. Por consiguiente este trabajo determino las concentraciones de Hg y Se, su relación molar y distribución en peces continentales en el Norte de Colombia. En total se analizaron 308 individuos pertenecientes a 30 especies en seis zonas de estudio (Ciénaga de Ayapel, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio y Unguía). El Hg se cuantificó mediante el método EPA-7473 (descomposición térmica, amalgamación, y espectrometría de absorción atómica) utilizando analizador directo de mercurio DMA-80, en tanto que el Se fue determinado a través del método EPA-3052 (generación de hidruros y espectrometría de fluorescencia atómica). Para evaluar la relación entre las concentraciones generales de Se y Hg, la masa corporal, la longitud total en el músculo dorsal de los peces muestreados, se estimaron coeficientes de correlación de Pearson (pspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenLa contaminación por metales pesados especialmente a partir de Hg, ha sido de gran interés debido a los efectos adversos que ocasiona en los ecosistemas, mayoritariamente debido a emisiones antropogénicas. Por lo que la presencia de mercurio (Hg) en sus diferentes formas (orgánico, elemental y mineral), genera gran impacto y preocupación puesto que conlleva a procesos de bioacumulación y biomagnificación en los organismos y en las matrices ambientales. Por otra parte, el Selenio (Se) aunque es un micronutriente esencial en el metabolismo de la biota y los peces en general, en altas concentraciones puede generar toxicidad. Por consiguiente este trabajo determino las concentraciones de Hg y Se, su relación molar y distribución en peces continentales en el Norte de Colombia. En total se analizaron 308 individuos pertenecientes a 30 especies en seis zonas de estudio (Ciénaga de Ayapel, Embalse del Guájaro, Represa El Cercado, Río Ranchería, Riosucio y Unguía). El Hg se cuantificó mediante el método EPA-7473 (descomposición térmica, amalgamación, y espectrometría de absorción atómica) utilizando analizador directo de mercurio DMA-80, en tanto que el Se fue determinado a través del método EPA-3052 (generación de hidruros y espectrometría de fluorescencia atómica). Para evaluar la relación entre las concentraciones generales de Se y Hg, la masa corporal, la longitud total en el músculo dorsal de los peces muestreados, se estimaron coeficientes de correlación de Pearson (pspa
dc.description.tableofcontentsLISTA DE TABLAS…………………………………………………………………...ispa
dc.description.tableofcontentsLISTA DE FIGURAS…………………………………………………………………iispa
dc.description.tableofcontentsLISTA DE ANEXOS…………………………………………………………………iiispa
dc.description.tableofcontentsRESUMEN …………………………………………………………………………..vspa
dc.description.tableofcontents1. INTRODUCCIÓN ......................................................................................... 1spa
dc.description.tableofcontents1.1 ANTECEDENTES ................................................................................. 3spa
dc.description.tableofcontents2. MARCO TEÓRICO ...................................................................................... 7spa
dc.description.tableofcontents2.1 Hg en la biósfera ....................................................................................... 7spa
dc.description.tableofcontents2.2 Metabolismo del Hg en el cuerpo humano ................................................ 8spa
dc.description.tableofcontents2.3 Especies químicas del Hg ......................................................................... 9spa
dc.description.tableofcontents2.4 Ciclo biogeoquímico del Hg .................................................................... 10spa
dc.description.tableofcontents2.5 Hg en la biota acuática ............................................................................ 12spa
dc.description.tableofcontents2.6 Selenio (Se) ............................................................................................ 13spa
dc.description.tableofcontents2.7 Toxicidad del Se ...................................................................................... 13spa
dc.description.tableofcontents2.8 Efecto protector del Se ............................................................................ 14spa
dc.description.tableofcontents2.9 Ciclo biogeoquímico del Se ..................................................................... 16spa
dc.description.tableofcontents3. OBJETIVOS ................................................................................................. 18spa
dc.description.tableofcontents3.1 GENERAL ............................................................................................... 18spa
dc.description.tableofcontents3.2 ESPECÍFICOS ........................................................................................ 18spa
dc.description.tableofcontents4. METODOLOGÍA ........................................................................................... 19spa
dc.description.tableofcontents4.1 Área de estudio ....................................................................................... 19spa
dc.description.tableofcontents4.3 toma de muestras ................................................................................... 22spa
dc.description.tableofcontents4.4 Determinación de Hg en peces ............................................................... 22spa
dc.description.tableofcontents4.5 Determinación de Se en peces ............................................................... 23spa
dc.description.tableofcontents4.6 Determinación de la relación molar Se: Hg ............................................. 23spa
dc.description.tableofcontents4.7 CONTROL DE CALIDAD DEL METODO ANALITICO ............................ 24spa
dc.description.tableofcontents4.8 Tratamiento de los resultados ................................................................. 25spa
dc.description.tableofcontents5. RESULTADOS ............................................................................................. 26spa
dc.description.tableofcontents5.1 Concentraciones de Hg y Se en músculo de los peces muestreados ..... 26spa
dc.description.tableofcontents5.2 Correlaciones entre las concentraciones de Hg y Se, la relación molar Se:Hg, la longitud total y la masa corporal en los peces estudiados ............ 31spa
dc.description.tableofcontents5.3 Distribución de las concentraciones de Hg y Se, la relación molar Se:Hg, la longitud total y la masa corporal en los peces estudiados ........................ 35spa
dc.description.tableofcontents6. DISCUSIÓN ................................................................................................. 40spa
dc.description.tableofcontents7. CONCLUSIONES ......................................................................................... 51spa
dc.description.tableofcontents8. BIBLIOGRAFIA……………............................................................................53spa
dc.description.tableofcontentsANEXOS .......................................................................................................... 77spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4782
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsContinental fisheseng
dc.subject.keywordsAquatic ecosystemseng
dc.subject.keywordsSe:Hg molar ratioeng
dc.subject.keywordsHeavy metalseng
dc.subject.keywordsColombiaeng
dc.subject.proposalPeces continentalesspa
dc.subject.proposalEcosistemas acuáticosspa
dc.subject.proposalRelación molar Se:Hgspa
dc.subject.proposalMetales pesadosspa
dc.subject.proposalColombiaspa
dc.titleRelación molar Se:Hg en peces continentales en el norte de Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAcero, A., Acosta-Santos, A. A., Agudelo-Córdoba, E., Agudelo-Zamora, H. D., Ajiaco-Martínez, R. E., Alonso González, J. C., Árvarez-León, R., Ardila-Rodríguez, C., Atencio García, V. J., Barreto Reyes, C., Bonilla-Castillo, C. A., Castellano, C., DoNascimiento, C., Escobar-Lizarazo, M. D., Forero-Useche, J. E., Franco Rojas, H. H., Galvis Vergara, G., Gil-Manrique, B. D., Gómez Hurtado, G. A., … Villa-Navarro, F. A. (2002). Libro Rojo de Peces Dulceacuícolas de Colombia (2012). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/34197spa
dcterms.referencesAdebayo, O. L., Adenuga, G. A., & Sandhir, R. (2016). Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition. Life Sciences, 152, 145–155. doi:10.1016/j.lfs.2016.03.008spa
dcterms.referencesAguirre, L.; Garcia, F.J.; Junca, T., Fontanet, M.; Roca, M.; Carbó, M.; Sanfeliu, A.; Pomar, M.; Pérez, P.; Ochoa, C.; Sánchez, M.; Forn, M.; Serrat, M.; Gonfaus, M. (2001).Validación de Métodos Analíticos. Barcelona: AEFI.spa
dcterms.referencesAkhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution (Barking, Essex: 1987), 232, 154-163. https://doi.org/10.1016/j.envpol.2017.09.028spa
dcterms.referencesAkiyama, M., Unoki, T., Yoshida, E., Ding, Y., Yamakawa, H., Shinkai, Y., Ishii, I., & Kumagai, Y. (2020). Repression of mercury accumulation and adverse effects of methylmercury exposure is mediated by cystathionine γ-lyase to produce reactive sulfur species in mouse brain. Toxicology Letters, 330, 128-133. https://doi.org/10.1016/j.toxlet.2020.05.007spa
dcterms.referencesAlcala-Orozco, M., Caballero-Gallardo, K., & Olivero-Verbel, J. (2020). Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology, 79(3), 354-370. https://doi.org/10.1007/s00244-020-00761-8spa
dcterms.referencesAlibabić, V., Vahčić, N., & Bajramović, M. (2007). Bioaccumulation of Metals in Fish of Salmonidae Family and the Impact on Fish Meat Quality. Environmental Monitoring and Assessment, 131(1), 349-364. https://doi.org/10.1007/s10661-006-9480-6.spa
dcterms.referencesAli, H., & Khan, E. (2018). Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24(8), 2101–2118. https://doi.org/10.1080/10807039.2018.1438175.spa
dcterms.referencesAllinson, G., Nishikawa, M., Silva, S. S. D., Laurenson, L. J. B., & Silva, K. D. (2001). Observations on Metal Concentrations in Tilapia (Oreochromis mossambicus) in Reservoirs of South Sri Lanka. Ecotoxicology and Environmental Safety, 51(3), 197-202. https://doi.org/10.1006/eesa.2001.2112spa
dcterms.referencesAl-Saleh, I., Abduljabbar, M., Al-Rouqi, R., Elkhatib, R., Alshabbaheen, A., & Shinwari, N. (2013). Mercury (Hg) Exposure in Breast-Fed Infants and Their Mothers and the Evidence of Oxidative Stress. Biological Trace Element Research, 153(1), 145-154. https://doi.org/10.1007/s12011-013-9687-7spa
dcterms.referencesAl-Saleh, I., Al-Rouqi, R., Obsum, C. A., Shinwari, N., Mashhour, A., Billedo, G., Al-Sarraj, Y., & Rabbah, A. (2015). Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. International Journal of Hygiene and Environmental Health, 218(1), 66-90. https://doi.org/10.1016/j.ijheh.2014.08.001spa
dcterms.referencesÁlvarez-León, R., Orozco-Rey, R., Páramo, M., & Restrepo Santamaria, D. (2013). 2013. Álvarez-León et al. Lista de peces fósiles y actuales de Colombia.spa
dcterms.referencesAlves, A. C., Monteiro, M. S., Machado, A. L., Oliveira, M., Bóia, A., Correia, A., Oliveira, N., Soares, A. M. V. M., & Loureiro, S. (2017). Mercury levels in parturient and newborns from Aveiro region, Portugal. Journal of Toxicology and Environmental Health, Part A, 80(13-15), 697-709. https://doi.org/10.1080/15287394.2017.1286926.spa
dcterms.referencesAncora, M. P., Zhang, L., Wang, S., Schreifels, J. J., & Hao, J. (2016). Meeting Minamata: Cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy, 88, 485-494. https://doi.org/10.1016/j.enpol.2015.10.048spa
dcterms.referencesApler, A., Snowball, I., Frogner-Kockum, P., & Josefsson, S. (2019). Distribution and dispersal of metals in contaminated fibrous sediments of industrial origin. Chemosphere, 215, 470-481. https://doi.org/10.1016/j.chemosphere.2018.10.010.spa
dcterms.referencesArgota, G., González, Y., Argota, H., Fimia, R., & Iannacone, J. (2012). Desarrollo y bioacumulación de metales pesados en Gambusia punctata (Poeciliidae) ante los efectos de la contaminación acuática. REDVET. Revista Electrónica de Veterinaria, 13(5), 1-12.spa
dcterms.referencesArgumedo, C. D., Gómez, J. & Negrete, J. M. (2017). Metales en sedimento del río Ranchería, La Guaji-ra. Bistua, Revista de la Facultad de Ciencias Bási-cas, 15(2), 64-68.spa
dcterms.referencesAscencio, L., & Johanna, L. (2013). Contenido de mercurio en músculo de algunas especies ícticas de interés comercial presentes en ocho sitios de muestreo de la cuenca (baja, medio y alta) del rio Magdalena. http://repository.unimilitar.edu.co/handle/10654/10876spa
dcterms.referencesAstani, E., Vahedpour, M., & Dolatyari, L. (2011). Thermodynamic Study of the Extraction of Inorganic Mercury Compounds in Fish Species of the International Anzali Wetland, Iran. Chinese Journal of Chemistry, 29(7), 1341-1346. https://doi.org/10.1002/cjoc.201180252spa
dcterms.referencesAvery, J. C., & Hoffmann, P. R. (2018). Selenium, Selenoproteins, and Immunity. Nutrients, 10(9). https://doi.org/10.3390/nu10091203.spa
dcterms.referencesAyala, H. J., López, N., Ardila, Y. P., & Instituto de Investigaciones Ambientales del Pacífico. (2005). Diagnóstico situacional de la minería artesanal y en pequeña escala desarrollada por afrocolombianos en territorios colectivos de comunidades negras en el Chocó biogeográfico. Instituto de Investigaciones Ambientales del Pacífico.spa
dcterms.referencesAzad, A., Frantzen, S., S. Bank, M., M. Nilsen, B., Duinker, A., Madsen, L., & Maage. (2019). Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Science of The Total Environment, 652, 1482-1496. https://doi.org/10.1016/j.scitotenv.2018.10.405spa
dcterms.referencesAzcona, R., & Paz, M. (2017). Bioacumulación de distintas especies de selenio y sus efectos en organismos marinos. http://rabida.uhu.es/dspace/handle/10272/15083.spa
dcterms.referencesBalthasar, C., Stangl, H., Widhalm, R., Granitzer, S., Hengstschläger, M., & Gundacker, C. (2017). Methylmercury Uptake into BeWo Cells Depends on LAT2-4F2hc, a System L Amino Acid Transporter. International Journal of Molecular Sciences, 18(8), 1730. https://doi.org/10.3390/ijms18081730spa
dcterms.referencesBarwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56(4), 471-502. https://doi.org/10.1016/S0141-1136(03)00028-Xspa
dcterms.referencesBarros-Barrios, O., Doria-Argumedo, C., & Marrugo-Negrete, J. (2016). Heavy metals (Pb, Cd, Ni, Zn, Hg) in tissues of Lutjanus synagris and Lutjanus vivanus 56 from the Coast of La Guajira, North Colombia. Veterinaria y Zootecnia, 10(2), 27-41.spa
dcterms.referencesBeg, M. U., Al-Jandal, N., Al-Subiai, S., Karam, Q., Husain, S., Butt, S. A., Ali, A., Al-Hasan, E., Al-Dufaileej, S., & Al-Husaini, M. (2015). Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits’ marine area. Marine Pollution Bulletin, 100(2), 662-672. https://doi.org/10.1016/j.marpolbul.2015.07.058spa
dcterms.referencesBernhoft, R. A. (2011). Mercury Toxicity and Treatment: A Review of the Literature. Journal of Environmental and Public Health, 2012, e460508. https://doi.org/10.1155/2012/460508spa
dcterms.referencesBjerregaard, P., Fjordside, S., Hansen, M. G., & Petrova, M. B. (2011). Dietary Selenium Reduces Retention of Methyl Mercury in Freshwater Fish. Environmental Science & Technology, 45(22), 9793-9798. https://doi.org/10.1021/es202565gspa
dcterms.referencesBjorklund, G., Aaseth, J., Ajsuvakova, O., Nikonorov, A., Skalny, A., Skalnaya, M., & Tinkov, A. (2017). Molecular Interaction between Mercury and Selenium in Neurotoxicity. Coordination Chemistry Reviews, 332, 30-37. https://doi.org/10.1016/j.ccr.2016.10.009spa
dcterms.referencesBranfireun, B. A., Cosio, C., Poulain, A. J., Riise, G., & Bravo, A. G. (2020). Mercury cycling in freshwater systems—An updated conceptual model. Science of The Total Environment, 745, 140906. https://doi.org/10.1016/j.scitotenv.2020.140906spa
dcterms.referencesBridges, C. C., Krasnikov, B. F., Joshee, L., Pinto, J. T., Hallen, A., Li, J., Zalups, R. K., & Cooper, A. J. L. (2012). New insights into the metabolism of organomercury compounds: Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine γ-lyase. Archives of Biochemistry and Biophysics, 517(1), 20-29. https://doi.org/10.1016/j.abb.2011.11.002spa
dcterms.referencesBridges, C. C., & Zalups, R. K. (2010). Transport of Inorganic Mercury and Methylmercury in Target Tissues and Organs. Journal of Toxicology and Environmental Health, Part B, 13(5), 385-410. https://doi.org/10.1080/10937401003673750spa
dcterms.referencesBudnik, L. T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of The Total Environment, 654, 720-734. https://doi.org/10.1016/j.scitotenv.2018.10.408spa
dcterms.referencesBurger, J., Jeitner, C., Donio, M., Pittfield, T., & Gochfeld, M. (2013). Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. The Science of the Total Environment, 443, 278-286. https://doi.org/10.1016/j.scitotenv.2012.10.040spa
dcterms.referencesBurger, J., & Gochfeld, M. (2011). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. The Science of the Total Environment, 409(8), 1418-1429. https://doi.org/10.1016/j.scitotenv.2010.12.034spa
dcterms.referencesBurger, J., & Gochfeld, M. (2012). Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories. Environmental Research, 114, 12–23. https://doi.org/10.1016/j.envres.2012.02.004spa
dcterms.referencesBurger, J., & Gochfeld, M. (2013). Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 57, 235-245. https://doi.org/10.1016/j.fct.2013.03.021spa
dcterms.referencesCabañero Ortiz, A. I. (2006). Acumulación-interacción de especies de mercurio y selenio en tejidos animales desarrollo de nuevas metodologías de análisis [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid, Servicio de Publicaciones]. https://eprints.ucm.es/7128/spa
dcterms.referencesCaito, S. W., Zhang, Y., & Aschner, M. (2013). Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 435(4), 546-550. https://doi.org/10.1016/j.bbrc.2013.04.090spa
dcterms.referencesCarranza-Lopez, L., Caballero-Gallardo, K., Cervantes-Ceballos, L., Turizo-Tapia, A., & Olivero-Verbel, J. (2019). Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Archives of Environmental Contamination and Toxicology, 76(4), 640-649. https://doi.org/10.1007/s00244-019-00609-wspa
dcterms.referencesChen, C. Y., Buckman, K. L., Shaw, A., Curtis, A., Taylor, M., Montesdeoca, M., & Driscoll, C. (2021). The influence of nutrient loading on methylmercury availability in Long Island estuaries. Environmental Pollution, 268, 115510. https://doi.org/10.1016/j.envpol.2020.115510spa
dcterms.referencesChen, C. Y., & Driscoll, C. T. (2018). Integrating mercury research and policy in a changing world. Ambio, 47(2), 111-115. https://doi.org/10.1007/s13280-017-1010-yspa
dcterms.referencesChiera, N. M., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Eichler, R., Lebedev, V. Ya., Madumarov, A., Malyshev, O. N., Piguet, D., Popov, Y. A., Sabelnikov, A. V., Steinegger, P., Svirikhin, A. I., Türler, A., Vostokin, G. K., Vögele, A., & Yeremin, A. V. (2017). Interaction of elemental mercury with selenium surfaces: Model experiments for investigations of superheavy elements copernicium and flerovium. Journal of Radioanalytical and Nuclear Chemistry, 311(1), 99-108. https://doi.org/10.1007/s10967-016-5018-8spa
dcterms.referencesChung, Y.-P., Yen, C.-C., Tang, F.-C., Lee, K.-I., Liu, S.-H., Wu, C.-C., Hsieh, S.-S., Su, C.-C., Kuo, C.-Y., & Chen, Y.-W. (2019). Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology, 425, 152245. https://doi.org/10.1016/j.tox.2019.152245spa
dcterms.referencesCINEP. (2016). Informe Especial. Minería, conflictos agrarios y ambientales en el sur de La Guajira – Publicaciones CINEP/PPP. https://www.cinep.org.co/publicaciones/es/producto/informe-especial-mineria-conflictos-agrarios-y-ambientales-en-el-sur-de-la-guajira/spa
dcterms.referencesCorredor, C. (2013). Estado del arte sobre la presencia de mercurio en peces y su efecto en la salud. Pontificia universidad javeriana.spa
dcterms.referencesCorpoguajira. (2011). Plan de ordenamiento de la cuenca del Río Ranchería. instname:Unidad Nacional para la Gestión del Riesgo de Desastres. https://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/22606spa
dcterms.referencesCortes, C. (2017). Determinación de mercurio orgánico e inorgánico en muestras ambientales. Universidad Nacional de Colombia.spa
dcterms.referencesCosio, C., Flück, R., Regier, N., & Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 33(6), 1225-1237. https://doi.org/10.1002/etc.2499spa
dcterms.referencesCrea, F., De Stefano, C., Foti, C., Milea, D., & Sammartano, S. (2014). Chelating Agents for the Sequestration of Mercury(II) and Monomethyl Mercury(II). Current Medicinal Chemistry, 21(33), 3819-3836.spa
dcterms.referencesCrespo-López, María Elena, Lima de Sá, A., Herculano, A. M., Rodríguez Burbano, R., & Martins do Nascimento, J. L. (2007). Methylmercury genotoxicity: A novel effect in human cell lines of the central nervous system. Environment International, 33(2), 141-146. https://doi.org/10.1016/j.envint.2006.08.005spa
dcterms.referencesCrespo-López, Maria Elena, Macêdo, G. L., Arrifano, G. P. F., Pinheiro, M. da C. N., do Nascimento, J. L. M., & Herculano, A. M. (2011). Genotoxicity of mercury: Contributing for the analysis of Amazonian populations. Environment International, 37(1), 136-141. https://doi.org/10.1016/j.envint.2010.08.009spa
dcterms.referencesCusack, L. K., Eagles-Smith, C., Harding, A. K., Kile, M., & Stone, D. (2017). Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. Biological Trace Element Research, 178(1), 136-146. https://doi.org/10.1007/s12011-016-0907-9spa
dcterms.referencesDa Silva, D. L. F., da Costa, M. A. P., Silva, L. O. B., & Dos Santos, W. N. L. (2019). Simultaneous determination of mercury and selenium in fish by CVG AFS. Food Chemistry, 273, 24-30. https://doi.org/10.1016/j.foodchem.2018.05.020spa
dcterms.referencesDe Almeida Rodrigues, P., Ferrari, R. G., dos Santos, L. N., & Conte Junior, C. A. (2019). Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. Journal of Environmental Sciences, 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018spa
dcterms.referencesDhanakumar, S., Solaraj, G., & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, 145-151. https://doi.org/10.1016/j.ecoenv.2014.11.032spa
dcterms.referencesDomenichi, Z., & Fernanda, M. (2011). Estado del arte sobre la presencia de metales pesados en tejidos y agallas de peces. instname:Universidad Autónoma de Occidente. http://red.uao.edu.co//handle/10614/1637spa
dcterms.referencesDoNascimiento, C., Herrera-Collazos, E. E., Herrera-R, G. A., Ortega-Lara, A., Villa-Navarro, F. A., Oviedo, J. S. U., & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: A Darwin Core alternative to the updating problem. ZooKeys, 708, 25-138. https://doi.org/10.3897/zookeys.708.13897spa
dcterms.referencesDrevnick, P. E., Lamborg, C. H., & Horgan, M. J. (2015). Increase in mercury in Pacific yellowfin tuna. Environmental Toxicology and Chemistry, 34(4), 931-934. https://doi.org/10.1002/etc.2883spa
dcterms.referencesDrevnick, P. E., Cooke, C. A., Barraza, D., Blais, J. M., Coale, K. H., Cumming, B. F., Curtis, C. J., Das, B., Donahue, W. F., Eagles-Smith, C. A., Engstrom, D. R., Fitzgerald, W. F., Furl, C. V., Gray, J. E., Hall, R. I., Jackson, T. A., Laird, K. R., Lockhart, W. L., Macdonald, R. W., … Wolfe, B. B. (2016). Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Science of 60 The Total Environment, 568, 1157–1170. https://doi.org/10.1016/j.scitotenv.2016.03.167spa
dcterms.referencesDriscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science & Technology, 47(10), 4967-4983. https://doi.org/10.1021/es305071vspa
dcterms.referencesEagles-Smith, C. A., Wiener, J. G., Eckley, C. S., Willacker, J. J., Evers, D. C., Marvin-DiPasquale, M., Obrist, D., Fleck, J. A., Aiken, G. R., Lepak, J. M., Jackson, A. K., Webster, J. P., Stewart, A. R., Davis, J. A., Alpers, C. N., & Ackerman, J. T. (2016). Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of The Total Environment, 568, 1213–1226. https://doi.org/10.1016/j.scitotenv.2016.05.094spa
dcterms.referencesEl-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Alshaal, T. A., Shalaby, T. A., Sztrik, A., Prokisch, J., & Fári, M. (2014). Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 12(4), 495-510. https://doi.org/10.1007/s10311-014-0476-0spa
dcterms.referencesEl-Ramady, H. R., Domokos-Szabolcsy, É., Shalaby, T. A., Prokisch, J., & Fári, M. (2015). Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. En E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), CO2 Sequestration, Biofuels and Depollution (pp. 153-232). Springer International Publishing. https://doi.org/10.1007/978-3-319-11906-9_5spa
dcterms.referencesEnrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., Sun, R., & Sonke, J. E. (2016). Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 50(5), 2405-2412. https://doi.org/10.1021/acs.est.5b06058spa
dcterms.referencesEPA Method 3052. (2007). Microwave assisted acid digestion of sileceous and organically based matrices.spa
dcterms.referencesEPA de EE. UU. Informe sobre la Conferencia Internacional de Investigación y Desarrollo de Descontaminación de la Agencia de Protección Ambiental de los Estados Unidos (EPA) de 2013. Research Triangle Park, NC, del 5 al 7 de noviembre de 2013. Agencia de Protección Ambiental de EE. UU., Washington, DC, EPA / 600 / R-14/210.spa
dcterms.referencesEPA de EE. UU. (1998). "Método 7473 (SW-846): Mercurio en sólidos y soluciones por descomposición térmica, amalgamación y espectrofotometría de absorción atómica", Revisión 0. Washington, DC.spa
dcterms.referencesEscribano, S. T. (2011). Bioaccesibilidad de arsénico y mercurio en alimentos con potencial riesgo toxicológico. Recuperado 21 de abril de 2021, de https://core.ac.uk/reader/71005170spa
dcterms.referencesEswayah, A. S., Smith, T. J., & Gardiner, P. H. E. (2016). Microbial Transformations of Selenium Species of Relevance to Bioremediation. Applied and Environmental Microbiology, 82(16), 4848-4859. https://doi.org/10.1128/AEM.00877-16spa
dcterms.referencesEto, K., Marumoto, M., & Takeya, M. (2010). The pathology of methylmercury poisoning (Minamata disease). Neuropathology, no–no. doi:10.1111/j.1440-1789.2010.01119.xspa
dcterms.referencesFAO. (2017).The State of Food Security and Nutrition in the World. http://www.fao.org/state-of-food-security-nutrition/2017/en/ FAO/WHO (Food and Agricultural Organization / World Health Organization). Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 940. 2007; Recuperado de: http://www.who.int/ipcs/publications/jecfa/reports/ trs940.pdfspa
dcterms.referencesFarina, M., Aschner, M., & Rocha, J. B. T. (2011). Oxidative stress in MeHg-induced neurotoxicity. Toxicology and Applied Pharmacology, 256(3), 405-417. https://doi.org/10.1016/j.taap.2011.05.001spa
dcterms.referencesFilippini, T., Michalke, B., Wise, L. A., Malagoli, C., Malavolti, M., Vescovi, L., Salvia, C., Bargellini, A., Sieri, S., Krogh, V., Ferrante, M., & Vinceti, M. (2018). Diet composition and serum levels of selenium species: A cross-sectional study. Food and Chemical Toxicology, 115, 482-490. https://doi.org/10.1016/j.fct.2018.03.048spa
dcterms.referencesFuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2018). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health, 40(1), 229-242. https://doi.org/10.1007/s10653-016-9896-zspa
dcterms.referencesGandois, L., Tipping, E., Dumat, C., & Probst, A. (2010). Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. 49 Atmospheric Environment, 44(6), 824-833. https://doi.org/10.1016/j.atmosenv.2009.11.028spa
dcterms.referencesGao, X., Tang, B., Liang, H., Yi, L., & Wei, Z. (2019). Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK 62 pathway in the head kidney of carp. Fish & Shellfish Immunology, 91, 284-292. https://doi.org/10.1016/j.fsi.2019.05.039spa
dcterms.referencesGarousi, F. (2017). The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. https://doi.org/10.1515/ausal-2017-0005spa
dcterms.referencesGerla, P. J., Sharif, M. U., & Korom, S. F. (2011). Geochemical processes controlling the spatial distribution of selenium in soil and water, west central South Dakota, USA. Environmental Earth Sciences, 62(7), 1551-1560. https://doi.org/10.1007/s12665-010-0641-0spa
dcterms.referencesGómez-Rojas, O. P., Díaz-Lagos, M., Blandón-Montes, A., & Martínez-Ovalle, S. A. (2016). Presencia de elementos contaminantes como Cd, As, Pb, Se y Hg en carbones de la zona Cundiboyacense, Colombia. Revista de investigación, desarrollo e innovación, 7(1), 141. https://doi.org/10.19053/20278306.v7.n1.2016.5604spa
dcterms.referencesGolzadeh, N., Barst, B. D., Basu, N., Baker, J. M., Auger, J. C., & McKinney, M. A. (2020). Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta, Canada. Chemosphere, 250, 126285. https://doi.org/10.1016/j.chemosphere.2020.126285spa
dcterms.referencesGreen, N. W., & Knutzen, J. (2003). Organohalogens and metals in marine fish and mussels and some relationships to biological variables at reference localities in Norway. Marine Pollution Bulletin, 46(3), 362-374. https://dBIBLIOGRAFIA oi.org/10.1016/S0025-326X(02)00515-5spa
dcterms.referencesGribble, M. O., Karimi, R., Feingold, B. J., Nyland, J. F., O’Hara, T. M., Gladyshev, M. I., & Chen, C. Y. (2016). Mercury, selenium and fish oils in marine food webs and implications for human health. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom, 96(1), 43-59. https://doi.org/10.1017/S0025315415001356spa
dcterms.referencesHe, Y., Xiang, Y., Zhou, Y., Yang, Y., Zhang, J., Huang, H., Shang, C., Luo, L., Gao, J., & Tang, L. (2018). Selenium contamination, consequences and remediation techniques in water and soils: A review. Environmental Research, 164, 288-301. https://doi.org/10.1016/j.envres.2018.02.037spa
dcterms.referencesHilton, J.W., Hodson P.V., Slinger ,S.J. (1980) The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J Nutr; 110: 2527-35.spa
dcterms.referencesEkanayaka, P., Jayasinghe, C., & Chandrajith, R. (2016). Heavy metals in Tilapia (Oreochromis sp) from Padaviya and Huruluwewa reservoirs in Sri Lanka. http://localhost//handle/1/796spa
dcterms.referencesHines, M. E., Poitras, E. N., Covelli, S., Faganeli, J., Emili, A., Žižek, S., & Horvat, M. (2012). Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuarine, Coastal and Shelf Science, 113, 85-95. https://doi.org/10.1016/j.ecss.2011.12.021spa
dcterms.referencesHong, Y.-S., Kim, Y.-M., & Lee, K.-E. (2012). Methylmercury Exposure and Health Effects. Journal of Preventive Medicine and Public Health, 45(6), 353-363. https://doi.org/10.3961/jpmph.2012.45.6.353spa
dcterms.referencesIslam, G. M. R., Khan, F. E., Hoque, M. M., & Jolly, Y. N. (2014). Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: Heavy metal contamination. Environmental Monitoring and Assessment, 186(11), 7233-7244. https://doi.org/10.1007/s10661-014-3923-2spa
dcterms.referencesIvanov, A. V., Valuev-Elliston, V. T., Tyurina, D. A., Ivanova, O. N., Kochetkov, S. N., Bartosch, B., & Isaguliants, M. G. (2016). Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget, 8(3), 3895-3932. https://doi.org/10.18632/oncotarget.13904spa
dcterms.referencesJain, V. K., & Priyadarsini, K. I. (2017). Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments. Royal Society of Chemistry.spa
dcterms.referencesJan, A. T., Ali, A., & Haq, Q. M. R. (2011). Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. Journal of Postgraduate Medicine, 57(1), 72. https://doi.org/10.4103/0022-3859.74298spa
dcterms.referencesJanz, D. M., Liber, K., Pickering, I. J., Wiramanaden, C. I., Weech, S. A., Gallego-Gallegos, M., Driessnack, M. K., Franz, E. D., Goertzen, M. M., Phibbs, J., Tse, J. J., Himbeault, K. T., Robertson, E. L., Burnett-Seidel, C., England, K., & Gent, A. (2014). Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. Integrated Environmental Assessment and Management, 10(4), 543–554. https://doi.org/10.1002/ieam.1560spa
dcterms.referencesJonsson, S., Andersson, A., Nilsson, M. B., Skyllberg, U., Lundberg, E., Schaefer, J. K., Åkerblom, S., & Björn, E. (2017). Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 3(1), e1601239. https://doi.org/10.1126/sciadv.1601239spa
dcterms.referencesJordanova, M., Rebok, K., Dragun, Z., Ramani, S., Ivanova, L., Kostov, V., Valić, D., Krasnići, N., Filipović Marijić, V., & Kapetanović, D. (2016). Histopathology investigation on the Vardar chub (Squalius vardarensis) populations captured from the rivers impacted by mining activities. Ecotoxicology and Environmental Safety, 129, 35-42. https://doi.org/10.1016/j.ecoenv.2016.03.006spa
dcterms.referencesKanda, H., Shinkai, Y., & Kumagai, Y. (2014). S-Mercuration of cellular proteins by methylmercury and its toxicological implications. The Journal of Toxicological Sciences, 39(5), 687-700. https://doi.org/10.2131/jts.39.687spa
dcterms.referencesKaneko, J. J., & Ralston, N. V. C. (2007). Selenium and Mercury in Pelagic Fish in the Central North Pacific Near Hawaii. Biological Trace Element Research, 119(3), 242-254. https://doi.org/10.1007/s12011-007-8004-8spa
dcterms.referencesKaragas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., & Korrick, S. (2012). Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. Environmspa
dcterms.referencesKhadra, M., Planas, D., Brodeur, P., & Amyot, M. (2019). Mercury and selenium distribution in key tissues and early life stages of Yellow Perch (Perca flavescens). Environmental Pollution, 254, 112963. https://doi.org/10.1016/j.envpol.2019.112963spa
dcterms.referencesKhan, K. U., Zuberi, A., Fernandes, J. B. K., Ullah, I., & Sarwar, H. (2017). An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiology and Biochemistry, 43(6), 1689-1705. https://doi.org/10.1007/s10695-017-0402-zspa
dcterms.referencesKieliszek, M. (2019). Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules, 24(7), 1298. https://doi.org/10.3390/molecules24071298spa
dcterms.referencesKim, J.-H., & Kang, J.-C. (2014). The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicology and Environmental Safety, 104, 96-102. https://doi.org/10.1016/j.ecoenv.2014.02.010spa
dcterms.referencesKirk, J. L., Muir, D. C. G., Gleason, A., Wang, X., Lawson, G., Frank, R. A., Lehnherr, I., & Wrona, F. (2014). Atmospheric Deposition of Mercury and Methylmercury to Landscapes and Waterbodies of the Athabasca Oil Sands Region. Environmental Science & Technology, 48(13), 7374-7383. https://doi.org/10.1021/es500986rspa
dcterms.referencesKocman, D., Wilson, S. J., Amos, H. M., Telmer, K. H., Steenhuisen, F., Sunderland, E. M., Mason, R. P., Outridge, P., & Horvat, M. (2017). Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. International Journal of Environmental Research and Public Health, 14(2), 138. https://doi.org/10.3390/ijerph14020138spa
dcterms.referencesKrause, K. P., Wu, C.-L., Chu, M. L., & Knouft, J. H. (2019). Fish assemblage-environment relationships suggest differential trophic responses to heavy metal contamination. Freshwater Biology, 64(4), 632–642. https://doi.org/10.1111/fwb.13248spa
dcterms.referencesKumar, A. R., & Riyazuddin, P. (2011). Speciation of selenium in groundwater: Seasonal variations and redox transformations. Journal of Hazardous Materials, 192(1), 263-269. https://doi.org/10.1016/j.jhazmat.2011.05.013spa
dcterms.referencesKumar, N., Krishnani, K. K., & Singh, N. P. (2018). Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environmental Science and Pollution Research, 25(9), 8914-8927. https://doi.org/10.1007/s11356-017-1165-xspa
dcterms.referencesLaird, B. D., Shade, C., Gantner, N., Chan, H. M., & Siciliano, S. D. (2009). Bioaccessibility of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration. Science of The Total Environment, 407(23), 6003-6008. https://doi.org/10.1016/j.scitotenv.2009.08.014spa
dcterms.referencesLavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 47(23), 13385-13394. https://doi.org/10.1021/es403103tspa
dcterms.referencesLeBlanc, K. L., & Wallschläger, D. (2016). Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters. Environmental Science & Technology, 50(12), 6164-6171. https://doi.org/10.1021/acs.est.5b05315spa
dcterms.referencesLee, K. J., & Lee, T. G. (2012). A review of international trends in mercury management and available options for permanent or long-term mercury storage. Journal of Hazardous Materials, 241-242, 1-13. https://doi.org/10.1016/j.jhazmat.2012.09.025spa
dcterms.referencesLescord, G. L., Johnston, T. A., Branfireun, B. A., & Gunn, J. M. (2018). Percentage of methylmercury in the muscle tissue of freshwater fish varies with 66 body size and age and among species. Environmental Toxicology and Chemistry, 37(10), 2682-2691. https://doi.org/10.1002/etc.4233spa
dcterms.referencesLicona, S. P. V., & Negrete, J. L. M. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: Riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232-242. https://doi.org/10.15446/abc.v24n2.74128spa
dcterms.referencesLi, P., Feng, X., & Qiu, G. (2010). Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review. International Journal of Environmental Research and Public Health, 7(6), 2666-2691. https://doi.org/10.3390/ijerph7062666spa
dcterms.referencesLi, W. C., & Tse, H. F. (2015). Health risk and significance of mercury in the environment. Environmental Science and Pollution Research, 22(1), 192-201. https://doi.org/10.1007/s11356-014-3544-xspa
dcterms.referencesLin, X., Yang, T., Li, H., Ji, Y., Zhao, Y., & He, J. (2020). Interactions Between Different Selenium Compounds and Essential Trace Elements Involved in the Antioxidant System of Laying Hens. Biological Trace Element Research, 193(1), 252-260. https://doi.org/10.1007/s12011-019-01701-xspa
dcterms.referencesLino, A. S., Kasper, D., Guida, Y. S., Thomaz, J. R., & Malm, O. (2019). Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere, 235, 690-700. https://doi.org/10.1016/j.chemosphere.2019.06.212spa
dcterms.referencesLiu, M., Lu, X., Khan, A., Ling, Z., Wang, P., Tang, Y., Liu, P., & Li, X. (2019). Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides. Journal of Hazardous Materials, 367, 35-42. https://doi.org/10.1016/j.jhazmat.2018.12.058spa
dcterms.referencesLominchar, M. A., Sierra, M. J., Rodríguez, J., & Millán, R. (2014). Estudio del comportamiento y distribución del mercurio presente en muestras de suelo recogidas en la ribera del río Valdeazogues. http://documenta.ciemat.es/handle/123456789/125spa
dcterms.referencesLong, G. L., & Winefordner, J. D. (1983). Limit of Detection A Closer Look at the IUPAC Definition. Analytical Chemistry, 55(07), 712A-724A. https://doi.org/10.1021/ac00258a724spa
dcterms.referencesMaldonado-Ocampo, J. A. (Ed.). (2005). Peces de los Andes de Colombia: Guía de campo (1. ed). Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.spa
dcterms.referencesManceau, A., Lemouchi, C., Enescu, M., Gaillot, A.-C., Lanson, M., Magnin, V., Glatzel, P., Poulin, B. A., Ryan, J. N., Aiken, G. R., Gautier-Luneau, I., & Nagy, K. L. (2015). Formation of Mercury Sulfide from Hg(II)–Thiolate Complexes in Natural Organic Matter. Environmental Science & Technology, 49(16), 9787-9796. https://doi.org/10.1021/acs.est.5b02522spa
dcterms.referencesMarrugo, J., Lans, E., & Benítez, L. (2007). FINDING OF MERCURY IN FISH FROM THE AYAPEL MARSH, CORDOBA, COLOMBIA. Revista MVZ Córdoba, 12(1), 878-886.spa
dcterms.referencesMarrugo-Negrete, J., Benítez, L. N., Olivero-Verbel, J., Lans, E., & Gutierrez, F. V. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International Journal of Environmental Health Research, 20(6), 451-459. https://doi.org/10.1080/09603123.2010.499451spa
dcterms.referencesMarrugo, J. L., Ruiz-Guzmán, J. A., & Ruiz-Fernández, A. C. (2018). Biomagnification of Mercury in Fish from Two Gold Mining-Impacted Tropical Marshes in Northern Colombia. Archives of Environmental Contamination and Toxicology, 74(1), 121-130. https://doi.org/10.1007/s00244-017-0459-9spa
dcterms.referencesMarrugo Negrete, J., Pinedo-Hernández, J., Paternina–Uribe, R., Quiroz-Aguas, L., & Pacheco-Florez, S. (2018). Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Revista MVZ Córdoba, 7062–7075. https://doi.org/10.21897/rmvz.1481spa
dcterms.referencesMarrugo-Negrete, J., Durango-Hernández, J., Calao-Ramos, C., Urango-Cárdenas, I., & Díez, S. (2019). Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Science of The Total Environment, 664, 899–907. https://doi.org/10.1016/j.scitotenv.2019.01.340spa
dcterms.referencesMárquez, A., Senior, W., Fermín, I., Martínez, G., Castañeda, J., & González, Á. (2008). Cuantificación de las concentraciones de metales pesados en tejidos de peces y crustáceos de la Laguna de Unare, estado Anzoátegui, Venezuela. Revista Científica, 18(1), 73-86.spa
dcterms.referencesMason, R. P., Laporte, J.-M., & Andres, S. (2000). Factors Controlling the Bioaccumulation of Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and Fish. Archives of Environmental Contamination and Toxicology, 38(3), 283-297. https://doi.org/10.1007/s002449910038spa
dcterms.referencesMehdi, Y., Hornick, J.-L., Istasse, L., & Dufrasne, I. (2013). Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules, 18(3), 3292-3311. https://doi.org/10.3390/molecules18033292spa
dcterms.referencesMiller, L. L., Rasmussen, J. B., Palace, V. P., Sterling, G., & Hontela, A. (2013). Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines in Alberta, Canada. Environmental Management, 52(1), 72–84. https://doi.org/10.1007/s00267-013-0038-4spa
dcterms.referencesMirlean, N., Alexandre Henrique, F., Elisa Rosa, S.-A., Carlos Francisco, F. A., Larissa, P. C., & Karen H., J. (2019). Mercury and selenium in the Brazilian subtropical marine products: Food composition and safety. Journal of Food Composition and Analysis, 84, 103310. https://doi.org/10.1016/j.jfca.2019.103310spa
dcterms.referencesMoiseenko, T. I., & Gashkina, N. A. (2016). Bioaccumulation of mercury in fish as indicator of water pollution. Geochemistry International, 54(6), 485-493. https://doi.org/10.1134/S0016702916060045spa
dcterms.referencesMolina-Bolívar, G. E., Jiménez-Pitre, I. A., Acevedo-Correa, D., Molina-Bolívar, G. E., Jiménez-Pitre, I. A., & Acevedo-Correa, D. (2017). QUANTIFICATION OF TOTAL COLIFORMS IN RANCHERÍA RIVER ESTUARY. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(SPE2), 23-29. https://doi.org/10.18684/bsaa(15)ediciónespecial2.575spa
dcterms.referencesMonteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2013). Dietary intake of inorganic mercury: Bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology, 22(3), 446-456. https://doi.org/10.1007/s10646-012-1038-5spa
dcterms.referencesMorales Y. W., & Carmona L., (2007). Estudio de algunos elementos traza en la cuenca Cesar - Ranchería, Colombia. Boletín de Ciencias de la Tierra, núm. 20, junio, 2007, pp. 75-88.Universidad Nacional de Colombia-Medellín, Colombia.spa
dcterms.referencesMorcillo, P., Angeles Esteban, M., & Cuesta, A. (2017). Mercury and its toxic effects on fish. AIMS Environmental Science, 4(3), 386–402. https://doi.org/10.3934/environsci.2017.3.386spa
dcterms.referencesMurillo, D. O., León, D. E., & Jiménez, C. (2017). Passive Samplers Deployment in the Ayapel Swamp for Monitoring Temporal Dynamics of Mercury in the Water Column. Journal of Water Resource and Protection, 9(8), 873-880. https://doi.org/10.4236/jwarp.2017.98058spa
dcterms.referencesNawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A., & Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 113, 191–200. https://doi.org/10.1016/j.ecoenv.2014.12.003spa
dcterms.referencesNiedzielski, P., Rudnicka, M., Wachelka, M., Kozak, L., Rzany, M., Wozniak, M., & Kaskow, Z. (2016). Selenium species in selenium fortified dietary supplements. Food Chemistry, 190, 454-459. https://doi.org/10.1016/j.foodchem.2015.05.125spa
dcterms.referencesNogara, P. A., Oliveira, C. S., Schmitz, G. L., Piquini, P. C., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Methylmercury’s chemistry: From the environment to the mammalian brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(12), 129284. https://doi.org/10.1016/j.bbagen.2019.01.006spa
dcterms.referencesOjeda, J. J., Merroun, M. L., Tugarova, A. V., Lampis, S., Kamnev, A. A., & Gardiner, P. H. E. (2020). Developments in the study and applications of bacterial transformations of selenium species. Critical Reviews in Biotechnology, 40(8), 1250-1264. https://doi.org/10.1080/07388551.2020.1811199spa
dcterms.referencesØkelsrud, A., Lydersen, E., & Fjeld, E. (2016). Biomagnification of mercury and selenium in two lakes in southern Norway. Science of The Total Environment, 566-567, 596-607. https://doi.org/10.1016/j.scitotenv.2016.05.109spa
dcterms.referencesOlivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., & Muñoz-Sosa, D. (2016). Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environmental Science and Pollution Research, 23(20), 20761–20771. https://doi.org/10.1007/s11356-016-7255-3spa
dcterms.referencesPalacios-Torres, Y., de la Rosa, J. D., & Olivero-Verbel, J. (2020). Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environmental Pollution, 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290spa
dcterms.referencesPařízek, J., & Ošťádalová, I. (1967). The protective effect of small amounts of selenite in sublimate intoxication. Experientia, 23(2), 142-143. https://doi.org/10.1007/BF02135970spa
dcterms.referencesPark, J.-D., & Zheng, W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine and Public Health, 45(6), 344-352. https://doi.org/10.3961/jpmph.2012.45.6.344spa
dcterms.referencesPenglase, S., Hamre, K., & Ellingsen, S. (2014). Selenium and mercury have a synergistic negative effect on fish reproduction. Aquatic Toxicology, 149, 16-24. https://doi.org/10.1016/j.aquatox.2014.01.020spa
dcterms.referencesPeterson, S. A., Ralston, N. V. C., Peck, D. V., Sickle, J. V., Robertson, J. D., Spate, V. L., & Morris, J. S. (2009). How Might Selenium Moderate the Toxic 70 Effects of Mercury in Stream Fish of the Western U.S.? Environmental Science & Technology, 43(10), 3919-3925. https://doi.org/10.1021/es803203gspa
dcterms.referencesPinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044spa
dcterms.referencesPlessl, C., Gilbert, B. M., Sigmund, M. F., Theiner, S., Avenant-Oldewage, A., Keppler, B. K., & Jirsa, F. (2019). Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers. Science of The Total Environment, 659, 1158-1167. https://doi.org/10.1016/j.scitotenv.2018.12.442spa
dcterms.referencesPNUD. (2016). Programa de las Naciones Unidas Para el Desarrollo: Objetivos de Desarrollo Sostenible.spa
dcterms.referencesPolak-Juszczak, L. (2015). Selenium and mercury molar ratios in commercial fish from the Baltic Sea: Additional risk assessment criterion for mercury exposure. Food Control, 50, 881-888. https://doi.org/10.1016/j.foodcont.2014.10.046spa
dcterms.referencesPower, M., Klein, G. M., Guiguer, K. R. R. A., & Kwan, M. K. H. (2002). Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5), 819-830. https://doi.org/10.1046/j.1365-2664.2002.00758.xspa
dcterms.referencesRae, W., Kitley, J., & Pinto, A. (2018). Selenium Toxicity Associated With Reversible Leukoencephalopathy and Cortical Blindness. JAMA Neurology, 75(10), 1282-1283. https://doi.org/10.1001/jamaneurol.2018.1669spa
dcterms.referencesRaimann, X., Rodríguez O, L., Chávez, P., & Torrejón, C. (2014). Mercurio en pescados y su importancia en la salud. Revista médica de Chile, 142(9), 1174-1180. https://doi.org/10.4067/S0034-98872014000900012spa
dcterms.referencesRalston, N. (2014). Selenium status and intake influences mercury exposure risk assessments (pp. 203-205).spa
dcterms.referencesRalston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values provide a reliable index of seafood benefits vs. Risks. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 55, 50-57. https://doi.org/10.1016/j.jtemb.2019.05.009spa
dcterms.referencesRalston, N. V. C., & Raymond, L. J. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 278(1), 112-123. https://doi.org/10.1016/j.tox.2010.06.004spa
dcterms.referencesRaucci, R., Colonna, G., Guerriero, E., Capone, F., Accardo, M., Castello, G., & Costantini, S. (2011). Structural and functional studies of the human selenium binding protein-1 and its involvement in hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(4), 513-522. https://doi.org/10.1016/j.bbapap.2011.02.006spa
dcterms.referencesRettinassababady, C., & Jeyalakshmi, C. (2014). Bio-Fungicides: The Best Alternative for Sustainable Food Security and Ecosystem. En R. N. Kharwar, R. S. Upadhyay, N. K. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp. 401-411). Springer India. https://doi.org/10.1007/978-81-322-1801-2_35spa
dcterms.referencesRigby, M. C., Lemly, A. D., & Gerads, R. (2014). Fish toxicity testing with selenomethionine spiked feed – what’s the real question being asked? Environmental Science: Processes & Impacts, 16(3), 511-517. https://doi.org/10.1039/C3EM00612Cspa
dcterms.referencesRobitaille, S., Mailloux, R. J., & Chan, H. M. (2016). Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells. Toxicology Letters, 256, 1-10. https://doi.org/10.1016/j.toxlet.2016.05.013spa
dcterms.referencesRodríguez, O., Padilla, I., Tayibi, H., & López-Delgado, A. (2012). Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage. Journal of Environmental Management, 101, 197-205. https://doi.org/10.1016/j.jenvman.2012.02.013spa
dcterms.referencesRooney, J. P. K. (2014). The retention time of inorganic mercury in the brain—A systematic review of the evidence. Toxicology and Applied Pharmacology, 274(3), 425-435. https://doi.org/10.1016/j.taap.2013.12.011spa
dcterms.referencesRoos, D. H., Puntel, R. L., Farina, M., Aschner, M., Bohrer, D., Rocha, J. B. T., & de Vargas Barbosa, N. B. (2011). Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicology and Applied Pharmacology, 252(1), 28-35. https://doi.org/10.1016/j.taap.2011.01.010spa
dcterms.referencesRouleau, C., Borg-Neczak, K., Gottofrey, J., & Tjälve, H. (1999). Accumulation of Waterborne Mercury(II) in Specific Areas of Fish Brain. Environmental Science & Technology, 33(19), 3384-3389. https://doi.org/10.1021/es990001vspa
dcterms.referencesRuiz-Guzmán, J. A., Marrugo-Negrete, J. L., & Díez, S. (2014). Human Exposure to Mercury Through Fish Consumption: Risk Assessment of Riverside Inhabitants of the Urrá Reservoir, Colombia. Human and Ecological Risk Assessment: An International Journal, 20(5), 1151-1163. https://doi.org/10.1080/10807039.2013.862068spa
dcterms.referencesRustagi, N., & Singh, R. (2010). Mercury and health care. Indian Journal of Occupational and Environmental Medicine, 14(2), 45. https://doi.org/10.4103/0019-5278.72240spa
dcterms.referencesRyu, J.-H., Gao, S., & Tanji, K. K. (2011). Accumulation and speciation of selenium in evaporation basins in California, USA. Journal of Geochemical Exploration, 110(2), 216-224. https://doi.org/10.1016/j.gexplo.2011.05.011spa
dcterms.referencesSaadati, M., Soleimani, M., Sadeghsaba, M., & Hemami, M. R. (2020). Bioaccumulation of heavy metals (Hg, Cd and Ni) by sentinel crab (Macrophthalmus depressus) from sediments of Mousa Bay, Persian Gulf. Ecotoxicology and Environmental Safety, 191, 109986. https://doi.org/10.1016/j.ecoenv.2019.109986spa
dcterms.referencesSánchez, F., & Corredor, S. (2015). Metales tóxicos en Colombia: presencia, origen, distribución y contaminación en componentes bióticos y abióticos. In: Metales tóxicos en el recurso pesquero: implicaciones para la salud ambiental (p. Capítulo II). Bogotá, D.C.spa
dcterms.referencesSaha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the Soil-Plant Environment: A Review. International Journal of Applied Agricultural Sciences, 3(1), 1. https://doi.org/10.11648/j.ijaas.20170301.11spa
dcterms.referencesSharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Pettine, M., & Zboril, R. (2015). Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 13(1), 49-58. https://doi.org/10.1007/s10311-014-0487-xspa
dcterms.referencesShen, W., Chen, J., Yin, J., & Wang, S.-L. (2016). Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure. European Review for Medical and Pharmacological Sciences, 20, 773-780.spa
dcterms.referencesShreenath, A. P., Ameer, M. A., & Dooley, J. (2021). Selenium Deficiency. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482260/spa
dcterms.referencesSi, Y., Zou, Y., Liu, X., Si, X., & Mao, J. (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122, 206-212. https://doi.org/10.1016/j.chemosphere.2014.11.054spa
dcterms.referencesSørmo, E. G., Ciesielski, T. M., Øverjordet, I. B., Lierhagen, S., Eggen, G. S., Berg, T., & Jenssen, B. M. (2011). Selenium Moderates Mercury Toxicity in Free- 73 Ranging Freshwater Fish. Environmental Science & Technology, 45(15), 6561-6566. https://doi.org/10.1021/es200478bspa
dcterms.referencesSchreck, C. B., & Moyle, P.B. (1990). Methods for fish biology Bethesda, MD: American Fisheries Society.spa
dcterms.referencesSpangenberg, J. E., Lavrič, J. V., Meisser, N., & Serneels, V. (2010). Sulfur isotope analysis of cinnabar from Roman wall paintings by elemental analysis/isotope ratio mass spectrometry – tracking the origin of archaeological red pigments and their authenticity. Rapid Communications in Mass Spectrometry, 24(19), 2812-2816. https://doi.org/10.1002/rcm.4705spa
dcterms.referencesSpiller, H. A. (2017). Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clinical Toxicology, 56(5), 313–326. doi:10.1080/15563650.2017.1400555spa
dcterms.referencesSquadrone, S., Benedetto, A., Brizio, P., Prearo, M., & Abete, M. C. (2015). Mercury and selenium in European catfish (Silurus glanis) from Northern Italian Rivers: Can molar ratio be a predictive factor for mercury toxicity in a top predator? Chemosphere, 119, 24–30. https://doi.org/10.1016/j.chemosphere.2014.05.052spa
dcterms.referencesStorelli, M. M., Stuffler, R. G., & Marcotrigiano, G. O. (2002). Total and methylmercury residues in tuna-fish from the Mediterranean sea. Food Additives & Contaminants, 19(8), 715-720. https://doi.org/10.1080/02652030210153569spa
dcterms.referencesSunderman Jr., F.W., (2001). Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann. Clin. Lab. Sci. 31, 3–24.spa
dcterms.referencesTang, Z., Fan, F., Deng, S., & Wang, D. (2020). Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury—A critical review. Ecotoxicology and Environmental Safety, 202, 110950. https://doi.org/10.1016/j.ecoenv.2020.110950spa
dcterms.referencesTashjian DH, Teh SJ, Sogomonyan A, Hung SS. (2006) Bioaccumulation and chronic toxicity of dietary L-selenomethionine in juvenile white sturgeon (Acipenser transmontanus). Aquat Toxicol; 79: 401-9spa
dcterms.referencesTipping, E. (2009). Metal contamination in aquatic environments. science and lateral management. - By Samuel N. Luoma and Philip S. Rainbow. Journal of Fish Biology, 75(7), 1911-1912. https://doi.org/10.1111/j.1095-8649.2009.02440_4.xspa
dcterms.referencesTurner, A. (2013). Selenium in sediments and biota from estuaries of southwest England. Marine Pollution Bulletin, 73(1), 192-198. https://doi.org/10.1016/j.marpolbul.2013.05.023spa
dcterms.referencesUlusoy, Ş., Mol, S., Karakulak, F. S., & Kahraman, A. E. (2019). Selenium-Mercury Balance in Commercial Fish Species from the Turkish Waters. Biologicalspa
dcterms.referencesVinceti, M., Filippini, T., & Rothman, K. J. (2018). Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. European Journal of Epidemiology, 33(9), 789-810. https://doi.org/10.1007/s10654-018-0422-8spa
dcterms.referencesVinchira, J. (2014). Utilización de selenio orgánico e inorgánico en dietas prácticas para crecimiento de tilapia nilótica Oreochromis niloticus. Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Producción Animal.spa
dcterms.referencesVinchira, J.E y Muñoz-Ramírez, A.P. (2010). Selenio: nutriente objetivo para mejorar la composición nutricional de los peces de cultivo. Rev. Med. Veterinario. Zoot. [en línea], vol.57, n.1, pp.59-75. ISSN 0120-2952spa
dcterms.referencesVinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International Journal of Environmental Science & Technology, 5(2), 179-182. https://doi.org/10.1007/BF03326011spa
dcterms.referencesVriens, B., Behra, R., Voegelin, A., Zupanic, A., & Winkel, L. H. E. (2016). Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. Environmental Science & Technology, 50(2), 711-720. https://doi.org/10.1021/acs.est.5b04169spa
dcterms.referencesWang, F., & Zhang, J. (2012). Mercury contamination in aquatic ecosystems under a changing environment: Implications for the Three Gorges Reservoir. Chinese Science Bulletin, 58(2), 141–149. doi:10.1007/s11434-012-5490-7spa
dcterms.referencesWorld Health Organization (WHO). (1986). Environmental health criteria 58: selenium. International Program on Chemical Safety; [Geneva, 190 pp.]. http://www.inchem.org/documents/ehc/ehc/ehc58.htmspa
dcterms.referencesYang, D.-Y. Y.-Y., Chen, Y.-W. C.-W., Gunn, J. M. G. M., & Belzile, N. B. (2008). Selenium and mercury in organisms: Interactions and mechanisms. Environmental Reviews. https://doi.org/10.1139/A08-001spa
dcterms.referencesYang, S. I., Lawrence, J. R., Swerhone, G. D. W., Pickering, I. J., Yang, S. I., Lawrence, J. R., Swerhone, G. D. W., & Pickering, I. J. (2011). Biotransformation 75 of selenium and arsenic in multi-species biofilm. Environmental Chemistry, 8(6), 543-551. https://doi.org/10.1071/EN11062spa
dcterms.referencesYi, Y.-J., & Zhang, S.-H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989–3996. https://doi.org/10.1007/s11356-012-0840-1spa
dcterms.referencesYin, J., Wang, L., Chen, Y., Zhang, D., Hegazy, A. M., & Zhang, X. (2019). A comparison of accumulation and depuration effect of dissolved hexavalent chromium (Cr6+) in head and muscle of bighead carp (Aristichthys nobilis) and assessment of the potential health risk for consumers. Food Chemistry, 286, 388–394. https://doi.org/10.1016/j.foodchem.2019.01.186spa
dcterms.referencesYu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C.-J., Wu, C., Zhang, Y., He, N., Fu, P., Wang, Z., Shang, L., Sommar, J., Sonke, J. E., Maurice, L., Guinot, B., & Feng, X. (2016). Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 50(17), 9262-9269. https://doi.org/10.1021/acs.est.6b01782spa
dcterms.referencesZapata, L. A., Usma, J. S., Rodriguez, T., Moreno, X., Franco-Jaramillo, M., Garcia, C., & Castellanos, G. A. (2015). Recursos pesqueros de Colombia, principales especies, conservación y pesca responsable. AUNAP y WWF Colombia.spa
dcterms.referencesZhang, B.-B., Liu, Y.-M., Hu, A.-L., Xu, S.-F., Fan, L.-D., Cheng, M.-L., Li, C., Wei, L.-X., & Liu, J. (2019). HgS and Zuotai differ from HgCl2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicology and Applied Pharmacology, 379, 114615. https://doi.org/10.1016/j.taap.2019.114615spa
dcterms.referencesZhang, H., Feng, X., Chan, H. M., & Larssen, T. (2014). New Insights into Traditional Health Risk Assessments of Mercury Exposure: Implications of Selenium. Environmental Science & Technology, 48(2), 1206-1212. https://doi.org/10.1021/es4051082spa
dcterms.referencesZhang, H., Feng, X., Chan, H. M., & Larssen, T. (2014). New Insights into Traditional Health Risk Assessments of Mercury Exposure: Implications of Selenium. Environmental Science & Technology, 48(2), 1206-1212. https://doi.org/10.1021/es4051082spa
dcterms.referencesZhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J. A., Louis, V. L. S., & Dalziel, J. (2012). Estimation of speciated and total mercury dry 76 deposition at monitoring locations in eastern and central North America. Atmospheric Chemistry and Physics, 12(9), 4327-4340. https://doi.org/10.5194/acp-12-4327-2012spa
dcterms.referencesZillioux, E. J. (2014). Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Usage. Environmental Indicators, 743–766. doi:10.1007/978-94-017-9499-2_42spa
dcterms.referencesZimmermann, L. T., Santos, D. B., Naime, A. A., Leal, R. B., Dórea, J. G., Barbosa, F., Aschner, M., Rocha, J. B. T., & Farina, M. (2013). Comparative study on methyl- and ethylmercury-induced toxicity in C6 glioma cells and the potential role of LAT-1 in mediating mercurial-thiol complexes uptake. NeuroToxicology, 38, 1-8. https://doi.org/10.1016/j.neuro.2013.05.015spa
dcterms.referencesZimmermann, L. T., Santos, D. B. dos, Colle, D., Santos, A. A. dos, Hort, M. A., Garcia, S. C., Bressan, L. P., Bohrer, D., & Farina, M. (2014). Methionine Stimulates Motor Impairment And Cerebellar Mercury Deposition in Methylmercury-Exposed Mice. Journal of Toxicology and Environmental Health, Part A, 77(1-3), 46-56. https://doi.org/10.1080/15287394.2014.865582spa
dcterms.referencesZoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants, 7(5), 66. https://doi.org/10.3390/antiox7050066spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
padillaramirezcamilaalejandra.pdf
Tamaño:
3.1 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
formato de autorizacion.pdf
Tamaño:
2.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones