Publicación: Evaluación de la distribución de metales potencialmente tóxicos (As, Cd, Hg) en la macrófita Eichhornia crassipes (Mart.) Solms. (Pontederiaceae) del embalse Hidroituango, Antioquia
dc.audience | ||
dc.contributor.advisor | Urango Cárdenas, Iván David | |
dc.contributor.advisor | Enamorado Montes, Holland Germán | |
dc.contributor.author | Martínez Hoyos, Andrés Felipe | |
dc.contributor.jury | Burgos Núñez, Saudith María | |
dc.contributor.jury | Arias Ríos, Jorge Enrique | |
dc.date.accessioned | 2024-01-18T16:44:46Z | |
dc.date.available | 2028-12-27 | |
dc.date.available | 2024-01-18T16:44:46Z | |
dc.date.issued | 2023-12-31 | |
dc.description.abstract | A nivel global y local la contaminación por metales pesados (MP) se ha convertido en un problema ambiental y de salud pública. En los ecosistemas acuáticos la presencia de MP afecta el organismo de los seres vivos debido a que se bioacumulan. Una manera de evaluar el grado de contaminación por MP en los ecosistemas acuáticos es empleando biomonitores como las macrófitas. En este estudio, se evaluó la distribución de los metales As, Cd, Hg en la macrófita E. crassipes en diferentes sitios de monitoreo a lo largo del embalse Hidroituango, en el departamento de Antioquía, Colombia. Las muestras de macrófitas se diseccionaron en raíces y biomasa aérea, seguido de un pretratamiento y posterior análisis mediante técnicas de espectroscopia de absorción atómica con generación de Hidruros (GHAAS), espectrometría de emisión óptica acoplada a plasma inducido (ICP-OES) y del Analizador Directo de Mercurio (DMA 80) de milestone, para cuantificar la cantidad de As, Cd y Hg, respectivamente. Los resultados muestran que la distribución de metales en raíces y biomasa aérea de E. crassipes siguió el orden As > Cd > Hg, presentándose los valores más altos en las raíces en comparación a su biomasa aérea, con una concentración promedio de 5930, 3250 y 142,7 µg/kg de As, Cd y Hg, respectivamente, indicando que E. crassipes es una especie hiperacumuladora de As (>1000 µg/kg de As). Las correlaciones de Pearson demostraron correlaciones negativas entre las concentraciones de As, Cd y Hg presentes en raíces de E. crassipes y las concentraciones de As, Cd y Hg presentes en el agua. Los modelos de regresión lineal múltiple indicaron predicciones de las concentraciones de As, Cd y Hg presentes en raíces y biomasa aérea de E. crassipes del embalse Hidroituango con un R-ajustado que varió de 0.988 a 1.000. El estudio sugiere que E. crassipes tiene un alto potencial de acumular metales pesados y puede usarse eficazmente para remediar ecosistemas acuáticos contaminados. | spa |
dc.description.abstract | Globally and locally, contamination by heavy metals (PM) has become an environmental and public health problem. In aquatic ecosystems, the presence of PM affects living organisms because they bioaccumulate. One way to evaluate the degree of PM contamination in aquatic ecosystems is by using biomonitors such as macrophytes. In this study, the distribution of metals As, Cd, Hg in the macrophyte E. crassipes was evaluated in different monitoring sites along the Hidroituango reservoir, in the department of Antioquia, Colombia. The macrophyte samples were dissected into roots and aerial biomass, followed by pretreatment and subsequent analysis using Hydride Generation Atomic Absorption Spectroscopy (GHAAS), Induced Plasma Coupled Optical Emission Spectrometry (ICP-OES) and milestone Direct Mercury Analyzer (DMA 80) techniques to quantify the amount of As, Cd and Hg, respectively. The results show that the distribution of metals in roots and aerial biomass of E. crassipes followed the order As > Cd > Hg, with the highest values in roots compared to its aerial biomass, with an average concentration of 5930, 3250 and 142.7 µg/kg of As, Cd and Hg, respectively, indicating that E. crassipes is an As hyperaccumulator species (>1000 µg/kg of As). Pearson correlations showed negative correlations between As, Cd and Hg concentrations present in E. crassipes roots and As, Cd and Hg concentrations present in water. Multiple linear regression models indicated predictions of As, Cd and Hg concentrations present in roots and aerial biomass of E. crassipes from Hidroituango reservoir with a fitted R ranging from 0.988 to 1.000. The study suggests that E. crassipes has a high potential to accumulate heavy metals and can be effectively used to remediate contaminated aquatic ecosystems. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. INTRODUCCIÓN...........1 | spa |
dc.description.tableofcontents | 2. OBJETIVOS.........5 | spa |
dc.description.tableofcontents | 2.1. Objetivo general........5 | spa |
dc.description.tableofcontents | 2.2. Objetivos específicos.....5 | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO.....6 | spa |
dc.description.tableofcontents | 3.1. Metales pesados (MP) ........6 | spa |
dc.description.tableofcontents | 3.1.1. Arsénico (As) ........6 | spa |
dc.description.tableofcontents | 3.1.2. Cadmio (Cd) ..........8 | spa |
dc.description.tableofcontents | 3.1.3. Mercurio (Hg)........10 | spa |
dc.description.tableofcontents | 3.2. Macrófitas........12 | spa |
dc.description.tableofcontents | 3.2.1. Clasificación de las macrófitas.......13 | spa |
dc.description.tableofcontents | 3.2.2. Macrófitas como bioindicadores......15 | spa |
dc.description.tableofcontents | 3.2.3. Importancia ecológica de las macrófitas.......16 | spa |
dc.description.tableofcontents | 3.2.4. Macrófitas en embalses.....16 | spa |
dc.description.tableofcontents | 3.2.5. Importancia económica del E. crassipes......16 | spa |
dc.description.tableofcontents | 3.2.6. Posibles beneficios socioeconómicos rurales ......17 | spa |
dc.description.tableofcontents | 3.3. Río Cauca........17 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA.......18 | spa |
dc.description.tableofcontents | 4.1. Área de estudio.....18 | spa |
dc.description.tableofcontents | 4.1.1. Determinación de parámetros fisicoquímicos in situ.....20 | spa |
dc.description.tableofcontents | 4.2. Tratamiento de muestras.......20 | spa |
dc.description.tableofcontents | 4.2.1. Procesamiento.......20 | spa |
dc.description.tableofcontents | 4.2.2. Análisis químico de As, Cd y Hg ......20 | spa |
dc.description.tableofcontents | 4.3. Tratamiento de datos .........22 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIÓN........23 | spa |
dc.description.tableofcontents | 5.1. Fisiología de las macrófitas E. crassipes........23 | spa |
dc.description.tableofcontents | 5.2. Acumulación de As, Cd y Hg en raíces y biomasa aérea de E. crassipes provenientes del embalse Hidroituango, Antioquia......24 | spa |
dc.description.tableofcontents | 5.3. Análisis de correlación de Pearson.......30 | spa |
dc.description.tableofcontents | 5.4. Modelo de regresión lineal múltiple para la predicción de la acumulación de As, Cd y Hg presentes en biomasa aérea y raíces de E. crassipes provenientes del embalse de Hidroituango, Antioquia......35 | spa |
dc.description.tableofcontents | 6. CONCLUSIÓN.......38 | spa |
dc.description.tableofcontents | 7. REFERENCIAS BIBLIOGRÁFICAS.........39 | spa |
dc.description.tableofcontents | 8. ANEXOS............46 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8024 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Agudelo-Echavarría, D. M., Olid, C., Molina-Pérez, F., Vallejo-Toro, P. P., & Garcia-Orellana, J. (2020). Historical reconstruction of Small-scale gold mining activities in tropical wetland sediments in Bajo Cauca-Antioquia, Colombia. Chemosphere, 254, 126733. https://doi.org/10.1016/j.chemosphere.2020.126733 | |
dc.relation.references | Baldeón, L. Q., Chavez, J. B. A., Suarez, C. F. M. & Huaranga, M. C. (2017). Efficiency of the macrophyte species Eichhornia crassipes (Water hyacinth) for the removal of physicochemical parameters, heavy metal (Pb) and the evaluation of its growth as a function of time and adoption to the environment in an experimental lagoon. Science, technology and development, 3(1). https://doi.org/10.17162/rictd.v3i1.650 | |
dc.relation.references | Bhat, S. A., Bashir, O., Ul Haq, S. A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P. & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788 | |
dc.relation.references | Coladello, L. F., de Lourdes Bueno Trindade Galo, M., Shimabukuro, M. H., Ivánová, I., & Awange, J. (2020). Macrophytes’ abundance changes in eutrophicated tropical reservoirs exemplified by Salto Grande (Brazil): Trends and temporal analysis exploiting Landsat remotely sensed data. Applied Geography, 121, 102242. https://doi.org/10.1016/j.apgeog.2020.102242 | |
dc.relation.references | Cirelli, A. F. (2011). El agua: un recurso esencial. Química Viva, 11(3), 147-170. https://www.redalyc.org/pdf/863/86325090002.pdf | |
dc.relation.references | Cabrita, M. T., Duarte, B., Cesário, R., Mendes, R., Hintelmann, H., Eckey, K., Dimock, B., Caçador, I., & Canário, J. (2019). Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Science of The Total Environment, 650, 111-120. https://doi.org/10.1016/j.scitotenv.2018.08.335 | |
dc.relation.references | De Oliveira, F. L., De Sousa, B. B., Da Cunha Pereira, D. F., Matias, M. S., De Queiroz, M. R., De Morais, N. C. G., Vieira, S. A., Stanziola, L. & De Oliveira, F. L. (2016). Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon, 117, 37-45. https://doi.org/10.1016/j.toxicon.2016.03.006 | |
dc.relation.references | Dummee, V., Kruatrachue, M., Trinachartvanit, W., Tanhan, P., Pokethitiyook, P., & Damrongphol, P. (2012). Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand. Ecotoxicology and Environmental Safety, 86, 204-212. https://doi.org/10.1016/j.ecoenv.2012.09.018 | |
dc.relation.references | Eid, E.B., Galal, T.M., Sewelam, N.A., Talha, N.I., Abdallah, S.M., 2020. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ. Sci. Pollut. Res. 27, 12138–12151. https://doi.org/10.1007/s11356-020-07839-9 | |
dc.relation.references | Fernando, C. S. U. (2020). " Buchón de agua"(Eichhornia crassipes): impulsor de la fitorremediación. Editorial Los Libertadores. http://dx.doi.org/10.2307/j.ctv1vbd1mc | |
dc.relation.references | Ferreira, N., Viana, T., Henriques, B., Tavares, D. S., Jacinto, J., Colónia, J., Pinto, J., & Pereira, E. (2023). Application of response surface methodology and box–behnken design for the optimization of mercury removal by Ulva sp. Journal of Hazardous Materials, 445, 130405. https://doi.org/10.1016/j.jhazmat.2022.130405 | |
dc.relation.references | Fu, J., Han, G., Han, H., Liu, R., Deng, C., Kang, J., & Yue, T. (2023). Desorption of Cadmium From Fe Cd and Recycle of Fe0: Experimental and Mechanism Study. Journal of Environmental Chemical Engineering, 109370. https://doi.org/10.1016/j.jece.2023.109370 | |
dc.relation.references | Geng, N., Xia, Y., Lu, D., Bai, Y., Zhao, Y., Wang, H., Ren, L., Xu, C., Hua, E., Sun, G. & Chen, X. (2022). The bacterial community structure in epiphytic biofilm on submerged macrophyte Potamogetom crispus L. and its contribution to heavy metal accumulation in an urban industrial area in Hangzhou. Journal of Hazardous Materials, 430, 128455. https://doi.org/10.1016/j.jhazmat.2022.128455 | |
dc.relation.references | Harguinteguy, C. A., Noelia Cofré, M., Fernández-Cirelli, A. & Luisa Pignata, M. (2016). The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchemical Journal, 124, 228-234. https://doi.org/10.1016/j.microc.2015.08.014 | |
dc.relation.references | Heisi, H. D., Awosusi, A. A., Nkuna, R. & Matambo, T. S. (2022). Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes. Journal of Contaminant Hydrology, 104101. https://doi.org/10.1016/j.jconhyd.2022.104101 | |
dc.relation.references | Heredia, D. R. (2017a). Intoxicación ocupacional por metales pesados. MEDISAN, 21(12), 3372-3385. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017001200012 | |
dc.relation.references | Kumar, A., Basu, S., Rishu, A. K., & Kumar, G. (2022). Revisiting the mechanisms of arsenic uptake, transport and detoxification in plants. Environmental and Experimental Botany, 194, 104730. https://doi.org/10.1016/j.envexpbot.2021.104730 | |
dc.relation.references | Londoño Franco, L. F., Londoño Muñoz, P. T. & Muñoz Garcia, F. G. (2016). LOS RIESGOS DE LOS METALES PESADOS EN LA SALUD HUMANA Y ANIMAL. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153 | |
dc.relation.references | Lizarazo, M. F., Herrera, C. D., Celis, C. A., Pombo, L. M., Teherán, A. A., Piñeros, L. G., Forero, S. P., Velandia, J. R., Díaz, F. E., Andrade, W. A., & Rodríguez, O. E. (2020). Contamination of staple crops by heavy metals in Sibaté, Colombia. Heliyon, 6(7), e04212. https://doi.org/10.1016/j.heliyon.2020.e04212 | |
dc.relation.references | Molina, D. A. R., Vargas, J. H. L., Gutierrez, J. A. B., Gallo-Ortiz, A., & Duarte-Correa, Y. (2021). Residues of veterinary drugs and heavy metals in bovine meat from Urabá (Antioquia, Colombia), a promising step forward towards international commercialization. Veterinary and Animal Science, 13, 100192. https://doi.org/10.1016/j.vas.2021.100192 | |
dc.relation.references | Mehraj, S., Parihar, T. J., Murtaza, D., Hurrah, A. A., Wani, I. A., Lone, F., Mufti, S., Zargar, S. M., Khan, I., Sheikh, P. A., & Masoodi, K. Z. (2023). Newly emerging aquatic macrophytes in Northern Himalayan, Dal Lake of Kashmir valley identified through DNA barcoding and its antioxidant profiling. Ecological Genetics and Genomics, 100162. https://doi.org/10.1016/j.egg.2023.100162 | |
dc.relation.references | Murillo, P. G., Zamudio, R. F. & Bracamonte, S. C. (2010). Macrophytes: inhabitants of the water. Ministry of the Environment and Territorial Planning. Andalusian Board. | |
dc.relation.references | Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509 | |
dc.relation.references | Pang, Q., Gu, J., Wang, H., & Zhang, Y. (2022). Global health impact of atmospheric mercury emissions from artisanal and small-scale gold mining. iScience, 25(9), 104881. https://doi.org/10.1016/j.isci.2022.104881 | |
dc.relation.references | Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 | |
dc.relation.references | Silambarasan, S., Logeswari, P., Vangnai, A. S., Kamaraj, B., & Cornejo, P. (2022). Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses. Environmental Pollution, 307, 119489. https://doi.org/10.1016/j.envpol.2022.119489 | |
dc.relation.references | Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00359 | |
dc.relation.references | Yildiz Töre, G. & Özkoç, Z. B. (2022). Recent developments in aquatic macrophytes for environmental pollution control: A case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea). Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, 75-127. https://doi.org/10.1016/b978-0-323-85763-5.00005-2 | |
dc.relation.references | Wielgusz, K., Praczyk, M., Irzykowska, L., & Świerk, D. (2022). Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Industrial Crops and Products, 175, 114245. https://doi.org/10.1016/j.indcrop.2021.114245 | |
dc.relation.references | Sonia Mariela Landaverde Martinez, O. A. R. R. (2019). CUANTIFICACION DE METALES PESADOS EN SEDIMENTOS DE MANGLAR EN ZONAS DE REPRODUCCION DE Anadara tuberculosa (CONCHA PELUDA) EN BAHIA DE JIQUILISCO USULUTAN EL SALVADOR. https://ri.ues.edu.sv/id/eprint/20014/1/16103751.pdf | |
dc.relation.references | IDEAM. (s/f). Instituto de Hidrología, Meteorología y Estudios Ambientales. http://www.ideam.gov.co/web/atencion-y-participacion-ciudadana/glosario Los ríos y sus afluentes son las venas del planeta que bombean agua dulce a los humedales, a los lagos y al mar. (2017, noviembre 9). National Geographic. https://www.nationalgeographic.es/medio-ambiente/rios | |
dc.relation.references | Nature, R. A. F. G. (2022). Los ríos y sus afluentes son las venas del planeta que bombean agua dulce a los humedales, a los lagos y al mar. National Geographic. https://www.nationalgeographic.es/medio-ambiente/rios | |
dc.relation.references | Liu, F., Wang, X., Dai, S., Zhou, J., Li, D., Hu, Q., Bai, J., Zhao, L., & Nazir, N. (2023). Impact of different industrial activities on heavy metals in floodplain soil and ecological risk assessment based on bioavailability: a case study from the Middle Yellow River Basin, northern China. Environmental Research, 235, 116695. https://doi.org/10.1016/j.envres.2023.116695 | |
dc.relation.references | Saralegui, A. B., Willson, V., Caracciolo, N., Piol, M. N., & Boeykens, S. (2021). Macrophyte biomass productivity for heavy metal adsorption. Journal of Environmental Management, 289, 112398. https://doi.org/10.1016/j.jenvman.2021.112398 | |
dc.relation.references | Granada Grisales, N., & Escobar López, D. F. (2012). Análisis y cuantificación de metales pesados (Pb, Cd, Ni y Hg) en agua, sedimentos y bioacumulación en la especie Rhandia Wagne (Barbudo) del Río Cauca en el muncipio de la Virginia. https://repositorio.utp.edu.co/items/cf243897-5605-45c9-8594-3a108c68cfec | |
dc.relation.references | Muneer, W., Behera, D., Aljasil, Ankit, Y., Anoop, A., Mishra, P. K., & Jehangir, A. (2023). Historical trends of heavy metal contamination and eutrophication in an aquatic system from Kashmir Himalayas, India. Environmental challenges, 12, 100721. https://doi.org/10.1016/j.envc.2023.100721 | |
dc.relation.references | Rivera, A. M. Z., Melo, M. I. P., Paz, F. M., Chow, N. A., Trejos, Y. P. A., & Ordoñez, J. (2018). Estudio exploratorio de evaluación de riesgo en la salud de madres lactantes por consumo de pescado contaminado del río Cauca, en el Valle del Cauca (Colombia). Ambiente y Desarrollo. https://doi.org/10.11144/javeriana.ayd22-43.eeer | |
dc.relation.references | Hassan, S., Schmieder, K., & Böcker, R. (2010). Spatial patterns of submerged macrophytes and heavy metals in the hypertrophic, contaminated, shallow reservoir Lake Qattieneh/Syria. Limnologica, 40(1), 54-60. https://doi.org/10.1016/j.limno.2009.01.002 | |
dc.relation.references | Mero, M., Pernía, B., Ramírez-Prado, N., Bravo, K., Ramírez, L., Larreta, E., & Montenegro, F. E. (2019). CONCENTRACIÓN DE CADMIO EN AGUA, SEDIMENTOS, eichhornia crassipes y pomacea canaliculata EN EL RÍO GUAYAS (ECUADOR) y SUS AFLUENTES. Revista Internacional De Contaminacion Ambiental, 35(3), 623-640. https://doi.org/10.20937/rica.2019.35.03.09 | |
dc.relation.references | Hublikar, L. V., Ganachari, S. V., Raghavendra, N., Patil, V. B., & Banapurmath, N. (2021). Green Synthesis silver nanoparticles via Eichhornia crassipes leaves extract and their applications. Current Research in Green and Sustainable Chemistry, 4, 100212. https://doi.org/10.1016/j.crgsc.2021.100212 | |
dc.relation.references | Gunnarsson, C., & Petersen, C. M. (2007). Water hyacinths as a Resource in Agriculture and Energy production: A literature review. Waste Management, 27(1), 117-129. https://doi.org/10.1016/j.wasman.2005.12.011 | |
dc.relation.references | Ayanda, O. I., Ajayi, T. O., & Asuwaju, F. P. (2020). Eichhornia crassipes (Mart.) SOLMs: Uses, challenges, threats, and Prospects. The Scientific World Journal, 2020, 1-12. https://doi.org/10.1155/2020/3452172 | |
dc.relation.references | Eid, E. M., Shaltout, K. H., Almuqrin, A. H., Aloraini, D. A., Khedher, K. M., Taher, M. A., Alfarhan, A., Picó, Y., & Barceló, D. (2021). Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: a biomonitoring approach. Science of The Total Environment, 782, 146887. https://doi.org/10.1016/j.scitotenv.2021.146887 | |
dc.relation.references | Delgadillo-López, A. E., González-Ramírez, C. A., García, F. P., Villagómez-Ibarra, J. R., & Acevedo-Sandoval, O. A. (2011). Phytoremediation: an alternative to eliminate pollution. Tropical and Subtropical Agroecosystems, 14(2), 597-612. http://www.redalyc.org/pdf/939/93918231023.pdf | |
dc.relation.references | Roa, Y. C. R. (2022). Estudio de bioacumulación de metales pesados en plantas de consumo humano para sensado molecular in situ. https://doi.org/10.11144/javeriana.10554.54953 | |
dc.relation.references | ROSAS PEÑA, I. A. (2008). FITOEXTRACCIÓN DE METALES PESADOS PRESENTES EN SEDIMENTOS CONTAMINADOS UTILIZANDO Eucaliptus globulus. [Tesis de maestría]. UNIVERSIDAD DE LOS ANDES | |
dc.relation.references | Corredor, J. A. G., Pérez, E. H., Figueroa, R., & Casas, A. F. (2021). Water quality of streams associated with artisanal gold mining; Suárez, Department of Cauca, Colombia. Heliyon, 7(6), e07047. https://doi.org/10.1016/j.heliyon.2021.e07047 | |
dc.relation.references | Rahadian, H., Bandong, S., Widyotriatmo, A., & Joelianto, E. (2023). Image encoding selection based on Pearson correlation coefficient for time series anomaly detection. Alexandria Engineering Journal, 82, 304-322. https://doi.org/10.1016/j.aej.2023.09.070 | |
dc.relation.references | Gottfried, R. I. R., Carrillo, M. G., De Paul Alvares, V., Cervantes, G. G., & Hernández, V. H. (2019). Potencial fitorremediador de la chicura (Ambrosia ambrosioides) en suelos contaminados por metales pesados. Revista Mexicana de Ciencias Agrícolas, 10(7), 1529-1540. https://doi.org/10.29312/remexca.v10i7.1731 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Heavy metals | |
dc.subject.keywords | Reservoir | |
dc.subject.keywords | GHAAS | |
dc.subject.keywords | ICP-OES | |
dc.subject.keywords | DMA | |
dc.subject.proposal | Metales pesados | |
dc.subject.proposal | Embalse | |
dc.subject.proposal | GHAAS | |
dc.subject.proposal | ICP-OE | |
dc.subject.proposal | DMA | |
dc.title | Evaluación de la distribución de metales potencialmente tóxicos (As, Cd, Hg) en la macrófita Eichhornia crassipes (Mart.) Solms. (Pontederiaceae) del embalse Hidroituango, Antioquia | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: