Publicación:
Síntesis verde de nanopartículas de Ag a partir de biomasa vegetal para la determinación de Hg mediante colorimetría digital - Smartphone

dc.contributor.advisorPinedo Hernández, José J.spa
dc.contributor.authorMadera Santos, Betzaida
dc.contributor.authorRuiz Barrios, Elena Marcela
dc.date.accessioned2023-08-04T15:47:01Z
dc.date.available2023-08-04T15:47:01Z
dc.date.issued2023-08-03
dc.description.abstractLa síntesis de nanopartículas de plata por el enfoque químico verde se ha convertido en una alternativa por sus propiedades únicas y de rentabilidad. En el presente estudio se presenta la síntesis verde de NPs de Ag a partir de cáscara de banano para la determinación y cuantificación de mercurio por colorimetría digital, usando como precursor una solución de AgNO3. Las nanopartículas se caracterizaron mediante las técnicas UV-Visible y FTIR; mientras que, el tamaño y morfología se predijo con base a las consultas bibliográficas. Se confirmó la presencia de las AgNPs por la banda de plasmón superficial que presenta los espectros a 400 nm con un tamaño inferior a 23 nm en forma de cristales esféricos; siendo responsables de la reducción de iones de Ag+ a Ag0, los grupos OH y NH presente en los compuestos de la cáscara de banano. Las AgNPs formadas permitieron la cuantificación selectiva de iones de mercurio en un rango de 200- 600 ppb con R2 de 0.9988 por colorimetría de imagen digital con un porcentaje de error menor al 2%.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. INTRODUCCION.............................................................................12spa
dc.description.tableofcontents2. MARCO TEORICO.....................................................................13spa
dc.description.tableofcontents2.1 GENERALIDADES...........................................................................13spa
dc.description.tableofcontents2.2 COLORIMETRIA...........................................................................15spa
dc.description.tableofcontents2.2.1 Cromóforos..............................................................................15spa
dc.description.tableofcontents2.2.2 Espectrofotometría.................................................................15spa
dc.description.tableofcontents2.2.3 Curvas de calibrado...................................................................16spa
dc.description.tableofcontents2.3 COLORIMETRIA DE IMAGEN DIGITAL...............................................................16spa
dc.description.tableofcontents2.3.1 Obtención de la señal colorimétrica.......................................................17spa
dc.description.tableofcontents2.3.2 Espacios de color.............................................................17spa
dc.description.tableofcontents2.3.3 Modelo RGB........................................................................17spa
dc.description.tableofcontents2.3.4 Software.................................................................................18spa
dc.description.tableofcontents2.4 NANOMATERIALES........................................................18spa
dc.description.tableofcontents2.4.1 Nanopartículas........................................................18spa
dc.description.tableofcontents2.4.2 Síntesis verde............................................................19spa
dc.description.tableofcontents2.5 METABOLITOS SECUNDARIOS..............................19spa
dc.description.tableofcontents2.5.1 Compuestos fenólicos..................................................20spa
dc.description.tableofcontents2.5.2 Glicósidos.....................................................................21spa
dc.description.tableofcontents3. OBJETIVOS.........................................................................22spa
dc.description.tableofcontents3.1 OBJETIVO GENERAL...................................................22spa
dc.description.tableofcontents3.2 OBJETIVO ESPECIFICOS...........................................22spa
dc.description.tableofcontents4. METODOLOGIA...............................................................23spa
dc.description.tableofcontents4.1 PREPARACION DE LA EXTRACCION DE CASCARA DE BANANO (BCB)...23spa
dc.description.tableofcontents4.2 SINTESIS DE NANOPARTICULAS DE Ag USANDO BCB.....23spa
dc.description.tableofcontents4.3 CARACTERIZACION DE LAS AgNPs.................................................24spa
dc.description.tableofcontents4.4 RESPUESTAS COLORIMETRICA DEL Hg2+ ..................................25spa
dc.description.tableofcontents4.5 DISEÑO DE LA CAJA....................................................................................25spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN....................................................................26spa
dc.description.tableofcontents5.1 SÍNTESIS DE NANOPARTÍCULAS DE PLATA.................................26spa
dc.description.tableofcontents5.2 OPTIMIZACIÓN DE LA SÍNTESIS VERDE DE NANOPARTÍCULAS DE PLATA (AG)...28spa
dc.description.tableofcontents5.2.1 Efecto de la concentración y volumen del extracto............................29spa
dc.description.tableofcontents5.2.2 Efecto del pH.............................................................31spa
dc.description.tableofcontents5.2.3 Efecto del periodo de incubación................33spa
dc.description.tableofcontents5.3 ESPECTROSCOPIA FTIR................................................33spa
dc.description.tableofcontents5.4 RESPUESTA COLORIMETRÍA HACIA EL Hg2+......35spa
dc.description.tableofcontents5.4.1 Selectividad.........................................38spa
dc.description.tableofcontents6. CONCLUSION...............................................40spa
dc.description.tableofcontents7. Anexos................................................................41spa
dc.description.tableofcontents8. BIBLIOGRAFIA..............................................50spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7574
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSilver nanoparticleseng
dc.subject.keywordsSecondary metaboliteseng
dc.subject.keywordsSurface plasmoneng
dc.subject.keywordsDigital imageeng
dc.subject.keywordsColorimetryeng
dc.subject.keywordsRGBeng
dc.subject.proposalNanopartículas de plataspa
dc.subject.proposalMetabolitos secundariosspa
dc.subject.proposalPlasmón superficialspa
dc.subject.proposalImagen digitalspa
dc.subject.proposalColorimetríaspa
dc.subject.proposalRGBspa
dc.titleSíntesis verde de nanopartículas de Ag a partir de biomasa vegetal para la determinación de Hg mediante colorimetría digital - Smartphonespa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references1. A. Ávalos and E. Perez, ―Metabolismo secundario de plantas,‖ Reduca Biol. Ser. Fisiol. Veg., vol. 2, no. 3, pp. 119–145, 2009.spa
dcterms.references2. Aguilar, M. (2009). Synthesis and characterization of silver nanoparticles: effect on Colletotrichum gloesporioides. [Tesis]. Instituto Politecnico Nacional.,Centro de investigación en ciencia aplicada y tecnologia aplicada.spa
dcterms.references3. Akintelu, S. A., Bo, Y., & Folorunso, A. S. (2020). A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. Journal of Chemistry, 2020, 1–12. doi:10.1155/2020/3189043spa
dcterms.references4. Amin Baghizadeh, Shahla Ranjbar, Vinod Kumar Gupta, Mohammad Asif, Shahram Pourseyedi, Mohammad J. Karimi, Reza Mohammadinejad,(2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase,. Journal of Molecular Liquids. Volume 207,2015, Pages 159-163, ISSN 0167-7322: https://doi.org/10.1016/j.molliq.2015.03.029.spa
dcterms.references5. Anal, AK, Jaisanti, S. y Noomhorm, A. (2012). Rendimiento mejorado de extractos fenólicos de cáscaras de plátano (Musa acuminata Colla AAA) y cortezas de canela (Cinnamomum varum) y sus potenciales antioxidantes en aceite de pescado. Revista de ciencia y tecnología de los alimentos, 51(10), 2632–2639. doi:10.1007/s13197-012-0793-xspa
dcterms.references6. Anjali, Sumit Kumar, Tulasi Korra, Rajneesh Thakur, R Arutselvan, Abhijeet Shankar Kashyap, Yasser Nehela, Victor Chaplygin, Tatiana Minkina, Chetan K. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress, Plant Stress, Volume 8, 100154, ISSN 2667-064X, https://doi.org/10.1016/j.stress.2023.100154.spa
dcterms.references7. Annadurai G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190spa
dcterms.references8. Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. doi:10.1039/d0ma00807aspa
dcterms.references9. Barman, K., Chowdhury, D., & Baruah, P. K. (2019). Bio-synthesized silver nanoparticles using Zingiber officinale rhizome extract as efficient catalyst for the degradation of environmental pollutants. Inorganic and Nano-Metal Chemistry, 1–9. doi:10.1080/24701556.2019.1661468spa
dcterms.references10. Bi, N., Zhang, Y., Xi, Y., Hu, M., Song, W., Xu, J., & Jia, L. (2021). Colorimetric response of lysine-caped gold/silver alloy nanocomposites for mercury(II) ion detection. Colloids and Surfaces B: Biointerfaces, 205, 111846. doi:10.1016/j.colsurfb.2021.11184spa
dcterms.references11. Broadbent, A. D. (2017). Colorimetry, Methods. Encyclopedia of Spectroscopy and Spectrometry, 321–327. doi:10.1016/b978-0-12-803224-4.00014-5spa
dcterms.references12. Castellano, G., González-Santander, J. L., Lara, A., & Torrens, F. (2013). Classification of flavonoid compounds by using entropy of information theory. Phytochemistry, 93, 182–191. doi:10.1016/j.phytochem.2013.03.024spa
dcterms.references13. Chandran, N., Bayal, M., Pilankatta, R., Nair, SS (2021). Ajuste de Resonancia de Plasmón Superficial (SPR) en Nanopartículas Metálicas para sus Aplicaciones en SERS. En: Nanomateriales para dispositivos luminiscentes, sensores y aplicaciones de bioimagen. Progreso en ciencia óptica y fotónica, vol 16. Springer, Singapur. https://doi.org/10.1007/978-981-16-5367-4_4spa
dcterms.references14. Clydesdale, F. M., & Ahmed, E. M. (1978). Colorimetry — methodology and applications∗. C R C Critical Reviews in Food Science and Nutrition, 10(3), 243–301. doi:10.1080/1040839780952725spa
dcterms.references15. Eyring, M. B., & Martin, P. (2013). Spectroscopy in Forensic Science. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. doi:10.1016/b978-0- 12-409547-2.05455-xspa
dcterms.references16. Fan, Y., Li, J., Guo, Y., Xie, L. y Zhang, G. (2021). Colorimetría de imágenes digitales en teléfonos inteligentes para análisis químico: una revisión. Medida, 171, 108829. doi:10.1016/j.medida.2020.108829spa
dcterms.references17. Fernandes, G. M., Silva, W. R., Barreto, D. N., Lamarca, R. S., Lima Gomes, P. C. F., Flávio da S. Petruci, J., & Batista, A. D. (2020). Novel approaches to colorimetric measurements in analytical chemistry – A review. Analytica Chimica Acta. doi:10.1016/j.aca.2020.07.030spa
dcterms.references18. FIRDAUS, M. L., FITRIANI, I., WYANTUTI, S., HARTATI, Y. W., KHAYDAROV, R., MCALISTER, J. A., … GAMO, T. (2017). Colorimetric Detection of Mercury(II) Ion in Aqueous Solution Using Silver Nanoparticles. Analytical Sciences, 33(7), 831–837. doi:10.2116/analsci.33.831spa
dcterms.references19. Fu, L.-Ming.; Hsu, J.-H.; Shih, MK-K.; Hsieh, C.-W.; Ju, W.-J.; Chen, Y.-W.; Lee, B.-H.; Hou, C.-Y. Optimization of Silver Nanoparticle Synthesis Processes and their Application in Mercury Detection. micromachines 2021 , 12 , 1123. https://doi.org/10.3390/mi12091123spa
dcterms.references20. Gao, C., & Huang, X.-J. (2013). Voltammetric determination of mercury(II). TrAC Trends in Analytical Chemistry, 51, 1–12. doi:10.1016/j.trac.2013.05.010spa
dcterms.references21. Gene, M., Lynne, B., Shu-Biao, W., Swick, w., Nguyen, T., Morgan, N. (2022). Abductive statistical methods improve the results of calibration curve bioassays: An example of determining zinc bioavailability in broiler chickens, Animal Nutrition, Volume 10, Pages 294-304, ISSN2405-6545, https://doi.org/10.1016/j.aninu.2022.04.008.spa
dcterms.references22. Germer, T. A., Zwinkels, J. C., & Tsai, B. K. (2014). Theoretical Concepts in Spectrophotometric Measurements. Spectrophotometry - Accurate Measurement of Optical Properties of Materials, 11–66. doi:10.1016/b978-0-12-386022-4.00002-9spa
dcterms.references23. Gilchrist, A., & Nobbs, J. (2017). Colorimetry, Theory. Encyclopedia of Spectroscopy and Spectrometry, 328–333. doi:10.1016/b978-0-12-803224-4.00124-2spa
dcterms.references24. Gómez, C.,Rodríguez, M., Vallejo, S., Murillo, J. P., Lopretti, M., & Vega, J. R. (2020). Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules, 25(17), 3829. doi:10.3390/molecules25173829spa
dcterms.references25. GP salvaje , en Enciclopedia de ciencias de la alimentación y nutrición (segunda edición), 2003spa
dcterms.references26. Guillén, E., Ferrer-Roselló, M., Agrisuelas, J., García-Jareño, J. J., & Vicente, F. (2020). Digital video-electrochemistry (DVEC) to assess electrochromic materials. Acta, 137340. doi:10.1016/j.electacta.2020.1373spa
dcterms.references27. Hang, T., Christopher, J,. Quan V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods, Volume 40, Pages 238-248, ISSN 1756-4646, https://doi.org/10.1016/j.jff.2017.11.006.spa
dcterms.references28. Hasanjani, H. R. A., & Zarei, K. (2018). An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosensors and Bioelectronics. doi:10.1016/j.bios.2018.12.039 in the frequency domain: RGB colorimetry impedance spectroscopy. Electrochimicaspa
dcterms.references29. Hong, J. I., & Chang, B.-Y. (2014). Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip, 14(10), 1725–1732. Doi:10.1039/c3lc51451jspa
dcterms.references30. Idros, N., & Chu, D. (2018). Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ions Detections. ACS Sensors. doi:10.1021/acssensors.8b00490.spa
dcterms.references31. J. Infant, Thaninayagam Ebenezer, Gopi R.R., H. Joy Prabu, I. Johnson, Allen Joseph Anthuvan (2022). Colorimetric sensing of mercury ions using green synthesized silver nanoparticles from Trigonella foenum (Linnaeus), Materials Today: Proceedings,Volume 68, Part 3,2022. Pages 319-325, ISSN 2214-7853: https://doi.org/10.1016/j.matpr.2022.05.516spa
dcterms.references32. Jamila B. Santiago, Fortunato B. Sevilla (2022). Smartphone-based digital colorimetric measurement of dimethyl sulfide in wastewater. Microchemical Journal. Volume 172, Part A. https://doi.org/10.1016/j.microc.2021.106952.spa
dcterms.references33. Jyoti, C., Giriraj, T., Megha, Y., Chesta, M. (2023).Green route synthesis of metallic nanoparticles using various herbal extracts: A review, Biocatalysis and Agricultural Biotechnology. Volume 50, 102692, ISSN 1878-8181, https://doi.org/10.1016/j.bcab.2023.102692.spa
dcterms.references34. Karimi, S., & Samimi, T. (2019). Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117216. doi:10.1016/j.saa.2019.117216spa
dcterms.references35. Kokila, T., Ramesh, PS y Geetha, D. Biosíntesis de nanopartículas de plata del extracto de cáscara de plátano Cavendish y su ensayo antibacteriano y de eliminación de radicales libres: un enfoque biológico novedoso. Appl Nanosci 5 , 911–920 (2015). https://doi.org/10.1007/s13204-015-0401-2spa
dcterms.references36. Kuball, H.-G., Höfer, T., & Kiesewalter, S. (2017). Chiroptical Spectroscopy, General Theory Encyclopedia of Spectroscopy and Spectrometry, 217–231. doi:10.1016/b978-0-12-409547-2.04980-5spa
dcterms.references37. Kumar, V., Singh, D. K., Mohan, S., Bano, D., Gundampati, R. K., & Hasan, S. H. (2017). Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. Journal of Photochemistry and Photobiology B: Biology, 168, 67–77. doi:10.1016/j.jphotobiol.2017.01.022spa
dcterms.references38. M. Lutfi Firdaus, Wiwit Alwi, Ferli Trinoveldi, Iman Rahayu, Lena Rahmidar, Kancono Warsito (2014). Determination of Chromium and Iron Using Digital Image-based Colorimetry. Sciences, Volume 20, 2014, Pages 298-304: https://doi.org/10.1016/j.proenv.2014.03.03spa
dcterms.references39. M.K. ALQADI1 O.A. ABO NOQTAH1, F.Y. ALZOUBI1 , J. ALZOUBY2 , K. ALJARRAH1 (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32(1), 2014, pp. 107-111 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.2478/s13536-013-0166-9spa
dcterms.references40. María Siraja, Zafar Ali Shaa, Sami Ullahb, Hamida BibiC, Muhammad Sulemana, Afia Ziaa, Tariq Masuda, Zafar Iqbala, Mudasar Iqbala (2020). Biosynthesized silver nanoparticles from shoot and seed extracts of Asphodelus tenufolius for heavy metal sensing. ScienceAsia 46 (2020): 697-705 |doi: 10.2306/scienceasia1513-1874.2020.097spa
dcterms.references41. Mei, Q., Jing, H., Li, Y., Yisibashaer, W., Chen, J., Nan Li, B., & Zhang, Y. (2016).Smartphone based visual and quantitative assays on upconversional paper sensor.Biosensors and Bioelectronics, 75, 427–432. doi:10.1016/j.bios.2015.08.054spa
dcterms.references42. Millington, K. R. (2009). Improving the whiteness and photostability of wool. Advances in Wool Technology, 217–247. doi:10.1533/9781845695460.2.217spa
dcterms.references43. Monisha, Shrivas, K., Kant, T., Patel, S., Devi, R., Dahariya, N. S., … Rai, J. (2021). Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). Journal of Hazardous Materials, 414, 125440. doi:10.1016/j.jhazmat.2021.125440spa
dcterms.references44. Motta, G., Angonese, M., Ayala, G., Salvador, S. (2022). Beyond the peel: Biorefinery approach of other banana residues as a springboard to achieve the United Nations’ sustainable development goals. Sustainable Chemistry and Pharmacy. Volume 30, 100893. https://doi.org/10.1016/j.scp.2022.100893.spa
dcterms.references45. Ngu-Schwemlein, M., Merle, J. K., Healy, P., Schwemlein, S., & Rhodes, S. (2009). Thermodynamics of the complexation of Hg(II) by cysteinyl peptide ligands using isothermal titration calorimetry. Thermochimica Acta, 496(1-2), 129–135. doi:10.1016/j.tca.2009.07.010spa
dcterms.references46. Nigmatullin,R., Bataleva, E., Nepeina, K., Matiukov, V. (2023). Quality control of the initial magnetotelluric data: Analysis of calibration curves using a fitting function represented by the ratio of 4th-order polynomials, Measurement, Volume 216, 112914, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2023.112914.spa
dcterms.references47. Nitinaivinij, K., Parnklang, T., Thammacharoen, C., Ekgasit, S., & Wongravee, K. (2014). Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis. Anal. Methods, 6(24), 9816–9824. doi:10.1039/c4ay02339kspa
dcterms.references48. Pareek, Sunil (2016). Composición nutricional de los cultivares de fruta || Composición nutricional y bioquímica del banano (Musa spp.) Cultivares. , (), 49–81. doi:10.1016/B978-0-12-408117-8.00003-9spa
dcterms.references49. Pirah Siyal, Ayman Nafady, Sirajuddin, Roomia Memon, Syed Tufail Hussain Sherazi, Jan Nisar, Altaf Ali Siyal, Muhammad Raza Shah, Sarfaraz Ahmed Mahesar, Shabana Bhagat (2021). Highly selective, sensitive and simpler colorimetric sensor for Fe2+ detection based on biosynthesized gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Volume 254,2021,119645. ISSN 1386-1425: https://doi.org/10.1016/j.saa.2021.119645.spa
dcterms.references50. Prema, P., Veeramanikandan, V., Rameshkumar, K., Gatasheh, M. K., Hatamleh, A. A., Balasubramani, R., & Balaji, P. (2022). Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environmental Research, 204, 111915. doi:10.1016/j.envres.2021.111915spa
dcterms.references51. Punnoose, MS, Bijimol, D., Abraham, T., Plathanam, NJ y Mathew, B. (2021). Nanopartículas de plata no modificadas sintetizadas verdes como sensor dual reproducible para iones de mercurio y catalizador para reducir los contaminantes ambientales. BioNanoScience, 11(3), 739–754. doi:10.1007/s12668-021-00883-wspa
dcterms.references52. Rashmi V.& Bordiwal (2023). Green synthesis and Applications of Metal Nanoparticles.- A Review Article. Results in Chemistry. Volume 5, 2023,100832,ISSN 2211-7156: https://doi.org/10.1016/j.rechem.2023.100832.spa
dcterms.references53. Ratnarathorn, N., Chailapakul, O., Henry, C. S., & Dungchai, W. (2012). Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 99, 552– 557. doi:10.1016/j.talanta.2012.06.033spa
dcterms.references54. Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental Mercury and Its Toxic Effects. Journal of Preventive Medicine & Public Health, 47(2), 74–83. doi:10.3961/jpmph.2014.47.2.74spa
dcterms.references55. Romero, G. y Moya, SE (2012). Síntesis de Nanopartículas Orgánicas. Fronteras de la nanociencia, 115–141. doi:10.1016/b978-0-12-415769-9.00004-2spa
dcterms.references56. Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702. doi:10.1039/c8ra08982espa
dcterms.references57. Roy, N., Gaur, A., Jain, A., Bhattacharya, S. y Rani, V. (2013). Síntesis verde de nanopartículas de plata: un enfoque para superar la toxicidad. Toxicología y farmacología ambiental, 36(3), 807–812. doi:10.1016/j.etap.2013.07.005spa
dcterms.references58. Rüdiger, W. (1986). El cromóforo. En: Kendrick, RE, Kronenberg, GHM (eds) Photomorphogenesis in plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017- 2624-5_2spa
dcterms.references59. Santacruz, S., & Espinosa Borrero, A. (2017). Phenolic compounds from the peel of Musa cavendish, Musa acuminata and Musa cavandanaish. Revista Politécnica Vol. 38 Núm. 2 (2017)spa
dcterms.references60. Sebastian, M., Aravind, A., & Mathew, B. (2018). Green silver-nanoparticle-based dual sensor for toxic Hg(II) ions. Nanotechnology, 29(35), 355502. doi:10.1088/1361- 6528/aacb9aspa
dcterms.references61. Sudip, S., Rittick M., Paulami, D., Amit k. (2022). Synthesis of biogenic silver nanoparticles using medicinal plant extract: A new age in nanomedicine to combat multidrug-resistant pathogens. In Nanobiotechnology for Plant Protection, Green Synthesis of Silver Nanomaterials, Pages 359-387, ISBN 9780128245088, https://doi.org/10.1016/B978-0-12-824508-8.00012-5.spa
dcterms.references62. Trease, GE y Evans, WC (2002) Farmacognosia. 15.ª edición, Saunders Publishers, Londres, 42-44, 221-229, 246-249, 304-306, 331-332, 391-393.spa
dcterms.references63. Vu, Hang T.; Scarlett, Christopher J.; Vuong, Quan V. (2016). Optimización de las condiciones de extracción asistida por ultrasonidos para la recuperación de compuestos fenólicos y capacidad antioxidante del plátano ( <i>Musa cavendish</i> ) peel. Journal of Food Processing and Preservation, (), –. doi:10.1111/jfpp.13148spa
dcterms.references64. Witzel, C., & Gegenfurtner, K. R. (2018). Color Perception: Objects, Constancy, and Categories. Annual Review of Vision Science, 4(1). doi:10.1146/annurev-vision-091517- 034231spa
dcterms.references65. Xiaolin, C., Jiajie, C., Jianxing, Z., Xiaoqi, D., Yuhang, P., Yili, Z., Ho-Pui, H., Zhi G., Han, Z., Junle, Q., Yonghong, Shao. (2023) Advances in inorganic nanoparticles trapping stiffness measurement: A promising tool for energy and environmental study, Energy Reviews, Volume 2, Issue 2, 100018, 2772-9702, https://doi.org/10.1016/j.enrev.2023.100018spa
dcterms.references66. Y. Ohno (2000). Fundamentos de CIE para mediciones de color, NIP y Conferencia de Fabricación Digital, en: 2000 Conferencia Internacional sobre Tecnologías de Impresión Digital, 2000, pp. 425–873spa
dcterms.references67. Yang, C.-X., Sun, X.-Y., Liu, B., & Lian, H.-T. (2007). Determination of Total Phosphorus in Water Sample by Digital Imaging Colorimetry. Chinese Journal of Analytical Chemistry, 35(6), 850–853. doi:10.1016/s1872-2040(07)60059-0spa
dcterms.references68. Yavuz, E., Tokalıoğlu, Ş., &amp; Patat, Ş. (2018). Magnetic dispersive solid phase extraction with graphene/ZnFe 2 O 4 nanocomposite adsorbent for the sensitive determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry. Microchemical Journal, 142, 85–93. doi:10.1016/j.microc.2018.06.019spa
dcterms.references69. Zhang L., Yiru X., Xu, J., Zhang, H., Tongqian, Z., Lei Jia. (2022).Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg2+ and cysteine. Journal of Hazardous Materials, Volume 430, 0304-3894. https://doi.org/10.1016/j.jhazmat.2022.128478.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
MaderaSantosBetzaida - RuizBarriosElenaMarcela.pdf
Tamaño:
1.4 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
325.33 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: