Publicación: Estudio de las propiedades volumétricas y viscosimétricas de la mezcla pseudobinaria de d-(-)-ribosa en soluiones acuosas de cloruro de calcio a diferentes temperaturas (283.15K A 308.15K).
dc.contributor.advisor | Páez Arias, Francisco | spa |
dc.contributor.author | Diaz Soto, Cristian Camilo | |
dc.date.accessioned | 2021-01-27T17:12:49Z | |
dc.date.available | 2021-01-27T17:12:49Z | |
dc.date.issued | 2021-01-25 | |
dc.description.abstract | In the present work, a systematic study of the experimental behavior of the volumetric and viscometric properties for the binary system CaCl2 and D-(- )-Ribose was carried out in different concentrations of said binary in the temperature range of (283,15-308.15) K every 5K. For this purpose, the densities and flow times of the different solutions were determined using a vibrating tube digital densimeter Anton Paar DMA 5000 with an uncertainty of 1x10-05 g.cm-3 and a digital microviscometer AMVn Anton Paar GMBH with an uncertainty of 1x10-02 s respectively. From these data the apparent molar volumes were calculated ( V ), the apparent molar volumes at infinite dilution ( 0 V ), the second derivative of the apparent molar volumes at infinite dilution with temperature ( ) 2 0 2 / P V T , molar transfer volumes ( 0 trV ), the volumetric interaction parameters ( VAB , VABB ,VABBB y VABBBB ), the absolute viscosities ( ), relative viscosities ( r ), viscosity coefficients ( AB, ), the derivative of the viscosity coefficients B with temperature, viscosity with temperature (dB dT / ) , and viscous flow activation parameters ( G , H y S ). | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | En el presente trabajo se realizó un estudio sistemático del comportamiento experimental de las propiedades volumétricas y viscosimétricas para el sistema binario CaCl2 y la D-(-)-Ribosa en diferentes concentraciones de dicho binario en el intervalo de temperatura de (283,15-308,15) K cada 5K. Para tal fin se determinaron las densidades y los tiempos de flujo de las diferentes soluciones mediante un densímetro digital de tubo vibratorio Anton Paar DMA 5000 con una incertidumbre de 1x10-05 g.cm-3 y un microviscosímetro digital AMVn Anton Paar GMBH con una incertidumbre de 1x10-02 s respectivamente. A partir de estos datos fueron calculados los volúmenes molares aparentes ( ), los volúmenes molares aparentes a dilución infinita ( ), la segunda derivada de los volúmenes molares aparentes a dilución infinita con la temperatura , los volúmenes molares de transferencia ( ), los parámetros de interacción volumétricos ( , , y ),las viscosidades absolutas ( ) , las viscosidades relativa ( ) , los coeficientes de viscosidad ( ), la derivada de los coeficientes de viscosidad con la temperatura y los parámetros de activación de flujo viscoso ( , y ). Estos resultados fueron utilizados para analizar el comportamiento de las soluciones en virtud de las interacciones soluto-soluto y soluto-solvente, como también en términos de la capacidad de los diferentes solutos para comportarse como formadores o disruptores de la estructura del solvente. Entre los principales resultados destacan las fuertes interacciones soluto-solvente en todos los sistemas y el carácter disruptor del CaCl2 y de la D-(-)-ribosa sobre el agua y el solvente binario [CaCl2+H20] respectivamente. | |
dc.description.tableofcontents | RESUMEN. ........................................................................................ 12 | spa |
dc.description.tableofcontents | ABSTRACT ........................................................................................ 13 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN .......................................................................... 14 | spa |
dc.description.tableofcontents | 2. OBJETIVOS……………………………………………………………………..16 | spa |
dc.description.tableofcontents | 2.1. OBJETIVO GENERAL…………………………………………………16 | spa |
dc.description.tableofcontents | 2.2. OBJETIVOS ESPECIFICO…………………………………………16 | spa |
dc.description.tableofcontents | 3. MARCO TEORICO……………………………………………………………. 17 | spa |
dc.description.tableofcontents | 3.1. EL AGUA COMO SOLVENTE…………………………………………17 | spa |
dc.description.tableofcontents | 3.1.1. ESTRUCTURA DEL AGUA COMO SOLVENTE………………..17 | spa |
dc.description.tableofcontents | 3.1.2. SOLUCIONES CUOSAS………..……………………………………20 | spa |
dc.description.tableofcontents | 3.1.3. INTERACCIONS HIDROFOBICAS………………………………...20 | spa |
dc.description.tableofcontents | 3.1.4. REGIÓN DE ALTA DILUCIÓN Y REGIÓN DILUIDA……………21 | spa |
dc.description.tableofcontents | 3.1.5. EFECTO DE ELECTROSTRICCIÓN………..…………………….22 | spa |
dc.description.tableofcontents | 3.16. MODELO DE COESFERAS SOLAPADAS DE FRANK Y EVANS..24 | spa |
dc.description.tableofcontents | 3.1.7. SOLUCIONES ACUOSAS DE SACARIDOS……………………….25 | spa |
dc.description.tableofcontents | 3.1.8. ESTRUCTURA CICLICAS DE LOS MONOSACARIDOS EN SOLUCIONES ACUOSAS………………………………………………………………………28 | spa |
dc.description.tableofcontents | 3.1.9 ESTRUCTURAS DE HAWORTH ……………………………………..29 | spa |
dc.description.tableofcontents | 4. PROPIEDADES VOLUMETRICAS……………………………………….… 30 | spa |
dc.description.tableofcontents | 4.1. DENSIDAD………………………………………………………………...30 | spa |
dc.description.tableofcontents | 4.2. VOLUMEN MOLAR APARENTE (V ). .........................................31 | spa |
dc.description.tableofcontents | 4.2.1. CORRELACIÓN DEL VOLUMEN MOLAR APARENTE A DILUCIÓN INFINITA ( 0 V ) CON TEMPERATURA. ............................33 | spa |
dc.description.tableofcontents | 4.2.2. VOLÚMENES DE TRANSFERENCIA ( 0 trV ). ........................33 | spa |
dc.description.tableofcontents | 4.2.2.1. PARÁMETROS DE INTERACCIÓN VOLUMÉTRICOS. ........34 | spa |
dc.description.tableofcontents | 4.2.3. FUNDAMENTO DEL DENSÍMETRO. .................................. 34 | spa |
dc.description.tableofcontents | 5. PROPIEDADES VISCOSIMÉTRICAS………………………………………..37 | spa |
dc.description.tableofcontents | 5.1. DETERMINACIÓN DE LOS COEFICIENTES B DE VISCOSIDAD. ...............................................................................39 | spa |
dc.description.tableofcontents | 5.2. PARÁMETROS DE ACTIVACIÓN DE FLUJO VISCOSO. ......40 | spa |
dc.description.tableofcontents | 5.3. FUNDAMENTO DEL MICROVISCOSIMÉTRO. ................... 41 | spa |
dc.description.tableofcontents | 6. METODOLOGÍA. ......................................................................... 43 | spa |
dc.description.tableofcontents | 6.1. REACTIVOS. ............................................................................ 43 | spa |
dc.description.tableofcontents | 6.2. EQUIPOS. ............................................................................... 44 | spa |
dc.description.tableofcontents | 6.3. PURIFICACIÓN DE LA D-(-)-RIBOSA. ....................................... 44 | spa |
dc.description.tableofcontents | 6.4. LIMPIEZA DEL MATERIAL DE VIDRIO. .................................... 44 | spa |
dc.description.tableofcontents | 6.5. PREPARACIÓN DE SOLUCIONES. ........................................... 45 | spa |
dc.description.tableofcontents | 6.5.1. DETERMINACIÓN DE LA DENSIDAD. ................................... 45 | spa |
dc.description.tableofcontents | 6.6. DETERMINACIÓN DE LA VISCOSIDAD. .................................. 46 | spa |
dc.description.tableofcontents | 7. RESULTADOS Y DISCUSIÓN. ...................................................... 49 | spa |
dc.description.tableofcontents | 7.1. PROPIEDADES VOLUMÉTRICAS ............................................. 49 | spa |
dc.description.tableofcontents | 7.1.1. INCERTIDUMBRE EN LA DENSIDAD. ................................... 49 | spa |
dc.description.tableofcontents | 7.2. VOLÚMENES MOLARES APARENTES (V) PARA LAS SOLUCIONES DE D-(-)-RIBOSA EN MEZCLAS ACUOSAS DE CaCl2.55 | spa |
dc.description.tableofcontents | 7.2.1. Volúmenes molares aparentes a dilución infinita ( 0 V ) para las soluciones de D-(-)-ribosa en mezclas acuosas de CaCl2. ...............58 | spa |
dc.description.tableofcontents | 7.2.2. Correlación de los volúmenes molares aparentes a dilución infinita ( 0 V ) con la temperatura. ...................................................60 | spa |
dc.description.tableofcontents | 7.2.3. VOLÚMENES MOLARES DE TRANSFERENCIA ( 0 trV ) PARA LA D-(-)-RIBOSA EN SOLUCIONES ACUOSAS DE CaCl2. ..................... 61 | spa |
dc.description.tableofcontents | 7.2.4. Parámetros de interacción volumétricos. .............................62 | spa |
dc.description.tableofcontents | 8. PROPIEDADES VISCOSIMÉTRICAS. ...................................... 64 | spa |
dc.description.tableofcontents | 8.1. VISCOSIDAD ABSOLUTA ( ). .................................................64 | spa |
dc.description.tableofcontents | 8.2. VISCOSIDAD RELATIVA ( r )...............................................69 | spa |
dc.description.tableofcontents | 8.2.4. PARÁMETROS DE ACTIVACIÓN DE FLUJO VISCOSO. .......75 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4005 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keyword | Carbohydrate | |
dc.subject.keyword | Interactions | |
dc.subject.keyword | Cosolute | |
dc.subject.keyword | Former | |
dc.subject.proposal | Carbohidrato | spa |
dc.subject.proposal | Interacciones | |
dc.subject.proposal | Cosoluto | |
dc.subject.proposal | Formador | |
dc.title | Estudio de las propiedades volumétricas y viscosimétricas de la mezcla pseudobinaria de d-(-)-ribosa en soluiones acuosas de cloruro de calcio a diferentes temperaturas (283.15K A 308.15K). | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Sears, null & Wong, null. Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. Angew. Chem. Int. Ed. Engl. 38, 2300–2324 (1999). | spa |
dcterms.references | 2. Zhuo, K., Wang, J., Yue, Y. & Wang, H. Volumetric properties for the monosaccharide (d-xylose, d-arabinose, d-glucose, d-galactose)–NaCl–water systems at 298.15 K. Carbohydrate Research 328, 383–391 (2000). | spa |
dcterms.references | 3. Zhuo, K., Chen, Y., Wang, W. & Wang, J. Volumetric and Viscosity Properties of MgSO 4 /CuSO 4 in Sucrose + Water Solutions at 298.15 K. J. Chem. Eng. Data 53, 2022–2028 (2008). | spa |
dcterms.references | 4. Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. The Journal of Chemical Thermodynamics 42, 1131–1135 (2010). | spa |
dcterms.references | 5. Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. The Journal of Chemical Thermodynamics 42, 1131–1135 (2010). | spa |
dcterms.references | 6. Dey, P. C., Motin, M. A., Biswas, T. K. & Huque, E. M. Apparent Molar Volume and Viscosity Studies on Some Carbohydrates in Solutions. Monatshefte für Chemie 134, 797–809 (2003). | spa |
dcterms.references | 7. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Viscosities of Some Saccharides in Aqueous Solutions of Phosphate-Based Inorganic Salts. J. Chem. Eng. Data 61, 1992–2001 (2016). | spa |
dcterms.references | 8. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010). | spa |
dcterms.references | 9. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Study on interactions of saccharides and their derivatives with potassium phosphate monobasic (1:1 electrolyte) in aqueous solutions at different temperatures. Journal of Molecular Liquids 196, 291–299 (2014). | spa |
dcterms.references | 10. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Effects of phosphate-based monobasic and tribasic inorganic salts on hydration characteristics of saccharides and their derivatives. Journal of Molecular Liquids 211, 78–89 (2015). | spa |
dcterms.references | 11. Banipal, P. K., Dhanjun, H. S., Sharma, S., Hundal, H. & Banipal, T. S. Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of some Disaccharides in Aqueous Solutions at Different Temperatures. Zeitschrift für Physikalische Chemie 222, 177–204 (2008). | spa |
dcterms.references | 12. Mendon�����a, �����ngela F. S. S., Magalh�����es, S. R. J., Rodrigues, S. I. M. & Lampreia, I. M. S. Apparent Molar Volumes of Proline-Leucine Dipeptide in NaCl Aqueous Solutions at 318.15 K. J Solution Chem 34, 25–32 (2005). | spa |
dcterms.references | 13. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010). | spa |
dcterms.references | 14. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016). | spa |
dcterms.references | 15. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016). | spa |
dcterms.references | 16. Banipal, T. S., Kaur, D., Banipal, P. K. & Singh, G. Thermodynamic and transport properties of l-serine and l-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15K. The Journal of Chemical Thermodynamics 39, 371–384 (2007). | spa |
dcterms.references | 17. Banipal, T. S., Kaur, D. & Banipal, P. K. Effect of magnesium acetate on the volumetric and transport behavior of some amino 84 acids in aqueous solutions at 298.15K. The Journal of Chemical Thermodynamics 38, 1214–1226 (2006). | spa |
dcterms.references | 18. Vasantha, T., Kumar, A., Attri, P., Venkatesu, P. & Rama Devi, R. S. Influence of biocompatible ammonium ionic liquids on the solubility of l-alanine and l-valine in water. Fluid Phase Equilibria 335, 39–45 (2012). | spa |
dcterms.references | 19. Wang, J., Yan, Z. & Lu, J. Effect of sodium caproate on the volumetric and viscometric properties of glycine, dl-α-alanine, and dl-α-amino-n-butyric acid in aqueous solutions. The Journal of Chemical Thermodynamics 36, 281–288 (2004). | spa |
dcterms.references | 20. Zhuo, K., Chen, Y., Wang, W. & Wang, J. Conductivities of CuSO4 and CdSO4 in Sucrose/Trehalose−Water Systems at 298.15 K. Ind. Eng. Chem. Res. 48, 6432–6435 (2009). | spa |
dcterms.references | 21. Sirbu, F. & Gheorghe, I. L. Study on thermophysical properties in the ternary mixture of N-methylglycine solute with (d-glucose + water) binary solvent at temperatures of 298.15, 308.15, and 318.15 K. Journal of Molecular Liquids 253, 149–159 (2018). | spa |
dcterms.references | 22. Ankita, Chand, D. & Nain, A. K. Molecular interactions of drug semicarbazide hydrochloride in aqueous-D-xylose/L-arabinose solutions at different temperatures: Volumetric, acoustic and viscometric study. The Journal of Chemical Thermodynamics 146, 106106 (2020). | spa |
dcterms.references | 23. Banipal, P. K., Banipal, T. S., Ahluwalia, J. C. & Lark, B. S. Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T=298.15K. The Journal of Chemical Thermodynamics 34, 1825–1846 (2002). | spa |
dcterms.references | 24. Rani, M., Gahlyan, S., Om, H., Verma, N. & Maken, S. Ultrasonic studies of molecular interactions in binary mixtures of formamide with some isomers of butanol at 298.15K and 308.15K. Journal of Molecular Liquids 194, 100–109 (2014). | spa |
dcterms.references | 25. Iulian, O., Sîrbu, F. & Stoicescu, C. DENSITY AND APPARENT MOLAR VOLUME PREDICTION IN SOME TERNARY ELECTROLYTE SOLUTIONS. 6. | spa |
dcterms.references | 26. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016). | spa |
dcterms.references | 27. Pliml, W. et al. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. The Lancet 340, 507–510 (1992). | spa |
dcterms.references | 28. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010). | spa |
dcterms.references | 29. Lelong, G. et al. Translational and rotational dynamics of monosaccharide solutions. J Phys Chem B 113, 13079–13085 (2009). | spa |
dcterms.references | 30. Shamil, S., Birch, G. G. & Njoroge, S. Intrinsic viscosities and other solution properties of sugars and their possible relation to sweetness. Chem Senses 13, 457–461 (1988). | spa |
dcterms.references | 31. Kumar, A. & Atkinson, G. Thermodynamics of concentrated electrolyte mixtures. 3. Apparent molal volumes, compressibilities, and expansibilities of sodium chloride-calcium chloride mixtures from 5 to 35.degree.C. J. Phys. Chem. 87, 5504–5507 (1983). | spa |
dcterms.references | 32. Riddick, J. A., Bunger, W. B. & Sakano, T. K. Organic solvents: physical properties and methods of purification. Fourth edition. (1986). | spa |
dcterms.references | 33. Banipal, P. K., Dhanjun, H. S., Sharma, S., Hundal, H. & Banipal, T. S. Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of some Disaccharides in Aqueous Solutions at Different Temperatures. Zeitschrift für Physikalische Chemie 222, 177–204 (2008). | spa |
dcterms.references | 34. Friedman, H. L. & Krishnan, C. V. Thermodynamics of Ionic Hydration. in Aqueous Solutions of Simple Electrolytes 1–118 (Springer US, 1973). doi:10.1007/978-1-4684-2955-8_1. | spa |
dcterms.references | 35. Bhat, R., Kishore, N. & Ahluwalia, J. C. Thermodynamic studies of transfer of some amino acids and peptides from water to | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: