Publicación: Síntesis verde de nanopartículas de Ag a partir de biomasa vegetal para la determinación de Hg mediante colorimetría digital - Smartphone
dc.contributor.advisor | Pinedo Hernández, José J. | spa |
dc.contributor.author | Madera Santos, Betzaida | |
dc.contributor.author | Ruiz Barrios, Elena Marcela | |
dc.date.accessioned | 2023-08-04T15:47:01Z | |
dc.date.available | 2023-08-04T15:47:01Z | |
dc.date.issued | 2023-08-03 | |
dc.description.abstract | La síntesis de nanopartículas de plata por el enfoque químico verde se ha convertido en una alternativa por sus propiedades únicas y de rentabilidad. En el presente estudio se presenta la síntesis verde de NPs de Ag a partir de cáscara de banano para la determinación y cuantificación de mercurio por colorimetría digital, usando como precursor una solución de AgNO3. Las nanopartículas se caracterizaron mediante las técnicas UV-Visible y FTIR; mientras que, el tamaño y morfología se predijo con base a las consultas bibliográficas. Se confirmó la presencia de las AgNPs por la banda de plasmón superficial que presenta los espectros a 400 nm con un tamaño inferior a 23 nm en forma de cristales esféricos; siendo responsables de la reducción de iones de Ag+ a Ag0, los grupos OH y NH presente en los compuestos de la cáscara de banano. Las AgNPs formadas permitieron la cuantificación selectiva de iones de mercurio en un rango de 200- 600 ppb con R2 de 0.9988 por colorimetría de imagen digital con un porcentaje de error menor al 2%. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCION.............................................................................12 | spa |
dc.description.tableofcontents | 2. MARCO TEORICO.....................................................................13 | spa |
dc.description.tableofcontents | 2.1 GENERALIDADES...........................................................................13 | spa |
dc.description.tableofcontents | 2.2 COLORIMETRIA...........................................................................15 | spa |
dc.description.tableofcontents | 2.2.1 Cromóforos..............................................................................15 | spa |
dc.description.tableofcontents | 2.2.2 Espectrofotometría.................................................................15 | spa |
dc.description.tableofcontents | 2.2.3 Curvas de calibrado...................................................................16 | spa |
dc.description.tableofcontents | 2.3 COLORIMETRIA DE IMAGEN DIGITAL...............................................................16 | spa |
dc.description.tableofcontents | 2.3.1 Obtención de la señal colorimétrica.......................................................17 | spa |
dc.description.tableofcontents | 2.3.2 Espacios de color.............................................................17 | spa |
dc.description.tableofcontents | 2.3.3 Modelo RGB........................................................................17 | spa |
dc.description.tableofcontents | 2.3.4 Software.................................................................................18 | spa |
dc.description.tableofcontents | 2.4 NANOMATERIALES........................................................18 | spa |
dc.description.tableofcontents | 2.4.1 Nanopartículas........................................................18 | spa |
dc.description.tableofcontents | 2.4.2 Síntesis verde............................................................19 | spa |
dc.description.tableofcontents | 2.5 METABOLITOS SECUNDARIOS..............................19 | spa |
dc.description.tableofcontents | 2.5.1 Compuestos fenólicos..................................................20 | spa |
dc.description.tableofcontents | 2.5.2 Glicósidos.....................................................................21 | spa |
dc.description.tableofcontents | 3. OBJETIVOS.........................................................................22 | spa |
dc.description.tableofcontents | 3.1 OBJETIVO GENERAL...................................................22 | spa |
dc.description.tableofcontents | 3.2 OBJETIVO ESPECIFICOS...........................................22 | spa |
dc.description.tableofcontents | 4. METODOLOGIA...............................................................23 | spa |
dc.description.tableofcontents | 4.1 PREPARACION DE LA EXTRACCION DE CASCARA DE BANANO (BCB)...23 | spa |
dc.description.tableofcontents | 4.2 SINTESIS DE NANOPARTICULAS DE Ag USANDO BCB.....23 | spa |
dc.description.tableofcontents | 4.3 CARACTERIZACION DE LAS AgNPs.................................................24 | spa |
dc.description.tableofcontents | 4.4 RESPUESTAS COLORIMETRICA DEL Hg2+ ..................................25 | spa |
dc.description.tableofcontents | 4.5 DISEÑO DE LA CAJA....................................................................................25 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN....................................................................26 | spa |
dc.description.tableofcontents | 5.1 SÍNTESIS DE NANOPARTÍCULAS DE PLATA.................................26 | spa |
dc.description.tableofcontents | 5.2 OPTIMIZACIÓN DE LA SÍNTESIS VERDE DE NANOPARTÍCULAS DE PLATA (AG)...28 | spa |
dc.description.tableofcontents | 5.2.1 Efecto de la concentración y volumen del extracto............................29 | spa |
dc.description.tableofcontents | 5.2.2 Efecto del pH.............................................................31 | spa |
dc.description.tableofcontents | 5.2.3 Efecto del periodo de incubación................33 | spa |
dc.description.tableofcontents | 5.3 ESPECTROSCOPIA FTIR................................................33 | spa |
dc.description.tableofcontents | 5.4 RESPUESTA COLORIMETRÍA HACIA EL Hg2+......35 | spa |
dc.description.tableofcontents | 5.4.1 Selectividad.........................................38 | spa |
dc.description.tableofcontents | 6. CONCLUSION...............................................40 | spa |
dc.description.tableofcontents | 7. Anexos................................................................41 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFIA..............................................50 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7574 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Silver nanoparticles | eng |
dc.subject.keywords | Secondary metabolites | eng |
dc.subject.keywords | Surface plasmon | eng |
dc.subject.keywords | Digital image | eng |
dc.subject.keywords | Colorimetry | eng |
dc.subject.keywords | RGB | eng |
dc.subject.proposal | Nanopartículas de plata | spa |
dc.subject.proposal | Metabolitos secundarios | spa |
dc.subject.proposal | Plasmón superficial | spa |
dc.subject.proposal | Imagen digital | spa |
dc.subject.proposal | Colorimetría | spa |
dc.subject.proposal | RGB | spa |
dc.title | Síntesis verde de nanopartículas de Ag a partir de biomasa vegetal para la determinación de Hg mediante colorimetría digital - Smartphone | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. A. Ávalos and E. Perez, ―Metabolismo secundario de plantas,‖ Reduca Biol. Ser. Fisiol. Veg., vol. 2, no. 3, pp. 119–145, 2009. | spa |
dcterms.references | 2. Aguilar, M. (2009). Synthesis and characterization of silver nanoparticles: effect on Colletotrichum gloesporioides. [Tesis]. Instituto Politecnico Nacional.,Centro de investigación en ciencia aplicada y tecnologia aplicada. | spa |
dcterms.references | 3. Akintelu, S. A., Bo, Y., & Folorunso, A. S. (2020). A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. Journal of Chemistry, 2020, 1–12. doi:10.1155/2020/3189043 | spa |
dcterms.references | 4. Amin Baghizadeh, Shahla Ranjbar, Vinod Kumar Gupta, Mohammad Asif, Shahram Pourseyedi, Mohammad J. Karimi, Reza Mohammadinejad,(2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase,. Journal of Molecular Liquids. Volume 207,2015, Pages 159-163, ISSN 0167-7322: https://doi.org/10.1016/j.molliq.2015.03.029. | spa |
dcterms.references | 5. Anal, AK, Jaisanti, S. y Noomhorm, A. (2012). Rendimiento mejorado de extractos fenólicos de cáscaras de plátano (Musa acuminata Colla AAA) y cortezas de canela (Cinnamomum varum) y sus potenciales antioxidantes en aceite de pescado. Revista de ciencia y tecnología de los alimentos, 51(10), 2632–2639. doi:10.1007/s13197-012-0793-x | spa |
dcterms.references | 6. Anjali, Sumit Kumar, Tulasi Korra, Rajneesh Thakur, R Arutselvan, Abhijeet Shankar Kashyap, Yasser Nehela, Victor Chaplygin, Tatiana Minkina, Chetan K. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress, Plant Stress, Volume 8, 100154, ISSN 2667-064X, https://doi.org/10.1016/j.stress.2023.100154. | spa |
dcterms.references | 7. Annadurai G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190 | spa |
dcterms.references | 8. Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. doi:10.1039/d0ma00807a | spa |
dcterms.references | 9. Barman, K., Chowdhury, D., & Baruah, P. K. (2019). Bio-synthesized silver nanoparticles using Zingiber officinale rhizome extract as efficient catalyst for the degradation of environmental pollutants. Inorganic and Nano-Metal Chemistry, 1–9. doi:10.1080/24701556.2019.1661468 | spa |
dcterms.references | 10. Bi, N., Zhang, Y., Xi, Y., Hu, M., Song, W., Xu, J., & Jia, L. (2021). Colorimetric response of lysine-caped gold/silver alloy nanocomposites for mercury(II) ion detection. Colloids and Surfaces B: Biointerfaces, 205, 111846. doi:10.1016/j.colsurfb.2021.11184 | spa |
dcterms.references | 11. Broadbent, A. D. (2017). Colorimetry, Methods. Encyclopedia of Spectroscopy and Spectrometry, 321–327. doi:10.1016/b978-0-12-803224-4.00014-5 | spa |
dcterms.references | 12. Castellano, G., González-Santander, J. L., Lara, A., & Torrens, F. (2013). Classification of flavonoid compounds by using entropy of information theory. Phytochemistry, 93, 182–191. doi:10.1016/j.phytochem.2013.03.024 | spa |
dcterms.references | 13. Chandran, N., Bayal, M., Pilankatta, R., Nair, SS (2021). Ajuste de Resonancia de Plasmón Superficial (SPR) en Nanopartículas Metálicas para sus Aplicaciones en SERS. En: Nanomateriales para dispositivos luminiscentes, sensores y aplicaciones de bioimagen. Progreso en ciencia óptica y fotónica, vol 16. Springer, Singapur. https://doi.org/10.1007/978-981-16-5367-4_4 | spa |
dcterms.references | 14. Clydesdale, F. M., & Ahmed, E. M. (1978). Colorimetry — methodology and applications∗. C R C Critical Reviews in Food Science and Nutrition, 10(3), 243–301. doi:10.1080/1040839780952725 | spa |
dcterms.references | 15. Eyring, M. B., & Martin, P. (2013). Spectroscopy in Forensic Science. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. doi:10.1016/b978-0- 12-409547-2.05455-x | spa |
dcterms.references | 16. Fan, Y., Li, J., Guo, Y., Xie, L. y Zhang, G. (2021). Colorimetría de imágenes digitales en teléfonos inteligentes para análisis químico: una revisión. Medida, 171, 108829. doi:10.1016/j.medida.2020.108829 | spa |
dcterms.references | 17. Fernandes, G. M., Silva, W. R., Barreto, D. N., Lamarca, R. S., Lima Gomes, P. C. F., Flávio da S. Petruci, J., & Batista, A. D. (2020). Novel approaches to colorimetric measurements in analytical chemistry – A review. Analytica Chimica Acta. doi:10.1016/j.aca.2020.07.030 | spa |
dcterms.references | 18. FIRDAUS, M. L., FITRIANI, I., WYANTUTI, S., HARTATI, Y. W., KHAYDAROV, R., MCALISTER, J. A., … GAMO, T. (2017). Colorimetric Detection of Mercury(II) Ion in Aqueous Solution Using Silver Nanoparticles. Analytical Sciences, 33(7), 831–837. doi:10.2116/analsci.33.831 | spa |
dcterms.references | 19. Fu, L.-Ming.; Hsu, J.-H.; Shih, MK-K.; Hsieh, C.-W.; Ju, W.-J.; Chen, Y.-W.; Lee, B.-H.; Hou, C.-Y. Optimization of Silver Nanoparticle Synthesis Processes and their Application in Mercury Detection. micromachines 2021 , 12 , 1123. https://doi.org/10.3390/mi12091123 | spa |
dcterms.references | 20. Gao, C., & Huang, X.-J. (2013). Voltammetric determination of mercury(II). TrAC Trends in Analytical Chemistry, 51, 1–12. doi:10.1016/j.trac.2013.05.010 | spa |
dcterms.references | 21. Gene, M., Lynne, B., Shu-Biao, W., Swick, w., Nguyen, T., Morgan, N. (2022). Abductive statistical methods improve the results of calibration curve bioassays: An example of determining zinc bioavailability in broiler chickens, Animal Nutrition, Volume 10, Pages 294-304, ISSN2405-6545, https://doi.org/10.1016/j.aninu.2022.04.008. | spa |
dcterms.references | 22. Germer, T. A., Zwinkels, J. C., & Tsai, B. K. (2014). Theoretical Concepts in Spectrophotometric Measurements. Spectrophotometry - Accurate Measurement of Optical Properties of Materials, 11–66. doi:10.1016/b978-0-12-386022-4.00002-9 | spa |
dcterms.references | 23. Gilchrist, A., & Nobbs, J. (2017). Colorimetry, Theory. Encyclopedia of Spectroscopy and Spectrometry, 328–333. doi:10.1016/b978-0-12-803224-4.00124-2 | spa |
dcterms.references | 24. Gómez, C.,Rodríguez, M., Vallejo, S., Murillo, J. P., Lopretti, M., & Vega, J. R. (2020). Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules, 25(17), 3829. doi:10.3390/molecules25173829 | spa |
dcterms.references | 25. GP salvaje , en Enciclopedia de ciencias de la alimentación y nutrición (segunda edición), 2003 | spa |
dcterms.references | 26. Guillén, E., Ferrer-Roselló, M., Agrisuelas, J., García-Jareño, J. J., & Vicente, F. (2020). Digital video-electrochemistry (DVEC) to assess electrochromic materials. Acta, 137340. doi:10.1016/j.electacta.2020.1373 | spa |
dcterms.references | 27. Hang, T., Christopher, J,. Quan V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods, Volume 40, Pages 238-248, ISSN 1756-4646, https://doi.org/10.1016/j.jff.2017.11.006. | spa |
dcterms.references | 28. Hasanjani, H. R. A., & Zarei, K. (2018). An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosensors and Bioelectronics. doi:10.1016/j.bios.2018.12.039 in the frequency domain: RGB colorimetry impedance spectroscopy. Electrochimica | spa |
dcterms.references | 29. Hong, J. I., & Chang, B.-Y. (2014). Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip, 14(10), 1725–1732. Doi:10.1039/c3lc51451j | spa |
dcterms.references | 30. Idros, N., & Chu, D. (2018). Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ions Detections. ACS Sensors. doi:10.1021/acssensors.8b00490. | spa |
dcterms.references | 31. J. Infant, Thaninayagam Ebenezer, Gopi R.R., H. Joy Prabu, I. Johnson, Allen Joseph Anthuvan (2022). Colorimetric sensing of mercury ions using green synthesized silver nanoparticles from Trigonella foenum (Linnaeus), Materials Today: Proceedings,Volume 68, Part 3,2022. Pages 319-325, ISSN 2214-7853: https://doi.org/10.1016/j.matpr.2022.05.516 | spa |
dcterms.references | 32. Jamila B. Santiago, Fortunato B. Sevilla (2022). Smartphone-based digital colorimetric measurement of dimethyl sulfide in wastewater. Microchemical Journal. Volume 172, Part A. https://doi.org/10.1016/j.microc.2021.106952. | spa |
dcterms.references | 33. Jyoti, C., Giriraj, T., Megha, Y., Chesta, M. (2023).Green route synthesis of metallic nanoparticles using various herbal extracts: A review, Biocatalysis and Agricultural Biotechnology. Volume 50, 102692, ISSN 1878-8181, https://doi.org/10.1016/j.bcab.2023.102692. | spa |
dcterms.references | 34. Karimi, S., & Samimi, T. (2019). Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117216. doi:10.1016/j.saa.2019.117216 | spa |
dcterms.references | 35. Kokila, T., Ramesh, PS y Geetha, D. Biosíntesis de nanopartículas de plata del extracto de cáscara de plátano Cavendish y su ensayo antibacteriano y de eliminación de radicales libres: un enfoque biológico novedoso. Appl Nanosci 5 , 911–920 (2015). https://doi.org/10.1007/s13204-015-0401-2 | spa |
dcterms.references | 36. Kuball, H.-G., Höfer, T., & Kiesewalter, S. (2017). Chiroptical Spectroscopy, General Theory Encyclopedia of Spectroscopy and Spectrometry, 217–231. doi:10.1016/b978-0-12-409547-2.04980-5 | spa |
dcterms.references | 37. Kumar, V., Singh, D. K., Mohan, S., Bano, D., Gundampati, R. K., & Hasan, S. H. (2017). Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. Journal of Photochemistry and Photobiology B: Biology, 168, 67–77. doi:10.1016/j.jphotobiol.2017.01.022 | spa |
dcterms.references | 38. M. Lutfi Firdaus, Wiwit Alwi, Ferli Trinoveldi, Iman Rahayu, Lena Rahmidar, Kancono Warsito (2014). Determination of Chromium and Iron Using Digital Image-based Colorimetry. Sciences, Volume 20, 2014, Pages 298-304: https://doi.org/10.1016/j.proenv.2014.03.03 | spa |
dcterms.references | 39. M.K. ALQADI1 O.A. ABO NOQTAH1, F.Y. ALZOUBI1 , J. ALZOUBY2 , K. ALJARRAH1 (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32(1), 2014, pp. 107-111 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.2478/s13536-013-0166-9 | spa |
dcterms.references | 40. María Siraja, Zafar Ali Shaa, Sami Ullahb, Hamida BibiC, Muhammad Sulemana, Afia Ziaa, Tariq Masuda, Zafar Iqbala, Mudasar Iqbala (2020). Biosynthesized silver nanoparticles from shoot and seed extracts of Asphodelus tenufolius for heavy metal sensing. ScienceAsia 46 (2020): 697-705 |doi: 10.2306/scienceasia1513-1874.2020.097 | spa |
dcterms.references | 41. Mei, Q., Jing, H., Li, Y., Yisibashaer, W., Chen, J., Nan Li, B., & Zhang, Y. (2016).Smartphone based visual and quantitative assays on upconversional paper sensor.Biosensors and Bioelectronics, 75, 427–432. doi:10.1016/j.bios.2015.08.054 | spa |
dcterms.references | 42. Millington, K. R. (2009). Improving the whiteness and photostability of wool. Advances in Wool Technology, 217–247. doi:10.1533/9781845695460.2.217 | spa |
dcterms.references | 43. Monisha, Shrivas, K., Kant, T., Patel, S., Devi, R., Dahariya, N. S., … Rai, J. (2021). Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). Journal of Hazardous Materials, 414, 125440. doi:10.1016/j.jhazmat.2021.125440 | spa |
dcterms.references | 44. Motta, G., Angonese, M., Ayala, G., Salvador, S. (2022). Beyond the peel: Biorefinery approach of other banana residues as a springboard to achieve the United Nations’ sustainable development goals. Sustainable Chemistry and Pharmacy. Volume 30, 100893. https://doi.org/10.1016/j.scp.2022.100893. | spa |
dcterms.references | 45. Ngu-Schwemlein, M., Merle, J. K., Healy, P., Schwemlein, S., & Rhodes, S. (2009). Thermodynamics of the complexation of Hg(II) by cysteinyl peptide ligands using isothermal titration calorimetry. Thermochimica Acta, 496(1-2), 129–135. doi:10.1016/j.tca.2009.07.010 | spa |
dcterms.references | 46. Nigmatullin,R., Bataleva, E., Nepeina, K., Matiukov, V. (2023). Quality control of the initial magnetotelluric data: Analysis of calibration curves using a fitting function represented by the ratio of 4th-order polynomials, Measurement, Volume 216, 112914, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2023.112914. | spa |
dcterms.references | 47. Nitinaivinij, K., Parnklang, T., Thammacharoen, C., Ekgasit, S., & Wongravee, K. (2014). Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis. Anal. Methods, 6(24), 9816–9824. doi:10.1039/c4ay02339k | spa |
dcterms.references | 48. Pareek, Sunil (2016). Composición nutricional de los cultivares de fruta || Composición nutricional y bioquímica del banano (Musa spp.) Cultivares. , (), 49–81. doi:10.1016/B978-0-12-408117-8.00003-9 | spa |
dcterms.references | 49. Pirah Siyal, Ayman Nafady, Sirajuddin, Roomia Memon, Syed Tufail Hussain Sherazi, Jan Nisar, Altaf Ali Siyal, Muhammad Raza Shah, Sarfaraz Ahmed Mahesar, Shabana Bhagat (2021). Highly selective, sensitive and simpler colorimetric sensor for Fe2+ detection based on biosynthesized gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Volume 254,2021,119645. ISSN 1386-1425: https://doi.org/10.1016/j.saa.2021.119645. | spa |
dcterms.references | 50. Prema, P., Veeramanikandan, V., Rameshkumar, K., Gatasheh, M. K., Hatamleh, A. A., Balasubramani, R., & Balaji, P. (2022). Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environmental Research, 204, 111915. doi:10.1016/j.envres.2021.111915 | spa |
dcterms.references | 51. Punnoose, MS, Bijimol, D., Abraham, T., Plathanam, NJ y Mathew, B. (2021). Nanopartículas de plata no modificadas sintetizadas verdes como sensor dual reproducible para iones de mercurio y catalizador para reducir los contaminantes ambientales. BioNanoScience, 11(3), 739–754. doi:10.1007/s12668-021-00883-w | spa |
dcterms.references | 52. Rashmi V.& Bordiwal (2023). Green synthesis and Applications of Metal Nanoparticles.- A Review Article. Results in Chemistry. Volume 5, 2023,100832,ISSN 2211-7156: https://doi.org/10.1016/j.rechem.2023.100832. | spa |
dcterms.references | 53. Ratnarathorn, N., Chailapakul, O., Henry, C. S., & Dungchai, W. (2012). Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 99, 552– 557. doi:10.1016/j.talanta.2012.06.033 | spa |
dcterms.references | 54. Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental Mercury and Its Toxic Effects. Journal of Preventive Medicine & Public Health, 47(2), 74–83. doi:10.3961/jpmph.2014.47.2.74 | spa |
dcterms.references | 55. Romero, G. y Moya, SE (2012). Síntesis de Nanopartículas Orgánicas. Fronteras de la nanociencia, 115–141. doi:10.1016/b978-0-12-415769-9.00004-2 | spa |
dcterms.references | 56. Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702. doi:10.1039/c8ra08982e | spa |
dcterms.references | 57. Roy, N., Gaur, A., Jain, A., Bhattacharya, S. y Rani, V. (2013). Síntesis verde de nanopartículas de plata: un enfoque para superar la toxicidad. Toxicología y farmacología ambiental, 36(3), 807–812. doi:10.1016/j.etap.2013.07.005 | spa |
dcterms.references | 58. Rüdiger, W. (1986). El cromóforo. En: Kendrick, RE, Kronenberg, GHM (eds) Photomorphogenesis in plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017- 2624-5_2 | spa |
dcterms.references | 59. Santacruz, S., & Espinosa Borrero, A. (2017). Phenolic compounds from the peel of Musa cavendish, Musa acuminata and Musa cavandanaish. Revista Politécnica Vol. 38 Núm. 2 (2017) | spa |
dcterms.references | 60. Sebastian, M., Aravind, A., & Mathew, B. (2018). Green silver-nanoparticle-based dual sensor for toxic Hg(II) ions. Nanotechnology, 29(35), 355502. doi:10.1088/1361- 6528/aacb9a | spa |
dcterms.references | 61. Sudip, S., Rittick M., Paulami, D., Amit k. (2022). Synthesis of biogenic silver nanoparticles using medicinal plant extract: A new age in nanomedicine to combat multidrug-resistant pathogens. In Nanobiotechnology for Plant Protection, Green Synthesis of Silver Nanomaterials, Pages 359-387, ISBN 9780128245088, https://doi.org/10.1016/B978-0-12-824508-8.00012-5. | spa |
dcterms.references | 62. Trease, GE y Evans, WC (2002) Farmacognosia. 15.ª edición, Saunders Publishers, Londres, 42-44, 221-229, 246-249, 304-306, 331-332, 391-393. | spa |
dcterms.references | 63. Vu, Hang T.; Scarlett, Christopher J.; Vuong, Quan V. (2016). Optimización de las condiciones de extracción asistida por ultrasonidos para la recuperación de compuestos fenólicos y capacidad antioxidante del plátano ( <i>Musa cavendish</i> ) peel. Journal of Food Processing and Preservation, (), –. doi:10.1111/jfpp.13148 | spa |
dcterms.references | 64. Witzel, C., & Gegenfurtner, K. R. (2018). Color Perception: Objects, Constancy, and Categories. Annual Review of Vision Science, 4(1). doi:10.1146/annurev-vision-091517- 034231 | spa |
dcterms.references | 65. Xiaolin, C., Jiajie, C., Jianxing, Z., Xiaoqi, D., Yuhang, P., Yili, Z., Ho-Pui, H., Zhi G., Han, Z., Junle, Q., Yonghong, Shao. (2023) Advances in inorganic nanoparticles trapping stiffness measurement: A promising tool for energy and environmental study, Energy Reviews, Volume 2, Issue 2, 100018, 2772-9702, https://doi.org/10.1016/j.enrev.2023.100018 | spa |
dcterms.references | 66. Y. Ohno (2000). Fundamentos de CIE para mediciones de color, NIP y Conferencia de Fabricación Digital, en: 2000 Conferencia Internacional sobre Tecnologías de Impresión Digital, 2000, pp. 425–873 | spa |
dcterms.references | 67. Yang, C.-X., Sun, X.-Y., Liu, B., & Lian, H.-T. (2007). Determination of Total Phosphorus in Water Sample by Digital Imaging Colorimetry. Chinese Journal of Analytical Chemistry, 35(6), 850–853. doi:10.1016/s1872-2040(07)60059-0 | spa |
dcterms.references | 68. Yavuz, E., Tokalıoğlu, Ş., & Patat, Ş. (2018). Magnetic dispersive solid phase extraction with graphene/ZnFe 2 O 4 nanocomposite adsorbent for the sensitive determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry. Microchemical Journal, 142, 85–93. doi:10.1016/j.microc.2018.06.019 | spa |
dcterms.references | 69. Zhang L., Yiru X., Xu, J., Zhang, H., Tongqian, Z., Lei Jia. (2022).Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg2+ and cysteine. Journal of Hazardous Materials, Volume 430, 0304-3894. https://doi.org/10.1016/j.jhazmat.2022.128478. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: