Publicación: Actividad antifúngica de extractos obtenidos de Zanthoxylum caribaeum (Rutaceae) contra aislados clínicos de Candida spp. (Saccharomycetales: Saccharomycetaceae)
dc.contributor.advisor | Contreras Martínez Orfa Inés | spa |
dc.contributor.advisor | Angulo Ortiz Alberto Antonio | spa |
dc.contributor.author | Pérez Noriega, Gabriela | |
dc.date.accessioned | 2023-08-04T17:35:31Z | |
dc.date.available | 2025-08-01 | |
dc.date.available | 2023-08-04T17:35:31Z | |
dc.date.issued | 2023-08-04 | |
dc.description.abstract | La incidencia de Candida spp., en las infecciones intrahospitalarias, su resistencia a múltiples fármacos y su elevada tasa de mortalidad, principalmente en personas inmunocomprometidas, han convertido su tratamiento en una tarea desafiante para el personal de la salud. Actualmente se ha informado del efecto antifúngico de compuestos naturales como posibles alternativas a utilizar. El objetivo de este estudio fue evaluar la actividad antifúngica de los extractos EtOH de hojas y corteza obtenidos de Zanthoxylum caribaeum Lam (Rutaceae) contra aislados clínicos de Candida spp. Para los ensayos de actividad antifúngica se empleó el método de microdilución en caldo y se encontró efecto inhibidor del crecimiento de Candida spp., con Concentraciones Mínimas Inhibitorias (CMI) de 125 a 3500 μg/mL. Los extractos mostraron ser erradicadores de biopelículas maduras, en algunos casos con un mayor efecto que la Anfotericina B (AFB). Mediciones en el pH extracelular y ensayos de tinción con azul de Evans revelaron daño en la integridad de la membrana fúngica con liberación de constituyentes intracelular comparado con células no tratadas. Estos resultados sirven como base para futuros estudios encaminados en la búsqueda de compuestos activos de origen vegetal contra Candida spp. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Biólogo(a) | spa |
dc.description.modality | Artículo | spa |
dc.description.tableofcontents | Resumen ______________________________________1 | spa |
dc.description.tableofcontents | Introducción ___________________________________1 | spa |
dc.description.tableofcontents | Materiales y Métodos ___________________________ 2 | spa |
dc.description.tableofcontents | Resultados ____________________________________ 5 | spa |
dc.description.tableofcontents | Discusión _____________________________________ 12 | spa |
dc.description.tableofcontents | Conclusión ____________________________________ 13 | spa |
dc.description.tableofcontents | Recomendaciones ___________________________ 13 | spa |
dc.description.tableofcontents | Agradecimientos _____________________________ 13 | spa |
dc.description.tableofcontents | Referencias __________________________________ 13 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7578 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Biología | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Antifungal | eng |
dc.subject.keywords | Candida | eng |
dc.subject.keywords | Extract | eng |
dc.subject.keywords | Secondary metabolites | eng |
dc.subject.proposal | Antifúngico | spa |
dc.subject.proposal | Candida | spa |
dc.subject.proposal | Extracto | spa |
dc.subject.proposal | Metabolitos secundarios | spa |
dc.title | Actividad antifúngica de extractos obtenidos de Zanthoxylum caribaeum (Rutaceae) contra aislados clínicos de Candida spp. (Saccharomycetales: Saccharomycetaceae) | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abate, G., Zhang, L., Pucci, M., Morbini, G., Sweeney, E. Mac, Maccarinelli, G., Ribaudo, G., Gianoncelli, A., Uberti, D., Memo, M., Lucini, L., & Mastinu, A. (2021). Phytochemical analysis and anti-inflammatory activity of different ethanolic phyto-extracts of Artemisia annua l. Biomolecules, 11, 1–20. https://doi.org/10.3390/biom11070975 | spa |
dcterms.references | Aboualigalehdari, E., Sadeghifard, N., Taherikalani, M., Zargoush, Z., Tahmasebi, Z., Badakhsh, B., Rostamzad, A., Ghafourian, S., & Pakzad, I. (2016). Anti-biofilm properties of Peganum harmala against Candida albicans. Osong Public Health and Research Perspectives, 7, 116–118. https://doi.org/10.1016/j.phrp.2015.12.010 | spa |
dcterms.references | Alemu, B. K., & Misganaw, D. (2020). Antimalarial activity of Fagaropsis angolensis (Rutaceae) crude extracts and solvent fractions of its stem bark against Plasmodium berghei in mice. Journal of Experimental Pharmacology, 12, 683–693. https://doi.org/10.2147/JEP.S289478 | spa |
dcterms.references | Bissim, S. M., Kenmogne, S. B., Lobe, J. S., Atangana, A. F., Bissoue, A. N., Langat, M. K., Isyaka, S. M., Lateef, M., Emmanuel, N. H., Wansi, J. D., Ali, M. S., & Waffo, A. F. K. (2021). The chemistry and biological activities of Citrus clementina Hort. Ex Tanaka (Rutaceae), a vegetatively propagated species. Natural Product Research, 35, 4839–4842. https://doi.org/10.1080/14786419.2020.1731740 | spa |
dcterms.references | Boonsilp, S., Homkaew, A., Phumisantiphong, U., Nutalai, D., & Wongsuk, T. (2021). Species distribution, antifungal susceptibility, and molecular epidemiology of candida species causing Candidemia in a tertiary care hospital in Bangkok, Thailand. Journal of Fungi, 7, 577. https://doi.org/10.3390/jof7070577 | spa |
dcterms.references | Carvajal, S. K., Alvarado, M., Rodr, Y. M., Parra-giraldo, C. M., Var, C., Morales-l, S. E., Rodr, Y., Beatriz, L. G., & Escand, P. (2021). Pathogenicity assessment of colombian strains of Candida auris in the Galleria mellonella invertebrate model. Journal of Fungi, 7, 401. https://doi.org/10.3390/jof7060401 | spa |
dcterms.references | Cascaes, M., Carneiro, O., Nascimento, L., de Moraes, Â., de Oliveira, M., Cruz, J., Andrade, E., & Skelding, G. (2021). Essential oils from Annonaceae species from Brazil: a systematic review of their phytochemistry, and biological activities. International Journal of Molecular Sciences, 22, 12140. https://doi.org/https://doi.org/10.3390/ijms222212140 | spa |
dcterms.references | Chatrath, A., Gangwar, R., Kumari, P., & Prasad, R. (2019). In vitro anti-biofilm activities of citral and thymol against Candida tropicalis. Journal of Fungi, 5, 13. https://doi.org/10.3390/jof5010013 | spa |
dcterms.references | Chaves-lopez, C., Nguyen, H. N., Oliveira, R. C., Nadres, E. T., Paparella, A., & Rodrigues, D. F. (2018). A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. Nanoscale, 1'20702–20716. https://doi.org/10.1039/c8nr06470a | spa |
dcterms.references | Chaves, G., Vera, E. J., & Ortiz, L. Y. (2022). Phytochemical characterization of ethanolic extracts of the leaves of Zanthoxylum Caribaeum Lam and evaluation of antimicrobial activity against Burkholderia glumae. Revista de Chimie, 73, 51–61. https://doi.org/10.37358/rc.22.1.8502 | spa |
dcterms.references | Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the United States of America, 102, 3459–3464. https://doi.org/10.1073/pnas.0407960102 | spa |
dcterms.references | Chen, H., Zhou, X., Ren, B., & Cheng, L. (2020). The regulation of hyphae growth in Candida albicans. Virulence, 11, 337-348. https://doi.org/https://doi.org/10.1080/21505594.2020.1748930 | spa |
dcterms.references | CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard—third edition. CLSI Document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute, 28 | spa |
dcterms.references | Contreras, O., Angulo, A., & Santafe, G. (2022). Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules, 27, 5808. https://doi.org/https://doi.org/10.3390/molecules27185808 | spa |
dcterms.references | Contreras, O., Ortíz, A., & Patiño, G. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8, e11110. https://doi.org/10.1016/j.heliyon.2022.e11110 | spa |
dcterms.references | Daneshnia, F., de Almeida Júnior, J. N., Ilkit, M., Lombardi, L., Perry, A. M., Gao, M., Nobile, C. J., Egger, M., Perlin, D. S., Zhai, B., Hohl, T. M., Gabaldón, T., Colombo, A. L., Hoenigl, M., & Arastehfar, A. (2023). Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. The Lancet. Microbe, 4, e470–80. https://doi.org/10.1016/S2666-5247(23)00067-8 | spa |
dcterms.references | De Menezes, A., Abadia, M., Alves, C., De Souza, C., Batista, M., & Loureiro, F. (2022). Phytochemical constituents and antifungal and antibacterial activities of Zanthoxylum riedelianum Engl trunk bark extract. Revista Cubana de Farmacia, ttps://revfarmacia.sld.cu/index.php/far/article/view/801/498. 55, 1–13 | spa |
dcterms.references | De Souza, J., Pinto, F., Toledo, A., Alves, L., & Alves, D. (2020). Biological activities and phytochemical screening of leaf extracts from Zanthoxylum caribaeum l. (rutaceae). Bioscience Journal, 36, 223–234. https://doi.org/10.14393/BJ-v36n1a2020-48051 | spa |
dcterms.references | Donadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi (Basel, Switzerland), 7, 383. https://doi.org/https://doi.org/10.3390/jof7050383 | spa |
dcterms.references | El-Kholy, M. A., Helaly, G. F., El Ghazzawi, E. F., El-Sawaf, G., & Shawky, S. M. (2021). Virulence factors and antifungal susceptibility profile of C . tropicalis isolated from various clinical specimens in Alexandria, Egypt. J. Fungi, 7, 351. https://doi.org/10.3390/jof7050351 | spa |
dcterms.references | Hassan, Y., Chew, S. Y., & Than, L. T. L. (2021). Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival. Journal of Fungi, 7, 667. https://doi.org/https://doi.org/10.3390/ jof7080667 | spa |
dcterms.references | Kaigongi, M. M., Lukhoba, C. W., Yaouba, S., Makunga, N. P., Githiomi, J., & Yenesew, A. (2020). In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum kokwaro (Rutaceae). Plants, 9, 1–15. https://doi.org/10.3390/plants9070920 | spa |
dcterms.references | Kawai, A., Yamagishi, Y., & Mikamo, H. (2017). Time-lapse tracking of Candida tropicalis biofilm formation and the antifungal efficacy of liposomal amphotericin B. Japanese Journal of Infectious Diseases, 70, 559–564. https://doi.org/10.7883/yoken.JJID.2016.574 | spa |
dcterms.references | Malacrida, A., Cavalloro, V., Martino, E., Costa, G., Ambrosio, F. A., Alcaro, S., Rigolio, R., Cassetti, A., Miloso, M., & Collina, S. (2021). Anti-multiple myeloma potential of secondary metabolites from Hibiscus sabdariffa—part 2. 26, 6596. https://doi.org/10.3390/molecules26216596 | spa |
dcterms.references | McCarty, T., White, C., & Pappas, P. (2021). Candidemia and invasive candidiasis. Infectious Disease Clinics. Infectious Disease Clinics, 35, 389–413. https://doi.org/https://doi.org/10.1016/j.idc.2021.03.007 | spa |
dcterms.references | Menezes, R., Sessions, Z., Muratov, E., Scotti, L., & Scotti, M. (2021). Secondary metabolites extracted from Annonaceae and chemotaxonomy study of terpenoids. Journal of the Brazilian Chemical Society, 32, 2061–2070. https://doi.org/https://doi.org/10.21577/0103-5053.20210097 | spa |
dcterms.references | Muthamil, S., & Pandian, S. K. (2016). Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Poland), 71, 256–264. https://doi.org/10.1515/biolog-2016-0044 | spa |
dcterms.references | Napagoda, M., Gerstmeier, J., Butschek, H., Lorenz, S., De Soyza, S., Qader, M., Nagahawatte, A., Wijayaratne, G. B., Schneider, B., Svatoš, A., Jayasinghe, L., Koeberle, A., & Werz, O. (2022). Plectranthus zeylanicus: a rich source of secondary metabolites with antimicrobial, disinfectant and anti-inflammatory activities. Pharmaceuticals, 15, 1–15. https://doi.org/10.3390/ph15040436 | spa |
dcterms.references | O’Brien, C. E., Oliveira-Pacheco, J., Cinnéide, E. Ó., Haase, M. A. B., Hittinger, C. T., Rogers, T. R., Zaragoza, O., Bond, U., & Geraldine, B. (2021). Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. 17, 1–27. https://doi.org/10.1371/journal.ppat.1009138 | spa |
dcterms.references | Ökmen, G., Arslan, K., & Tekin, R. (2021). The antimicrobial activity of Citrus limon L. against foodborne pathogens and its anti-oxidant and antibiofilm properties. International Journal of Ayurvedic Medicine, 12, 301–308. https://doi.org/10.47552/ijam.v12i3.1875 | spa |
dcterms.references | Ortega, O., Chaves, G., & Ortiz, L. Y. (2021). Chemical composition and antimicrobial activity of ethanolic bark and leave extract of Zanthoxylum caribaeum Lam. from Norte de Santander, Colombia. Revista de Chimie, 72, 152–161. https://doi.org/10.37358/rc.21.4.8464 | spa |
dcterms.references | Piatti, G., Sartini, M., Cusato, C., & Schito, A. M. (2020). Colonization by Candida auris in critically ill patients: role of cutaneous and rectal localization during an outbreak. Journal of Hospital Infection, 120, 85-89. https://doi.org/https://doi.org/10.1016/j.jhin.2021.11.004 | spa |
dcterms.references | Ponde, N. O., Lortal, L., Ramage, G., Naglik, J. R., & Richardson, J. P. (2021). Candida albicans biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 47, 91–111. https://doi.org/10.1080/1040841X.2020.1843400 | spa |
dcterms.references | Quave, C., Plano, L., Pantuso, T., & Bennett, B. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118, 418–428. https://doi.org/10.1016/j.jep.2008.05.005 | spa |
dcterms.references | Salehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyem, A., Turkdonmez, E., Valussi, M., Tumer, T., Monzote, L., Martorell, M., & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules, 24, 1364. https://doi.org/https://doi.org/10.3390/molecules24071364 | spa |
dcterms.references | Satoh, K., Makimura, K., Hasumi, Y., Nishiyama, Y., Uchida, K., & Yamaguchi, H. (2009). Candida auris sp . nov ., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and Inmunology, 53 41–44. https://doi.org/10.1111/j.1348-0421.2008.00083.x | spa |
dcterms.references | Sharma, C., & Kadosh, D. (2023). Spread of the emerging human fungal pathogen Candida auris. Plos Pathogen, e1011190. https://doi.org/10.1371/journal.ppat.1011190 | spa |
dcterms.references | Shi, C., Sun, Y., Zheng, Z., Zhang, X., Song, K., Jia, Z., Chen, Y., Yang, M., Liu, X., Dong, R., & Xia, X. (2015). Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chemistry, 197, 100-106. https://doi.org/10.1016/j.foodchem.2015.10.100 | spa |
dcterms.references | Shields, R. K., Kline, E. G., Healey, K. R., Kordalewska, M., Perlin, D. S., Nguyen, M. H. ong, & Clancya, C. J. (2019). Spontaneous mutational frequency and FKS mutation rates vary by echinocandin agent against Candida glabrata. Antimicrobial Agents and Chemotherapy, 63, e01692-18. https://doi.org/https://doi.org/10.1128/AAC.01692-18 | spa |
dcterms.references | Souza, J., Gorlin, A., Vogt, C., Paula, A., Borges, P., & Gisele, F. (2017). Chemical composition and antibacterial activity of essential oil and leaf extracts of Zanthoxylum caribaeum Lam . against serotypes of Salmonella. Revista Brasileira de Saúde e Produção Animal, 18, 446–453. https://doi.org/https://doi.org/10.1590/S1519-99402017000300005 | spa |
dcterms.references | Steinmann, J., Schrauzer, T., Kirchhoff, L., Meis, J. F., & Rath, P. M. (2021). Two Candida auris cases in Germany with no recent contact to foreign healthcare—epidemiological and microbiological investigations. Journal of Fungi, 7, 1–6. https://doi.org/10.3390/jof7050380 | spa |
dcterms.references | Sticchi, C., Raso, R., Ferrara, L., Vecchi, E., Ferrero, L., Filippi, D., Finotto, G., Frassinelli, E., Silvestre, C., Zozzoli, S., Ambretti, S., Diegoli, G., Gagliotti, C., Moro, M. L., Ricchizzi, E., Tumietto, F., Russo, F., Tonon, M., Maraglino, F., Reza, G., & Sabbatucci, M. (2023). Increasing Number of Cases Due to Candida auris in North Italy, July 2019–December 2022. Journal of Clinical Medicine, 12, 1912. https://doi.org/10.3390/jcm12051912 | spa |
dcterms.references | Tao, N., OuYang, Q., & Jia, L. (2014). Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41, 116–121. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.01.010 | spa |
dcterms.references | Vijayaraghavareddy, P., Adhinarayan, V., Vemanna, R., Sreeman, S., & Makarla, U. (2017). Quantification of membrane damage/cell death using Evan’s blue staining technique. Bio-Protocol, 7, e2519-e2519. https://doi.org/10.21769/bioprotoc.2519 | spa |
dcterms.references | Wall, G., Montelongo, D., Bonifacio, B., Lopez, J., & Uppuluri, P. (2019). Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Current Opinion in Microbiology, 52, 1-6. https://doi.org/10.1016/j.mib.2019.04.001 | spa |
dcterms.references | Wang, Y., Zou, Y., Chen, X., Li, H., Yin, Z., Zhang, B., Xu, Y., Zhang, Y., Zhang, R., Huang, X., Yang, W., Xu, C., Jiang, T., Tang, Q., Zhou, Z., Ji, Y., Liu, Y., Hu, L., Zhou, J., Zhou, Y., Zhao, J., Ningning, L., Huang, G., Chang, H., Wnxia, C., Chen, C., & Zhou, D. (2022). Innate immune responses against the fungal pathogen Candida auris. Nature Communications, 13, 3553. https://doi.org/10.1038/s41467-022-31201-x | spa |
dcterms.references | World Health Organization. (2021). Antimicrobial resistance. World Health Organization | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: