Publicación:
Síntesis y caracterización de materiales tipo hidrotalcitas por medio de isotermas para ensayos catalíticos en la producción de biodiésel

dc.audience
dc.contributor.advisorBarrera Vargas, Mario
dc.contributor.authorRivera Zambrano, Juan Diego
dc.contributor.juryEspitia Arrieta, Amelia Andrea
dc.contributor.juryPérez Sotelo, Dairo Enrique
dc.contributor.otherDistinto roles
dc.date.accessioned2023-11-17T02:00:14Z
dc.date.available2023-11-17T02:00:14Z
dc.date.issued2023-11-16
dc.description.abstractEn respuesta a la necesidad de abordar las crecientes demandas energéticas de manera sostenible y reducir la contaminación causada por los combustibles fósiles, se ha destacado el interés en el biodiésel como alternativa. Se propone la transesterificación con aceite de cocina y catalizadores heterogéneos, centrándose en un material tipo hidrotalcita binaria de Zn-Fe. Este material se sintetizó mediante coprecipitación y tratamiento térmico, demostrando propiedades mesoporosas. Los catalizadores derivados de este proceso se evaluaron en reacciones de transesterificación con aceite de girasol y metanol, destacando el óxido mixto HTL-F con una conversión a FAME del 92%, superando a HTL-C. En conclusión, el uso del óxido mixto de hidrotalcita Zn/Fe se propone como un catalizador eficaz en procesos de transesterificación para la producción de biodiésel, ofreciendo una alternativa más sostenible y respetuosa con el medio ambiente.spa
dc.description.degreelevelPregrado
dc.description.degreenameQuímico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.notesIn response to the need to address growing energy demands in a sustainable manner and reduce pollution caused by fossil fuels, interest in biodiesel as an alternative has been highlighted. Transesterification is proposed with cooking oil and heterogeneous catalysts, focusing on a Zn-Fe binary hydrotalcite type material. This material was synthesized through coprecipitation and thermal treatment, demonstrating mesoporous properties. The catalysts derived from this process were evaluated in transesterification reactions with sunflower oil and methanol, highlighting the mixed oxide HTL-F with a conversion to FAME of 92%, surpassing HTL-C. In conclusion, the use of Zn/Fe hydrotalcite mixed oxide is proposed as an effective catalyst in transesterification processes for the production of biodiesel, offering a more sustainable and environmentally friendly alternative.eng
dc.description.tableofcontents1. INTRODUCCIÓN .....9spa
dc.description.tableofcontents2. OBJETIVOS.....12spa
dc.description.tableofcontents2.1. OBJETIVO GENERAL.....12spa
dc.description.tableofcontents2.2. OBJETIVOS ESPECÍFICOS.....12spa
dc.description.tableofcontents3. MARCO TEORICO.....13spa
dc.description.tableofcontents3.1. FÉNOMENO DE ADSORCÍON.....13spa
dc.description.tableofcontents3.1.1 ADSORCIÓN FÍSICA.....13spa
dc.description.tableofcontents3.1.2 ADSORCIÓN QUÍMICA .....14spa
dc.description.tableofcontents3.2. ISOTERMAS DE ADSORCION.....14spa
dc.description.tableofcontents3.2.1. TIPOS DE HISTÉRESIS.....16spa
dc.description.tableofcontents3.2.2. ISOTERMA DE LANGMUIR.....17spa
dc.description.tableofcontents3.2.3. ISOTERMA CALCULADA POR EL MÉTODO BET.....17spa
dc.description.tableofcontents3.3. MATERIALES NANOPOROSOS.....18spa
dc.description.tableofcontents3.3. MATERIALES TIPO HIDROTALCITA.....19spa
dc.description.tableofcontents3.3.1. SÍNTESIS.....22spa
dc.description.tableofcontents3.4. GENERALIDADES DEL BIODIÉSEL.....23spa
dc.description.tableofcontents3.5. REACCIÓN DE TRANSESTERIFICACIÓN PARA LA OBTENCIÓN DE BIODIESEL.....24spa
dc.description.tableofcontents3.6 CATALIZADORES EN LA REACCION DE TRANSESTERIFICACIÓN.....24spa
dc.description.tableofcontents3.6.1. CATÁLISIS HOMOGÉNEA.....24spa
dc.description.tableofcontents3.6.2. CATÁLISIS HETEROGÉNEA.....26spa
dc.description.tableofcontents4. METODOLOGÍA.....27spa
dc.description.tableofcontents4.1. SOLUCIONES EMPLEADAS PARA LA SÍNTESIS DEL MATERIAL.....27spa
dc.description.tableofcontents4.2. SÍNTESIS DEL MATERIAL TIPO HIDROTALCITA.....27spa
dc.description.tableofcontents4.3. PROCEDIMIENTO EXPERIMENTAL.....28spa
dc.description.tableofcontents4.4. FUNCIONALIZACIÓN DEL CATALIZADOR CON Ca(OH)2 30%.....29spa
dc.description.tableofcontents4.5. ACTIVACIÓN TÉRMICA DEL MATERIAL TIPO HIDROTALCITA.....30spa
dc.description.tableofcontents4.6. CARACTERIZACIÓN DEL MATERIAL TIPO HIDROTALCITA MEDIANTE FISISORCIÓN DE N2 A 77K.....32spa
dc.description.tableofcontents4.7. CARACTERÍSTICAS DEL ACEITE DE COCINA USADO.....32spa
dc.description.tableofcontents4.8. ENSAYO CATALÍTICO DE LOS COMPUESTOS TIPO HIDROTALCITA EN REACCIONES DE TRANSESTERIFICACIÓN.....33spa
dc.description.tableofcontents4.9. CARACTERIZACIÓN DEL BIODIÉSEL.....35spa
dc.description.tableofcontents4.9.1. ESPECTROSCOPÍA DE INFRARROJO CON TRASFORMADA DE FOURIER.....35spa
dc.description.tableofcontents4.9.2. CÁLCULO DE LA DENSIDAD MEDINATE USO DEL PICNÓMETRO.....35spa
dc.description.tableofcontents5. RESULTADOS Y ANÁLISIS.....36spa
dc.description.tableofcontents5.1. FISIADSORCIÓN DE NITRÓGENO A 77K.....36spa
dc.description.tableofcontents5.2. CARACTERIZACIÓN DE PARAMETROS FISICOQUÍMICOS DEL ACEITE DE GIRASOL.....40spa
dc.description.tableofcontents5.3. ACTIVIDAD CATALÍTICA DE LOS PRECURSORES CATALÍTICOS EN LA REACCIÓN DE TRANSESTERIFICACIÓN.....41spa
dc.description.tableofcontents5.4. CARACTERIZACIÓN DEL BIODIÉSEL.....43spa
dc.description.tableofcontents5.4.1. ANÁLISIS MEDIANTE ESPECTROSCOPIA IR.....43spa
dc.description.tableofcontents5.4.2. DENSIDADES DEL BIODIÉSEL OBTENIDO DE LAS REACCIONES DE TRANSESTERIFICACIÓN.....44spa
dc.description.tableofcontents6. CONCLUSIONES.....46spa
dc.description.tableofcontents7. BIBLIOGRAFÍA.....48spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7917
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programQuímica
dc.relation.referencesKongprawes, G., Wongsawaeng, D., Hosemann, P., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2023). Dielectric barrier discharge plasma for catalytic-free palm oil hydrogenation using glycerol as hydrogen donor for further production of hydrogenated fatty acid methyl ester (H-FAME). Journal of Cleaner Production, 401, 136724. https://doi.org/10.1016/j.jclepro.2023.136724
dc.relation.referencesMohammadi, N., Ostovar, N., & Granato, D. (2023). Pyrus glabra seed oil as a new source of mono and polyunsaturated fatty acids: composition, thermal, and FTIR spectroscopic characterization. LWT, 181, 114790. https://doi.org/10.1016/j.lwt.2023.114790
dc.relation.referencesTakase, M., Kipkoech, R., Miller, D. D., & Buami, E. K. (2023). Optimisation of the reaction conditions for biodiesel from Parkia biglobosa oil via transesterification with heterogeneous clay base catalyst. Fuel Communications, 15, 100089. https://doi.org/10.1016/j.jfueco.2023.100089
dc.relation.referencesMohammadi, N., Ostovar, N., Niromand, R., & Absalan, F. (2023). Advancing biodiesel production from pyrus glabra seed oil: kinetic study and RSM optimization via microwave-assisted transesterification with biocompatible hydroxyapatite catalyst. Sustainable Chemistry and Pharmacy, 36, 101272. https://doi.org/10.1016/j.scp.2023.101272
dc.relation.referencesMohammed, A., Alkhafaje, Z. A., & Rashid, I. M. (2023). Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production. Heliyon, 9(6), e17094. https://doi.org/10.1016/j.heliyon.2023.e17094
dc.relation.referencesAdepoju, T., Ukanwa, K. S., Eyibio, U. P., Etim, V., Eloka‐Eboka, A. C., & Balogun, T. (2023). Biodiesel production from renewable biosources ternary oil blends and its kinetic-thermodynamic parameters using Eyring Polanyi and Gibb’s-Duhem equations. South African Journal of Chemical Engineering, 44, 103-112. https://doi.org/10.1016/j.sajce.2023.01.004
dc.relation.referencesZahed, M. A., Revayati, M., Shahcheraghi, N., Maghsoudi, F., & Tabari, Y. (2021). Modeling and optimization of biodiesel synthesis using TIO2–ZNO nanocatalyst and characteristics of biodiesel made from waste sunflower oil. Current Research in Green and Sustainable Chemistry, 4, 100223. https://doi.org/10.1016/j.crgsc.2021.100223
dc.relation.referencesGuo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850
dc.relation.referencesDong, Y., Kong, X., Luo, X., & Wang, H. (2022). Adsorptive removal of heavy metal anions from water by layered double hydroxide: a review. Chemosphere, 303, 134685. https://doi.org/10.1016/j.chemosphere.2022.134685
dc.relation.referencesMaleki, B., Talesha, S. S. A., & Mansourib, M. (2022). Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: a review study. Materials Today Sustainability, 18, 100157. https://doi.org/10.1016/j.mtsust.2022.100157
dc.relation.referencesGouran, A., Aghel, B., & Nasirmanesh, F. (2021). Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel, 295, 120542. https://doi.org/10.1016/j.fuel.2021.120542
dc.relation.referencesPan, H., Xia, Q., Wang, Y., Shen, Z., Huang, H., Zhang, G., Li, X., He, J., Wang, X., Li, L., & Wang, Y. (2022). Recent advances in biodiesel production using functional carbon materials as acid/base catalysts. Fuel Processing Technology, 237, 107421. https://doi.org/10.1016/j.fuproc.2022.107421
dc.relation.referencesSoosai, M. R., Moorthy, I. G., Varalakshmi, P., & Yonas, C. J. (2022). Integrated global optimization and process modelling for biodiesel production from non-edible silk-cotton seed oil by microwave-assisted transesterification with heterogeneous calcium oxide catalyst. Journal of Cleaner Production, 367, 132946. https://doi.org/10.1016/j.jclepro.2022.132946
dc.relation.referencesHaile, M., Duguma, H. T., Chameno, G., & Kuyu, C. G. (2019). Effects of location and extraction solvent on physico chemical properties of moringa stenopetala seed oil. Heliyon, 5(11), e02781. https://doi.org/10.1016/j.heliyon.2019.e02781
dc.relation.referencesAthar, M., & Zaidi, S. (2020). A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, 8(6), 104523. https://doi.org/10.1016/j.jece.2020.104523
dc.relation.referencesOyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023). Heterogeneous catalytic transesterification for biodiesel production: feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844-867. https://doi.org/10.1016/j.psep.2023.07.064
dc.relation.referencesYang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis. Energy, 283, 129201. https://doi.org/10.1016/j.energy.2023.129201
dc.relation.referencesDeo, R., Samui, P., & Roy, S. S. (Eds.). (2020). Predictive modelling for energy management and power systems engineering. Elsevier.
dc.relation.referencesForoutan, R., Mohammadi, R., Esmaeili, H., Bektashi, F. M., & Tamjidi, S. (2020). Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management, 105, 373-383. https://doi.org/10.1016/j.wasman.2020.02.032
dc.relation.referencesMonika, Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: A Comprehensive review on the application of Heterogenous catalysts. Energy nexus, 10, 100209. https://doi.org/10.1016/j.nexus.2023.100209
dc.relation.referencesAcevedo Corredor, S. A., Giraldo Gutiérrez, L., & Moreno Piraján, J. C. (2021). Materiales carbonosos preparados a partir de cuesco de palma en la adsorción de CO2. Caracterización elemental, próxima y morfológica. Revista Colombiana de Química, 50(2), 30–39, https://doi.org/10.15446/rev.colomb.quim.v50n2.95020
dc.relation.referencesAlleman, T. L., & McCormick, R. L. (2016). Biodiesel Handling and Use Guide (Fifth Edition). U.S. Department of Energy, Energy Efficiency & Renewable Energy.
dc.relation.referencesBabu, D., Thangarasu, V., & Ramanathan, A. (2020). Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel. Applied Energy, 263, 114612. doi: 10.1016/j.apenergy.2020.114612
dc.relation.referencesBilge, S., Dogan-Topal, B., Yücel, A., Sınağ, A., & Ozkan, S. A. (2022). Recent advances in flower like nanomaterials: Synthesis, characterization, and advantages in gas sensing applications. TrAC Trends in Analytical Chemistry, 153, 116638. https://doi.org/10.1016/j.trac.2022.116638
dc.relation.referencesBrahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284. https://doi.org/10.1016/j.ceja.2022.100284
dc.relation.referencesBunmahotama, W., Lin, T., & Yang, X. (2020). Prediction of adsorption capacity for pharmaceuticals, personal care products and endocrine disrupting chemicals onto various adsorbent materials. Chemosphere, 238, 124658 https://doi.org/10.1016/j.chemosphere.2019.124658
dc.relation.referencesCarbonell, D. (2018). Adsorción de Cadmio, Cobre y Plomo en Bentonita, Caolín y Zeolita Naturales y Modificadas: Una Revisión de los Parámetros de Operación, Isotermas y Cinética. Ingeniería, 23(3). doi:10.14483/23448393.13418
dc.relation.referencesCaselli, L., (2018). Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important? Anais Da Academia Brasileira de Ciências, 90(suppl 1), 631–644. doi:10.1590/0001-3765201720170453)
dc.relation.referencesCavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173–301. doi:10.1016/0920-5861(91)80068-k
dc.relation.referencesChangmai, B., Vanlalveni, C., Ingle, A. P., Bhagat, R., & Rokhum, S. L. (2020). Widely used catalysts in biodiesel production: a review. RSC Advances, 10(68), 41625–41679. https://doi.org/10.1039/d0ra07931f
dc.relation.referencesChen, R., Chen, T., Zhu, C., Fan, Y., Hu, X., & Wang, G. (2020). Effect of coprecipitation method on Mg–Al hydrotalcite properties: application in the synthesis of diethylene glycol di- (methyl carbonate). Journal of the Iranian Chemical Society, 17(10), 2507–2513. https://doi.org/10.1007/s13738-020-01945-8
dc.relation.referencesChengqian, F., Yimin, D., Ling, C., Zhiheng, W., Qi, L., Yaqi, L., Ling, C., Bo, L., Yue-Fei, Z., Yan, L., & Li, W. (2022). One-step coprecipitation synthesis of Cl− intercalated Fe3O4@SiO2 @MgAl LDH nanocomposites with excellent adsorption performance toward three dyes. Separation and Purification Technology, 295, 121227. https://doi.org/10.1016/j.seppur.2022.121227
dc.relation.referencesDahdah, E., Estephane, J., Taleb, Y., El Khoury, B., El Nakat, J., & Aouad, S. (2021). The role of rehydration in enhancing the basic properties of Mg–Al hydrotalcites for biodiesel production. Sustainable Chemistry and Pharmacy, 22, 100487. doi:10.1016/j.scp.2021.100487
dc.relation.referencesDe la Iglesia, C. A. (2019). Estudio del proceso de adsorción de fosfatos en hidróxidos dobles laminares. E.T.S.I. Industriales (UPM)
dc.relation.referencesDe Souza Rossi, J., Perrone, O. M., Siqueira, M. R., Volanti, D. P., Gomes, E., da Silva, R., & Boscolo, M. (2018). Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis. Renewable Energy. doi: 10.1016/j.renene.2018.10.038
dc.relation.referencesF. Rouquerol, J. Rouquerol, K.S.W. Sing, P. Llewellyn and G. Maurin. (2014). Adsorption by Powders and Porous Solids Principles, Methodology and Applications. 2a Ed. Elsevier Gezondheidszorg
dc.relation.referencesFonrouge Kotik Sergio F. (2019). Materiales porosos en estado líquido. Universidad nacional de Cuyo. Facultad de ciencias exactas y naturales.
dc.relation.referencesFonseca Correa. R. A. (2017). Preparación y caracterización de xerogeles y aerogeles de carbón y su aplicación en la adsorción de Ni2+ y Cr3+ desde solución acuosa. Tesis de doctorado en ciencias químicas. Universidad de los andes. Colombia-Bogotá
dc.relation.referencesGracia R. M. (2018). Síntesis de hidróxidos dobles laminares (HDL) y su aplicación a la eliminación de boro en vertidos acuosos. Universidad Politécnica De Madrid. España
dc.relation.referencesGupta, J., Agarwal, M., & Dalai, A. K. (2020). An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. Journal of Industrial and Engineering Chemistry. doi: 10.1016/j.jiec.2020.05.012
dc.relation.referencesHutson, N. D., & mozaYang, R. T. (1997). Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption, 3(3), 189–195. https://doi.org/10.1007/bf01650130
dc.relation.referencesJiang, Z., Sun, F., Frost, R. L., Ayoko, G., Qian, G., & Ruan, X. (2022). Adsorption characteristics of assembled and unassembled Ni/Cr layered double hydroxides towards methyl orange. Journal of Colloid and Interface Science, 617, 363–371. https://doi.org/10.1016/j.jcis.2022.03.022
dc.relation.referencesJoLima-Corrêa, R. A. B., Castro, C. S., Damasceno, A. S., & Assaf, J. M. (2019). The enhanced activity of base metal modified MgAl mixed oxides from sol-gel hydrotalcite for ethylic transesterification. Renewable Energy. doi: 10.1016/j.renene.2019.08.047
dc.relation.referencesLowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2010). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density: 16 (Softcover Reprint of the Original 1st 2004 ed.). Springer.
dc.relation.referencesLu, P., Li, H., Li, M., Chen, J., Ye, C., Wang, H., & Qiu, T. (2022). Ionic liquid grafted NH2-UiO-66 as heterogeneous solid acid catalyst for biodiesel production. Fuel, 324, 124537. https://doi.org/10.1016/j.fuel.2022.124537
dc.relation.referencesMartínez, David R., & Carbajal, Gregorio G. (2012). Hidróxidos dobles laminares: arcillas sintéticas con aplicaciones en nanotecnología. Avances en Química, 7(1),87-99
dc.relation.referencesNaeem, A., Wali Khan, I., Farooq, M., Mahmood, T., Ud Din, I., Ali Ghazi, Z., & Saeed, T. (2021). Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresource Technology, 328, 124831. https://doi.org/10.1016/j.biortech.2021.124831
dc.relation.referencesObma, A., Hemwech, P., Phoolpho, S., Bumrungpuech, R., Wirasate, S., Kaowphong, S., Wilairat, P., & Chantiwas, R. (2022). Silica nanolayer coated capillary by hydrothermal sol–gel process for amines separation and detection of tyramine
dc.relation.referencesOkolie, J. A., Ivan Escobar, J., Umenweke, G., Khanday, W., & Okoye, P. U. (2022). Continuous biodiesel production: A review of advances in catalysis, microfluidic and cavitation reactors. Fuel, 307, 121821. https://doi.org/10.1016/j.fuel.2021.121821
dc.relation.referencesP.W. Atkins. Química Física. 6ª Edición, Ediciones Omega, S.A, Barcelona, 1999.
dc.relation.referencesRashed, S. H., Abd-Elhamid, A., Abdalkarim, S. Y. H., El-Sayed, R. H., El-Bardan, A. A., Soliman, H. M., & Nayl, A. (2022). Preparation and characterization of layered-double hydroxides decorated on graphene oxide for dye removal from aqueous solution. Journal of Materials Research and Technology, 17, 2782–2795. https://doi.org/10.1016/j.jmrt.2022.02.040
dc.relation.referencesReyero, I., Velasco, I., Sanz, O., Montes, M., Arzamendi, G., & Gandía, L. M. (2013). Structured catalysts based on Mg–Al hydrotalcite for the synthesis of biodiesel. Catalysis Today, 216, 211–219. doi: 10.1016/j.cattod.2013.04.022
dc.relation.referencesRives, V. (2001). Layered double hydroxides: present and future. Nova Publishers
dc.relation.referencesRodríguez, T.V. (2018). Hidrotalcitas Al/Mg como catalizadores en la síntesis de compuestos dicarbonilos. Universidad Autónoma Metropolitana Iztapalapa. México
dc.relation.referencesSandoval-Ibarra, F. D., López-Cervantes, J. L., & Gracia-Fadrique, J. (2015). Ecuación de Langmuir en líquidos simples y tensoactivos. Educación Química, 26(4), 307–313. doi:10.1016/j.eq.2015.03.002
dc.relation.referencesShareef, M. F., Arslan, M., Iqbal, N., Ahmad, N., & Noor, T. (2017). Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 357. https://doi.org/10.9767/bcrec.12.3.762.357-363
dc.relation.referencesTariq, M., Ali, S., & Khalid, N. (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16(8), 6303–6316. https://doi.org/10.1016/j.rser.2012.07.005
dc.relation.referencesThangarasu, V., & Ramanathan, A. (2019). Production of biodiesel from Aegle marmelos correa seed oil for fuel cell application. IOP Conference Series: Earth and Environmental Science, 312(1), 012018. https://doi.org/10.1088/1755-1315/312/1/012018
dc.relation.referencesTran, D.-T., Chang, J.-S., & Lee, D.-J. (2017). Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Applied Energy, 185, 376–409. doi: 10.1016/j.apenergy.2016.11.006
dc.relation.referencesYaWang, X., Zhu, J., Lei, Y., & Lei, W. (2022). Synthesis and characterization of layered double hydroxides hybrid microcapsules for anticorrosion via self-healing and chloride ion adsorption. Applied Clay Science, 221, 106481. https://doi.org/10.1016/j.clay.2022.106481
dc.relation.referencesYurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). (Photo)catalyst Characterization Techniques. Heterogeneous Photocatalysis, 87–152. doi:10.1016/b978-0-444-64015-4.00004-3.
dc.relation.referencesZambrano, M. S. (2021). Síntesis y caracterización de nanomateriales híbridos con hidrotalcita. Universidad de Guanajuato. México
dc.relation.referencesShrivastava, S., Prajapati, P., Virendra, Srivastava, P., Lodhi, A. P. S., Kumar, D., Sharma, V., Srivastava, S., & Agarwal, D. D. (2023). Chemical transesterification of soybean oil as a feedstock for stable biodiesel and biolubricant production by using ZN Al hydrotalcites as a catalyst and perform tribological assessment. Industrial Crops and Products, 192, 116002. https://doi.org/10.1016/j.indcrop.2022.116002
dc.relation.referencesTrujillano, R., Labajos, F., & Rives, V. (2023). Hydrotalcites, a rapid survey on the very recent synthesis and applications procedures. Applied Clay Science, 238, 106927. https://doi.org/10.1016/j.clay.2023.106927
dc.relation.referencesSircar, S. (2020). A practical perspective of fluid (gas or liquid) - solid adsorption equilibrium. Separation and Purification Technology, 231, 115749. https://doi.org/10.1016/j.seppur.2019.115749
dc.relation.referencesFuentes, E. M., Rodríguez-Ruiz, J., Solano-Polo, C., Rangel, M., & Faro, A. C. (2020). Monitoring the structural and textural changes of Ni-ZN-Al hydrotalcites under heating. Thermochimica Acta, 687, 178594. https://doi.org/10.1016/j.tca.2020.178594
dc.relation.referencesRouquerol, F., Rouquerol, J., Llewellyn, P., Sing, K. S. W., & Maurin, G. (2013). Adsorption by powders and porous solids: Principles, Methodology and Applications.
dc.relation.referencesWang, Y., Wu, P., Wang, Y., Huang, H., & Huang, L. (2023). Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: state-of-the-art and future prospects. Journal of Environmental Management, 345, 118629. https://doi.org/10.1016/j.jenvman.2023.118629
dc.relation.referencesMoritz, M., & Geszke-Moritz, M. (2015). Mesoporous materials as Multifunctional Tools in Biosciences: Principles and applications. Materials Science and Engineering: C, 49, 114-151. https://doi.org/10.1016/j.msec.2014.12.079
dc.relation.referencesLuo, Y., Wang, B., Yi, L., Yan, Y., Deng, C., & Yan, Y. (2023). Mesoporous materials for glycopeptide separation. TrAC Trends in Analytical Chemistry, 167, 117234. https://doi.org/10.1016/j.trac.2023.117234
dc.relation.referencesPrasetya, N., Himma, N. F., Sutrisna, P. D., Wenten, I. G., & Ladewig, B. P. (2020). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 391, 123575. https://doi.org/10.1016/j.cej.2019.123575
dc.relation.referencesDe Santiago, C. (2011). La fisisorción de Nitrógeno. Fundamentos físicos, normativa, descripción del equipo y procedimiento experimental. Informe. Madrid: Centro de Estudios y Experimentación de Obras Públicas.
dc.rightsCopyright Universidad de Córdoba, 2023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUniversidad de Córdoba
dc.subject.keywordsLamellar double hydroxides
dc.subject.keywordsHeterogeneous catalysis
dc.subject.keywordsBiodiesel
dc.subject.keywordsTransesterification
dc.subject.keywordsPhysical adsorption of gases
dc.subject.proposalHidróxidos dobles laminaresspa
dc.subject.proposalCatálisis heterogénea
dc.subject.proposalBiodiésel
dc.subject.proposalTransesterificación
dc.subject.proposalAdsorción física de gases
dc.titleSíntesis y caracterización de materiales tipo hidrotalcitas por medio de isotermas para ensayos catalíticos en la producción de biodiéselspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SÍNTESIS Y CARACTERIZACIÓN DE MATERIALES TIPO HIDROTALCITAS POR MEDIO DE ISOTERMAS PARA ENSAYOS CATALÍTICOS EN LA PRODUCCIÓN DE BIODIÉSEL.pdf
Tamaño:
1.02 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AUTORIZACIÓN DE PUBLICACIÓN DE DOCUMENTOS COLECCIONES DIGITALES DE LA UNIVERSIDAD DE CÓRDOBA.pdf
Tamaño:
411.25 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: