Publicación:
Actividad antifúngica de extractos obtenidos de Zanthoxylum caribaeum (Rutaceae) contra aislados clínicos de Candida spp. (Saccharomycetales: Saccharomycetaceae)

dc.contributor.advisorContreras Martínez Orfa Inésspa
dc.contributor.advisorAngulo Ortiz Alberto Antoniospa
dc.contributor.authorPérez Noriega, Gabriela
dc.date.accessioned2023-08-04T17:35:31Z
dc.date.available2025-08-01
dc.date.available2023-08-04T17:35:31Z
dc.date.issued2023-08-04
dc.description.abstractLa incidencia de Candida spp., en las infecciones intrahospitalarias, su resistencia a múltiples fármacos y su elevada tasa de mortalidad, principalmente en personas inmunocomprometidas, han convertido su tratamiento en una tarea desafiante para el personal de la salud. Actualmente se ha informado del efecto antifúngico de compuestos naturales como posibles alternativas a utilizar. El objetivo de este estudio fue evaluar la actividad antifúngica de los extractos EtOH de hojas y corteza obtenidos de Zanthoxylum caribaeum Lam (Rutaceae) contra aislados clínicos de Candida spp. Para los ensayos de actividad antifúngica se empleó el método de microdilución en caldo y se encontró efecto inhibidor del crecimiento de Candida spp., con Concentraciones Mínimas Inhibitorias (CMI) de 125 a 3500 μg/mL. Los extractos mostraron ser erradicadores de biopelículas maduras, en algunos casos con un mayor efecto que la Anfotericina B (AFB). Mediciones en el pH extracelular y ensayos de tinción con azul de Evans revelaron daño en la integridad de la membrana fúngica con liberación de constituyentes intracelular comparado con células no tratadas. Estos resultados sirven como base para futuros estudios encaminados en la búsqueda de compuestos activos de origen vegetal contra Candida spp.spa
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogo(a)spa
dc.description.modalityArtículospa
dc.description.tableofcontentsResumen ______________________________________1spa
dc.description.tableofcontentsIntroducción ___________________________________1spa
dc.description.tableofcontentsMateriales y Métodos ___________________________ 2spa
dc.description.tableofcontentsResultados ____________________________________ 5spa
dc.description.tableofcontentsDiscusión _____________________________________ 12spa
dc.description.tableofcontentsConclusión ____________________________________ 13spa
dc.description.tableofcontentsRecomendaciones ___________________________ 13spa
dc.description.tableofcontentsAgradecimientos _____________________________ 13spa
dc.description.tableofcontentsReferencias __________________________________ 13spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7578
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programBiologíaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsAntifungaleng
dc.subject.keywordsCandidaeng
dc.subject.keywordsExtracteng
dc.subject.keywordsSecondary metaboliteseng
dc.subject.proposalAntifúngicospa
dc.subject.proposalCandidaspa
dc.subject.proposalExtractospa
dc.subject.proposalMetabolitos secundariosspa
dc.titleActividad antifúngica de extractos obtenidos de Zanthoxylum caribaeum (Rutaceae) contra aislados clínicos de Candida spp. (Saccharomycetales: Saccharomycetaceae)spa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttps://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbate, G., Zhang, L., Pucci, M., Morbini, G., Sweeney, E. Mac, Maccarinelli, G., Ribaudo, G., Gianoncelli, A., Uberti, D., Memo, M., Lucini, L., & Mastinu, A. (2021). Phytochemical analysis and anti-inflammatory activity of different ethanolic phyto-extracts of Artemisia annua l. Biomolecules, 11, 1–20. https://doi.org/10.3390/biom11070975spa
dcterms.referencesAboualigalehdari, E., Sadeghifard, N., Taherikalani, M., Zargoush, Z., Tahmasebi, Z., Badakhsh, B., Rostamzad, A., Ghafourian, S., & Pakzad, I. (2016). Anti-biofilm properties of Peganum harmala against Candida albicans. Osong Public Health and Research Perspectives, 7, 116–118. https://doi.org/10.1016/j.phrp.2015.12.010spa
dcterms.referencesAlemu, B. K., & Misganaw, D. (2020). Antimalarial activity of Fagaropsis angolensis (Rutaceae) crude extracts and solvent fractions of its stem bark against Plasmodium berghei in mice. Journal of Experimental Pharmacology, 12, 683–693. https://doi.org/10.2147/JEP.S289478spa
dcterms.referencesBissim, S. M., Kenmogne, S. B., Lobe, J. S., Atangana, A. F., Bissoue, A. N., Langat, M. K., Isyaka, S. M., Lateef, M., Emmanuel, N. H., Wansi, J. D., Ali, M. S., & Waffo, A. F. K. (2021). The chemistry and biological activities of Citrus clementina Hort. Ex Tanaka (Rutaceae), a vegetatively propagated species. Natural Product Research, 35, 4839–4842. https://doi.org/10.1080/14786419.2020.1731740spa
dcterms.referencesBoonsilp, S., Homkaew, A., Phumisantiphong, U., Nutalai, D., & Wongsuk, T. (2021). Species distribution, antifungal susceptibility, and molecular epidemiology of candida species causing Candidemia in a tertiary care hospital in Bangkok, Thailand. Journal of Fungi, 7, 577. https://doi.org/10.3390/jof7070577spa
dcterms.referencesCarvajal, S. K., Alvarado, M., Rodr, Y. M., Parra-giraldo, C. M., Var, C., Morales-l, S. E., Rodr, Y., Beatriz, L. G., & Escand, P. (2021). Pathogenicity assessment of colombian strains of Candida auris in the Galleria mellonella invertebrate model. Journal of Fungi, 7, 401. https://doi.org/10.3390/jof7060401spa
dcterms.referencesCascaes, M., Carneiro, O., Nascimento, L., de Moraes, Â., de Oliveira, M., Cruz, J., Andrade, E., & Skelding, G. (2021). Essential oils from Annonaceae species from Brazil: a systematic review of their phytochemistry, and biological activities. International Journal of Molecular Sciences, 22, 12140. https://doi.org/https://doi.org/10.3390/ijms222212140spa
dcterms.referencesChatrath, A., Gangwar, R., Kumari, P., & Prasad, R. (2019). In vitro anti-biofilm activities of citral and thymol against Candida tropicalis. Journal of Fungi, 5, 13. https://doi.org/10.3390/jof5010013spa
dcterms.referencesChaves-lopez, C., Nguyen, H. N., Oliveira, R. C., Nadres, E. T., Paparella, A., & Rodrigues, D. F. (2018). A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. Nanoscale, 1'20702–20716. https://doi.org/10.1039/c8nr06470aspa
dcterms.referencesChaves, G., Vera, E. J., & Ortiz, L. Y. (2022). Phytochemical characterization of ethanolic extracts of the leaves of Zanthoxylum Caribaeum Lam and evaluation of antimicrobial activity against Burkholderia glumae. Revista de Chimie, 73, 51–61. https://doi.org/10.37358/rc.22.1.8502spa
dcterms.referencesChen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the United States of America, 102, 3459–3464. https://doi.org/10.1073/pnas.0407960102spa
dcterms.referencesChen, H., Zhou, X., Ren, B., & Cheng, L. (2020). The regulation of hyphae growth in Candida albicans. Virulence, 11, 337-348. https://doi.org/https://doi.org/10.1080/21505594.2020.1748930spa
dcterms.referencesCLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard—third edition. CLSI Document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute, 28spa
dcterms.referencesContreras, O., Angulo, A., & Santafe, G. (2022). Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules, 27, 5808. https://doi.org/https://doi.org/10.3390/molecules27185808spa
dcterms.referencesContreras, O., Ortíz, A., & Patiño, G. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8, e11110. https://doi.org/10.1016/j.heliyon.2022.e11110spa
dcterms.referencesDaneshnia, F., de Almeida Júnior, J. N., Ilkit, M., Lombardi, L., Perry, A. M., Gao, M., Nobile, C. J., Egger, M., Perlin, D. S., Zhai, B., Hohl, T. M., Gabaldón, T., Colombo, A. L., Hoenigl, M., & Arastehfar, A. (2023). Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. The Lancet. Microbe, 4, e470–80. https://doi.org/10.1016/S2666-5247(23)00067-8spa
dcterms.referencesDe Menezes, A., Abadia, M., Alves, C., De Souza, C., Batista, M., & Loureiro, F. (2022). Phytochemical constituents and antifungal and antibacterial activities of Zanthoxylum riedelianum Engl trunk bark extract. Revista Cubana de Farmacia, ttps://revfarmacia.sld.cu/index.php/far/article/view/801/498. 55, 1–13spa
dcterms.referencesDe Souza, J., Pinto, F., Toledo, A., Alves, L., & Alves, D. (2020). Biological activities and phytochemical screening of leaf extracts from Zanthoxylum caribaeum l. (rutaceae). Bioscience Journal, 36, 223–234. https://doi.org/10.14393/BJ-v36n1a2020-48051spa
dcterms.referencesDonadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi (Basel, Switzerland), 7, 383. https://doi.org/https://doi.org/10.3390/jof7050383spa
dcterms.referencesEl-Kholy, M. A., Helaly, G. F., El Ghazzawi, E. F., El-Sawaf, G., & Shawky, S. M. (2021). Virulence factors and antifungal susceptibility profile of C . tropicalis isolated from various clinical specimens in Alexandria, Egypt. J. Fungi, 7, 351. https://doi.org/10.3390/jof7050351spa
dcterms.referencesHassan, Y., Chew, S. Y., & Than, L. T. L. (2021). Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival. Journal of Fungi, 7, 667. https://doi.org/https://doi.org/10.3390/ jof7080667spa
dcterms.referencesKaigongi, M. M., Lukhoba, C. W., Yaouba, S., Makunga, N. P., Githiomi, J., & Yenesew, A. (2020). In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum kokwaro (Rutaceae). Plants, 9, 1–15. https://doi.org/10.3390/plants9070920spa
dcterms.referencesKawai, A., Yamagishi, Y., & Mikamo, H. (2017). Time-lapse tracking of Candida tropicalis biofilm formation and the antifungal efficacy of liposomal amphotericin B. Japanese Journal of Infectious Diseases, 70, 559–564. https://doi.org/10.7883/yoken.JJID.2016.574spa
dcterms.referencesMalacrida, A., Cavalloro, V., Martino, E., Costa, G., Ambrosio, F. A., Alcaro, S., Rigolio, R., Cassetti, A., Miloso, M., & Collina, S. (2021). Anti-multiple myeloma potential of secondary metabolites from Hibiscus sabdariffa—part 2. 26, 6596. https://doi.org/10.3390/molecules26216596spa
dcterms.referencesMcCarty, T., White, C., & Pappas, P. (2021). Candidemia and invasive candidiasis. Infectious Disease Clinics. Infectious Disease Clinics, 35, 389–413. https://doi.org/https://doi.org/10.1016/j.idc.2021.03.007spa
dcterms.referencesMenezes, R., Sessions, Z., Muratov, E., Scotti, L., & Scotti, M. (2021). Secondary metabolites extracted from Annonaceae and chemotaxonomy study of terpenoids. Journal of the Brazilian Chemical Society, 32, 2061–2070. https://doi.org/https://doi.org/10.21577/0103-5053.20210097spa
dcterms.referencesMuthamil, S., & Pandian, S. K. (2016). Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Poland), 71, 256–264. https://doi.org/10.1515/biolog-2016-0044spa
dcterms.referencesNapagoda, M., Gerstmeier, J., Butschek, H., Lorenz, S., De Soyza, S., Qader, M., Nagahawatte, A., Wijayaratne, G. B., Schneider, B., Svatoš, A., Jayasinghe, L., Koeberle, A., & Werz, O. (2022). Plectranthus zeylanicus: a rich source of secondary metabolites with antimicrobial, disinfectant and anti-inflammatory activities. Pharmaceuticals, 15, 1–15. https://doi.org/10.3390/ph15040436spa
dcterms.referencesO’Brien, C. E., Oliveira-Pacheco, J., Cinnéide, E. Ó., Haase, M. A. B., Hittinger, C. T., Rogers, T. R., Zaragoza, O., Bond, U., & Geraldine, B. (2021). Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. 17, 1–27. https://doi.org/10.1371/journal.ppat.1009138spa
dcterms.referencesÖkmen, G., Arslan, K., & Tekin, R. (2021). The antimicrobial activity of Citrus limon L. against foodborne pathogens and its anti-oxidant and antibiofilm properties. International Journal of Ayurvedic Medicine, 12, 301–308. https://doi.org/10.47552/ijam.v12i3.1875spa
dcterms.referencesOrtega, O., Chaves, G., & Ortiz, L. Y. (2021). Chemical composition and antimicrobial activity of ethanolic bark and leave extract of Zanthoxylum caribaeum Lam. from Norte de Santander, Colombia. Revista de Chimie, 72, 152–161. https://doi.org/10.37358/rc.21.4.8464spa
dcterms.referencesPiatti, G., Sartini, M., Cusato, C., & Schito, A. M. (2020). Colonization by Candida auris in critically ill patients: role of cutaneous and rectal localization during an outbreak. Journal of Hospital Infection, 120, 85-89. https://doi.org/https://doi.org/10.1016/j.jhin.2021.11.004spa
dcterms.referencesPonde, N. O., Lortal, L., Ramage, G., Naglik, J. R., & Richardson, J. P. (2021). Candida albicans biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 47, 91–111. https://doi.org/10.1080/1040841X.2020.1843400spa
dcterms.referencesQuave, C., Plano, L., Pantuso, T., & Bennett, B. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118, 418–428. https://doi.org/10.1016/j.jep.2008.05.005spa
dcterms.referencesSalehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyem, A., Turkdonmez, E., Valussi, M., Tumer, T., Monzote, L., Martorell, M., & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules, 24, 1364. https://doi.org/https://doi.org/10.3390/molecules24071364spa
dcterms.referencesSatoh, K., Makimura, K., Hasumi, Y., Nishiyama, Y., Uchida, K., & Yamaguchi, H. (2009). Candida auris sp . nov ., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and Inmunology, 53 41–44. https://doi.org/10.1111/j.1348-0421.2008.00083.xspa
dcterms.referencesSharma, C., & Kadosh, D. (2023). Spread of the emerging human fungal pathogen Candida auris. Plos Pathogen, e1011190. https://doi.org/10.1371/journal.ppat.1011190spa
dcterms.referencesShi, C., Sun, Y., Zheng, Z., Zhang, X., Song, K., Jia, Z., Chen, Y., Yang, M., Liu, X., Dong, R., & Xia, X. (2015). Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chemistry, 197, 100-106. https://doi.org/10.1016/j.foodchem.2015.10.100spa
dcterms.referencesShields, R. K., Kline, E. G., Healey, K. R., Kordalewska, M., Perlin, D. S., Nguyen, M. H. ong, & Clancya, C. J. (2019). Spontaneous mutational frequency and FKS mutation rates vary by echinocandin agent against Candida glabrata. Antimicrobial Agents and Chemotherapy, 63, e01692-18. https://doi.org/https://doi.org/10.1128/AAC.01692-18spa
dcterms.referencesSouza, J., Gorlin, A., Vogt, C., Paula, A., Borges, P., & Gisele, F. (2017). Chemical composition and antibacterial activity of essential oil and leaf extracts of Zanthoxylum caribaeum Lam . against serotypes of Salmonella. Revista Brasileira de Saúde e Produção Animal, 18, 446–453. https://doi.org/https://doi.org/10.1590/S1519-99402017000300005spa
dcterms.referencesSteinmann, J., Schrauzer, T., Kirchhoff, L., Meis, J. F., & Rath, P. M. (2021). Two Candida auris cases in Germany with no recent contact to foreign healthcare—epidemiological and microbiological investigations. Journal of Fungi, 7, 1–6. https://doi.org/10.3390/jof7050380spa
dcterms.referencesSticchi, C., Raso, R., Ferrara, L., Vecchi, E., Ferrero, L., Filippi, D., Finotto, G., Frassinelli, E., Silvestre, C., Zozzoli, S., Ambretti, S., Diegoli, G., Gagliotti, C., Moro, M. L., Ricchizzi, E., Tumietto, F., Russo, F., Tonon, M., Maraglino, F., Reza, G., & Sabbatucci, M. (2023). Increasing Number of Cases Due to Candida auris in North Italy, July 2019–December 2022. Journal of Clinical Medicine, 12, 1912. https://doi.org/10.3390/jcm12051912spa
dcterms.referencesTao, N., OuYang, Q., & Jia, L. (2014). Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41, 116–121. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.01.010spa
dcterms.referencesVijayaraghavareddy, P., Adhinarayan, V., Vemanna, R., Sreeman, S., & Makarla, U. (2017). Quantification of membrane damage/cell death using Evan’s blue staining technique. Bio-Protocol, 7, e2519-e2519. https://doi.org/10.21769/bioprotoc.2519spa
dcterms.referencesWall, G., Montelongo, D., Bonifacio, B., Lopez, J., & Uppuluri, P. (2019). Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Current Opinion in Microbiology, 52, 1-6. https://doi.org/10.1016/j.mib.2019.04.001spa
dcterms.referencesWang, Y., Zou, Y., Chen, X., Li, H., Yin, Z., Zhang, B., Xu, Y., Zhang, Y., Zhang, R., Huang, X., Yang, W., Xu, C., Jiang, T., Tang, Q., Zhou, Z., Ji, Y., Liu, Y., Hu, L., Zhou, J., Zhou, Y., Zhao, J., Ningning, L., Huang, G., Chang, H., Wnxia, C., Chen, C., & Zhou, D. (2022). Innate immune responses against the fungal pathogen Candida auris. Nature Communications, 13, 3553. https://doi.org/10.1038/s41467-022-31201-xspa
dcterms.referencesWorld Health Organization. (2021). Antimicrobial resistance. World Health Organizationspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
pereznoriegagabriela.pdf
Tamaño:
1.09 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
429.57 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: