Publicación: Síntesis y caracterización de materiales tipo hidrotalcitas por medio de isotermas para ensayos catalíticos en la producción de biodiésel
dc.audience | ||
dc.contributor.advisor | Barrera Vargas, Mario | |
dc.contributor.author | Rivera Zambrano, Juan Diego | |
dc.contributor.jury | Espitia Arrieta, Amelia Andrea | |
dc.contributor.jury | Pérez Sotelo, Dairo Enrique | |
dc.contributor.other | Distinto roles | |
dc.date.accessioned | 2023-11-17T02:00:14Z | |
dc.date.available | 2023-11-17T02:00:14Z | |
dc.date.issued | 2023-11-16 | |
dc.description.abstract | En respuesta a la necesidad de abordar las crecientes demandas energéticas de manera sostenible y reducir la contaminación causada por los combustibles fósiles, se ha destacado el interés en el biodiésel como alternativa. Se propone la transesterificación con aceite de cocina y catalizadores heterogéneos, centrándose en un material tipo hidrotalcita binaria de Zn-Fe. Este material se sintetizó mediante coprecipitación y tratamiento térmico, demostrando propiedades mesoporosas. Los catalizadores derivados de este proceso se evaluaron en reacciones de transesterificación con aceite de girasol y metanol, destacando el óxido mixto HTL-F con una conversión a FAME del 92%, superando a HTL-C. En conclusión, el uso del óxido mixto de hidrotalcita Zn/Fe se propone como un catalizador eficaz en procesos de transesterificación para la producción de biodiésel, ofreciendo una alternativa más sostenible y respetuosa con el medio ambiente. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.notes | In response to the need to address growing energy demands in a sustainable manner and reduce pollution caused by fossil fuels, interest in biodiesel as an alternative has been highlighted. Transesterification is proposed with cooking oil and heterogeneous catalysts, focusing on a Zn-Fe binary hydrotalcite type material. This material was synthesized through coprecipitation and thermal treatment, demonstrating mesoporous properties. The catalysts derived from this process were evaluated in transesterification reactions with sunflower oil and methanol, highlighting the mixed oxide HTL-F with a conversion to FAME of 92%, surpassing HTL-C. In conclusion, the use of Zn/Fe hydrotalcite mixed oxide is proposed as an effective catalyst in transesterification processes for the production of biodiesel, offering a more sustainable and environmentally friendly alternative. | eng |
dc.description.tableofcontents | 1. INTRODUCCIÓN .....9 | spa |
dc.description.tableofcontents | 2. OBJETIVOS.....12 | spa |
dc.description.tableofcontents | 2.1. OBJETIVO GENERAL.....12 | spa |
dc.description.tableofcontents | 2.2. OBJETIVOS ESPECÍFICOS.....12 | spa |
dc.description.tableofcontents | 3. MARCO TEORICO.....13 | spa |
dc.description.tableofcontents | 3.1. FÉNOMENO DE ADSORCÍON.....13 | spa |
dc.description.tableofcontents | 3.1.1 ADSORCIÓN FÍSICA.....13 | spa |
dc.description.tableofcontents | 3.1.2 ADSORCIÓN QUÍMICA .....14 | spa |
dc.description.tableofcontents | 3.2. ISOTERMAS DE ADSORCION.....14 | spa |
dc.description.tableofcontents | 3.2.1. TIPOS DE HISTÉRESIS.....16 | spa |
dc.description.tableofcontents | 3.2.2. ISOTERMA DE LANGMUIR.....17 | spa |
dc.description.tableofcontents | 3.2.3. ISOTERMA CALCULADA POR EL MÉTODO BET.....17 | spa |
dc.description.tableofcontents | 3.3. MATERIALES NANOPOROSOS.....18 | spa |
dc.description.tableofcontents | 3.3. MATERIALES TIPO HIDROTALCITA.....19 | spa |
dc.description.tableofcontents | 3.3.1. SÍNTESIS.....22 | spa |
dc.description.tableofcontents | 3.4. GENERALIDADES DEL BIODIÉSEL.....23 | spa |
dc.description.tableofcontents | 3.5. REACCIÓN DE TRANSESTERIFICACIÓN PARA LA OBTENCIÓN DE BIODIESEL.....24 | spa |
dc.description.tableofcontents | 3.6 CATALIZADORES EN LA REACCION DE TRANSESTERIFICACIÓN.....24 | spa |
dc.description.tableofcontents | 3.6.1. CATÁLISIS HOMOGÉNEA.....24 | spa |
dc.description.tableofcontents | 3.6.2. CATÁLISIS HETEROGÉNEA.....26 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA.....27 | spa |
dc.description.tableofcontents | 4.1. SOLUCIONES EMPLEADAS PARA LA SÍNTESIS DEL MATERIAL.....27 | spa |
dc.description.tableofcontents | 4.2. SÍNTESIS DEL MATERIAL TIPO HIDROTALCITA.....27 | spa |
dc.description.tableofcontents | 4.3. PROCEDIMIENTO EXPERIMENTAL.....28 | spa |
dc.description.tableofcontents | 4.4. FUNCIONALIZACIÓN DEL CATALIZADOR CON Ca(OH)2 30%.....29 | spa |
dc.description.tableofcontents | 4.5. ACTIVACIÓN TÉRMICA DEL MATERIAL TIPO HIDROTALCITA.....30 | spa |
dc.description.tableofcontents | 4.6. CARACTERIZACIÓN DEL MATERIAL TIPO HIDROTALCITA MEDIANTE FISISORCIÓN DE N2 A 77K.....32 | spa |
dc.description.tableofcontents | 4.7. CARACTERÍSTICAS DEL ACEITE DE COCINA USADO.....32 | spa |
dc.description.tableofcontents | 4.8. ENSAYO CATALÍTICO DE LOS COMPUESTOS TIPO HIDROTALCITA EN REACCIONES DE TRANSESTERIFICACIÓN.....33 | spa |
dc.description.tableofcontents | 4.9. CARACTERIZACIÓN DEL BIODIÉSEL.....35 | spa |
dc.description.tableofcontents | 4.9.1. ESPECTROSCOPÍA DE INFRARROJO CON TRASFORMADA DE FOURIER.....35 | spa |
dc.description.tableofcontents | 4.9.2. CÁLCULO DE LA DENSIDAD MEDINATE USO DEL PICNÓMETRO.....35 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y ANÁLISIS.....36 | spa |
dc.description.tableofcontents | 5.1. FISIADSORCIÓN DE NITRÓGENO A 77K.....36 | spa |
dc.description.tableofcontents | 5.2. CARACTERIZACIÓN DE PARAMETROS FISICOQUÍMICOS DEL ACEITE DE GIRASOL.....40 | spa |
dc.description.tableofcontents | 5.3. ACTIVIDAD CATALÍTICA DE LOS PRECURSORES CATALÍTICOS EN LA REACCIÓN DE TRANSESTERIFICACIÓN.....41 | spa |
dc.description.tableofcontents | 5.4. CARACTERIZACIÓN DEL BIODIÉSEL.....43 | spa |
dc.description.tableofcontents | 5.4.1. ANÁLISIS MEDIANTE ESPECTROSCOPIA IR.....43 | spa |
dc.description.tableofcontents | 5.4.2. DENSIDADES DEL BIODIÉSEL OBTENIDO DE LAS REACCIONES DE TRANSESTERIFICACIÓN.....44 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES.....46 | spa |
dc.description.tableofcontents | 7. BIBLIOGRAFÍA.....48 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7917 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Kongprawes, G., Wongsawaeng, D., Hosemann, P., Ngaosuwan, K., Kiatkittipong, W., & Assabumrungrat, S. (2023). Dielectric barrier discharge plasma for catalytic-free palm oil hydrogenation using glycerol as hydrogen donor for further production of hydrogenated fatty acid methyl ester (H-FAME). Journal of Cleaner Production, 401, 136724. https://doi.org/10.1016/j.jclepro.2023.136724 | |
dc.relation.references | Mohammadi, N., Ostovar, N., & Granato, D. (2023). Pyrus glabra seed oil as a new source of mono and polyunsaturated fatty acids: composition, thermal, and FTIR spectroscopic characterization. LWT, 181, 114790. https://doi.org/10.1016/j.lwt.2023.114790 | |
dc.relation.references | Takase, M., Kipkoech, R., Miller, D. D., & Buami, E. K. (2023). Optimisation of the reaction conditions for biodiesel from Parkia biglobosa oil via transesterification with heterogeneous clay base catalyst. Fuel Communications, 15, 100089. https://doi.org/10.1016/j.jfueco.2023.100089 | |
dc.relation.references | Mohammadi, N., Ostovar, N., Niromand, R., & Absalan, F. (2023). Advancing biodiesel production from pyrus glabra seed oil: kinetic study and RSM optimization via microwave-assisted transesterification with biocompatible hydroxyapatite catalyst. Sustainable Chemistry and Pharmacy, 36, 101272. https://doi.org/10.1016/j.scp.2023.101272 | |
dc.relation.references | Mohammed, A., Alkhafaje, Z. A., & Rashid, I. M. (2023). Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production. Heliyon, 9(6), e17094. https://doi.org/10.1016/j.heliyon.2023.e17094 | |
dc.relation.references | Adepoju, T., Ukanwa, K. S., Eyibio, U. P., Etim, V., Eloka‐Eboka, A. C., & Balogun, T. (2023). Biodiesel production from renewable biosources ternary oil blends and its kinetic-thermodynamic parameters using Eyring Polanyi and Gibb’s-Duhem equations. South African Journal of Chemical Engineering, 44, 103-112. https://doi.org/10.1016/j.sajce.2023.01.004 | |
dc.relation.references | Zahed, M. A., Revayati, M., Shahcheraghi, N., Maghsoudi, F., & Tabari, Y. (2021). Modeling and optimization of biodiesel synthesis using TIO2–ZNO nanocatalyst and characteristics of biodiesel made from waste sunflower oil. Current Research in Green and Sustainable Chemistry, 4, 100223. https://doi.org/10.1016/j.crgsc.2021.100223 | |
dc.relation.references | Guo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850 | |
dc.relation.references | Dong, Y., Kong, X., Luo, X., & Wang, H. (2022). Adsorptive removal of heavy metal anions from water by layered double hydroxide: a review. Chemosphere, 303, 134685. https://doi.org/10.1016/j.chemosphere.2022.134685 | |
dc.relation.references | Maleki, B., Talesha, S. S. A., & Mansourib, M. (2022). Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: a review study. Materials Today Sustainability, 18, 100157. https://doi.org/10.1016/j.mtsust.2022.100157 | |
dc.relation.references | Gouran, A., Aghel, B., & Nasirmanesh, F. (2021). Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel, 295, 120542. https://doi.org/10.1016/j.fuel.2021.120542 | |
dc.relation.references | Pan, H., Xia, Q., Wang, Y., Shen, Z., Huang, H., Zhang, G., Li, X., He, J., Wang, X., Li, L., & Wang, Y. (2022). Recent advances in biodiesel production using functional carbon materials as acid/base catalysts. Fuel Processing Technology, 237, 107421. https://doi.org/10.1016/j.fuproc.2022.107421 | |
dc.relation.references | Soosai, M. R., Moorthy, I. G., Varalakshmi, P., & Yonas, C. J. (2022). Integrated global optimization and process modelling for biodiesel production from non-edible silk-cotton seed oil by microwave-assisted transesterification with heterogeneous calcium oxide catalyst. Journal of Cleaner Production, 367, 132946. https://doi.org/10.1016/j.jclepro.2022.132946 | |
dc.relation.references | Haile, M., Duguma, H. T., Chameno, G., & Kuyu, C. G. (2019). Effects of location and extraction solvent on physico chemical properties of moringa stenopetala seed oil. Heliyon, 5(11), e02781. https://doi.org/10.1016/j.heliyon.2019.e02781 | |
dc.relation.references | Athar, M., & Zaidi, S. (2020). A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, 8(6), 104523. https://doi.org/10.1016/j.jece.2020.104523 | |
dc.relation.references | Oyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023). Heterogeneous catalytic transesterification for biodiesel production: feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844-867. https://doi.org/10.1016/j.psep.2023.07.064 | |
dc.relation.references | Yang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis. Energy, 283, 129201. https://doi.org/10.1016/j.energy.2023.129201 | |
dc.relation.references | Deo, R., Samui, P., & Roy, S. S. (Eds.). (2020). Predictive modelling for energy management and power systems engineering. Elsevier. | |
dc.relation.references | Foroutan, R., Mohammadi, R., Esmaeili, H., Bektashi, F. M., & Tamjidi, S. (2020). Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management, 105, 373-383. https://doi.org/10.1016/j.wasman.2020.02.032 | |
dc.relation.references | Monika, Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: A Comprehensive review on the application of Heterogenous catalysts. Energy nexus, 10, 100209. https://doi.org/10.1016/j.nexus.2023.100209 | |
dc.relation.references | Acevedo Corredor, S. A., Giraldo Gutiérrez, L., & Moreno Piraján, J. C. (2021). Materiales carbonosos preparados a partir de cuesco de palma en la adsorción de CO2. Caracterización elemental, próxima y morfológica. Revista Colombiana de Química, 50(2), 30–39, https://doi.org/10.15446/rev.colomb.quim.v50n2.95020 | |
dc.relation.references | Alleman, T. L., & McCormick, R. L. (2016). Biodiesel Handling and Use Guide (Fifth Edition). U.S. Department of Energy, Energy Efficiency & Renewable Energy. | |
dc.relation.references | Babu, D., Thangarasu, V., & Ramanathan, A. (2020). Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel. Applied Energy, 263, 114612. doi: 10.1016/j.apenergy.2020.114612 | |
dc.relation.references | Bilge, S., Dogan-Topal, B., Yücel, A., Sınağ, A., & Ozkan, S. A. (2022). Recent advances in flower like nanomaterials: Synthesis, characterization, and advantages in gas sensing applications. TrAC Trends in Analytical Chemistry, 153, 116638. https://doi.org/10.1016/j.trac.2022.116638 | |
dc.relation.references | Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284. https://doi.org/10.1016/j.ceja.2022.100284 | |
dc.relation.references | Bunmahotama, W., Lin, T., & Yang, X. (2020). Prediction of adsorption capacity for pharmaceuticals, personal care products and endocrine disrupting chemicals onto various adsorbent materials. Chemosphere, 238, 124658 https://doi.org/10.1016/j.chemosphere.2019.124658 | |
dc.relation.references | Carbonell, D. (2018). Adsorción de Cadmio, Cobre y Plomo en Bentonita, Caolín y Zeolita Naturales y Modificadas: Una Revisión de los Parámetros de Operación, Isotermas y Cinética. Ingeniería, 23(3). doi:10.14483/23448393.13418 | |
dc.relation.references | Caselli, L., (2018). Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important? Anais Da Academia Brasileira de Ciências, 90(suppl 1), 631–644. doi:10.1590/0001-3765201720170453) | |
dc.relation.references | Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173–301. doi:10.1016/0920-5861(91)80068-k | |
dc.relation.references | Changmai, B., Vanlalveni, C., Ingle, A. P., Bhagat, R., & Rokhum, S. L. (2020). Widely used catalysts in biodiesel production: a review. RSC Advances, 10(68), 41625–41679. https://doi.org/10.1039/d0ra07931f | |
dc.relation.references | Chen, R., Chen, T., Zhu, C., Fan, Y., Hu, X., & Wang, G. (2020). Effect of coprecipitation method on Mg–Al hydrotalcite properties: application in the synthesis of diethylene glycol di- (methyl carbonate). Journal of the Iranian Chemical Society, 17(10), 2507–2513. https://doi.org/10.1007/s13738-020-01945-8 | |
dc.relation.references | Chengqian, F., Yimin, D., Ling, C., Zhiheng, W., Qi, L., Yaqi, L., Ling, C., Bo, L., Yue-Fei, Z., Yan, L., & Li, W. (2022). One-step coprecipitation synthesis of Cl− intercalated Fe3O4@SiO2 @MgAl LDH nanocomposites with excellent adsorption performance toward three dyes. Separation and Purification Technology, 295, 121227. https://doi.org/10.1016/j.seppur.2022.121227 | |
dc.relation.references | Dahdah, E., Estephane, J., Taleb, Y., El Khoury, B., El Nakat, J., & Aouad, S. (2021). The role of rehydration in enhancing the basic properties of Mg–Al hydrotalcites for biodiesel production. Sustainable Chemistry and Pharmacy, 22, 100487. doi:10.1016/j.scp.2021.100487 | |
dc.relation.references | De la Iglesia, C. A. (2019). Estudio del proceso de adsorción de fosfatos en hidróxidos dobles laminares. E.T.S.I. Industriales (UPM) | |
dc.relation.references | De Souza Rossi, J., Perrone, O. M., Siqueira, M. R., Volanti, D. P., Gomes, E., da Silva, R., & Boscolo, M. (2018). Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis. Renewable Energy. doi: 10.1016/j.renene.2018.10.038 | |
dc.relation.references | F. Rouquerol, J. Rouquerol, K.S.W. Sing, P. Llewellyn and G. Maurin. (2014). Adsorption by Powders and Porous Solids Principles, Methodology and Applications. 2a Ed. Elsevier Gezondheidszorg | |
dc.relation.references | Fonrouge Kotik Sergio F. (2019). Materiales porosos en estado líquido. Universidad nacional de Cuyo. Facultad de ciencias exactas y naturales. | |
dc.relation.references | Fonseca Correa. R. A. (2017). Preparación y caracterización de xerogeles y aerogeles de carbón y su aplicación en la adsorción de Ni2+ y Cr3+ desde solución acuosa. Tesis de doctorado en ciencias químicas. Universidad de los andes. Colombia-Bogotá | |
dc.relation.references | Gracia R. M. (2018). Síntesis de hidróxidos dobles laminares (HDL) y su aplicación a la eliminación de boro en vertidos acuosos. Universidad Politécnica De Madrid. España | |
dc.relation.references | Gupta, J., Agarwal, M., & Dalai, A. K. (2020). An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. Journal of Industrial and Engineering Chemistry. doi: 10.1016/j.jiec.2020.05.012 | |
dc.relation.references | Hutson, N. D., & mozaYang, R. T. (1997). Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption, 3(3), 189–195. https://doi.org/10.1007/bf01650130 | |
dc.relation.references | Jiang, Z., Sun, F., Frost, R. L., Ayoko, G., Qian, G., & Ruan, X. (2022). Adsorption characteristics of assembled and unassembled Ni/Cr layered double hydroxides towards methyl orange. Journal of Colloid and Interface Science, 617, 363–371. https://doi.org/10.1016/j.jcis.2022.03.022 | |
dc.relation.references | JoLima-Corrêa, R. A. B., Castro, C. S., Damasceno, A. S., & Assaf, J. M. (2019). The enhanced activity of base metal modified MgAl mixed oxides from sol-gel hydrotalcite for ethylic transesterification. Renewable Energy. doi: 10.1016/j.renene.2019.08.047 | |
dc.relation.references | Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2010). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density: 16 (Softcover Reprint of the Original 1st 2004 ed.). Springer. | |
dc.relation.references | Lu, P., Li, H., Li, M., Chen, J., Ye, C., Wang, H., & Qiu, T. (2022). Ionic liquid grafted NH2-UiO-66 as heterogeneous solid acid catalyst for biodiesel production. Fuel, 324, 124537. https://doi.org/10.1016/j.fuel.2022.124537 | |
dc.relation.references | Martínez, David R., & Carbajal, Gregorio G. (2012). Hidróxidos dobles laminares: arcillas sintéticas con aplicaciones en nanotecnología. Avances en Química, 7(1),87-99 | |
dc.relation.references | Naeem, A., Wali Khan, I., Farooq, M., Mahmood, T., Ud Din, I., Ali Ghazi, Z., & Saeed, T. (2021). Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresource Technology, 328, 124831. https://doi.org/10.1016/j.biortech.2021.124831 | |
dc.relation.references | Obma, A., Hemwech, P., Phoolpho, S., Bumrungpuech, R., Wirasate, S., Kaowphong, S., Wilairat, P., & Chantiwas, R. (2022). Silica nanolayer coated capillary by hydrothermal sol–gel process for amines separation and detection of tyramine | |
dc.relation.references | Okolie, J. A., Ivan Escobar, J., Umenweke, G., Khanday, W., & Okoye, P. U. (2022). Continuous biodiesel production: A review of advances in catalysis, microfluidic and cavitation reactors. Fuel, 307, 121821. https://doi.org/10.1016/j.fuel.2021.121821 | |
dc.relation.references | P.W. Atkins. Química Física. 6ª Edición, Ediciones Omega, S.A, Barcelona, 1999. | |
dc.relation.references | Rashed, S. H., Abd-Elhamid, A., Abdalkarim, S. Y. H., El-Sayed, R. H., El-Bardan, A. A., Soliman, H. M., & Nayl, A. (2022). Preparation and characterization of layered-double hydroxides decorated on graphene oxide for dye removal from aqueous solution. Journal of Materials Research and Technology, 17, 2782–2795. https://doi.org/10.1016/j.jmrt.2022.02.040 | |
dc.relation.references | Reyero, I., Velasco, I., Sanz, O., Montes, M., Arzamendi, G., & Gandía, L. M. (2013). Structured catalysts based on Mg–Al hydrotalcite for the synthesis of biodiesel. Catalysis Today, 216, 211–219. doi: 10.1016/j.cattod.2013.04.022 | |
dc.relation.references | Rives, V. (2001). Layered double hydroxides: present and future. Nova Publishers | |
dc.relation.references | Rodríguez, T.V. (2018). Hidrotalcitas Al/Mg como catalizadores en la síntesis de compuestos dicarbonilos. Universidad Autónoma Metropolitana Iztapalapa. México | |
dc.relation.references | Sandoval-Ibarra, F. D., López-Cervantes, J. L., & Gracia-Fadrique, J. (2015). Ecuación de Langmuir en líquidos simples y tensoactivos. Educación Química, 26(4), 307–313. doi:10.1016/j.eq.2015.03.002 | |
dc.relation.references | Shareef, M. F., Arslan, M., Iqbal, N., Ahmad, N., & Noor, T. (2017). Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 357. https://doi.org/10.9767/bcrec.12.3.762.357-363 | |
dc.relation.references | Tariq, M., Ali, S., & Khalid, N. (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16(8), 6303–6316. https://doi.org/10.1016/j.rser.2012.07.005 | |
dc.relation.references | Thangarasu, V., & Ramanathan, A. (2019). Production of biodiesel from Aegle marmelos correa seed oil for fuel cell application. IOP Conference Series: Earth and Environmental Science, 312(1), 012018. https://doi.org/10.1088/1755-1315/312/1/012018 | |
dc.relation.references | Tran, D.-T., Chang, J.-S., & Lee, D.-J. (2017). Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Applied Energy, 185, 376–409. doi: 10.1016/j.apenergy.2016.11.006 | |
dc.relation.references | YaWang, X., Zhu, J., Lei, Y., & Lei, W. (2022). Synthesis and characterization of layered double hydroxides hybrid microcapsules for anticorrosion via self-healing and chloride ion adsorption. Applied Clay Science, 221, 106481. https://doi.org/10.1016/j.clay.2022.106481 | |
dc.relation.references | Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). (Photo)catalyst Characterization Techniques. Heterogeneous Photocatalysis, 87–152. doi:10.1016/b978-0-444-64015-4.00004-3. | |
dc.relation.references | Zambrano, M. S. (2021). Síntesis y caracterización de nanomateriales híbridos con hidrotalcita. Universidad de Guanajuato. México | |
dc.relation.references | Shrivastava, S., Prajapati, P., Virendra, Srivastava, P., Lodhi, A. P. S., Kumar, D., Sharma, V., Srivastava, S., & Agarwal, D. D. (2023). Chemical transesterification of soybean oil as a feedstock for stable biodiesel and biolubricant production by using ZN Al hydrotalcites as a catalyst and perform tribological assessment. Industrial Crops and Products, 192, 116002. https://doi.org/10.1016/j.indcrop.2022.116002 | |
dc.relation.references | Trujillano, R., Labajos, F., & Rives, V. (2023). Hydrotalcites, a rapid survey on the very recent synthesis and applications procedures. Applied Clay Science, 238, 106927. https://doi.org/10.1016/j.clay.2023.106927 | |
dc.relation.references | Sircar, S. (2020). A practical perspective of fluid (gas or liquid) - solid adsorption equilibrium. Separation and Purification Technology, 231, 115749. https://doi.org/10.1016/j.seppur.2019.115749 | |
dc.relation.references | Fuentes, E. M., Rodríguez-Ruiz, J., Solano-Polo, C., Rangel, M., & Faro, A. C. (2020). Monitoring the structural and textural changes of Ni-ZN-Al hydrotalcites under heating. Thermochimica Acta, 687, 178594. https://doi.org/10.1016/j.tca.2020.178594 | |
dc.relation.references | Rouquerol, F., Rouquerol, J., Llewellyn, P., Sing, K. S. W., & Maurin, G. (2013). Adsorption by powders and porous solids: Principles, Methodology and Applications. | |
dc.relation.references | Wang, Y., Wu, P., Wang, Y., Huang, H., & Huang, L. (2023). Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: state-of-the-art and future prospects. Journal of Environmental Management, 345, 118629. https://doi.org/10.1016/j.jenvman.2023.118629 | |
dc.relation.references | Moritz, M., & Geszke-Moritz, M. (2015). Mesoporous materials as Multifunctional Tools in Biosciences: Principles and applications. Materials Science and Engineering: C, 49, 114-151. https://doi.org/10.1016/j.msec.2014.12.079 | |
dc.relation.references | Luo, Y., Wang, B., Yi, L., Yan, Y., Deng, C., & Yan, Y. (2023). Mesoporous materials for glycopeptide separation. TrAC Trends in Analytical Chemistry, 167, 117234. https://doi.org/10.1016/j.trac.2023.117234 | |
dc.relation.references | Prasetya, N., Himma, N. F., Sutrisna, P. D., Wenten, I. G., & Ladewig, B. P. (2020). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 391, 123575. https://doi.org/10.1016/j.cej.2019.123575 | |
dc.relation.references | De Santiago, C. (2011). La fisisorción de Nitrógeno. Fundamentos físicos, normativa, descripción del equipo y procedimiento experimental. Informe. Madrid: Centro de Estudios y Experimentación de Obras Públicas. | |
dc.rights | Copyright Universidad de Córdoba, 2023 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Universidad de Córdoba | |
dc.subject.keywords | Lamellar double hydroxides | |
dc.subject.keywords | Heterogeneous catalysis | |
dc.subject.keywords | Biodiesel | |
dc.subject.keywords | Transesterification | |
dc.subject.keywords | Physical adsorption of gases | |
dc.subject.proposal | Hidróxidos dobles laminares | spa |
dc.subject.proposal | Catálisis heterogénea | |
dc.subject.proposal | Biodiésel | |
dc.subject.proposal | Transesterificación | |
dc.subject.proposal | Adsorción física de gases | |
dc.title | Síntesis y caracterización de materiales tipo hidrotalcitas por medio de isotermas para ensayos catalíticos en la producción de biodiésel | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- SÍNTESIS Y CARACTERIZACIÓN DE MATERIALES TIPO HIDROTALCITAS POR MEDIO DE ISOTERMAS PARA ENSAYOS CATALÍTICOS EN LA PRODUCCIÓN DE BIODIÉSEL.pdf
- Tamaño:
- 1.02 MB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- AUTORIZACIÓN DE PUBLICACIÓN DE DOCUMENTOS COLECCIONES DIGITALES DE LA UNIVERSIDAD DE CÓRDOBA.pdf
- Tamaño:
- 411.25 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: