Publicación:
Influencia de la aplicación de extractos de Arthrospira maxima en diferentes condiciones de radiación en el desarrollo del frijol Caupí en Montería-Córdoba

dc.contributor.advisorJARMA-OROZCO, ALFREDO DE JESUS
dc.contributor.authorAriza González, Anthony Ricardo
dc.contributor.juryBarrera, José Luis
dc.contributor.juryPompelli, Marcelo Francisco
dc.date.accessioned2024-01-25T19:15:12Z
dc.date.available2024-01-25T19:15:12Z
dc.date.issued2024-01-25
dc.description.abstractLos extractos de cianobacterias son fundamentales en la agricultura, debido al enriquecimiento del suelo con elementos minerales esenciales, estimulan la producción de fitohormonas, mejoran el crecimiento y la producción de los cultivos. Este estudio evaluó el impacto del extracto de Arthrospira maxima en el desarrollo de Vigna unguiculata bajo diferentes niveles de radiación. Se utilizó un diseño experimental con dos factores (radiación y extracto) y se midieron diversos parámetros: intercambio gaseoso, índices de crecimiento, producción de biomasa y componentes de rendimiento. Los resultados mostraron que la radiación alta en combinación con las aplicaciones del extracto incrementó las tasas de AN, la TAC, la TRC, TAN, PG, PSTO y el IC en un 164.70%, 70.94%, 24.71%, 72.29%, 76.33%, 54.73% y 20.85%, en comparación con plantas que crecieron a una radiación moderada o sombra. La aplicación del extracto bajo condiciones de sombra también tuvo efectos significativos, sobre las misma variables mencionadas, comparadas con el control. La combinación óptima fue la exposición a alta radiación con la aplicación del extracto, destacando el PG (28.37 g), el P100S (27.7 g) y el IC (0.44). Además, el IC, reveló correlaciones positivas y significativas con la mayoría de las variables fisiológicas estudiadas. En conclusión, la aplicación del extracto mejoró los componentes de rendimiento de Vigna unguiculata, evidenciando la versatilidad de las cianobacterias en la producción de granos. Independientemente de la radiación, la fertilización orgánica con extractos de Arthrospira maxima podría ser una herramienta biotecnológica prometedora para promover la agricultura sostenible y aumentar la producción de granos.spa
dc.description.abstractCyanobacteria extracts are fundamental in agriculture, due to the enrichment of the soil with essential mineral elements, stimulate the production of phytohormones, improve the growth and production of crops. This study evaluated the impact of Arthrospira maxima extract on the development of Vigna unguiculata under different radiation levels. An experimental design with two factors (radiation and extract) was used and various parameters were measured: gas exchange, growth rates, biomass production and performance components. The results showed that high radiation in combination with the applications of the extract increased the rates of AN, ARG, RGR, NAR, GW, TDW and HI by 164.70%, 70.94%, 24.71%, 72.29%, 76.33%, 54.73% and 20.85%, compared to plants that grew to a moderate radiation or shade. The application of the extract under shadow conditions also had significant effects, on the same variables mentioned, compared to the control. The optimal combination was exposure to high radiation with the application of the extract, highlighting GW (28.37 g), W100S (27.7 g) and HI (0.44). In addition, HF revealed positive and significant correlations with most of the physiological variables studied. In conclusion, the application of the extract improved the performance components of Vigna unguiculata, evidencing the versatility of cyanobacteria in grain production. Regardless of radiation, organic fertilization with Arthrospira maxima extracts could be a promising biotechnological tool to promote sustainable agriculture and increase grain production.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agronómicas
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN.........................13spa
dc.description.tableofcontentsABSTRACT.........................14spa
dc.description.tableofcontentsINTRODUCCIÓN.........................15spa
dc.description.tableofcontents1. MARCO TEÓRICO.........................18spa
dc.description.tableofcontents1.1. CIANOBACTERIAS.........................18spa
dc.description.tableofcontents1.2. USOS DE LAS CIANOBACTERIAS.........................19spa
dc.description.tableofcontents1.3. GÉNERO Arthrospira.........................19spa
dc.description.tableofcontents1.4. Arthrospira maxima.........................20spa
dc.description.tableofcontents1.5. EXTRACTOS DE CIANOBACTERIAS.........................21spa
dc.description.tableofcontents1.6. CIANOBACTERIAS COMO BIOFERTILIZANTES O EXTRACTOS.........................21spa
dc.description.tableofcontents1.7. ESTUDIOS DE CIANOBACTERIAS EN ESPECIES VEGETALES.........................22spa
dc.description.tableofcontents1.8. RADIACIÓN SOLAR.........................22spa
dc.description.tableofcontents1.9. IMPORTANCIA DE LA RADIACIÓN EN LAS PLANTAS.........................23spa
dc.description.tableofcontents1.10. EFECTOS ADVERSOS DE LA ALTA RADIACIÓN EN LAS PLANTAS.........................24spa
dc.description.tableofcontents1.11. EFECTOS ADVERSOS DE LA SOMBRA EN LAS PLANTAS .........................25spa
dc.description.tableofcontents1.12. ESTUDIOS DE LA SOMBRA EN PLANTAS.........................26spa
dc.description.tableofcontents1.13. FRÍJOL CAUPÍ (Vigna unguiculata (L.) Walp).........................26spa
dc.description.tableofcontents2. OBJETIVOS.........................27spa
dc.description.tableofcontents2.1. OBJETIVO GENERAL.........................27spa
dc.description.tableofcontents2.2. OBJETIVOS ESPECÍFICOS.........................28spa
dc.description.tableofcontents3. METODOLOGÍA.........................28spa
dc.description.tableofcontents3.1. LOCALIZACIÓN GEOGRÁFICA DE LA INVESTIGACIÓN.........................28spa
dc.description.tableofcontents3.2. MATERIAL VEGETAL.........................29spa
dc.description.tableofcontents3.3. CULTIVO DE Arthrospira maxima Y PREPARACIÓN DEL EXTRACTO.........................29spa
dc.description.tableofcontents3.4. PROCEDIMIENTO.........................30spa
dc.description.tableofcontents3.5. VARIABLES.........................31spa
dc.description.tableofcontents3.5.1. Variables independientes.........................32spa
dc.description.tableofcontents3.5.2. Variables dependientes.........................32spa
dc.description.tableofcontents3.6. DISEÑO EXPERIMENTAL Y TRATAMIENTOS.........................34spa
dc.description.tableofcontents3.7. TÉCNICAS E INSTRUMENTOS DE PROCESAMIENTO DE DATOS.........................35spa
dc.description.tableofcontents4. RESULTADOS Y DISCUSIÓN.........................35spa
dc.description.tableofcontents4.1. PARÁMETROS DE INTERCAMBIO GASEOSO.........................35spa
dc.description.tableofcontents4.2. PRINCIPALES ÍNDICES DE CRECIMIENTO.........................40spa
dc.description.tableofcontents4.2.1. Tasa absoluta de crecimiento.........................40spa
dc.description.tableofcontents4.2.2. Tasa relativa de crecimiento.........................43spa
dc.description.tableofcontents4.2.3. Tasa de asimilación neta.........................46spa
dc.description.tableofcontents4.3. DISTRIBUCIÓN DE BIOMASA Y COMPONENTES DE RENDIMIENTO.........................49spa
dc.description.tableofcontents4.3.1. Caracteres biométricos.........................49spa
dc.description.tableofcontents4.3.2. Componentes de rendimiento.........................52spa
dc.description.tableofcontents4.3.3. Distribución de biomasa.........................56spa
dc.description.tableofcontents5. CONCLUSIONES.........................60spa
dc.description.tableofcontents6. RECOMENDACIONES.........................61spa
dc.description.tableofcontentsREFERENCIAS.........................62spa
dc.description.tableofcontentsANEXOS.........................78spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8101
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Agrícolas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Agronómicas
dc.relation.referencesAbbasnia, S. K., Sedaghathoor, S., Padasht Dahkaei, M.-N., & Hashemabadi, D. (2019). The effect of light variations by photoselective shade nets on pigments, antioxidant capacity, and growth of two ornamental plant species: Marigold (Calendula officinalis L.) and violet (Viola tricolor). Cogent Food & Agriculture, 5(1): 1650415. https://doi.org/10.1080/23311932.2019.1650415
dc.relation.referencesAbreu, A. P., Martins, R., & Nunes, J. (2023). Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering, 10(8): 955.
dc.relation.referencesAghofack, J., Schinzoumka, P., & Tatchago, V. (2015). Effets des extraits ou de la poudre de Spirulina platensis et Jatropha curcas sur la croissance et le développement de la tomate. Journal of Applied Biosciences, 90(1): 8413. https://doi.org/10.4314/jab.v90i1.2
dc.relation.referencesAGRONET. (2018). Sistema de Estadística Agropecuaria-SAE. Disponible en: http://www.agronet.gov.co/agronetweb1/Estad%C3%ADsticas.aspx. [15-09-2023].
dc.relation.referencesAguilar, C., González, S. V., Juarez, P., Alia, I., Palemón, F., Arenas, Y. R., & Escalante, A. S. (2021). Análisis de crecimiento de epazote (Chenopodium ambrosioides L.) cultivado en invernadero. Biotecnia, 23(2). https://doi.org/10.18633/biotecnia.v23i2.1394
dc.relation.referencesAlam, M. Z., Braun, G., Norrie, J., & Hodges, D. M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian Journal of Plant Science, 93(1): 23-36. https://doi.org/10.4141/cjps2011-260
dc.relation.referencesAlharbi, K., Hafez, E. M., Omara, A. E.-D., & Nehela, Y. (2023). Composted Bagasse and/or Cyanobacteria-Based Bio-Stimulants Maintain Barley Growth and Productivity under Salinity Stress. Plants, 12(9): 1827. https://doi.org/10.3390/plants12091827
dc.relation.referencesAramendiz, H., Espitia, M., & Ayala, C. (2017). Adaptabilidad y estabilidad fenotípica en cultivares de fríjol caupí en el caribe húmedo colombiano. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2): 14. https://doi.org/10.18684/bsaa(15).589
dc.relation.referencesAraméndiz, H., Cardona, C. E., & Combatt, E. M. (2016). Contenido Nutricional de Líneas de Fríjol Caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Información tecnológica, 27(2): 53-60. https://doi.org/10.4067/S0718-07642016000200007
dc.relation.referencesAraméndiz-Tatis, H., Espitia-Camacho, M., & Cardona-Ayala, C. (2023). Variability, correlation, and path analysis in erect and prostrate cultivars of cowpea (Vigna unguiculata [L.] Walp.). Revista Colombiana de Ciencias Hortícolas, 17(1): e15508-e15508.
dc.relation.referencesAyvar, S., Díaz, J. F., Vargas, M., Mena-Bahena, A., Tejeda, M. A., & Cuevas, Z. (2020). Rentabilidad de sistemas de producción de grano y forraje de híbridos de maíz, con fertilización biológica y química en trópico seco. Revista Terra Latinoamericana, 38(1): 9. https://doi.org/10.28940/terra.v38i1.507
dc.relation.referencesBais, J., Kandel, H., DeSutter, T., Deckard, E., & Keene, C. (2023). Soybean Response to N Fertilization Compared with Co-Inoculation of Bradyrhizobium japonicum and Azospirillum brasilense. Agronomy, 13(8): 2022. https://doi.org/10.3390/agronomy13082022
dc.relation.referencesBarkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine drugs, 17(5): 304.
dc.relation.referencesBarone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., Cagnin, M., Pizzeghello, D., Moliterni, V. M. C., Mandolino, G., Fornasier, F., Squartini, A., Nardi, S., & Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology, 30(2): 1061-1071. https://doi.org/10.1007/s10811-017-1283-3
dc.relation.referencesBarraza, F. V., Fischer, G., & Cardona, C. E. (2004). Estudio del proceso de crecimiento del cultivo del tomate (Lycopersicon esculentum Mill.) en el Valle del Sinú medio, Colombia. Agronomía Colombiana, 22(1): 81-90.
dc.relation.referencesBasyuni, M., Yuriswan, W., & Bimantara, Y. (2020). Root development in mangrove plant Rhizophora mucronata under different shade intensities. IOP Conference Series: Earth and Environmental Science, 452(1): 012090. https://doi.org/10.1088/1755-1315/452/1/012090
dc.relation.referencesBidyarani, N., Prasanna, R., Babu, S., Hossain, F., & Saxena, A. K. (2016). Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiological Research, 188-189: 97-105. https://doi.org/10.1016/j.micres.2016.04.005
dc.relation.referencesBoukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., & Fatokun, C. (2019). Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding, 138(4): 415-424. https://doi.org/10.1111/pbr.12589
dc.relation.referencesBoukar, O., Fatokun, C. A., Huynh, B.-L., Roberts, P. A., & Close, T. J. (2016). Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00757
dc.relation.referencesCárdenas, B., Escalante, J. A. S., & Rodríguez, M. T. (2019). Biomasa, índice de cosecha, rendimiento y radiación interceptada en ajo en función del nitrógeno, en clima templado. Revista Terra Latinoamericana, 37(3): 223. https://doi.org/10.28940/terra.v37i3.424
dc.relation.referencesCargua, J. E., Echeverria, C. M. & Cedeño, G. A. (2020). Efectividad de biochar y biofertilizantes en el crecimiento y calidad de plántulas de cacao. Revista Espamciencia, 11(2), 95-100. https://doi.org/10.51260/revista_espamciencia.v11i2.224
dc.relation.referencesCarranza, C., Lanchero, O., Miranda, D., & Chaves, B. (2009). Análisis del crecimiento de lechuga (Lactuca sativa L.)'Batavia'cultivada en un suelo salino de la Sabana de Bogotá. Agronomia colombiana, 27(1), 41-48.
dc.relation.referencesCarrasquilla, A., Chacón, A., Núñez, K., Gómez, O., Valverde, J., & Guerrero, M. (2016). Regresión lineal simple y múltiple: Aplicación en la predicción de variables naturales relacionadas con el crecimiento microalgal. Revista Tecnología en Marcha, 29(8): 33. https://doi.org/10.18845/tm.v29i8.2983
dc.relation.referencesCarrillo, J. F., & Yumbla, M. (2022). Caracterización morfológica y análisis de crecimiento de tres cultivares de Helianthus annuus L. para flor de corte. Siembra, 9(1): e3323. https://doi.org/10.29166/siembra.v9i1.3323
dc.relation.referencesCarrillo, Y., Terry, E., & Ruiz, J. (2020). Efecto de un inóculo microbiano en el crecimiento de plantas de tomate (Solanum lycopersicum L.). Cultivos Tropicales, 41(4).
dc.relation.referencesSantos, M., Segura, M., & López, C. E. (2010). Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía Medellín, 63(1): 5253-5266.
dc.relation.referencesCastillo, C., Mendoza, S. I., Escalante, J. A. S., García, G., Pro-Martínez, A., & González, F. (2023). Análisis de crecimiento de trébol pata de pájaro a diferente densidad de siembra. Revista Mexicana de Ciencias Agrícolas, 14(2): 265-276. https://doi.org/10.29312/remexca.v14i2.3420
dc.relation.referencesChávez, J. E. C., Castro, G. L. O., Tinoco, A. D. C. C., & García, G. A. C. (2019). Eficacia de bioestimulantes sobre el crecimiento inicial de plantas de fréjol común (Phaseolus vulgaris L.). Revista espamciencia ISSN 1390-8103, 10(1): 14-22.
dc.relation.referencesChen, H., Li, Q. P., Zeng, Y. L., Deng, F., & Ren, W. J. (2019). Effect of different shading materials on grain yield and quality of rice. Scientific Reports, 9(1): 9992. https://doi.org/10.1038/s41598-019-46437-9
dc.relation.referencesChen, T., Peng, J., Qian, M., Shui, X., Du, J., Liu, F., & Zhou, K. (2023). The Effects of Enhanced Ultraviolet-B Radiation on Leaf Photosynthesis and Submicroscopic Structures in Mangifera indica L. cv. ‘Tainong No 1’. Horticulturae, 9(1): 83. https://doi.org/10.3390/horticulturae9010083
dc.relation.referencesChittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., & Charoensook, M. (2018). Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. Journal of Applied Phycology, 30(1): 79-85. https://doi.org/10.1007/s10811-017-1138-y
dc.relation.referencesChittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22: 100737. https://doi.org/10.1016/j.bbrep.2020.100737
dc.relation.referencesCorinzia, S. A., Crapio, E., Testa, G., Cosentino, S. L., Patanè, C., & Scordia, D. (2023). Leaf Area Duration and Crop Radiation Use Efficiency Determine Biomass Yield of Lignocellulosic Perennial Grasses under Different Soil Water Content. Agronomy, 13(9): 2270. https://doi.org/10.3390/agronomy13092270
dc.relation.referencesDapont, E. C., Silva, J. B. D., & Alves, C. Z. (2016). Initial Development of açaí Plants Under Shade Gradation. Revista Brasileira de Fruticultura, 38(2). https://doi.org/10.1590/0100-29452016022
dc.relation.referencesDemay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs, 17(6): 320. https://doi.org/10.3390/md17060320
dc.relation.referencesDe-Paula, C. D., Jarma-Arroyo, S., & Aramendiz-Tatis, H. (2018). Caracterización nutricional y determinación de ácido fítico como factor antinutricional del frijol caupí. Agronomía Mesoamericana, 29(1): 29. https://doi.org/10.15517/ma.v29i1.27941
dc.relation.referencesDiaz, P., & Valdés, O. A. (2021). Crecimiento de plántulas de caoba (Swietenia macrophylla King) en respuesta a extractos vegetales. Agrociencia, 54(5): 673-681. https://doi.org/10.47163/agrociencia.v54i5.2124
dc.relation.referencesDurand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., & Robson, T. M. (2021). Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology, 311: 108684. https://doi.org/10.1016/j.agrformet.2021.108684
dc.relation.referencesEl-Semary, N., Abd El-Sattar, A. M., Ahmed, E. Z., & Aldayel, M. (2023). Mixotrophy of Algae: More Algal Biomass and More Biofertilization for Plants. Sustainability, 15(7): 5815. https://doi.org/10.3390/su15075815
dc.relation.referencesErtani, A., Nardi, S., Francioso, O., Sanchez-Cortes, S., Foggia, M. D., & Schiavon, M. (2019). Effects of Two Protein Hydrolysates Obtained From Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Frontiers in Plant Science, 10: 954. https://doi.org/10.3389/fpls.2019.00954
dc.relation.referencesEuropa, E. C., Valdivia, V. B., Sánchez, R. R., Manzo, P. T., Colín, M. F., García, A. H., & Butrón, R. O. (2012). Uso terapéutico de algunos microorganismos, microalgas, algas y hongos. Revista Mexicana de Ciencias Farmacéuticas, 43(4): 22-30.
dc.relation.referencesFamuwagun, I., Agele, S., & Aiyelari, O. (2018). Shade Effects on Growth and Development of Cacao Following Two Years of Continuous Dry Season Irrigation. International Journal of Fruit Science, 18(2): 153-176. https://doi.org/10.1080/15538362.2017.1416326
dc.relation.referencesFini, A., Loreto, F., Tattini, M., Giordano, C., Ferrini, F., Brunetti, C., & Centritto, M. (2016). Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiologia Plantarum, 157(1): 54-68. https://doi.org/10.1111/ppl.12401
dc.relation.referencesFornes, F., Sánchez-Perales, M., & Guardiola, J. L. (2002). Effect of a Seaweed Extract on the Productivity of «de Nules» Clementine mandarin and Navelina orange. Botanica Marina, 45(5). https://doi.org/10.1515/BOT.2002.051
dc.relation.referencesFrancini & Sebastiani. (2019). Abiotic Stress Effects on Performance of Horticultural Crops. Horticulturae, 5(4): 67. https://doi.org/10.3390/horticulturae5040067
dc.relation.referencesFood and Agriculture Organization of the United Nations [FAOSTAT]. (2021). Statistical databases, Disponible en: https://www.fao.org/faostat/es/#data/QCL [15-09-2023].
dc.relation.referencesDíaz, A., Gálvez, D., & Ortiz, F. E. (2015). Bioinoculación y fertilización química reducida asociadas con el crecimiento de planta y productividad de sorgo. Revista internacional de contaminación ambiental, 31(3): 245-252.
dc.relation.referencesFurbank, R. T., Jimenez‐Berni, J. A., George‐Jaeggli, B., Potgieter, A. B., & Deery, D. M. (2019). Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist, 223(4): 1714-1727. https://doi.org/10.1111/nph.15817
dc.relation.referencesGao, J., Liu, Z., Zhao, B., Liu, P., & Zhang, J.-W. (2020). Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.). BMC Plant Biology, 20(1): 60. https://doi.org/10.1186/s12870-020-2264-2
dc.relation.referencesGao, J., Shi, J., Dong, S., Liu, P., Zhao, B., & Zhang, J. (2017). Grain yield and root characteristics of summer maize (Zea mays L.) under shade stress conditions. Journal of Agronomy and Crop Science, 203(6): 562-573. https://doi.org/10.1111/jac.12210
dc.relation.referencesGarcía, C. A., Pérez, Y. A., Ríos, L. A., & Múnera, L. M. (2020). Efecto de un Consorcio de cianobacterias sobre la obtención de biomasa vegetal de la gulupa (Passiflora edulis f. Edulis sims) bajo condiciones de campo en el municipio de Marinilla-Antioquia. Hechos Microbiológicos, 11(1 y 2): 12-21. https://doi.org/10.17533/udea.hm.v11n1a02
dc.relation.referencesGashash, E. A., Osman, N. A., Alsahli, A. A., Hewait, H. M., Ashmawi, A. E., Alshallash, K. S., El-Taher, A. M., Azab, E. S., Abd El-Raouf, H. S., & Ibrahim, M. F. M. (2022). Effects of Plant-Growth-Promoting Rhizobacteria (PGPR) and Cyanobacteria on Botanical Characteristics of Tomato (Solanum lycopersicon L.) Plants. Plants, 11(20): 2732. https://doi.org/10.3390/plants11202732
dc.relation.referencesGeries, L. S. M., & Elsadany, A. Y. (2021). Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Archives of Microbiology, 203(1): 169-181. https://doi.org/10.1007/s00203-020-01991-z
dc.relation.referencesGómez, M. J., Sánchez, M. J., Lorente, B., Vicente, M. J., & Ortuño, M. F. (2023). Effects of Light Intensity and Water Stress on Growth, Photosynthetic Characteristics and Plant Survival of Cistus heterophyllus Desf. Subsp. Carthaginensis. Horticulturae, 9(8): 878. https://doi.org/10.3390/horticulturae9080878
dc.relation.referencesGonçalves, A. L. (2021). The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Applied Sciences, 11(2): 871. https://doi.org/10.3390/app11020871
dc.relation.referencesGonzález, A., & Camacho, M. (2018). Costos y políticas eficientes de control de emisiones de fertilización nitrogenada en la agricultura mexicana. Revista Mexicana de Ciencias Agrícolas, 9(7): 1399-1409. https://doi.org/10.29312/remexca.v9i7.1673
dc.relation.referencesGu, J., Zhou, Z., Li, Z., Chen, Y., Wang, Z., & Zhang, H. (2017). Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research, 200: 58-70. https://doi.org/10.1016/j.fcr.2016.10.008
dc.relation.referencesGuillén, M., Márquez, C., de la Cruz, E., Velázquez, J. R., Parra, J. M. S., Carrillo, M. G., & Vidal, J. A. O. (2016). Biofortificación de frijol caupí (Vigna unguiculata L. Walp) con hierro y zinc. Revista Mexicana de Ciencias Agrícolas, (17): 3427-3438.
dc.relation.referencesGupta, V., Ratha, S. K., Sood, A., Chaudhary, V., & Prasanna, R. (2013). New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—Prospects and challenges. Algal Research, 2(2): 79-97. https://doi.org/10.1016/j.algal.2013.01.006
dc.relation.referencesHaida, M., El Khalloufi, F., Mugani, R., Redouane, E. M., Campos, A., Vasconcelos, V., & Oudra, B. (2022). Effects of Irrigation with Microcystin-Containing Water on Growth, Physiology, and Antioxidant Defense in Strawberry Fragaria vulgaris under Hydroponic Culture. Toxins, 14(3): 198. https://doi.org/10.3390/toxins14030198
dc.relation.referencesHamed, S. M., El-Gaml, N. M., & Eissa, S. T. (2022). Integrated biofertilization using yeast with cyanobacteria on growth and productivity of wheat. Beni-Suef University Journal of Basic and Applied Sciences, 11(1): 112. https://doi.org/10.1186/s43088-022-00288-y
dc.relation.referencesHarun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14(3): 1037-1047. https://doi.org/10.1016/j.rser.2009.11.004
dc.relation.referencesHashtroudi, M. S., Ghassempour, A., Riahi, H., Shariatmadari, Z., & Khanjir, M. (2013). Endogenous auxins in plant growth-promoting Cyanobacteria Anabaena vaginicola and Nostoc calcicola. Journal of Applied Phycology, 25(2): 379-386. https://doi.org/10.1007/s10811-012-9872-7
dc.relation.referencesHegazi, A. Z., Mostafa, S. S., & Ahmed, H. M. (2010). Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization. Nature and Science, 8(11): 183-194.
dc.relation.referencesHernández, R. M., Santacruz, F., Ruiz, M. A., Norrie, J., & Hernández, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619-628. https://doi.org/10.1007/s10811-013-0078-4
dc.relation.referencesHernández, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía, 49(2):157-173. https://doi.org/10.4067/S0718-19572014000200001
dc.relation.referencesHuisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8): 471-483. https://doi.org/10.1038/s41579-018-0040-1
dc.relation.referencesHussain, S., Mumtaz, M., Manzoor, S., Shuxian, L., Ahmed, I., Skalicky, M., Brestic, M., Rastogi, A., Ulhassan, Z., Shafiq, I., Allakhverdiev, S. I., Khurshid, H., Yang, W., & Liu, W. (2021). Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry, 159: 43-52. https://doi.org/10.1016/j.plaphy.2020.11.053
dc.relation.referencesJan, Z., Ali, S., Sultan, T., Khan, M., Shah, Z., & Khan, F. (2018). Impact of Different Strains of Cyanobacteria on Rice Crop Growth and Nutrients Uptake under Saline Soil Condition. Sarhad Journal of Agriculture, 34(2). https://doi.org/10.17582/journal.sja/2018/34.2.450.458
dc.relation.referencesJarma, A., Cardona, C., & Fernández, C. (2012). Efecto de la temperatura y radiación en la producción de glucósidos de esteviol en Stevia rebaudiana en el Caribe húmedo colombiano. Revista UDCA Actualidad & Divulgación Científica, 15(2): 339-347. https://doi.org/10.31910/rudca.v15.n2.2012.833
dc.relation.referencesJi, J., Zhang, C., Sun, Z., Wang, L., Duanmu, D., & Fan, Q. (2019). Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9. International Journal of Molecular Sciences, 20(10): 2471. https://doi.org/10.3390/ijms20102471
dc.relation.referencesJiang, C., Johkan, M., Maruo, T., Hohjo, M., Tsukagoshi, S., Ebihara, M., & Nakaminami, A. (2018). Effect of supplemental far-red light with blue and red LED lamps on leaf photosynthesis, stomatal regulation and plant development of protected cultivated tomato. Acta Horticulturae, 1227: 533-540. https://doi.org/10.17660/ActaHortic.2018.1227.67
dc.relation.referencesJung, F., Braune, S., Jung, C. H., Krüger-Genge, A., Waldeck, P., Petrick, I., & Küpper, J. H. (2022). Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells—an overview. Life, 12(10): 1497.
dc.relation.referencesKhalid, M. H. B., Raza, M. A., Yu, H. Q., Sun, F. A., Zhang, Y. Y., Lu, F. Z., Si, L., Iqbal, N., Khan, I., Fu, F. L., & Li, W. C. (2019). Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied Ecology and Environmental Research, 17(2): 2551-2569. https://doi.org/10.15666/aeer/1702_25512569
dc.relation.referencesKholssi, R., Marks, E. A. N., Miñón, J., Maté, A. P., Sacristán, G., Montero, O., Debdoubi, A., & Rad, C. (2021). A consortium of cyanobacteria and plant growth promoting rhizobacteria for wheat growth improvement in a hydroponic system. South African Journal of Botany, 142: 247-258. https://doi.org/10.1016/j.sajb.2021.06.035
dc.relation.referencesKollmen, J., & Strieth, D. (2022). The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth. Life, 12(2): 223. https://doi.org/10.3390/life12020223
dc.relation.referencesKovač, D. J., Simeunović, J. B., Babić, O. B., Mišan, A. Č., & Milovanović, I. L. (2013). Algae in food and feed. Food and Feed Research, 40(1): 21-32.
dc.relation.referencesLara, D., Costales, D., Nápoles, M. C., & Falcón, A. (2019). Pectimorf® y Azofert-F® en el crecimiento de plantas de frijol (Phaseolus vulgaris L.). 40(4).
dc.relation.referencesLaub, M., Pataczek, L., Feuerbacher, A., Zikeli, S., & Högy, P. (2022). Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: A meta-analysis. Agronomy for Sustainable Development, 42(3): 51. https://doi.org/10.1007/s13593-022-00783-7
dc.relation.referencesLe Moigne, T., Crozet, P., Lemaire, S. D., & Henri, J. (2020). High-Resolution Crystal Structure of Chloroplastic Ribose-5-Phosphate Isomerase from Chlamydomonas reinhardtii An Enzyme Involved in the Photosynthetic Calvin-Benson Cycle. International Journal of Molecular Sciences, 21(20): 7787. https://doi.org/10.3390/ijms21207787
dc.relation.referencesLeiton, J., Brenes, L., & Uribe-Lorío, L. (2019). Purificación de biogás usando Cianobacterias. Investigación e Innovación En Ingenierías, 7(2): 76-85. https://doi.org/10.17081/invinno.7.2.3373
dc.relation.referencesLi, Q., Deng, F., Chen, H., Zeng, Y., Li, B., Zhong, X., Wang, L., Zhou, W., Chen, Y., & Ren, W. (2020). Shading decreases rice yield by impeding grain‐filling progress after heading. Agronomy Journal, 112(5): 4018-4030. https://doi.org/10.1002/agj2.20372
dc.relation.referencesLiu, H., Shao, M., & Yang, L. (2023). Photosynthesis Characteristics of Tomato Plants and Its’ Responses to Microclimate in New Solar Greenhouse in North China. Horticulturae, 9(2): 197. https://doi.org/10.3390/horticulturae9020197
dc.relation.referencesLópez, I. Y., Carrillo, D., Salinas, C., Silva, A., Arévalo, A., Barceló, D., ... & Parra, R. (2019). Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Science of the total environment, 676: 356-367.
dc.relation.referencesLópez, I., Martínez, L., Pérez, G., Cedeño, L., Reyes, Y., Cárdenas, R. M., Núñez, M., & Cabrera, J. A. (2021). Efectos de productos bioactivos en plantas de Cicer arietinum L. 42(1).
dc.relation.referencesMalviya, D., Sahu, P. K., Singh, U. B., Paul, S., Gupta, A., Gupta, A. R., Singh, S., Kumar, M., Paul, D., Rai, J. P., Singh, H. V., & Brahmaprakash, G. P. (2020). Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. International Journal of Environmental Research and Public Health, 17(4): 1434. https://doi.org/10.3390/ijerph17041434
dc.relation.referencesMattner, S. W, Wite, D., Riches, D. A., Porter, I. J., & Arioli, T. (2013). The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biological Agriculture & Horticulture, 29(4): 258-270. https://doi.org/10.1080/01448765.2013.830276
dc.relation.referencesMazhar, S., Cohen, J. D., & Hasnain, S. (2013). Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat: Auxin producing non-heterocyxtous Cyanobacteria. Journal of Basic Microbiology, 53(12): 996-1003. https://doi.org/10.1002/jobm.201100563
dc.relation.referencesMenssen, M., Linde, M., Otunga Omondi, E., Abukutsa-Onyango, M., Dinssa, F. F., & Winkelmann, T. (2017). Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Scientia Horticulturae, 226: 268-276. https://doi.org/10.1016/j.scienta.2017.08.003
dc.relation.referencesMérida, L. G. R., Jacob-Lopes, E., & Zepka, L. Q. (2013). Fotobiorreactor: herramienta para cultivo de cianobacterias. Ciencia y Tecnología, 6(2): 9-19.
dc.relation.referencesMerwad, A.-R. M. A., Desoky, E.-S. M., & Rady, M. M. (2018). Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228: 132-144. https://doi.org/10.1016/j.scienta.2017.10.008
dc.relation.referencesMichalak, I., Chojnacka, K., Dmytryk, A., Wilk, R., Gramza, M., & Rój, E. (2016). Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01591
dc.relation.referencesMógor, Á. F., De Oliveira Amatussi, J., Mógor, G., & Bocchetti De Lara, G. (2018). Bioactivity of Cyanobacterial Biomass Related to Amino Acids Induces Growth and Metabolic Changes on Seedlings and Yield Gains of Organic Red Beet. American Journal of Plant Sciences, 09(5): 966-978. https://doi.org/10.4236/ajps.2018.95074
dc.relation.referencesMógor, Á. F., Ördög, V., Lima, G. P. P., Molnár, Z., & Mógor, G. (2018). Biostimulant properties of cyanobacterial hydrolysate related to polyamines. Journal of Applied Phycology, 30(1): 453-460. https://doi.org/10.1007/s10811-017-1242-z
dc.relation.referencesMontejo, D., Casanova, F., García, M., Oros , I., Díaz, V., & Morales, E. R. (2018). Respuesta foliar y radical del maíz a la fertilización biológica-química en un suelo Luvisol. Agronomía Mesoamericana, 29(2): 325. https://doi.org/10.15517/ma.v29i2.29511
dc.relation.referencesMorales, E., Martínez Pérez, R., & Suárez Rodríguez, G. (2017). Aislamiento, cultivo, viabilidad y evaluación de un consorcio cianobacteria-microalga como acondicionador de suelos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 35(2): 51-71. https://doi.org/10.26807/remcb.v35i1-2.249
dc.relation.referencesMorales, E. A., Rivera, S. F., Vildozo, L. H., & Pol, A. (2017). Floración algal nociva (FAN) producida por cianobacterias en la laguna Alalay, Cochabamba, Bolivia. Acta Nova, 8(1), 50-75.
dc.relation.referencesNuhu, A. A. (2013). Spirulina (Arthrospira): An Important Source of Nutritional and Medicinal Compounds. Journal of Marine Biology, 2013, 1-8. https://doi.org/10.1155/2013/325636
dc.relation.referencesObid, S. A., Idris, A. E., & Mohamed Ahmed, B. E. A. (2016). Effect of Bio-Fertilizer on Growth and Yield of Two Maize (Zea mays L.) Cultivars at Shambat, Sudan. Scholars Journal of Agriculture and Veterinary Sciences, 3(4): 313-317. https://doi.org/10.21276/sjavs.2016.3.4.9
dc.relation.referencesOliveira, R., Moreira, A., Costa, A., Souza, L. C., Lima, L. G. S., & Silva, R. T. L. (2015). Modelos de Determinação Não Destrutiva de Área Foliar de Feijão Caupi Vigna unguiculata (L.). Global Science and Technology, 8(2): 17-27. https://doi.org/10.14688/1984-3801/gst.v8n2p17-27
dc.relation.referencesÖrdög, V., Stirk, W. A., Takács, G., Pőthe, P., Illés, Á., Bojtor, C., Széles, A., Tóth, B., Van Staden, J., & Nagy, J. (2021). Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L.) in field experiments. South African Journal of Botany, 140: 153-160. https://doi.org/10.1016/j.sajb.2021.03.026
dc.relation.referencesPalmer, S., & Van Iersel, M. W. (2020). Increasing Growth of Lettuce and Mizuna under Sole-Source LED Lighting Using Longer Photoperiods with the Same Daily Light Integral. Agronomy, 10(11): 1659. https://doi.org/10.3390/agronomy10111659
dc.relation.referencesPan, Y., Guo, J., Fan, L., Ji, Y., Liu, Z., Wang, F., Pu, Z., Ling, N., Shen, Q., & Guo, S. (2022). The source–sink balance during the grain filling period facilitates rice production under organic fertilizer substitution. European Journal of Agronomy, 134: 126468. https://doi.org/10.1016/j.eja.2022.126468
dc.relation.referencesPandey, J. P., & Tiwari, A. (2010). Optimization of biomass production of Spirulina maxima. J. Algal Biomass Utln, 1(2), 20-32.
dc.relation.referencesPark, J., & Dinh, T. B. (2019). Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima. Bioresource technology, 291: 121846.
dc.relation.referencesPérez, Y., López, I., & Reyes, Y. (2020). Las algas como alternativa natural para la producción de diferentes cultivos. Cultivos Tropicales, 41(2).
dc.relation.referencesPiato, K., Lefort, F., Subía, C., Caicedo, C., Calderón, D., Pico, J., & Norgrove, L. (2020). Effects of shade trees on robusta coffee growth, yield and quality. A meta-analysis. Agronomy for Sustainable Development, 40(6): 38. https://doi.org/10.1007/s13593-020-00642-3
dc.relation.referencesPompelli, M. F., Arrieta, D. V., Rodríguez, Y. Y. P., Ramírez, A. M. J., Bettin, A. M. V., Avilez, M. A. Q., Cárcamo, J. A. A., Garcia-Castaño, S. G., González, L. M. M., Cordero, E. D. F., Montaño, M. J. P., Mendoza, C. C. P., González, A. R. A., Coley, A. J. T., Jarma-Orozco, A., & Rodriguez Paez, L. A. (2022). Can Chlorophyll a Fluorescence and Photobleaching Be a Stress Signal under Abiotic Stress in Vigna unguiculata L.? Sustainability, 14(23): 15503. https://doi.org/10.3390/su142315503
dc.relation.referencesPrasanna, R., Kanchan, A., Ramakrishnan, B., Ranjan, K., Venkatachalam, S., Hossain, F., Shivay, Y. S., Krishnan, P., & Nain, L. (2016). Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. European Journal of Soil Biology, 75: 15-23. https://doi.org/10.1016/j.ejsobi.2016.04.001
dc.relation.referencesPrasanna, R., Ramakrishnan, B., Ranjan, K., Venkatachalam, S., Kanchan, A., Solanki, P., Monga, D., Shivay, Y. S., & Kranthi, S. (2016). Microbial Inoculants with Multifaceted Traits Suppress Rhizoctonia Populations and Promote Plant Growth in Cotton. Journal of Phytopathology, 164(11-12): 1030-1042. https://doi.org/10.1111/jph.12524
dc.relation.referencesPrasanna, R., Ramakrishnan, B., Simranjit, K., Ranjan, K., Kanchan, A., Hossain, F., & Nain, L. (2017). Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Archives of Microbiology, 199(9): 1311-1323. https://doi.org/10.1007/s00203-017-1405-y
dc.relation.referencesQuiroga, M., Agüero, D., Zapata, R., Busilacchi, H., & Bueno, M. (2015). Activadores de crecimiento y biofertilizantes como alternativa al uso de fertilizantes químicos en cultivo de chía (Salvia hispanica L.). Energías Renovables y Medio Ambiente, 35: 31-40.
dc.relation.referencesRachedi, R., Foglino, M., & Latifi, A. (2020). Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life, 10(12): 312. https://doi.org/10.3390/life10120312
dc.relation.referencesRamakrishnan, K., Gnanam, R., Sivakumar, P., & Manickam, A. (2005). In vitro somatic embryogenesis from cell suspension cultures of cowpea [Vigna unguiculata (L.) Walp]. Plant Cell Reports, 24(8): 449-461. https://doi.org/10.1007/s00299-005-0965-5
dc.relation.referencesRamírez Revilla, S., Medina Pérez, J., & Villanueva Salas, J. (2018). Evaluación de la capacidad acumuladora de Cd(II), Pb(II) y Cr(VI) por colonias de Nostoc commune “Murmunta”. Revista de la Sociedad Química del Perú, 84(2): 239-246. https://doi.org/10.37761/rsqp.v84i2.145
dc.relation.referencesRana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50: 118-126. https://doi.org/10.1016/j.ejsobi.2012.01.005
dc.relation.referencesRetana-Cordero, M., Flores, S., Freyre, R., & Gómez, C. (2022). Strategies to Reduce Radiation Stress in Open-Field Ginger and Turmeric Production. Agronomy, 12(8): 1910. https://doi.org/10.3390/agronomy12081910
dc.relation.referencesRighini, H., Francioso, O., Martel Quintana, A., & Roberti, R. (2022). Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. Horticulturae, 8(1): 58. https://doi.org/10.3390/horticulturae8010058
dc.relation.referencesRojas Padilla, J., Chaparro Encinas, L. A., Robles Montoya, R. I., & De Los Santos Villalobos, S. (2020). Promoción de crecimiento en trigo (Triticum turgidum L. subsp. Durum) por la co-inoculación de cepas nativas de Bacillus aisladas del Valle del Yaqui, México. Nova Scientia, 12(24). https://doi.org/10.21640/ns.v12i24.2136
dc.relation.referencesRojas, V., Rivas, L., Cárdenas, C., & Guzmán, F. (2020). Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules, 25(24): 5804. https://doi.org/10.3390/molecules25245804
dc.relation.referencesRoldán, C. S., Mujtar, V. E., Caballé, G., Mazzoni, A., Berli, F., & Marchelli, P. (2023). Crecimiento diferencial de clones de maqui seleccionados en Argentina, según su cultivo bajo distintas condiciones de radiación solar y riego. Bosque (Valdivia), 44(1): 207-217. https://doi.org/10.4067/s0717-92002023000100207
dc.relation.referencesRomanowska-Duda, Z., Szufa, S., Grzesik, M., Piotrowski, K., & Janas, R. (2021). The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. Energies, 14(17): 5262. https://doi.org/10.3390/en14175262
dc.relation.referencesRomero, H. M., Guataquira, S., & Forero, D. C. (2022). Light Interception, Photosynthetic Performance, and Yield of Oil Palm Interspecific OxG Hybrid (Elaeis oleifera (Kunth) Cortés x Elaeis guineensis Jacq.) under Three Planting Densities. Plants, 11(9): 1166. https://doi.org/10.3390/plants11091166
dc.relation.referencesRuscitti, M., Arango, C., Garita, S., & Bernardo, V. (2019). Parámetros morfológicos y fisiológicos de plantas de pimiento inoculadas con Funneliformis mosseae en condiciones de hidroponía y con altas concentraciones de cobre. Revista de la Facultad de Agronomía, 118(1): 88-100. https://doi.org/10.24215/16699513e009
dc.relation.referencesSalomón, S., Rivera-Rondón, C. A., & Zapata, Á. M. (2020). Floraciones de cianobacterias en Colombia: Estado del conocimiento y necesidades de investigación ante el cambio global. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171): 376-391. https://doi.org/10.18257/raccefyn.1050
dc.relation.referencesSánchez, D. M., Rodriguez, W., Castro, D. F., & Trujillo , E. (2019). Respuesta agronómica de mucilago de cacao (Theobroma cacao L.) en cultivo de maíz (Zea mays L.). Ciencia en Desarrollo, 10(2): 43-58. https://doi.org/10.19053/01217488.v10.n2.2019.7958
dc.relation.referencesSchulz, V. S., Munz, S., Stolzenburg, K., Hartung, J., Weisenburger, S., & Graeff-Hönninger, S. (2019). Impact of Different Shading Levels on Growth, Yield and Quality of Potato (Solanum tuberosum L.). Agronomy, 9(6): 330. https://doi.org/10.3390/agronomy9060330
dc.relation.referencesSemenova, N. A., Smirnov, A. A., Dorokhov, A. S., Proshkin, Y. A., Ivanitskikh, A. S., Chilingaryan, N. O., Dorokhov, A. A., Yanykin, D. V., Gudkov, S. V., & Izmailov, A. Yu. (2022). Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming. Energies, 15(21): 8076. https://doi.org/10.3390/en15218076
dc.relation.referencesShafiq, I., Hussain, S., Raza, M. A., Iqbal, N., Asghar, M. A., Raza, A., Fan, Y., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W., & Yang, F. (2021). Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20(1): 4-23. https://doi.org/10.1016/S2095-3119(20)63227-0
dc.relation.referencesShanab, S., Saker, M. M., & Abdel-Rahman, M. H. (2003). Crude extracts of some fresh water Cyanobacteria have auxin like activity on potato tissue culture. Arab J. Biotechnol, 6(2), 297-312.
dc.relation.referencesShedeed, Z. A., Gheda, S., Elsanadily, S., Alharbi, K., & Osman, M. E. H. (2022). Spirulina platensis Biofertilization for Enhancing Growth, Photosynthetic Capacity and Yield of Lupinus luteus. Agriculture, 12(6): 781. https://doi.org/10.3390/agriculture12060781
dc.relation.referencesSolano Jiménez, R. (2020). Macrófitas acuáticas, plantas terrestres y su importancia en el control de los florecimientos de cianobacterias. Una revisión documental. Ecocience International Journal, 3: 38-53. https://doi.org/10.35766/je20235
dc.relation.referencesSood, A., Singh, P. K., Kumar, A., Singh, R., & Prasanna, R. (2011). Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments. Biologia, 66(1): 104-110. https://doi.org/10.2478/s11756-010-0133-4
dc.relation.referencesSoppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., & Andreotti, C. (2019). Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy, 9(9): 483. https://doi.org/10.3390/agronomy9090483
dc.relation.referencesSu, Y., Yang, H., Wu, Y., Gong, W., Gul, H., Yan, Y., & Yang, W. (2023). Photosynthetic Acclimation of Shade-Grown Soybean Seedlings to a High-Light Environment. Plants, 12(12): 2324. https://doi.org/10.3390/plants12122324
dc.relation.referencesSupraja, K. V., Behera, B., & P., B. (2020). Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Industrial Crops and Products, 151: 112453. https://doi.org/10.1016/j.indcrop.2020.112453
dc.relation.referencesSzczepanek, M., Baczyński, M., & Graczyk, R. (2020). Effects of Plant Growth Regulators and N Rate on the Morphological Traits of Generative Tillers and Seed Yields of Chewings and Strong Creeping Red Fescue. Agronomy, 11(1): 65. https://doi.org/10.3390/agronomy11010065
dc.relation.referencesTakács, G., Stirk, W. A., Gergely, I., Molnár, Z., Van Staden, J., & Ördög, V. (2019). Biostimulating effects of the cyanobacterium Nostoc piscinale on winter wheat in field experiments. South African Journal of Botany, 126: 99-106. https://doi.org/10.1016/j.sajb.2019.06.033
dc.relation.referencesTanaka, S., Ario, N., Nakagawa, A., Tomita, Y., Murayama, N., Taniguchi, T., Hamaoka, N., Iwaya-Inoue, M., & Ishibashi, Y. (2017). Effects of light quality on pod elongation in soybean ( Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). Plant Signaling & Behavior, 12(6): e1327495. https://doi.org/10.1080/15592324.2017.1327495
dc.relation.referencesTang, J., Sun, B., Cheng, R., Shi, Z., Luo, D., Liu, S., & Centritto, M. (2021). The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO2 in Seedlings of Four Tree Species in Subtropical China. Plants, 10(10): 2213. https://doi.org/10.3390/plants10102213
dc.relation.referencesToribio, A. J., Suárez-Estrella, F., Jurado, M. M., López, M. J., López-González, J. A., & Moreno, J. (2020). Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26: e00449. https://doi.org/10.1016/j.btre.2020.e00449
dc.relation.referencesTorres, A., Hernández, M. A., & Carrasco, G. (2021). Efecto de la irradiancia en el crecimiento y coloración de la cianobacteria marina Spirulina subsalsa Oersted ex Gomont, 1892. AquaTechnica: Revista Iberoamericana de Acuicultura., 3(1): 25. https://doi.org/10.33936/at.v3i1.3483
dc.relation.referencesTouil, S., Richa, A., Fizir, M., & Bingwa, B. (2021). Shading effect of photovoltaic panels on horticulture crops production: A mini review. Reviews in Environmental Science and Bio/Technology, 20(2): 281-296. https://doi.org/10.1007/s11157-021-09572-2
dc.relation.referencesTownsend, A. J., Retkute, R., Chinnathambi, K., Randall, J. W. P., Foulkes, J., Carmo-Silva, E., & Murchie, E. H. (2018). Suboptimal Acclimation of Photosynthesis to Light in Wheat Canopies. Plant Physiology, 176(2): 1233-1246. https://doi.org/10.1104/pp.17.01213
dc.relation.referencesWan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H., & Liu, Y. (2020). Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 8, e9316. https://doi.org/10.7717/peerj.9316
dc.relation.referencesWu, A., Hammer, G. L., Doherty, A., Von Caemmerer, S., & Farquhar, G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants, 5(4): 380-388. https://doi.org/10.1038/s41477-019-0398-8
dc.relation.referencesXiao, S., Li, D., Tang, Z., Wei, H., Zhang, Y., Yang, J., Zhao, C., Liu, Y., & Wang, W. (2023). Supplementary UV-B Radiation Effects on Photosynthetic Characteristics and Important Secondary Metabolites in Eucommia ulmoides Leaves. International Journal of Molecular Sciences, 24(9): 8168. https://doi.org/10.3390/ijms24098168
dc.relation.referencesXie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Research International, 2019, 1-11. https://doi.org/10.1155/2019/9732325
dc.relation.referencesXu, S., Liu, Z., Han, S., Chen, Z., He, X., Zhao, H., & Ren, S. (2023). Exploring the Sensitivity of Solar-Induced Chlorophyll Fluorescence at Different Wavelengths in Response to Drought. Remote Sensing, 15(4): 1077. https://doi.org/10.3390/rs15041077
dc.relation.referencesYang, Y., Liu, G., Guo, X., Liu, W., Xue, J., Ming, B., Xie, R., Wang, K., Li, S., & Hou, P. (2022). Effect Mechanism of Solar Radiation on Maize Yield Formation. Agriculture, 12(12): 2170. https://doi.org/10.3390/agriculture12122170
dc.relation.referencesYassen, A. A., Entsar, M. E., & Sahar, M. Z. (2019). The Role of Vermicompost and Foliar Spray of Spirulina platensis Extract on Vegetative Growth, Yield and Nutrition Status of Lettuce Plant under sandy soil. Research Journal of Agriculture and Biological Sciences. https://doi.org/10.22587/rjabs.2019.14.1.1
dc.relation.referencesYuan, X., Kumar, A., Sahu, A. K., & Ergas, S. J. (2011). Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresource Technology, 102(3): 3234-3239. https://doi.org/10.1016/j.biortech.2010.11.019
dc.relation.referencesZárate, W., Arellano, M. A., Ramírez, F., Moreno, K., & González-Sandoval, D. C. (2021). Evaluación de diferentes niveles de radiación sobre la densidad estomática de tomate (Solanum lycopersicum L.). Ecosistemas y Recursos Agropecuarios, 8(3). https://doi.org/10.19136/era.a8n3.3009
dc.relation.referencesZewail, R. M. Y., Ali, M., El-Gamal, I. S. H., Al-Maracy, S. H. A., Islam, K. R., Elsadek, M., Azab, E., Gobouri, A. A., ElNahhas, N., Mohamed, M. H. M., & El-Desouky, H. S. (2021). Interactive Effects of Arbuscular Mycorrhizal Inoculation with Nano Boron, Zinc, and Molybdenum Fertilization on Stevioside Contents of Stevia (Stevia rebaudiana L.) Plants. Horticulturae, 7(8): 260. https://doi.org/10.3390/horticulturae7080260
dc.relation.referencesZhang, N., Van Westreenen, A., Anten, N. P. R., Evers, J. B., & Marcelis, L. F. M. (2020). Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: A simulation study using a functional–structural plant model. Annals of Botany, 126(4): 635-646. https://doi.org/10.1093/aob/mcz197
dc.relation.referencesZhang, Z., Xing, Z., Zhou, N., Zhao, C., Liu, B., Jia, D. & Zhang, H. (2022). Effects of Post-Anthesis Temperature and Radiation on Grain Filling and Protein Quality of Wheat (Triticum aestivum L.). Agronomy, 12(11): 2617. https://doi.org/10.3390/agronomy12112617
dc.relation.referencesZheng, L., He, H., & Song, W. (2019). Application of Light-emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. HortScience, 54(10): 1656-1661. https://doi.org/10.21273/HORTSCI14109-19
dc.relation.referencesZilli, J. É., Valisheski, R. R., Freire, F. R., Neves, M., & Rumjanek, N. G. (2004). Assessment of cowpea rhizobium diversity in Cerrado areas of northeastern Brazil. Brazilian Journal of Microbiology, 35(4): 281-287. https://doi.org/10.1590/S1517-83822004000300002
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUNICOR
dc.subject.keywordsCyanobacteriaeng
dc.subject.keywordsGrain productioneng
dc.subject.keywordsNet photosynthesiseng
dc.subject.keywordsGrowth rateseng
dc.subject.keywordsHarvest indexeng
dc.subject.keywordsIncident radiationeng
dc.subject.proposalCianobacteriasspa
dc.subject.proposalProduccion de granosspa
dc.subject.proposalFotosíntesis netaspa
dc.subject.proposalÍndices de crecimientospa
dc.subject.proposalÍndice de cosechaspa
dc.subject.proposalRadiación incidentespa
dc.titleInfluencia de la aplicación de extractos de Arthrospira maxima en diferentes condiciones de radiación en el desarrollo del frijol Caupí en Montería-Córdobaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
ArizaAnthony.pdf
Tamaño:
3.18 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FORMATO DE AUTORIZACIÓN.pdf
Tamaño:
946.06 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones