Publicación: Remoción de contaminantes emergentes en aguas residuales domésticas mediante humedales artificiales con campo eléctrico: un estudio a escala piloto
dc.contributor.advisor | Pinedo, José | |
dc.contributor.author | Lozano Cordero, Leidy Judith | |
dc.contributor.author | Romero Rodríguez, Yulieth Paola | |
dc.contributor.jury | Díaz Pongutá, Basilio | |
dc.contributor.jury | Marrugo Madrid, Siday María | |
dc.date.accessioned | 2025-07-24T01:22:20Z | |
dc.date.available | 2026-07-23 | |
dc.date.available | 2025-07-24T01:22:20Z | |
dc.date.issued | 2025-07-23 | |
dc.description.abstract | Los productos farmacéuticos y de cuidado personal (PPCP) son contaminantes emergentes de creciente preocupación ambiental. Este estudio evaluó el desempeño de un humedal construido de flujo vertical (HCFV) con Eichhornia crassipes integrado con campo eléctrico para la remoción de bisfenol A (BPA) ,17-alfa-etinilestradiol (EE2) y gemfibrozilo (GEM) en aguas residuales domésticas. El sistema consistió en tres unidades experimentales construidas en policloruro de vinilo: TR1 (plantas + tapas plásticas), TR2 (plantas + tapas plásticas + estimulación eléctrica a 10 y 1.0 V) y TR3 (plantas sin material soporte). La concentración inicial de BPA registrada fue de 1.07 ± 0.07 µg/L, mientras que para los compuestos EE2 y GEM, tales concentraciones se encontraron por debajo del límite de cuantificación (LCM = 0.05 µg/L). Los resultados indican que la eliminación más efectiva de BPA dentro de los sistemas HCFV se logró en (TR3), alcanzando un 98.13% ± 0.43%, seguido de un 87.85% ± 2.80% (TR1), valores que superan el obtenido por TR2, que fue de 85.05% ± 2.80%. Reducir el campo eléctrico de 10 V a 1.0 V mejoró la eliminación de DQO en un 42%. No obstante, esta eficiencia puede verse afectada con el tiempo, sugiriendo así una correlación directa entre el voltaje aplicado y el tiempo de contacto en los sistemas de tratamiento. Estos resultados confirman el potencial de los humedales artificiales con campo eléctrico como una estrategia innovadora y eficiente para la remoción de contaminantes emergentes en aguas residuales, destacando la necesidad de estudios adicionales para su optimización y escalado. | spa |
dc.description.abstract | Pharmaceutical and personal care products (PPCPs) are emerging contaminants of increasing environmental concern. This study evaluated the performance of a vertical flow constructed wetland (VCW) with Eichhornia crassipes integrated with electric field for the removal of bisphenol A (BPA), 17-alpha-ethinylestradiol (EE2) and gemfibrozil (GEM) in domestic wastewater. The system consisted of three experimental units constructed in polyvinyl chloride: TR1 (plants + plastic caps), TR2 (plants + plastic caps + electrical stimulation at 10 and 1.0 V) and TR3 (plants without supporting material). The initial BPA concentration recorded was 1.07 ± 0.07 µg/L, while for the EE2 and GEM compounds, such concentrations were found to be below the limit of quantification (LCM = 0.05 µg/L). The results indicate that the most effective removal of BPA within the HCFV systems was achieved in (TR3), reaching 98.13% ± 0.43%, followed by 87.85% ± 2.80% (TR1), values that exceed that obtained by TR2, which was 85.05% ± 2.80%. Reducing the electric field from 10 V to 1.0 V improved COD removal by 42%. However, this efficiency may be affected with time, suggesting a direct correlation between applied voltage and contact time in the treatment systems. These results confirm the potential of artificial wetlands with electric field as an innovative and efficient strategy for the removal of emerging contaminants in wastewater, highlighting the need for further studies for their optimization and scaling up. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Lista de Figuras | spa |
dc.description.tableofcontents | Lista de Tablas | spa |
dc.description.tableofcontents | Resumen | spa |
dc.description.tableofcontents | Abstract | eng |
dc.description.tableofcontents | 1. Introducción | spa |
dc.description.tableofcontents | 2. Objetivos | spa |
dc.description.tableofcontents | 2.1. Objetivo General | spa |
dc.description.tableofcontents | 2.2. Objetivos Especificos | spa |
dc.description.tableofcontents | 3. Marco Teórico | spa |
dc.description.tableofcontents | 3.1. Definición y características de los humedales artificiales | spa |
dc.description.tableofcontents | 3.1.1. ¿Qué es un humedal artificial? | spa |
dc.description.tableofcontents | 3.1.2. ¿Cómo se clasifican los humedales artificiales? | spa |
dc.description.tableofcontents | 3.1.3. Rendimiento de la eliminación de humedales artificiales híbridos | spa |
dc.description.tableofcontents | 3.2. Componentes del humedal artificial | spa |
dc.description.tableofcontents | 3.2.1. Agua | spa |
dc.description.tableofcontents | 3.2.2. Sustrato | spa |
dc.description.tableofcontents | 3.2.3. Macrófitos | spa |
dc.description.tableofcontents | 3.2.4. Microorganismos | spa |
dc.description.tableofcontents | 3.3. Funciones y beneficios de los humedales en el tratamiento de aguas residuales | spa |
dc.description.tableofcontents | 3.3.1. ¿Cuáles son los principales procesos que contribuyen a la eliminación de contaminantes en humedales artificiales? | spa |
dc.description.tableofcontents | 3.4. Contaminantes emergentes objeto de estudio | spa |
dc.description.tableofcontents | 3.4.1. ¿Qué son los contaminantes emergentes? | spa |
dc.description.tableofcontents | 3.4.2. Bisfenol A | spa |
dc.description.tableofcontents | 3.4.3. 17-alfa-etinilestradiol | spa |
dc.description.tableofcontents | 3.4.4. Gemfibrozilo | spa |
dc.description.tableofcontents | 3.5. Sistemas electroquímicos integrados en humedales artificiales | spa |
dc.description.tableofcontents | 4. Metodología | spa |
dc.description.tableofcontents | 4.1. Configuración y funcionamiento de humedales artificiales a escala piloto | spa |
dc.description.tableofcontents | 4.2. Muestreo y análisis parámetros fisicoquímicos | spa |
dc.description.tableofcontents | 4.3. Análisis estadístico | spa |
dc.description.tableofcontents | 5. Resultados y análisis | spa |
dc.description.tableofcontents | 5.1. Caracterización fisicoquímica del agua residual | spa |
dc.description.tableofcontents | 5.2. Evaluación de la remoción de materia orgánica y nutrientes en humedales artificiales | spa |
dc.description.tableofcontents | 5.3. Remoción de contaminantes emergentes en humedales artificiales | spa |
dc.description.tableofcontents | 5.4. Comparación con otros estudios y perspectivas futuras | spa |
dc.description.tableofcontents | 6. Conclusiones | spa |
dc.description.tableofcontents | 7. Recomendaciones | spa |
dc.description.tableofcontents | 8. Lista de referencia o bibliografía | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9465 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Abbas, A. A., Yousif, Y. T., & Almutter, H. H. (2021). Evaluation of Al-Thagher Wastewater Treatment Plant. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/ppci.18513 | |
dc.relation.references | A, D., Fujii, D., Soda, S., Machimura, T., & Ike, M. (2016). Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. The Science Of The Total Environment, 578, 566-576. https://doi.org/10.1016/j.scitotenv.2016.10.232 | |
dc.relation.references | Almeida, Â., Silva, M. G., Soares, A. M., & Freitas, R. (2020). Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. Environmental Research, 185, 109316. https://doi.org/10.1016/j.envres.2020.109316 | |
dc.relation.references | Alsalihy, S. T. H., Ahmed, A. N., Salih, G. H. A., M-Ridha, M. J., & Falahi, O. A. A. (2024). Removal of pharmaceutical and personal care products (phpcps) using different low-cost materials as substrates in the vertical, horizontal, and hybrid flow systems of constructed wetland – a review. Environmental Technology & Innovation, 35, 103647. https://doi.org/10.1016/j.eti.2024.103647 | |
dc.relation.references | Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319-1330. https://doi.org/10.1016/s0045-6535(02)00769-5 | |
dc.relation.references | Arden, S., & Ma, X. (2018). Constructed wetlands for greywater recycle and reuse: A review. Science Of The Total Environment, 630, 587-599. https://doi.org/10.1016/j.scitotenv.2018.02.218 | |
dc.relation.references | Ashworth, D. J., & Ibekwe, A. M. (2020). System of multi-layered environmental media for the removal of antibiotics from wastewater. Journal Of Environmental Chemical Engineering, 8(5), 104206. https://doi.org/10.1016/j.jece.2020.104206 | |
dc.relation.references | Ávila, C., García-Galán, M. J., Uggetti, E., Montemurro, N., García-Vara, M., Pérez, S., García, J., & Postigo, C. (2021). Boosting pharmaceutical removal through aeration in constructed wetlands. Journal Of Hazardous Materials, 412, 125231. https://doi.org/10.1016/j.jhazmat.2021.125231 | |
dc.relation.references | Azizi, D., Arif, A., Blair, D., Dionne, J., Filion, Y., Ouarda, Y., Pazmino, A. G., Pulicharla, R., Rilstone, V., Tiwari, B., Vignale, L., Brar, S. K., Champagne, P., Drogui, P., Langlois, V. S., & Blais, J. (2022). A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environmental Research, 207, 112196. https://doi.org/10.1016/j.envres.2021.112196 | |
dc.relation.references | Bano, S., Tahira, S. A., Naqvi, S. N. H., Tahseen, R., Shabir, G., Iqbal, S., Afzal, M., Amin, M., Boopathy, R., & Mehmood, M. A. (2023). Improved remediation of amoxicillin-contaminated water by floating treatment wetlands intensified with biochar, nutrients, aeration, and antibiotic-degrading bacteria. Bioengineered, 14(1). https://doi.org/10.1080/21655979.2023.2252207 | |
dc.relation.references | Barreiros, L., Queiroz, J. F., Magalhães, L. M., Silva, A. M., & Segundo, M. A. (2016). Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — A review. Microchemical Journal, 126, 243-262. https://doi.org/10.1016/j.microc.2015.12.003 | |
dc.relation.references | Brunsch, A. F., Ter Laak, T. L., Christoffels, E., Rijnaarts, H. H., & Langenhoff, A. A. (2018). Retention soil filter as post-treatment step to remove micropollutants from sewage treatment plant effluent. The Science Of The Total Environment, 637-638, 1098-1107. https://doi.org/10.1016/j.scitotenv.2018.05.063 | |
dc.relation.references | Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., & Masi, F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science Of The Total Environment, 711, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731 | |
dc.relation.references | Bolong, N., Ismail, A., Salim, & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1-3), 229-246. https://doi.org/10.1016/j.desal.2008.03.020 | |
dc.relation.references | Campos, J. M., Queiroz, S. C., & Roston, D. M. (2019). Removal of the endocrine disruptors ethinyl estradiol, bisphenol A, and levonorgestrel by subsurface constructed wetlands. Science Of The Total Environment, 693, 133514. https://doi.org/10.1016/j.scitotenv.2019.07.320 | |
dc.relation.references | Carranza-Diaz, O., Schultze-Nobre, L., Moeder, M., Nivala, J., Kuschk, P., & Koeser, H. (2014). Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecological Engineering, 71, 234-245. https://doi.org/10.1016/j.ecoleng.2014.07.048 | |
dc.relation.references | Carvalho, R. N., Ceriani, L., Ippolito, A., & Lettieri, T. (2015). Development of the first watch list under the environmental quality standards directive. JRC Science Hub. | |
dc.relation.references | Castellar, J. A., Torrens, A., Buttiglieri, G., Monclús, H., Arias, C. A., Carvalho, P. N., Galvao, A., & Comas, J. (2022). Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. Journal Of Cleaner Production, 340, 130660. https://doi.org/10.1016/j.jclepro.2022.130660 | |
dc.relation.references | Chen, C., Wang, S., Kim, H., Pan, S., Fan, C., & Lin, Y. J. (2021). Non-conventional water reuse in agriculture: A circular water economy. Water Research, 199, 117193. https://doi.org/10.1016/j.watres.2021.117193 | |
dc.relation.references | Chen, J., Liu, S., Wang, Y., Li, J., Liu, Y., Yang, F., & Ying, G. (2020). Optimized constructed wetlands enhance the removal and reduce the risks of steroid hormones in domestic wastewater. The Science Of The Total Environment, 757, 143773. https://doi.org/10.1016/j.scitotenv.2020.143773 | |
dc.relation.references | Chen, J., Liu, Y., Deng, W., & Ying, G. (2019). Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. Science Of The Total Environment, 660, 358-365. https://doi.org/10.1016/j.scitotenv.2019.01.049 | |
dc.relation.references | Chen, X., Huang, X., Zhang, K., & Wu, C. (2020). Feasibility of using plastic wastes as constructed wetland substrates and potential for pharmaceuticals and personal care products removal. Journal Of Environmental Science And Health Part A, 55(10), 1241-1246. https://doi.org/10.1080/10934529.2020.1784657 | |
dc.relation.references | Chen, Y., Lin, M., & Zhuang, D. (2022). Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 297, 133932. https://doi.org/10.1016/j.chemosphere.2022.133932 | |
dc.relation.references | Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., & Chen, Z. (2016). Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. The Science Of The Total Environment, 566-567, 1660-1669. https://doi.org/10.1016/j.scitotenv.2016.06.069 | |
dc.relation.references | Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323(5917), 1014-1015. https://doi.org/10.1126/science.1167755 | |
dc.relation.references | Contreras, C. R., López, D., Leiva, A. M., Domínguez, C., Bayona, J. M., & Vidal, G. (2019). Removal of Organic Micropollutants in Wastewater Treated by Activated Sludge and Constructed Wetlands: A Comparative Study. Water, 11(12), 2515. https://doi.org/10.3390/w11122515 | |
dc.relation.references | Corbella, C., Hartl, M., Fernandez-Gatell, M., & Puigagut, J. (2019). MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Science Of The Total Environment, 660, 218-226. https://doi.org/10.1016/j.scitotenv.2018.12.347 | |
dc.relation.references | Chang, Y. D., Grodzinsky, A. J., & Wang, D. I. C. (1995). Augmentation of mass transfer through electrical means for hydrogel‐entrapped Escherichia coli cultivation. Biotechnology And Bioengineering, 48(2), 149-157. https://doi.org/10.1002/bit.260480209 | |
dc.relation.references | Christofilopoulos, S., Kaliakatsos, A., Triantafyllou, K., Gounaki, I., Venieri, D., & Kalogerakis, N. (2019). Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnology, 52, 94-103. https://doi.org/10.1016/j.nbt.2019.05.006 | |
dc.relation.references | De Carvalho Silva, L., Bernardelli, J. K. B., De Oliveira Souza, A., Lafay, C. B. B., Nagalli, A., Passig, F. H., Kreutz, C., & De Carvalho, K. Q. (2023). Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. Chemosphere, 346, 140531. https://doi.org/10.1016/j.chemosphere.2023.140531 | |
dc.relation.references | Dehghani, S., Rezaee, A., & Hosseinkhani, S. (2018). Effect of alternating electrical current on denitrifying bacteria in a microbial electrochemical system: biofilm viability and ATP assessment. Environmental Science And Pollution Research, 25(33), 33591-33598. https://doi.org/10.1007/s11356-018-3170-0 | |
dc.relation.references | De Oliveira, M., Atalla, A. A., Frihling, B. E. F., Cavalheri, P. S., Migliolo, L., & Filho, F. J. M. (2019b). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chemical Engineering Journal, 373, 458-467. https://doi.org/10.1016/j.cej.2019.05.064 | |
dc.relation.references | Dias, A. G., Rodríguez, N., V., Núñez, J. A. G., Á, E. R., H, J. H. A., & A, W. A. R. (2022). Humedales artificiales como alternativa para el tratamiento terciario de efluentes de planta de beneficio de palma de aceite. https://doi.org/10.56866/9789588360942 | |
dc.relation.references | Directiva Europea 2013/39/UE. Modificación de las Directivas 2000/60/CE y 2008/105/CE en lo que respecta a las sustancias prioritarias en el ámbito de la política de aguas. | |
dc.relation.references | Dotro, G., Langergraber, G., Molle, P., Nivala, J., Puigagut, J., Stein, O., & Von Sperling, M. (2017). Treatment wetlands. IWA Publishing. | |
dc.relation.references | Ebele, A. J., Abdallah, M. A., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1-16. https://doi.org/10.1016/j.emcon.2016.12.004 | |
dc.relation.references | EC (2020). European Commission: Environmental Quality Standards for Priority Substances in Surface Water. | |
dc.relation.references | Feng, Y., Nuerla, A., Tian, M., Mamat, A., Si, A., Chang, J., Abudureheman, M., He, C., Zhu, J., Tong, Z., & Liu, Z. (2023). Removal of chloramphenicol and resistance gene changes in electric-integrated vertical flow constructed wetlands. Journal Of Environmental Management, 342, 118143. https://doi.org/10.1016/j.jenvman.2023.118143 | |
dc.relation.references | Flórez, J. A., Méndez, D. M., Núñez, S. M. B., Enamorado-Montes, G., & Negrete, J. M. (2021). Productos farmacéuticos y de cuidado personal presentes en aguas superficiales, de consumo humano y residuales en el departamento de Córdoba, Colombia. Revista de Investigacion Agraria y Ambiental, 12(2), 179-197. https://doi.org/10.22490/21456453.4231 | |
dc.relation.references | Fu, X., Hou, R., Yang, P., Qian, S., Feng, Z., Chen, Z., Wang, F., Yuan, R., Chen, H., & Zhou, B. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. The Science Of The Total Environment, 817, 153061. https://doi.org/10.1016/j.scitotenv.2022.153061 | |
dc.relation.references | Gao, P., & Zhang, C. (2022). Study on Phosphorus Removal Pathway in Constructed Wetlands with Thermally Modified Sepiolite. Sustainability, 14(19), 12535. https://doi.org/10.3390/su141912535 | |
dc.relation.references | Gao, Y., Xie, Y., Zhang, Q., Wang, A., Yu, Y., & Yang, L. (2017). Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland. Water Research, 108, 39-45. https://doi.org/10.1016/j.watres.2016.10.033 | |
dc.relation.references | Gikas, G. D., Papaevangelou, V. A., Tsihrintzis, V. A., Antonopoulou, M., & Konstantinou, I. K. (2021). Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands. Processes, 9(12), 2200. https://doi.org/10.3390/pr9122200 | |
dc.relation.references | Gitau, J. K., & Kitur, E. (2014). Efficiency of Tibia wetland in treatment of wastewater. IOSR J Environ Sci Toxicol Food Technol, 8, 59-64. | |
dc.relation.references | Gorito, A. M., Ribeiro, A. R. L., Pereira, M. F. R., Almeida, C. M. R., & Silva, A. M. (2022). Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? Environmental Research, 204, 111955. https://doi.org/10.1016/j.envres.2021.111955 | |
dc.relation.references | Grenni, P., Patrolecco, L., Ademollo, N., Di Lenola, M., & Caracciolo, A. B. (2016). Assessment of gemfibrozil persistence in river water alone and in co-presence of naproxen. Microchemical Journal, 136, 49-55. https://doi.org/10.1016/j.microc.2016.11.018 | |
dc.relation.references | Guo, M., Yang, G., Meng, X., Zhang, T., Li, C., Bai, S., & Zhao, X. (2023). Illuminating plant–microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? Environment International, 179, 108144. https://doi.org/10.1016/j.envint.2023.108144 | |
dc.relation.references | Gupta, S., Srivastava, P., Patil, S. A., & Yadav, A. K. (2021). A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. Bioresource Technology, 320, 124376. https://doi.org/10.1016/j.biortech.2020.124376 | |
dc.relation.references | Hasaballah, A. F., Hegazy, T. A., & Elemam, D. A. (2023). Performance evaluation of Pistia stratiotes and Lemna minor for wastewater phytoremediation: optimum conditions for pilot-scale. International Journal Of Environmental Science And Technology. https://doi.org/10.1007/s13762-023-05001-9 | |
dc.relation.references | Hossein, M., Asha, R., Bakari, R., Islam, N. F., Jiang, G., & Sarma, H. (2023). Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. Chemosphere, 316, 137715. https://doi.org/10.1016/j.chemosphere.2022.137715 | |
dc.relation.references | Lim, M., Snyder, S. A., & Sedlak, D. L. (2008). Use of biodegradable dissolved organic carbon (BDOC) to assess the potential for transformation of wastewater-derived contaminants in surface waters. Water Research, 42(12), 2943-2952. https://doi.org/10.1016/j.watres.2008.03.008 | |
dc.relation.references | Ilyas, H., & Van Hullebusch, E. D. (2020). Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. Environmental Science And Pollution Research International, 27(13), 14342-14364. https://doi.org/10.1007/s11356-020-08165-w | |
dc.relation.references | Ilyas, H., & Van Hullebusch, E. D. (2020). A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands. Journal Of Environmental Chemical Engineering, 8(3), 103793. https://doi.org/10.1016/j.jece.2020.103793 | |
dc.relation.references | İrdemez, Ş., Demircioğlu, N., & Yildiz, Y. Ş. (2006). The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes. Journal Of Hazardous Materials, 137(2), 1231-1235. https://doi.org/10.1016/j.jhazmat.2006.04.019 | |
dc.relation.references | Jehawi, O. H., Abdullah, S. R. S., Kurniawan, S. B., Ismail, N. ‘., Idris, M., Sbani, N. H. A., Muhamad, M. H., & Hasan, H. A. (2020). Performance of pilot Hybrid Reed Bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment. Environmental Technology & Innovation, 19, 100891. https://doi.org/10.1016/j.eti.2020.100891 | |
dc.relation.references | Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., & Barcelo, D. (2010). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165-1176. https://doi.org/10.1016/j.watres.2010.11.010 | |
dc.relation.references | Jenssen, P. D., Mæhlum, T., & Krogstad, T. (1993). Potential Use of Constructed Wetlands for Wastewater Treatment in Northern Environments. Water Science & Technology, 28(10), 149-157. https://doi.org/10.2166/wst.1993.0223 | |
dc.relation.references | Ji, M., Hu, Z., Hou, C., Liu, H., Ngo, H. H., Guo, W., Lu, S., & Zhang, J. (2020). New insights for enhancing the performance of constructed wetlands at low temperatures. Bioresource Technology, 301, 122722. https://doi.org/10.1016/j.biortech.2019.122722 | |
dc.relation.references | Ji, Z., Tang, W., & Pei, Y. (2021). Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere, 286, 131564. https://doi.org/10.1016/j.chemosphere.2021.131564 | |
dc.relation.references | Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science Of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146 | |
dc.relation.references | Kataki, S., Chatterjee, S., Vairale, M., Sharma, S., Dwivedi, S., & Gupta, D. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable & Sustainable Energy Reviews, 148, 111261. https://doi.org/10.1016/j.rser.2021.111261 | |
dc.relation.references | Khajah, M., & Ahmed, M. E. (2023). Performance evaluation of a pilot wetland system for wastewater treatment. Maǧallaẗ Al-abḥāṯ Al-handasiyyaẗ. https://doi.org/10.1016/j.jer.2023.11.027 | |
dc.relation.references | Klemeš, J. J., Van Fan, Y., Tan, R. R., & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable And Sustainable Energy Reviews, 127, 109883. https://doi.org/10.1016/j.rser.2020.109883 | |
dc.relation.references | Kleywegt, S., Payne, M., Ng, F., & Fletcher, T. (2019). Environmental loadings of Active Pharmaceutical Ingredients from manufacturing facilities in Canada. Science Of The Total Environment, 646, 257-264. https://doi.org/10.1016/j.scitotenv.2018.07.240 | |
dc.relation.references | Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., Gritten, F., Andersen, H. R., Fernandes, T., Manaia, C. M., Rizzo, L., & Fatta-Kassinos, D. (2019). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science Of The Total Environment, 648, 1052-1081. https://doi.org/10.1016/j.scitotenv.2018.08.130 | |
dc.relation.references | Kumar, M., & Singh, R. (2017). Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresource Technology, 232, 321-330. https://doi.org/10.1016/j.biortech.2017.02.026 | |
dc.relation.references | Lee, H., Shim, W. J., & Kwon, J. (2013). Sorption capacity of plastic debris for hydrophobic organic chemicals. The Science Of The Total Environment, 470-471, 1545-1552. https://doi.org/10.1016/j.scitotenv.2013.08.023 | |
dc.relation.references | Lee, S., & Oh, M. (2020). Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry, 138, 107727. https://doi.org/10.1016/j.bioelechem.2020.107727 | |
dc.relation.references | Li, C., Feng, G., Pan, Z., Song, C., Fan, X., Tao, P., Wang, T., Shao, M., & Zhao, S. (2020). High-performance electrocatalytic microfiltration CuO/Carbon membrane by facile dynamic electrodeposition for small-sized organic pollutants removal. Journal Of Membrane Science, 601, 117913. https://doi.org/10.1016/j.memsci.2020.117913 | |
dc.relation.references | Li, C., Feng, L., Lian, J., Yu, X., Fan, C., Hu, Z., & Wu, H. (2023). Enhancement of organics and nutrient removal and microbial mechanism in vertical flow constructed wetland under a static magnetic field. Journal Of Environmental Management, 330, 117192. https://doi.org/10.1016/j.jenvman.2022.117192 | |
dc.relation.references | Li, D., Chu, Z., Huang, M., & Zheng, B. (2019). Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands. Bioresource Technology, 290, 121748. https://doi.org/10.1016/j.biortech.2019.121748 | |
dc.relation.references | Li, H., Zhang, S., Yang, X., Yang, Y., Xu, H., Li, X., & Song, H. (2018). Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 217, 599-608. https://doi.org/10.1016/j.chemosphere.2018.11.022 | |
dc.relation.references | Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L., & Zhou, Y. (2019). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal Of Environmental Sciences, 89, 252-263. https://doi.org/10.1016/j.jes.2019.08.015 | |
dc.relation.references | Liu, S., Zhang, Y., Feng, X., & Pyo, S. (2023). Current problems and countermeasures of constructed wetland for wastewater treatment: A review. Journal Of Water Process Engineering, 57, 104569. https://doi.org/10.1016/j.jwpe.2023.104569 | |
dc.relation.references | Li, X., Yan, ZS y Jiang, HL (2016). Efecto del campo eléctrico de corriente continua sobre el crecimiento de la macrófita sumergida Vallisneria natans. J. Lake Sci , 28 (5), 1023-1030. | |
dc.relation.references | Lopes, J., Coppola, F., Russo, T., Maselli, V., Di Cosmo, A., Meucci, V., Soares, A. M., Pretti, C., Polese, G., & Freitas, R. (2022). Behavioral, physiological and biochemical responses and differential gene expression in Mytilus galloprovincialis exposed to 17 alpha-ethinylestradiol and sodium lauryl sulfate. Journal Of Hazardous Materials, 426, 128058. https://doi.org/10.1016/j.jhazmat.2021.128058 | |
dc.relation.references | López-Vinent, N., Cruz-Alcalde, A., Santacruz, A. P., & Sans, C. (2024). Green approach for micropollutants removal: Study of constructed wetlands as pretreatment of solar photo-Fenton catalyzed by organic fertilizers. Catalysis Today, 430, 114540. https://doi.org/10.1016/j.cattod.2024.114540 | |
dc.relation.references | Lu, J., Zhuo, Q., Ren, X., Qiu, Y., Li, Y., Chen, Z., & Huang, K. (2022). Treatment of wastewater from adhesive-producing industries by electrocoagulation and electrochemical oxidation. Process Safety And Environmental Protection, 157, 527-536. https://doi.org/10.1016/j.psep.2021.10.035 | |
dc.relation.references | Luo, Q., Zhang, X., Wang, H., & Qian, Y. (2005). Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics. Chemosphere, 59(9), 1289-1298. https://doi.org/10.1016/j.chemosphere.2004.11.043 | |
dc.relation.references | Lu, X., Wang, Y., Liu, Y., Xue, X., Fu, C., Xiong, L., Peng, L., Yang, S., & Ma, R. (2024). Electromagnetic field coupled vertical flow constructed wetlands for rural sewage treatment: Performance, microbial community characteristics and metabolic pathways. Journal Of Environmental Management, 373, 123596. https://doi.org/10.1016/j.jenvman.2024.123596 | |
dc.relation.references | Manickum, T., & John, W. (2013). Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). The Science Of The Total Environment, 468-469, 584-597. https://doi.org/10.1016/j.scitotenv.2013.08.041 | |
dc.relation.references | Marcelino, G. R., De Carvalho, K. Q., De Lima, M. X., Passig, F. H., Belini, A. D., Bernardelli, J. K. B., & Nagalli, A. (2020). Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater. The Science Of The Total Environment, 728, 138771. https://doi.org/10.1016/j.scitotenv.2020.138771 | |
dc.relation.references | Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 | |
dc.relation.references | Metcalf & Eddy (2014). Wastewater Engineering: Treatment and Resource Recovery. 5th Edition. McGraw-Hill. | |
dc.relation.references | Mierzejewska-Sinner, E., Urbaniak, M., Inui, H., Thijs, S., & Vangronsveld, J. (2024). Cucurbit plants for remediation of soils polluted with persistent and emerging organic pollutants: State of the art, future perspectives and challenges. En Advances in botanical research (pp. 217-254). https://doi.org/10.1016/bs.abr.2023.10.004 | |
dc.relation.references | Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology And Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646 | |
dc.relation.references | Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S., & Mesdaghinia, A. (2018). Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. The Science Of The Total Environment, 619-620, 446-459. https://doi.org/10.1016/j.scitotenv.2017.07.272 | |
dc.relation.references | Montes, C. A., Ortiz, N. V., Arias, C. A., & Chaparro, T. R. (2023). Vertical flow wetlands as the core for the sustainable treatment of coffee wastewater in small communities in Colombia: preliminary results. Water Science & Technology, 88(8), 1974-1981. https://doi.org/10.2166/wst.2023.328 | |
dc.relation.references | Mosquera-Romero, S., Ntagia, E., Rousseau, D. P., Esteve-Núñez, A., & Prévoteau, A. (2023). Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. Environmental Science And Ecotechnology, 16, 100265. https://doi.org/10.1016/j.ese.2023.100265 | |
dc.relation.references | M-Ridha, M. J., Ali, M. F., Taly, A. H., Abed, K. M., Mohammed, S. J., Muhamad, M. H., & Hasan, H. A. (2022). Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics. Water, 14(5), 687. https://doi.org/10.3390/w14050687 | |
dc.relation.references | Nalladiyil, A., Prakash, P., & Babu, G. S. (2023). Garbage enzyme-mediated treatment of landfill leachate: A sustainable approach. Bioresource Technology, 385, 129361. https://doi.org/10.1016/j.biortech.2023.129361 | |
dc.relation.references | Nancharaiah, Y., Mohan, S. V., & Lens, P. (2016). Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresource Technology, 215, 173-185. https://doi.org/10.1016/j.biortech.2016.03.129 | |
dc.relation.references | Noorani, K. R. P. M., Flora, G., Surendarnath, S., Stephy, G. M., Amesho, K. T., Chinglenthoiba, C., & Thajuddin, N. (2023). Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. Journal Of Environmental Management, 351, 119674. https://doi.org/10.1016/j.jenvman.2023.119674 | |
dc.relation.references | Núñez, J., Larral, J., Roeckel, M., Fernández, K., Maril, M., Tobosque, P., & Carrasco, C. (2023). Operational variable effect on the COD removal efficiency using electrocoagulation in landfill leachate treatment. Environmental Science. Water Research & Technology, 9(3), 781-793. https://doi.org/10.1039/d2ew00788f | |
dc.relation.references | Ofrydopoulou, A., Nannou, C., Evgenidou, E., Christodoulou, A., & Lambropoulou, D. (2022). Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Science Of The Total Environment, 802, 149860. https://doi.org/10.1016/j.scitotenv.2021.149860 | |
dc.relation.references | Ohore, O. E., & Zhang, S. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Scientific African, 5, e00135. https://doi.org/10.1016/j.sciaf.2019.e00135 | |
dc.relation.references | Omondi, D. O., & Navalia, A. C. (2021). Constructed Wetlands in Wastewater Treatment and Challenges of Emerging Resistant Genes Filtration and Reloading. En IntechOpen eBooks. https://doi.org/10.5772/intechopen.93293 | |
dc.relation.references | OMS (2017). Guidelines for Drinking-water Quality. World Health Organization. | |
dc.relation.references | Onyeabor, E., & Obuka, U. (2024). Building collaboration and synergy among regional blocs to reduce marine plastic waste pollution: A case for the Gulf of Guinea region. Marine Pollution Bulletin, 198, 115829. https://doi.org/10.1016/j.marpolbul.2023.115829 | |
dc.relation.references | Papaevangelou, V. A., Gikas, G. D., Tsihrintzis, V. A., Antonopoulou, M., & Konstantinou, I. K. (2016). Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed wetlands. Chemical Engineering Journal, 294, 146-156. https://doi.org/10.1016/j.cej.2016.02.103 | |
dc.relation.references | Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261 | |
dc.relation.references | Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., & Mohan, D. (2019). Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 119(6), 3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299 | |
dc.relation.references | Pinedo-Hernández, J., Marrugo-Negrete, J., Pérez-Espitia, M., Durango-Hernández, J., Enamorado-Montes, G., & Navarro-Frómeta, A. (2024). A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. Journal Of Environmental Management, 351, 119681. https://doi.org/10.1016/j.jenvman.2023.119681 | |
dc.relation.references | Prokkola, H., Heponiemi, A., Pesonen, J., Kuokkanen, T., & Lassi, U. (2022). Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters. ChemEngineering, 6(1), 15. https://doi.org/10.3390/chemengineering6010015 | |
dc.relation.references | Quadra, G. R., De Souza, H. O., Costa, R. D. S., & Fernandez, M. A. D. S. (2016). Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environmental Science And Pollution Research, 24(2), 1200-1218. https://doi.org/10.1007/s11356-016-7789-4 | |
dc.relation.references | Ramírez-Malule, H., Quiñones-Murillo, D. H., & Manotas-Duque, D. (2020). Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerging Contaminants, 6, 179-193. https://doi.org/10.1016/j.emcon.2020.05.001 | |
dc.relation.references | Ramírez-Vargas, C. A., Arias, C. A., Carvalho, P., Zhang, L., Esteve-Núñez, A., & Brix, H. (2018b). Electroactive biofilm-based constructed wetland (EABB-CW): A mesocosm-scale test of an innovative setup for wastewater treatment. The Science Of The Total Environment, 659, 796-806. https://doi.org/10.1016/j.scitotenv.2018.12.432 | |
dc.relation.references | Ravikumar, Y., Yun, J., Zhang, G., Zabed, H. M., & Qi, X. (2022). A review on constructed wetlands-based removal of pharmaceutical contaminants derived from non-point source pollution. Environmental Technology & Innovation, 26, 102504. https://doi.org/10.1016/j.eti.2022.102504 | |
dc.relation.references | Ren, Y., Liu, Y., Sun, J., Lu, H., Yang, L., Chen, C., & Han, Y. (2016). Lolium Perenne as the Cultivation Plant in Hydroponic Ditch and Constructed Wetland to Improve Wastewater Treatment Efficiency in a Cold Region. Wetlands, 36(4), 659-665. https://doi.org/10.1007/s13157-016-0776-1 | |
dc.relation.references | Rich, D., Andiroglu, E., Gallo, K., & Ramanathan, S. (2023). A review of water reuse applications and effluent standards in response to water scarcity. Water Security, 20, 100154. https://doi.org/10.1016/j.wasec.2023.100154 | |
dc.relation.references | Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42, 132-155. https://doi.org/10.1016/j.reprotox.2013.08.008 | |
dc.relation.references | Roig Bondia, J. (2013). Eliminación de contaminantes emergentes mediante humedales artificiales como sistema alternativo o complementario a un tratamiento de aguas convencional. Universitat Politècnica de València. https://riunet.upv.es/handle/10251/44470 | |
dc.relation.references | Ruppelt, J. P., Tondera, K., Wallace, S. J., Button, M., Pinnekamp, J., & Weber, K. P. (2020). Assessing the role of microbial communities in the performance of constructed wetlands used to treat combined sewer overflows. Science Of The Total Environment, 736, 139519. https://doi.org/10.1016/j.scitotenv.2020.139519 | |
dc.relation.references | Sabogal-Paz, L. P., Campos, L. C., Bogush, A., & Canales, M. (2019). Household slow sand filters in intermittent and continuous flows to treat water containing low mineral ion concentrations and Bisphenol A. The Science Of The Total Environment, 702, 135078. https://doi.org/10.1016/j.scitotenv.2019.135078 | |
dc.relation.references | Saeed, T., Yadav, A. K., & Miah, M. J. (2022). Treatment performance of stone dust packed tidal flow electroactive and normal constructed wetlands: Influence of contact time, plants, and electrodes. Journal Of Water Process Engineering, 50, 103257. https://doi.org/10.1016/j.jwpe.2022.103257 | |
dc.relation.references | Said, N. S. M., Abdullah, S. R. S., Ismail, N. ‘., Hasan, H. A., & Othman, A. R. (2020). Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environmental Technology & Innovation, 17, 100502. https://doi.org/10.1016/j.eti.2019.100502 | |
dc.relation.references | Salah, M., Zheng, Y., Wang, Q., Li, Y., & Li, F. (2023). Response of remediation performances and microbial communities of integrated vertical-flow constructed wetlands with different configurations after chronic exposure to pharmaceuticals and personal care products. Journal Of Water Process Engineering, 56, 104490. https://doi.org/10.1016/j.jwpe.2023.104490 | |
dc.relation.references | Sani, A., Scholz, M., & Bouillon, L. (2013). Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater. Bioresource Technology, 147, 585-596. https://doi.org/10.1016/j.biortech.2013.08.076 | |
dc.relation.references | Saquib, S., Gupta, A., & Joshi, A. (2022). Emerging water crisis: Impact of urbanization on water resources and constructed wetlands as a nature-based solution (NbS). En Current directions in water scarcity research (pp. 447-468). https://doi.org/10.1016/b978-0-323-91838-1.00021-x | |
dc.relation.references | Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., ... & Kasian, S. E. M. (2016). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 113(8), 1800-1805. | |
dc.relation.references | Schwitzguébel, J. (2015). Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. Journal Of Soils And Sediments, 17(5), 1492-1502. https://doi.org/10.1007/s11368-015-1253-9 | |
dc.relation.references | Shi, Q., Kaur, P., & Gan, J. (2023). Harnessing the potential of phytoremediation for mitigating the risk of emerging contaminants. Current Opinion In Environmental Science & Health, 32, 100448. https://doi.org/10.1016/j.coesh.2023.100448 | |
dc.relation.references | Silva, C. P., Otero, M., & Esteves, V. (2012). Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution, 165, 38-58. https://doi.org/10.1016/j.envpol.2012.02.002 | |
dc.relation.references | Silva, M. G., Esteves, V. I., Meucci, V., Battaglia, F., Soares, A. M., Pretti, C., & Freitas, R. (2022). Metabolic and oxidative status alterations induced in Ruditapes philippinarum exposed chronically to estrogen 17α-ethinylestradiol under a warming scenario. Aquatic Toxicology, 244, 106078. https://doi.org/10.1016/j.aquatox.2022.106078 | |
dc.relation.references | Singh, S., Pant, A., Dutta, K., Rani, R., Vithanage, M., & Daverey, A. (2024). Phytoremediation of pharmaceuticals and personal care products using the constructed wetland. Environmental Chemistry And Ecotoxicology, 6, 104-116. https://doi.org/10.1016/j.enceco.2024.04.001 | |
dc.relation.references | Staples, C. A., Dorn, P. B., Klecka, G. M., O’Block, S. T., & Harris, L. R. (2018). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 73(4), 564-580. | |
dc.relation.references | Sossalla, N. A., Nivala, J., Reemtsma, T., Schlichting, R., König, M., Forquet, N., Van Afferden, M., Müller, R. A., & Escher, B. I. (2021). Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater. Water Research, 201, 117349. https://doi.org/10.1016/j.watres.2021.117349 | |
dc.relation.references | Syranidou, E., Thijs, S., Avramidou, M., Weyens, N., Venieri, D., Pintelon, I., Vangronsveld, J., & Kalogerakis, N. (2018). Responses of the Endophytic Bacterial Communities of Juncus acutus to Pollution With Metals, Emerging Organic Pollutants and to Bioaugmentation With Indigenous Strains. Frontiers In Plant Science, 9. https://doi.org/10.3389/fpls.2018.01526 | |
dc.relation.references | Tadić, Đ., Sauvêtre, A., Cerqueira, F., Lestremau, F., Ait-Mouheb, N., & Chiron, S. (2024). Partially saturated vertical surface flow constructed wetland for emerging contaminants and antibiotic resistance genes removal from wastewater: The effect of bioaugmentation with Trichoderma. Journal Of Environmental Chemical Engineering, 12(2), 112128. https://doi.org/10.1016/j.jece.2024.112128 | |
dc.relation.references | Tang, Z., Liu, Z., Wang, H., Dang, Z., & Liu, Y. (2021). A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. Journal Of Environmental Management, 292, 112804. https://doi.org/10.1016/j.jenvman.2021.112804 | |
dc.relation.references | Tarafdar, A., Sirohi, R., Balakumaran, P. A., Reshmy, R., Madhavan, A., Sindhu, R., Binod, P., Kumar, Y., Kumar, D., & Sim, S. J. (2022). The hazardous threat of Bisphenol A: Toxicity, detection and remediation. Journal Of Hazardous Materials, 423, 127097. https://doi.org/10.1016/j.jhazmat.2021.127097 | |
dc.relation.references | Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2014). Wastewater Engineering: Treatment and Reuse. McGraw-Hill Education. | |
dc.relation.references | Teresa, A. H. M., Florentina, Z. M., Lara-Borrero, J. A., & C, V. S. G. (2018). Humedales de tratamiento : alternativa de saneamiento de aguas residuales aplicable en América Latina. http://hdl.handle.net/10554/34519 | |
dc.relation.references | Thalla, A. K., Devatha, C. P., Anagh, K., & Sony, E. (2019). Performance evaluation of horizontal and vertical flow constructed wetlands as tertiary treatment option for secondary effluents. Applied Water Science, 9(6). https://doi.org/10.1007/s13201-019-1014-9 | |
dc.relation.references | Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J. W., Manzoni, S., Basu, N. B., Chalov, S. R., Cohen, M. J., Creed, I. F., Goldenberg, R., Hylin, A., Kalantari, Z., Koussis, A. D., Lyon, S. W., Mazi, K., Mard, J., Persson, K., Pietro, J., Prieto, C., . . . Destouni, G. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108, 489-497. https://doi.org/10.1016/j.ecoleng.2017.07.012 | |
dc.relation.references | Tian, C., Wang, C., Tian, Y., Wu, X., & Xiao, B. (2015). Root Radial Oxygen Loss and the Effects on Rhizosphere Microarea of Two Submerged Plants. Polish Journal Of Environmental Studies, 24, 1795-1802. https://doi.org/10.15244/pjoes/38971 | |
dc.relation.references | USEPA (2012). Guidelines for Water Reuse. United States Environmental Protection Agency. | |
dc.relation.references | Vassallo, A., Miceli, E., Fagorzi, C., Castronovo, L. M., Del Duca, S., Chioccioli, S., Venditto, S., Coppini, E., Fibbi, D., & Fani, R. (2020). Temporal Evolution of Bacterial Endophytes Associated to the Roots of Phragmites australis Exploited in Phytodepuration of Wastewater. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01652 | |
dc.relation.references | Vega, A. J. P., Flórez, V. V., Marín-Peña, O., García-Aburto, S. G., & Herazo, L. C. S. (2024). Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp. Water, 16(16), 2290. https://doi.org/10.3390/w16162290 | |
dc.relation.references | Vergara-Flórez, V., Mieles-Galindo, J., Nani, G., Sandoval-Herazo, M., & Herazo, L. C. S. (2023). Treatment Wetland with Thalia geniculata for Wastewater Depuration in the Department of Sucre, Colombia. Processes, 11(9), 2754. https://doi.org/10.3390/pr11092754 | |
dc.relation.references | Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016 | |
dc.relation.references | Vymazal, J. (2013). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Research, 47(14), 4795-4811. https://doi.org/10.1016/j.watres.2013.05.029 | |
dc.relation.references | Wang, H., Lyu, W., Song, Q., Zhou, D., Hu, X., Wang, B., & Chen, R. (2020). Role of weak magnetic strength in the operation of aerobic granular reactor for wastewater treatment containing ammonia nitrogen concentration gradient. Bioresource Technology, 322, 124570. https://doi.org/10.1016/j.biortech.2020.124570 | |
dc.relation.references | Wang, H., Zhang, L., Tian, Y., Jia, Y., Bo, G., Luo, L., Liu, L., Shi, G., & Li, F. (2020). Performance of nitrobenzene and its intermediate aniline removal by constructed wetlands coupled with the micro-electric field. Chemosphere, 264, 128456. https://doi.org/10.1016/j.chemosphere.2020.128456 | |
dc.relation.references | Wang, Q., Hu, Y., Xie, H., & Yang, Z. (2018). Constructed Wetlands: A Review on the Role of Radial Oxygen Loss in the Rhizosphere by Macrophytes. Water, 10(6), 678. https://doi.org/10.3390/w10060678 | |
dc.relation.references | Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2018). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. The Science Of The Total Environment, 656, 270-279. https://doi.org/10.1016/j.scitotenv.2018.11.328 | |
dc.relation.references | Wang, X., Wang, J., Chen, J., Chen, J., Lv, Y., Chen, R., Xu, J., Li, D., He, X., & Hou, J. (2023). Formation of microorganism-derived dissolved organic nitrogen in intermittent aeration constructed wetland and its stimulating effect on phytoplankton production: Implications for nitrogen mitigation. Water Research, 230, 119563. https://doi.org/10.1016/j.watres.2022.119563 | |
dc.relation.references | Wang, Y., Cai, Z., Sheng, S., Pan, F., Chen, F., & Fu, J. (2020). Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Science Of The Total Environment, 701, 134736. https://doi.org/10.1016/j.scitotenv.2019.134736 | |
dc.relation.references | Wang, Y., Shen, L., Wu, J., Zhong, F., & Cheng, S. (2020). Step-feeding ratios affect nitrogen removal and related microbial communities in multi-stage vertical flow constructed wetlands. Science Of The Total Environment, 721, 137689. https://doi.org/10.1016/j.scitotenv.2020.137689 | |
dc.relation.references | Wei, S., Jia, L., Tan, J., Zhang, J., Guo, Z., Hu, Z., Dai, P., & Wu, H. (2023). Iron-carbon micro-electrolysis simultaneously enhanced nutrient and heavy metal removal in constructed wetlands for purifying polluted groundwater with variable hydraulic loadings. Chemical Engineering Journal, 470, 144367. https://doi.org/10.1016/j.cej.2023.144367 | |
dc.relation.references | Wibowo, Y. G., Nugraha, A. T., & Rohman, A. (2023). Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring & Management, 20, 100781. https://doi.org/10.1016/j.enmm.2023.100781 | |
dc.relation.references | Xiang, J., Wu, M., Lei, J., Fu, C., Gu, J., & Xu, G. (2018). The fate and risk assessment of psychiatric pharmaceuticals from psychiatric hospital effluent. Ecotoxicology And Environmental Safety, 150, 289-296. https://doi.org/10.1016/j.ecoenv.2017.12.049 | |
dc.relation.references | Xiao, C., Wang, L., Zhou, Q., & Huang, X. (2019). Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. Journal Of Hazardous Materials, 384, 121488. https://doi.org/10.1016/j.jhazmat.2019.121488 | |
dc.relation.references | Xiaoyan, T., Suyu, W., Yang, Y., Ran, T., Yunv, D., Dan, A., & Li, L. (2015). Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chemical Engineering Journal, 275, 198-205. https://doi.org/10.1016/j.cej.2015.04.029 | |
dc.relation.references | Yang, R., Liu, M., & Yang, Q. (2021). Microbial fuel cell affected the filler pollution accumulation of constructed wetland in the lab-scale and pilot-scale coupling reactors. Chemical Engineering Journal, 429, 132208. https://doi.org/10.1016/j.cej.2021.132208 | |
dc.relation.references | Yazdandoost, F., & Yazdani, S. A. (2019). A New Integrated Portfolio Based Water-Energy-Environment Nexus in Wetland Catchments. Water Resources Management, 33(9), 2991-3009. https://doi.org/10.1007/s11269-019-02280-1 | |
dc.relation.references | Yin, F., Ma, R., Xiong, L., Xu, C., Guo, F., Liu, Y., & Liang, F. (2024). Experimental Study on the Removal of Pollutants from Domestic Wastewater in a Strongly Constructed Wetland with an Applied Electric Magnetic Field. Water, 16(21), 3088. https://doi.org/10.3390/w16213088 | |
dc.relation.references | Yu, Y., Wang, S., Yu, P., Wang, D., Hu, B., Zheng, P., & Zhang, M. (2024). A bibliometric analysis of emerging contaminants (ECs) (2001−2021): Evolution of hotspots and research trends. Science Of The Total Environment, 907, 168116. https://doi.org/10.1016/j.scitotenv.2023.168116 | |
dc.relation.references | Zamora, S., Marín-Muñíz, J. L., Nakase-Rodríguez, C., Fernández-Lambert, G., & Sandoval, L. (2019). Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water, 11(11), 2344. https://doi.org/10.3390/w11112344 | |
dc.relation.references | Zdarta, J., Antecka, K., Frankowski, R., Zgoła-Grześkowiak, A., Ehrlich, H., & Jesionowski, T. (2017). The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. The Science Of The Total Environment, 615, 784-795. https://doi.org/10.1016/j.scitotenv.2017.09.213 | |
dc.relation.references | Zhang, H., Tang, W., Wang, W., Yin, W., Liu, H., Ma, X., Zhou, Y., Lei, P., Wei, D., Zhang, L., Liu, C., & Zha, J. (2021). A review on China’s constructed wetlands in recent three decades: Application and practice. Journal Of Environmental Sciences/Journal Of Environmental Sciences, 104, 53-68. https://doi.org/10.1016/j.jes.2020.11.032 | |
dc.relation.references | Zhao, X., Hu, Y., Zhao, Y., & Kumar, L. (2018). Achieving an extraordinary high organic and hydraulic loadings with good performance via an alternative operation strategy in a multi-stage constructed wetland system. Environmental Science And Pollution Research, 25(12), 11841-11853. https://doi.org/10.1007/s11356-018-1464-x | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Artificial wetlands | eng |
dc.subject.keywords | Emerging contaminants | eng |
dc.subject.keywords | Eichhornia crassipes | eng |
dc.subject.keywords | Electric field | eng |
dc.subject.proposal | Humedales artificiales | spa |
dc.subject.proposal | Contaminantes emergentes | spa |
dc.subject.proposal | Eichhornia crassipes | spa |
dc.subject.proposal | Campo eléctrico | spa |
dc.title | Remoción de contaminantes emergentes en aguas residuales domésticas mediante humedales artificiales con campo eléctrico: un estudio a escala piloto | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: