Publicación: Evaluación del potencial antibacteriano y antibiopelícula de extractos etanólicos de Duguetia vallicola (Annonaceae) contra aislados clínicos de Pseudomonas aeruginosa
dc.contributor.advisor | Contreras Martínez, Orfa Inés | spa |
dc.contributor.advisor | Angulo Ortíz, Alberto Antonio | spa |
dc.contributor.author | Sierra Quiroz, Daniela | |
dc.date.accessioned | 2023-07-12T16:19:35Z | |
dc.date.available | 2023-07-12T16:19:35Z | |
dc.date.issued | 2024-07-05 | |
dc.description.abstract | Pseudomonas aeruginosa es un patógeno oportunista causante de infecciones nosocomiales a nivel mundial, la resistencia que expresa ante los antibióticos complica el tratamiento terapéutico, por lo que es apremiante la búsqueda de nuevas estrategias para su control. El efecto de diversos extractos y compuestos de origen vegetal con potencial antibacteriano son hoy día una de las alternativas más. Por ello, el objetivo de este estudio fue evaluar el potencial antibacteriano, antibiopelícula y la acción de los extractos de MDR y CTZ sobre la membrana celular bacteriana. Los ensayos de sensibilidad se realizaron bajo el método de microdilución en caldo MH, la erradicación de biopelículas maduras se hizo con cultivos puros 24 horas de crecimiento, tratados y teñidos con cristal violeta y posteriormente leídos a 590nm. El daño a la membrana se evaluó en células tratadas previamente con los extractos y respectivos controles, a través de mediciones en el gradiente de pH extracelular, fuga de material intracelular (260/280nm), y microscopia de fluorescencia empleando NA y BE. Nuestros resultados mostraron inhibición del crecimiento bacteriano (más del 50%), con la concentración más baja empleada (62.5μg/mL) de ambos extractos. Además, reportamos la capacidad de los extractos de CTZ y MDR de erradicar las biopelículas maduras (entre el 48.4% y 93.7%) y causar daño en la membrana celular Los extractos etanólicos de CTZ y MDR D. vallicola son promisorios en la búsqueda de compuestos novedosos con potencial antibacteriano. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Biólogo(a) | spa |
dc.description.modality | Artículo | spa |
dc.description.tableofcontents | ABSTRACT………………………………………………………………………………………1 | spa |
dc.description.tableofcontents | INTRODUCCION……………………………………………………………………………………2 | spa |
dc.description.tableofcontents | MATERIALES Y MÉTODOS…………………………………………………………………………3 | spa |
dc.description.tableofcontents | RESULTADOS…………………………………………………………………………………………………6 | spa |
dc.description.tableofcontents | DISCUSIÓN………………………………………………………………………………………………………16 | spa |
dc.description.tableofcontents | CONCLUSIÓN………………………………………………………………………………………………………20 | spa |
dc.description.tableofcontents | RECOMENDACIONES………………………………………………………………………………………………20 | spa |
dc.description.tableofcontents | REFERENCIAS………………………………………………………………………………………………………………21 | spa |
dc.description.tableofcontents | ANEXOS…………………………………………………………………………………………………………………………27 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7415 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Biología | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Duguetia vallicola | eng |
dc.subject.keywords | Antibacterial activity | eng |
dc.subject.keywords | Antibiofilm | eng |
dc.subject.keywords | Ethanolic extracts | eng |
dc.subject.keywords | Pseudomonas aeruginosa | eng |
dc.subject.proposal | Duguetia vallicola | spa |
dc.subject.proposal | Actividad antibacteriana | spa |
dc.subject.proposal | Antibiopelícula | spa |
dc.subject.proposal | Extractos etanólicos | spa |
dc.subject.proposal | Pseudomonas aeruginosa | spa |
dc.title | Evaluación del potencial antibacteriano y antibiopelícula de extractos etanólicos de Duguetia vallicola (Annonaceae) contra aislados clínicos de Pseudomonas aeruginosa | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Al-nemari, R., Al-senaidy, A., Semlali, A., & Ismael, M. (2020). GC-MS profiling and assessment of antioxidant , antibacterial , and anticancer properties of extracts of Annona squamosa L . leaves. BMC Complement Med Ther 20, 20(296), 1–14. | spa |
dcterms.references | Alam, K., Farraj, D. A. A., Mah-e-Fatima, S., Yameen, M. A., Elshikh, M. S., Alkufeidy, R. M., Mustafa, A. E. Z. M. A., Bhasme, P., Alshammari, M. K., Alkubaisi, N. A., Abbasi, A. M., & Naqvi, T. A. (2020). Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. Journal of Infection and Public Health, 13(11), 1734–1741. https://doi.org/10.1016/j.jiph.2020.07.007 | spa |
dcterms.references | Aman, S., Mittal, D., Shriwastav, S., Tuli, H. S., Chauhan, S., Singh, P., Sharma, S., Saini, R. V., Kaur, N., & Saini, A. K. (2022). Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Annals of Medicine and Surgery, 78, 103687. https://doi.org/10.1016/j.amsu.2022.103687 | spa |
dcterms.references | Bennàssar, A., Vilata, A., Puig, S., & Malvehy, J. (2014). Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery. British Journal of Dermatology, 170(2), 360–365. https://doi.org/10.1111/bjd.12671 | spa |
dcterms.references | Callejas-Díaz, A., Fernández-Pérez, C., Ramos-Martínez, A., Múñez-Rubio, E., Sánchez-Romero, I., & Vargas Núñez, J. A. (2018). Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Medicina Clinica, 152(3), 83–89. https://doi.org/10.1016/j.medcli.2018.04.020 | spa |
dcterms.references | Calvo, J., & Martinez, L. (2009). Mecanismos de accion. Enfermedades Infecciosas y Microbiologia Clinica, 27(1), 44–52. https://doi.org/10.1016/j.eimc.2008.11.001 | spa |
dcterms.references | Che, C. T., & Zhang, H. (2019). Plant natural products for human health. International Journal of Molecular Sciences, 20(4), 2–5. https://doi.org/10.3390/ijms20040830 | spa |
dcterms.references | CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition (Vol. 32, Issue 2). | spa |
dcterms.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022a). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004. https://doi.org/10.3390/molecules27228004 | spa |
dcterms.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 1–21. https://doi.org/10.3390/molecules27185808 | spa |
dcterms.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 1–21. https://doi.org/10.3390/molecules27185808 Cosa, S., Rakoma, J. R., Yusuf, A. A., & Tshikalange, T. E. (2020). Calpurnia aurea (Aiton) Benth Extracts Reduce Quorum Sensing Controlled Virulence Factors in Pseudomonas aeruginosa. Journal Molecules, 25(2283), 1–3. | spa |
dcterms.references | Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244, 114006. https://doi.org/10.1016/j.ijheh.2022.114006 | spa |
dcterms.references | Donadu, M. G., Peralta-ruiz, Y., Usai, D., Maggio, F., Molina-hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-lopez, C. (2021). Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. Journal of Fungi, 7(5), 383. | spa |
dcterms.references | Ekiert, H. M., & Szopa, A. (2022). Biological Activities of Natural Products II. Molecules, 25(23), 5769. https://doi.org/10.3390/molecules27051519 | spa |
dcterms.references | Harahap, D., Niaci, S., Mardina, V., Zaura, B., Qanita, I., Purnama, A., Puspita, K., Rizki, D. R., & Iqhrammullah, M. (2022). Antibacterial activities of seven ethnomedicinal plants from family Annonaceae. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 148–153. https://doi.org/10.4103/japtr.japtr | spa |
dcterms.references | Huszczynski, S. M., Lam, J. S., & Khursigara, C. M. (2020). The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens, 9(6), 22. | spa |
dcterms.references | Iyanda-Joel WO, Omonigbehin EA, Iweala EE, C. S. (2019). Antibacterial studies on fruit-skin and leaf extracts of Annona muricata in Ota , Nigeria Antibacterial studies on fruit-skin and leaf extracts of Annona muricata in Ota , Nigeria. IOP Conf Ser Tierra Medio Ambiente, 331(012029), 17. https://doi.org/10.1088/1755-1315/331/1/012029 | spa |
dcterms.references | Jing, Y., Chen, X., Li, K., Liu, Y., Zhang, Z., Chen, Y., Liu, Y., Wang, Y., Lin, S. H., Diao, L., Wang, J., Lou, Y., Johnson, D. B., Chen, X., Liu, H., & Han, L. (2022). Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. Journal for ImmunoTherapy of Cancer, 10(1), 1–12. https://doi.org/10.1136/jitc-2021-003779 | spa |
dcterms.references | Jospe-kaufman, M., Siomin, L., & Fridman, M. (2020). The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorganic & Medicinal Chemistry Letters, 30(13), 127218. | spa |
dcterms.references | Leandro L. Fuentes, Orfa I. Contreras M., y A. A. A. O. (2021). Evaluation of in vitro antioxidant activity of extracts from Duguetia vallicola j . f . Macbr . – Annonaceae. Revista Facultad de Ciencias Básicas, 1(1), 63–63. | spa |
dcterms.references | Li, G., Xu, Y., Pan, L., & Xia, X. (2020). Punicalagin damages the membrane of salmonella typhimurium. Journal of Food Protection, 83(12), 2102–2106. https://doi.org/10.4315/JFP-20-173 | spa |
dcterms.references | Li, W., Yang, Z., Hu, J., Wang, B., Rong, H., Li, Z., Sun, Y., Wang, Y., Zhang, X., Wang, M., & Xu, H. (2022). Evaluation of culturable ‘last-resort’ antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. Journal of Hazardous Materials, 438, 129477. https://doi.org/10.1016/j.jhazmat.2022.129477 | spa |
dcterms.references | Liu, J. Y., & Dickter, J. K. (2020). Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointestinal Endoscopy Clinics of North America, 30(4), 637–652. https://doi.org/10.1016/j.giec.2020.06.001 | spa |
dcterms.references | Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980. https://doi.org/10.1016/j.micpath.2020.103980 | spa |
dcterms.references | Liu, X., Zhang, M., Meng, X., He, X., Zhao, W., Liu, Y., & He, Y. (2021). Inactivation and Membrane Damage Mechanism of Slightly Acidic Electrolyzed Water on Pseudomonas deceptionensis CM2. Molecules, 26(4), 1–9. | spa |
dcterms.references | Lopez, Romero, J. C., González Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, 9. https://doi.org/10.1155/2015/795435 | spa |
dcterms.references | McGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., Nishioka, W. K., & Green, D. R. (1995). The End of the (Cell) Line: Methods for the Study of Apoptosis in vitro. Methods in Cell Biology, 46(C), 153–174. https://doi.org/10.1016/S0091-679X(08)61929-9 | spa |
dcterms.references | McGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., Nishioka, W. K., & Green, D. R. (1995). The End of the (Cell) Line: Methods for the Study of Apoptosis in vitro. Methods in Cell Biology, 46(C), 153–174. https://doi.org/10.1016/S0091-679X(08)61929-9 | spa |
dcterms.references | Miari, M., Rasheed, S. S., Ahmad, N. H., Itani, D., Fayad, A. A., & Matar, G. M. (2020). Natural products and polysorbates: Potential Inhibitors of biofilm formation in Pseudomonas aeruginosa. Journal of Infection in Developing Countries, 14(6), 580–588. https://doi.org/10.3855/jidc.11834 | spa |
dcterms.references | Oussalah, M., Caillet, S., & Lacroix, M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. Journal of Food Protection, 69(5), 1046–1055. https://doi.org/10.4315/0362-028X-69.5.1046 | spa |
dcterms.references | Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. | spa |
dcterms.references | Paz-Zarza, VM, Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, SG, & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Patogenia, 36(2), 180–189. www.sochinf.cl | spa |
dcterms.references | Perez, E., Saez, J., Blair, S., Franck, X., & Figadere, B. (2004). Isoquinoline Alkaloids from Duguetia Vallicola Stem Bark with Antiplasmodial Activity. Letters in Organic Chemistry, 1(1), 102–104. https://doi.org/10.2174/1570178043488743 | spa |
dcterms.references | Qian, W., Sun, Z., Wang, T., Yang, M., Liu, M., Zhang, J., & Li, Y. (2020). Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microbial Pathogenesis, 139(1039242), 1–9. https://doi.org/10.1016/j.micpath.2019.103924 | spa |
dcterms.references | Rossi, C., Serio, A., Chaves-López, C., Anniballi, F., Auricchio, B., Goffredo, E., Cenci-Goga, B. T., Lista, F., Fillo, S., & Paparella, A. (2018). Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control, 86, 241–248. https://doi.org/10.1016/j.foodcont.2017.11.018 | spa |
dcterms.references | Santos, A. C., Nogueira, M. L., Oliveira, F. P. De, Costa, E. V, & Bezerra, D. P. (2022). Essential Oils of Duguetia Species A . St . Hill ( Annonaceae ): Chemical Diversity and Pharmacological Potential. Journal Biomolecules, 12(615), 2–4. | spa |
dcterms.references | Sendín-Martín, M., Domínguez-Cruz, J. J., Levitsky, K.-L., & Conejo-Mir Sánchez, J. (2020). Ex vivo fluorescence confocal microscopy on a 3-color scale: A new imaging technique. Actas Dermo-Sifiliográficas (English Edition), 111(8), 702–704. https://doi.org/10.1016/j.adengl.2020.09.006 | spa |
dcterms.references | Sousa, O. V., Del-Vechio-Vieira, G., Alves, M. S., Araújo, A. A. L., Pinto, M. A. O., Amaral, M. P. H., Rodarte, M. P., & Kaplan, M. A. C. (2012). Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks. Molecules, 17(9), 11056–11066. https://doi.org/10.3390/molecules170911056 | spa |
dcterms.references | Sun, J., Rutherford, S. T., Silhavy, T. J., & Huang, K. C. (2022). Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 20(4), 236–248. https://doi.org/10.1038/s41579-021-00638-0 | spa |
dcterms.references | Tamfu Ngenge Alfred, Ceylan Ozgur, Chi Fru Godloves, Ozturk Mehmet, D. M., & Emin, S. F. (2020). Antibiofilm, antiquorum sensing and antioxidant activity of secondary metabolites from seeds of Annona senegalensis, Persoon. Microbial Pathogenesis, 144(104191), 1–25. https://doi.org/10.1016/j.micpath.2020.104191 | spa |
dcterms.references | Tian, L., Wang, X., Liu, R., Zhang, D., Wang, X., Sun, R., Guo, W., Yang, S., Li, H., & Gong, G. (2020). Antibacterial mechanism of thymol against Enterobacter sakazakii. Food Control, 123(0956–7135), 107716. https://doi.org/10.1016/j.foodcont.2020.107716 | spa |
dcterms.references | Wang, J., Zhang, H., Yan, J., & Zhang, T. (2020). Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 0(0), 1–10. https://doi.org/10.1080/14767058.2020.1732342 | spa |
dcterms.references | Woźniak, M., Połap, D., Kośmider, L., & Cłapa, T. (2018). Automated fluorescence microscopy image analysis of Pseudomonas aeruginosa bacteria in alive and dead stadium. Engineering Applications of Artificial Intelligence, 67, 100–110. https://doi.org/10.1016/j.engappai.2017.09.003 | spa |
dcterms.references | Yue, L., Pang, Z., Li, H., Yang, T., Guo, L., Liu, L., Mei, J., Song, X., Xie, T., Zhang, Y., He, X., Lin, T. J., & Xie, Z. (2018). CXCL4 contributes to host defense against acute Pseudomonas aeruginosa lung infection. PLoS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205521 | spa |
dcterms.references | Zahra Yousefpour, Fateme Davarzani, P. O. (2021). Evaluating of the Effects of Sub-MIC Concentrations of Gentamicin on Biofilm Formation in Clinical Isolates of Pseudomonas aeruginosa. Iranian journal of pathology, 16(4), 403–410. https://doi.org/10.30699/IJP.20201.524220.2584 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: