Publicación:
Evaluación del potencial antibacteriano y antibiopelícula de extractos etanólicos de Duguetia vallicola (Annonaceae) contra aislados clínicos de Pseudomonas aeruginosa

dc.contributor.advisorContreras Martínez, Orfa Inésspa
dc.contributor.advisorAngulo Ortíz, Alberto Antoniospa
dc.contributor.authorSierra Quiroz, Daniela
dc.date.accessioned2023-07-12T16:19:35Z
dc.date.available2023-07-12T16:19:35Z
dc.date.issued2024-07-05
dc.description.abstractPseudomonas aeruginosa es un patógeno oportunista causante de infecciones nosocomiales a nivel mundial, la resistencia que expresa ante los antibióticos complica el tratamiento terapéutico, por lo que es apremiante la búsqueda de nuevas estrategias para su control. El efecto de diversos extractos y compuestos de origen vegetal con potencial antibacteriano son hoy día una de las alternativas más. Por ello, el objetivo de este estudio fue evaluar el potencial antibacteriano, antibiopelícula y la acción de los extractos de MDR y CTZ sobre la membrana celular bacteriana. Los ensayos de sensibilidad se realizaron bajo el método de microdilución en caldo MH, la erradicación de biopelículas maduras se hizo con cultivos puros 24 horas de crecimiento, tratados y teñidos con cristal violeta y posteriormente leídos a 590nm. El daño a la membrana se evaluó en células tratadas previamente con los extractos y respectivos controles, a través de mediciones en el gradiente de pH extracelular, fuga de material intracelular (260/280nm), y microscopia de fluorescencia empleando NA y BE. Nuestros resultados mostraron inhibición del crecimiento bacteriano (más del 50%), con la concentración más baja empleada (62.5μg/mL) de ambos extractos. Además, reportamos la capacidad de los extractos de CTZ y MDR de erradicar las biopelículas maduras (entre el 48.4% y 93.7%) y causar daño en la membrana celular Los extractos etanólicos de CTZ y MDR D. vallicola son promisorios en la búsqueda de compuestos novedosos con potencial antibacteriano.spa
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogo(a)spa
dc.description.modalityArtículospa
dc.description.tableofcontentsABSTRACT………………………………………………………………………………………1spa
dc.description.tableofcontentsINTRODUCCION……………………………………………………………………………………2spa
dc.description.tableofcontentsMATERIALES Y MÉTODOS…………………………………………………………………………3spa
dc.description.tableofcontentsRESULTADOS…………………………………………………………………………………………………6spa
dc.description.tableofcontentsDISCUSIÓN………………………………………………………………………………………………………16spa
dc.description.tableofcontentsCONCLUSIÓN………………………………………………………………………………………………………20spa
dc.description.tableofcontentsRECOMENDACIONES………………………………………………………………………………………………20spa
dc.description.tableofcontentsREFERENCIAS………………………………………………………………………………………………………………21spa
dc.description.tableofcontentsANEXOS…………………………………………………………………………………………………………………………27spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7415
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programBiologíaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsDuguetia vallicolaeng
dc.subject.keywordsAntibacterial activityeng
dc.subject.keywordsAntibiofilmeng
dc.subject.keywordsEthanolic extractseng
dc.subject.keywordsPseudomonas aeruginosaeng
dc.subject.proposalDuguetia vallicolaspa
dc.subject.proposalActividad antibacterianaspa
dc.subject.proposalAntibiopelículaspa
dc.subject.proposalExtractos etanólicosspa
dc.subject.proposalPseudomonas aeruginosaspa
dc.titleEvaluación del potencial antibacteriano y antibiopelícula de extractos etanólicos de Duguetia vallicola (Annonaceae) contra aislados clínicos de Pseudomonas aeruginosaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttps://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAl-nemari, R., Al-senaidy, A., Semlali, A., & Ismael, M. (2020). GC-MS profiling and assessment of antioxidant , antibacterial , and anticancer properties of extracts of Annona squamosa L . leaves. BMC Complement Med Ther 20, 20(296), 1–14.spa
dcterms.referencesAlam, K., Farraj, D. A. A., Mah-e-Fatima, S., Yameen, M. A., Elshikh, M. S., Alkufeidy, R. M., Mustafa, A. E. Z. M. A., Bhasme, P., Alshammari, M. K., Alkubaisi, N. A., Abbasi, A. M., & Naqvi, T. A. (2020). Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. Journal of Infection and Public Health, 13(11), 1734–1741. https://doi.org/10.1016/j.jiph.2020.07.007spa
dcterms.referencesAman, S., Mittal, D., Shriwastav, S., Tuli, H. S., Chauhan, S., Singh, P., Sharma, S., Saini, R. V., Kaur, N., & Saini, A. K. (2022). Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Annals of Medicine and Surgery, 78, 103687. https://doi.org/10.1016/j.amsu.2022.103687spa
dcterms.referencesBennàssar, A., Vilata, A., Puig, S., & Malvehy, J. (2014). Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery. British Journal of Dermatology, 170(2), 360–365. https://doi.org/10.1111/bjd.12671spa
dcterms.referencesCallejas-Díaz, A., Fernández-Pérez, C., Ramos-Martínez, A., Múñez-Rubio, E., Sánchez-Romero, I., & Vargas Núñez, J. A. (2018). Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Medicina Clinica, 152(3), 83–89. https://doi.org/10.1016/j.medcli.2018.04.020spa
dcterms.referencesCalvo, J., & Martinez, L. (2009). Mecanismos de accion. Enfermedades Infecciosas y Microbiologia Clinica, 27(1), 44–52. https://doi.org/10.1016/j.eimc.2008.11.001spa
dcterms.referencesChe, C. T., & Zhang, H. (2019). Plant natural products for human health. International Journal of Molecular Sciences, 20(4), 2–5. https://doi.org/10.3390/ijms20040830spa
dcterms.referencesCLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition (Vol. 32, Issue 2).spa
dcterms.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022a). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004. https://doi.org/10.3390/molecules27228004spa
dcterms.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 1–21. https://doi.org/10.3390/molecules27185808spa
dcterms.referencesContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 1–21. https://doi.org/10.3390/molecules27185808 Cosa, S., Rakoma, J. R., Yusuf, A. A., & Tshikalange, T. E. (2020). Calpurnia aurea (Aiton) Benth Extracts Reduce Quorum Sensing Controlled Virulence Factors in Pseudomonas aeruginosa. Journal Molecules, 25(2283), 1–3.spa
dcterms.referencesDenissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244, 114006. https://doi.org/10.1016/j.ijheh.2022.114006spa
dcterms.referencesDonadu, M. G., Peralta-ruiz, Y., Usai, D., Maggio, F., Molina-hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-lopez, C. (2021). Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. Journal of Fungi, 7(5), 383.spa
dcterms.referencesEkiert, H. M., & Szopa, A. (2022). Biological Activities of Natural Products II. Molecules, 25(23), 5769. https://doi.org/10.3390/molecules27051519spa
dcterms.referencesHarahap, D., Niaci, S., Mardina, V., Zaura, B., Qanita, I., Purnama, A., Puspita, K., Rizki, D. R., & Iqhrammullah, M. (2022). Antibacterial activities of seven ethnomedicinal plants from family Annonaceae. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 148–153. https://doi.org/10.4103/japtr.japtrspa
dcterms.referencesHuszczynski, S. M., Lam, J. S., & Khursigara, C. M. (2020). The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens, 9(6), 22.spa
dcterms.referencesIyanda-Joel WO, Omonigbehin EA, Iweala EE, C. S. (2019). Antibacterial studies on fruit-skin and leaf extracts of Annona muricata in Ota , Nigeria Antibacterial studies on fruit-skin and leaf extracts of Annona muricata in Ota , Nigeria. IOP Conf Ser Tierra Medio Ambiente, 331(012029), 17. https://doi.org/10.1088/1755-1315/331/1/012029spa
dcterms.referencesJing, Y., Chen, X., Li, K., Liu, Y., Zhang, Z., Chen, Y., Liu, Y., Wang, Y., Lin, S. H., Diao, L., Wang, J., Lou, Y., Johnson, D. B., Chen, X., Liu, H., & Han, L. (2022). Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. Journal for ImmunoTherapy of Cancer, 10(1), 1–12. https://doi.org/10.1136/jitc-2021-003779spa
dcterms.referencesJospe-kaufman, M., Siomin, L., & Fridman, M. (2020). The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorganic & Medicinal Chemistry Letters, 30(13), 127218.spa
dcterms.referencesLeandro L. Fuentes, Orfa I. Contreras M., y A. A. A. O. (2021). Evaluation of in vitro antioxidant activity of extracts from Duguetia vallicola j . f . Macbr . – Annonaceae. Revista Facultad de Ciencias Básicas, 1(1), 63–63.spa
dcterms.referencesLi, G., Xu, Y., Pan, L., & Xia, X. (2020). Punicalagin damages the membrane of salmonella typhimurium. Journal of Food Protection, 83(12), 2102–2106. https://doi.org/10.4315/JFP-20-173spa
dcterms.referencesLi, W., Yang, Z., Hu, J., Wang, B., Rong, H., Li, Z., Sun, Y., Wang, Y., Zhang, X., Wang, M., & Xu, H. (2022). Evaluation of culturable ‘last-resort’ antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. Journal of Hazardous Materials, 438, 129477. https://doi.org/10.1016/j.jhazmat.2022.129477spa
dcterms.referencesLiu, J. Y., & Dickter, J. K. (2020). Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointestinal Endoscopy Clinics of North America, 30(4), 637–652. https://doi.org/10.1016/j.giec.2020.06.001spa
dcterms.referencesLiu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980. https://doi.org/10.1016/j.micpath.2020.103980spa
dcterms.referencesLiu, X., Zhang, M., Meng, X., He, X., Zhao, W., Liu, Y., & He, Y. (2021). Inactivation and Membrane Damage Mechanism of Slightly Acidic Electrolyzed Water on Pseudomonas deceptionensis CM2. Molecules, 26(4), 1–9.spa
dcterms.referencesLopez, Romero, J. C., González Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, 9. https://doi.org/10.1155/2015/795435spa
dcterms.referencesMcGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., Nishioka, W. K., & Green, D. R. (1995). The End of the (Cell) Line: Methods for the Study of Apoptosis in vitro. Methods in Cell Biology, 46(C), 153–174. https://doi.org/10.1016/S0091-679X(08)61929-9spa
dcterms.referencesMcGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., Nishioka, W. K., & Green, D. R. (1995). The End of the (Cell) Line: Methods for the Study of Apoptosis in vitro. Methods in Cell Biology, 46(C), 153–174. https://doi.org/10.1016/S0091-679X(08)61929-9spa
dcterms.referencesMiari, M., Rasheed, S. S., Ahmad, N. H., Itani, D., Fayad, A. A., & Matar, G. M. (2020). Natural products and polysorbates: Potential Inhibitors of biofilm formation in Pseudomonas aeruginosa. Journal of Infection in Developing Countries, 14(6), 580–588. https://doi.org/10.3855/jidc.11834spa
dcterms.referencesOussalah, M., Caillet, S., & Lacroix, M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. Journal of Food Protection, 69(5), 1046–1055. https://doi.org/10.4315/0362-028X-69.5.1046spa
dcterms.referencesPang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192.spa
dcterms.referencesPaz-Zarza, VM, Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, SG, & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Patogenia, 36(2), 180–189. www.sochinf.clspa
dcterms.referencesPerez, E., Saez, J., Blair, S., Franck, X., & Figadere, B. (2004). Isoquinoline Alkaloids from Duguetia Vallicola Stem Bark with Antiplasmodial Activity. Letters in Organic Chemistry, 1(1), 102–104. https://doi.org/10.2174/1570178043488743spa
dcterms.referencesQian, W., Sun, Z., Wang, T., Yang, M., Liu, M., Zhang, J., & Li, Y. (2020). Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microbial Pathogenesis, 139(1039242), 1–9. https://doi.org/10.1016/j.micpath.2019.103924spa
dcterms.referencesRossi, C., Serio, A., Chaves-López, C., Anniballi, F., Auricchio, B., Goffredo, E., Cenci-Goga, B. T., Lista, F., Fillo, S., & Paparella, A. (2018). Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control, 86, 241–248. https://doi.org/10.1016/j.foodcont.2017.11.018spa
dcterms.referencesSantos, A. C., Nogueira, M. L., Oliveira, F. P. De, Costa, E. V, & Bezerra, D. P. (2022). Essential Oils of Duguetia Species A . St . Hill ( Annonaceae ): Chemical Diversity and Pharmacological Potential. Journal Biomolecules, 12(615), 2–4.spa
dcterms.referencesSendín-Martín, M., Domínguez-Cruz, J. J., Levitsky, K.-L., & Conejo-Mir Sánchez, J. (2020). Ex vivo fluorescence confocal microscopy on a 3-color scale: A new imaging technique. Actas Dermo-Sifiliográficas (English Edition), 111(8), 702–704. https://doi.org/10.1016/j.adengl.2020.09.006spa
dcterms.referencesSousa, O. V., Del-Vechio-Vieira, G., Alves, M. S., Araújo, A. A. L., Pinto, M. A. O., Amaral, M. P. H., Rodarte, M. P., & Kaplan, M. A. C. (2012). Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks. Molecules, 17(9), 11056–11066. https://doi.org/10.3390/molecules170911056spa
dcterms.referencesSun, J., Rutherford, S. T., Silhavy, T. J., & Huang, K. C. (2022). Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 20(4), 236–248. https://doi.org/10.1038/s41579-021-00638-0spa
dcterms.referencesTamfu Ngenge Alfred, Ceylan Ozgur, Chi Fru Godloves, Ozturk Mehmet, D. M., & Emin, S. F. (2020). Antibiofilm, antiquorum sensing and antioxidant activity of secondary metabolites from seeds of Annona senegalensis, Persoon. Microbial Pathogenesis, 144(104191), 1–25. https://doi.org/10.1016/j.micpath.2020.104191spa
dcterms.referencesTian, L., Wang, X., Liu, R., Zhang, D., Wang, X., Sun, R., Guo, W., Yang, S., Li, H., & Gong, G. (2020). Antibacterial mechanism of thymol against Enterobacter sakazakii. Food Control, 123(0956–7135), 107716. https://doi.org/10.1016/j.foodcont.2020.107716spa
dcterms.referencesWang, J., Zhang, H., Yan, J., & Zhang, T. (2020). Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 0(0), 1–10. https://doi.org/10.1080/14767058.2020.1732342spa
dcterms.referencesWoźniak, M., Połap, D., Kośmider, L., & Cłapa, T. (2018). Automated fluorescence microscopy image analysis of Pseudomonas aeruginosa bacteria in alive and dead stadium. Engineering Applications of Artificial Intelligence, 67, 100–110. https://doi.org/10.1016/j.engappai.2017.09.003spa
dcterms.referencesYue, L., Pang, Z., Li, H., Yang, T., Guo, L., Liu, L., Mei, J., Song, X., Xie, T., Zhang, Y., He, X., Lin, T. J., & Xie, Z. (2018). CXCL4 contributes to host defense against acute Pseudomonas aeruginosa lung infection. PLoS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205521spa
dcterms.referencesZahra Yousefpour, Fateme Davarzani, P. O. (2021). Evaluating of the Effects of Sub-MIC Concentrations of Gentamicin on Biofilm Formation in Clinical Isolates of Pseudomonas aeruginosa. Iranian journal of pathology, 16(4), 403–410. https://doi.org/10.30699/IJP.20201.524220.2584spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
DANIELA SIERRAQUIROZ.pdf
Tamaño:
349.32 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Autorización Firmado.pdf
Tamaño:
420.16 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: