Publicación: Síntesis de análogos quinolínicos metoxilados con potencial leishmanicida y anti-Trypanosoma cruzi
dc.contributor.advisor | Guzmán Terán, Camilo | |
dc.contributor.advisor | Marin Severiche, Fernis José | |
dc.contributor.author | Causil Espitia, Karina Andrea | |
dc.contributor.jury | Santafé Patiño, Gilmar | |
dc.contributor.jury | Pastrana Pastrana, Orlando | |
dc.date.accessioned | 2024-01-30T17:23:56Z | |
dc.date.available | 2025-01-29 | |
dc.date.issued | 2024-01-29 | |
dc.description.abstract | La leishmaniasis y la enfermedad de Chagas (EC), son enfermedades endémicas con opciones de tratamientos limitadas por alta toxicidad sistémica, graves efectos adversos, eficacia variable, y la aparición de cepas resistentes, por lo tanto, la búsqueda de nuevas alternativas de tratamientos ha centrado la atención de los investigadores en moléculas con núcleo quinolínico, las cuales han destacado por sus múltiples propiedades biológicas y/o farmacológicas, entre las que está, la actividad antiprotozoario. En el presente estudio se sintetizaron siete (7) análogos 2-quinolínicos metoxilados los cuales se evaluaron frente a cepas de parásitos de Leishmania braziliensis y Trypanosoma cruzi. Las moléculas se obtuvieron por síntesis orgánica a partir quinaldina y 8-hidroxiquinaldina con diferentes aldehídos aromáticos metoxilados, el potencial leishmanicida in vitro se determinó empleando citometría de flujo, mientras que la actividad antitripanosómica se evaluó sobre la cepa T. cruzi utilizando el método enzimático de β-galactosidasa; para evaluar la citotoxicidad se empleó el micrométodo del MTT. Las estructuras de los compuestos se confirmaron empleando espectroscopia infrarroja (IR) y Resonancia Magnética Nuclear (RMN) en 1D y 2D. Los análogos quinolínicos (K1-K7) se obtuvieron con rendimientos desde 16% hasta 29%, todos los compuestos a excepción de K4 y K6 mostraron citotoxicidad con valores de concentración letal media (CL50) que van de 10.8 a 33.9 µg/mL. En cuanto a la actividad leishmanicida, los compuestos K5, K7 y K1 mostraron alta actividad con valores de concentración efectiva media (CE50) de 2.81, 4.69 y 9.17 µg/mL respectivamente e índice de selectividad (IS) mayor a uno, el análogo K4 demostró baja actividad (CE50 >100 µg/mL), K2 y K6 mostraron actividad baja moderada (CE50 >50µg/mL). Para la actividad anti-T. cruzi, los compuestos K4 y K2 mostraron moderada actividad (CE50 >25 µg/mL), K4 baja actividad (CE50 >50 µg/mL) K1, K3 y K7 exhibieron alta actividad con CE50 de 12.95 y 15.6 µg/mL respectivamente. Las moléculas obtenidas K1, K3 y K5 se pueden considerar compuestos promisorios, y candidatos para validar su respuesta terapéutica frente a la infección por Leishmaniasis Cutánea y Chagas en modelo animal. | spa |
dc.description.abstract | Leishmaniasis and Chagas disease (CD) are endemic diseases with limited treatment options due to high systemic toxicity, severe adverse effects, variable efficacy, and the emergence of resistant strains; therefore, the search for new treatment alternatives has focused the attention of researchers on molecules with quinolinic nuclei, which have stood out for their multiple biological and/or pharmacological properties, including antiprotozoal activity. In the present study, seven (7) methoxylated 2-quinoline analogues were synthesized and evaluated against parasite strains of Leishmania braziliensis and Trypanosoma cruzi. The molecules were obtained by organic synthesis from quinaldine and 8-hydroxyquinaldine with different methoxylated aromatic aldehydes, the in vitro leishmanicidal potential was determined using flow cytometry, while the antitrypanosomal activity was evaluated on T. cruzi strain using the β-galactosidase enzymatic method; the MTT micromethod was used to evaluate cytotoxicity. The structures of the compounds were confirmed using infrared spectroscopy (IR) and Nuclear Magnetic Resonance (NMR) in 1D and 2D. Quinoline analogues (K1-K7) were obtained with yields ranging from 16% to 29%, all compounds except K4 and K6 showed cytotoxicity with mean lethal concentration (LC50) values ranging from 10.8 to 33.9 µg/mL. For leishmanicidal activity, compounds K5, K7 and K1 showed high activity with mean effective concentration (EC50) values of 2.81, 4.69 and 9.17 µg/mL respectively and selectivity index (SI) greater than one, the analog K4 showed low activity (EC50 >100 µg/mL), K2 and K6 showed moderate low activity (EC50 >50µg/mL). For anti-T. cruzi activity, compounds K4 and K2 showed moderate activity (EC50 >25 µg/mL), K4 low activity (EC50 >50 µg/mL) K1, K3 and K7 exhibited high activity with EC50 of 12.95 and 15.6 µg/mL respectively. The obtained molecules K1, K3 and K5 can be considered promising compounds, and candidates to validate their therapeutic response against Cutaneous Leishmaniasis and Chagas infection in animal models. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Químicas | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. Introducción 4 | spa |
dc.description.tableofcontents | 2. Objetivos 6 | spa |
dc.description.tableofcontents | 2.1. Objetivo General 6 | spa |
dc.description.tableofcontents | 2.2. Objetivos Específicos 6 | spa |
dc.description.tableofcontents | 3. Antecedentes 7 | spa |
dc.description.tableofcontents | 4. Marco Teórico 10 | spa |
dc.description.tableofcontents | 4.1. Enfermedades Endémicas Transmitidas por Vectores 10 | spa |
dc.description.tableofcontents | 4.2. Leishmaniasis 10 | spa |
dc.description.tableofcontents | 4.2.1. Ciclo de Vida de Leishmania spp 11 | spa |
dc.description.tableofcontents | 4.2.2. Manifestaciones Clínicas de las Leishmaniasis 13 | spa |
dc.description.tableofcontents | 4.2.2.1. Leishmaniasis Cutáneas (LC). 13 | spa |
dc.description.tableofcontents | 4.2.2.2. Leishmaniasis Mucocutánea 14 | spa |
dc.description.tableofcontents | 4.2.2.3. Leishmaniasis Visceral (LV).. 14 | spa |
dc.description.tableofcontents | 4.3. Enfermedad de Chagas (EC) 14 | spa |
dc.description.tableofcontents | 4.3.1. Manifestaciones Clínicas de la Enfermedad de Chagas 16 | spa |
dc.description.tableofcontents | 4.3.1.1. Fase Aguda. 16 | spa |
dc.description.tableofcontents | 4.3.1.2. Fase crónica 16 | spa |
dc.description.tableofcontents | 4.3.2. Ciclo de Vida del Trypanosoma Cruzi 17 | spa |
dc.description.tableofcontents | 4.4. Fármacos Antileishmanial y antiTripanosomal 18 | spa |
dc.description.tableofcontents | 4.5. Leishmaniasis y Enfermedad de Chagas en Colombia 20 | spa |
dc.description.tableofcontents | 4.6. Actividad Biológica de las Estirilquinolinas 22 | spa |
dc.description.tableofcontents | 4.7. Síntesis de 2-EstirilQuinolinas 23 | spa |
dc.description.tableofcontents | 5. Metodología 26 | spa |
dc.description.tableofcontents | 5.1. Materiales y Equipos 26 | spa |
dc.description.tableofcontents | 5.2. Síntesis de Análogos Quinolínicos 28 | spa |
dc.description.tableofcontents | 5.3. Identificación de Sustancias 29 | spa |
dc.description.tableofcontents | 5.4. Ensayos de Actividad Biológica 29 | spa |
dc.description.tableofcontents | 5.4.1. Ensayo de Citotoxicidad in vitro 29 | spa |
dc.description.tableofcontents | 5.4.2. Actividad Sobre L. braziliensis 31 | spa |
dc.description.tableofcontents | 5.4.3. Actividad Anti-Tripanosoma cruzi 33 | spa |
dc.description.tableofcontents | 6. Resultados 35 | spa |
dc.description.tableofcontents | 6.1. Síntesis de (E)-2-(3,5-dimetoxiestiril) quinolina C19H17NO2 (K1) 36 | spa |
dc.description.tableofcontents | 6.2. Síntesis de (E)-2-(2,5-dimetoxiestiril) quinolina K2 44 | spa |
dc.description.tableofcontents | 6.3. Síntesis de (E)-2-(3,4-dimetoxiestiril) quinolina K3 48 | spa |
dc.description.tableofcontents | 6.4. Síntesis de (E)-2-(2,3-dimetoxiestiril) quinolin-8-ol C19H17NO3 K4 51 | spa |
dc.description.tableofcontents | 6.5. Síntesis de (E)-2-(2,3-dimetoxiestiril) quinolina K5 55 | spa |
dc.description.tableofcontents | 6.6. Síntesis de (E)-3-metoxi-4-(2-(quinolin-2-il) vinil) fenilo acetato K6 59 | spa |
dc.description.tableofcontents | 6.7. Síntesis de (E)-2-(4-etoxi-3-metoxiestiril) quinolin-8-il acetato K7 62 | spa |
dc.description.tableofcontents | 6.8. Resultados Actividad Biológica 67 | spa |
dc.description.tableofcontents | 7. Conclusiones 72 | spa |
dc.description.tableofcontents | 8. Recomendaciones 73 | spa |
dc.description.tableofcontents | 9. Referencias Bibliográficas 74 | spa |
dc.description.tableofcontents | 10. Anexos 82 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8150 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Químicas | |
dc.relation.references | Abadías-Granado, I., Diago, A., Cerro, P. A., Palma-Ruiz, A. M., & Gilaberte, Y. (2021). Leishmaniasis cutánea y mucocutánea. Actas Dermo-Sifiliográficas, 112(7), 601–618. https://doi.org/10.1016/J.AD.2021.02.008 | |
dc.relation.references | Abpeikar, Z., Safaei, M., Akbar Alizadeh, A., Goodarzi, A., & Hatam, G. (2023). The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. International Journal of Pharmaceutics, 633, 122615. https://doi.org/10.1016/J.IJPHARM.2023.122615 | |
dc.relation.references | Aguilar, A. J., Peña, Y. K. H., Rodríguez, A. F. P., Valero, A. J. B., Benítez, D. D. C., Gualdrón, F. S. O., Carrillo, G. H., Rangel, G. C., Romero, H. D. A., Ortega, J. Y. O., Rodríguez, J. E., Medina, J. E. D., Blanco, J. E. G., Gelves, J. A. P., Caicedo, J. D. U., Portilla, J. F. A., Carrero, K. L. C., Kopp, L. P. A., Rodríguez, L. V. B., … Pérez, Z. C. (2018). La investigación social: comprendiendo fenómenos en contexto | |
dc.relation.references | Alirio, C., & Gutiérrez, G. (2022). NICOTINATO FOSFO-RIBOSIL TRANSFERASA (LbNAPRT) | |
dc.relation.references | Altcheh, J. (2016). Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. Archivos Argentinos de Pediatria, 114(2), e124–e125. https://doi.org/10.1056/NEJMOA1507574/SUPPL_FILE/NEJMOA1507574_DISCLOSURES.PDF | |
dc.relation.references | Arrúa, E. C., Seremeta, K. P., Bedogni, G. R., Okulik, N. B., & Salomon, C. J. (2019). Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta Tropica, 198, 105080. https://doi.org/10.1016/J.ACTATROPICA.2019.105080 | |
dc.relation.references | Candia-Puma, M. A., Machaca-Luque, L. Y., Roque-Pumahuanca, B. M., Galdino, A. S., Giunchetti, R. C., Coelho, E. A. F., & Chávez-Fumagalli, M. A. (2022). Accuracy of Diagnostic Tests for the Detection of Chagas Disease: A Systematic Review and Meta-Analysis. Diagnostics, 12(11), 2752. https://doi.org/10.3390/DIAGNOSTICS12112752/S1 | |
dc.relation.references | Cantero-López, P., Robledo Restrepo, S. M., Yañez, O., Zúñiga, C., & Santafé-Patiño, G. G. (2021). Theoretical study of new LmDHODH and LmTXNPx complexes: structure-based relationships. Structural Chemistry, 32(1), 167–177. https://doi.org/10.1007/s11224-020-01624-7 | |
dc.relation.references | Castro, J. A., Montalto de Mecca, M., Díaz Gómez, M. I., & Castro, G. D. (2015). Enfermedad de Chagas: Contribuciones del Centro de Investigaciones Toxicológicas. Acta Bioquímica Clínica Latinoamericana, 49(1), 73–82. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572015000100009&lng=es&nrm=iso&tlng=es | |
dc.relation.references | Croft, S. L., & Olliaro, P. (2011). Leishmaniasis chemotherapy-challenges and opportunities. Clinical Microbiology and Infection, 17(10), 1478–1483. https://doi.org/10.1111/j.1469-0691.2011.03630.x | |
dc.relation.references | De Vries, H. J. C., & Schallig, H. D. (2022). Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. American Journal of Clinical Dermatology, 23(6), 823. https://doi.org/10.1007/S40257-022-00726-8 | |
dc.relation.references | Dhanawat, M., Mehta, D. K., & Das, R. (2021). An Elite Scaffold and a Wonderful Pharmacophore in Drug Discovery: Styrylquinoline. Mini-Reviews in Medicinal Chemistry, 21(14), 1849–1864. https://doi.org/10.2174/1389557521666210225115055 | |
dc.relation.references | Espinosa, R., Robledo, S., Guzmán, C., Arbeláez, N., Yepes, L., Santafé, G., & Sáez, A. (2021a). Synthesis and evaluation of the in vitro and in vivo antitrypanosomal activity of 2-styrylquinolines. Heliyon, 7(5), e07024. https://doi.org/10.1016/J.HELIYON.2021.E07024 | |
dc.relation.references | Espinosa-Saez, R., Robledo, S. M., Pineda, T., Murillo, J., Zúñiga, C., Yañez, O., Cantero-López, P., Saez-Vega, A., & Guzmán-Teran, C. (2023). Screening of the antileishmanial and antiplasmodial potential of synthetic 2-arylquinoline analogs. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43805-4 | |
dc.relation.references | Francisco, A. F., Jayawardhana, S., Olmo, F., Lewis, M. D., Wilkinson, S. R., Taylor, M. C., & Kelly, J. M. (2020). Challenges in Chagas Disease Drug Development. Molecules 2020, Vol. 25, Page 2799, 25(12), 2799. https://doi.org/10.3390/MOLECULES25122799 | |
dc.relation.references | García, P., Genes, C., Molano, P., Torres, O., Saez, J., & Triana, O. (2010). Evaluation of the Trypanocidal, Cytotoxic and Genotoxic Activity of Styrylquinoline Analogs. Http://Dx.Doi.Org/10.1179/Joc.2010.22.3.169, 22(3), 169–174. https://doi.org/10.1179/JOC.2010.22.3.169 | |
dc.relation.references | Ghorbani, M., & Farhoudi, R. (2018). Leishmaniasis in humans: drug or vaccine therapy? Drug Design, Development and Therapy, 12, 25. https://doi.org/10.2147/DDDT.S146521 | |
dc.relation.references | Guarner, J. (2019). Chagas disease as example of a reemerging parasite. Seminars in Diagnostic Pathology, 36(3), 164–169. https://doi.org/10.1053/J.SEMDP.2019.04.008 | |
dc.relation.references | Guzmán, C. A., Villa, H. S., Robledo, S. M., Vélez, I. D., & Santafé, G. G. (2021). Synthesis and antileishmanial activity of styrylquinoline-type compounds : in vitro and in vivo studies Synthesis and antileishmanial activity of styrylquinoline-type compounds : in vitro and in vivo studies. V. https://doi.org/http://doi.org/10.4038/cjs.v50i2.7880 | |
dc.relation.references | Instituto Nacional de Salud. (2021). Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | |
dc.relation.references | Instituto Nacional de Salud. (2023). Semana epidemiológica 43 22 al 28 de octubre de 2023 | |
dc.relation.references | Jackson, Y., Wyssa, B., & Chappuis, F. (2020). Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. Journal of Antimicrobial Chemotherapy, 75(3), 690–696. https://doi.org/10.1093/JAC/DKZ473 | |
dc.relation.references | Kimberly Gromek, Matthew Hung, Nuria Montero, & Gonçalo Sousa. (2020). vectores de enfermedades protozoarias. | |
dc.relation.references | Kumar, P., Kumar, P., Singh, N., Khajuria, S., Patel, R., Rajana, V. K., Mandal, D., & Velayutham, R. (2022). Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis—An updated review. Frontiers in Bioengineering and Biotechnology, 10, 1016925. https://doi.org/10.3389/FBIOE.2022.1016925/BIBTEX | |
dc.relation.references | Lewis, M. D., Francisco, A. F., Taylor, M. C., Jayawardhana, S., & Kelly, J. M. (2016). Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cellular Microbiology, 18(10), 1429–1443. https://doi.org/10.1111/CMI.12584 | |
dc.relation.references | Luz Sánchez, E., Santafé, G. G., Torres, O. L., Muñoz, D. L., & Robledo, S. M. (2014a). Actividades leishmanicida y citotóxica de estirilquinolinas ARTÍCULO. Biomédica, 34, 605–616. https://doi.org/10.7705/biomedica.v34i4.2299 | |
dc.relation.references | Martín-Escolano, J., Marín, C., Rosales, M. J., Tsaousis, A. D., Medina-Carmona, E., & Martín-Escolano, R. (2022). An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infectious Diseases, 8(6), 1107. https://doi.org/10.1021/ACSINFECDIS.2C00123 | |
dc.relation.references | Matada, B. S., Pattanashettar, R., & Yernale, N. G. (2021). A comprehensive review on the biological interest of quinoline and its derivatives. Bioorganic and Medicinal Chemistry, 32. https://doi.org/10.1016/j.bmc.2020.115973 | |
dc.relation.references | Milagre, M. M., Torchelsen, F. K. V. da S., Pedrosa, T. C. F., Teixeira, G. M., Sampaio, L. S., Saúde-Guimarães, D. A., Branquinho, R. T., Mosqueira, V. C. F., & Lana, M. de. (2023). Lychnopholide loaded in surface modified polylactide nanocapsules (LYC-PLA-PEG-NC) cure mice infected by Trypanosoma cruzi strain a prototype of resistance to benznidazole and nifurtimox: First insights of its mechanism of action. Experimental Parasitology, 108647. https://doi.org/10.1016/J.EXPPARA.2023.108647 | |
dc.relation.references | Mittal, R. K., Purohit, P., Abdellattif, M. H., & Aggarwal, M. (2023). Microwave and Cs+-assisted chemo selective reaction protocol for synthesizing 2-styryl quinoline biorelevant molecules. Open Chemistry, 21(1). https://doi.org/10.1515/CHEM-2022-0250/DOWNLOADASSET/SUPPL/CHEM-2022-0250_SM.PDF | |
dc.relation.references | Mrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E., & Musiol, R. (2019). The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. European Journal of Medicinal Chemistry, 177, 338–349. https://doi.org/10.1016/J.EJMECH.2019.05.061 | |
dc.relation.references | OPS/OMS. (2022). Leishmaniasis - OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/leishmaniasis | |
dc.relation.references | OPS/OMS. (2023). Vectores: Manejo integrado y entomología en salud pública -. https://www.paho.org/es/temas/vectores-manejo-integrado-entomologia-salud-publica | |
dc.relation.references | Peña-Callejas, G., González, J., Jiménez-Cortés, J. G., Fuentes-Vicente, J. A. de, Salazar-Schettino, P. M., Bucio-Torres, M. I., Cabrera-Bravo, M., Flores-Villegas, A. L., Peña-Callejas, G., González, J., Jiménez-Cortés, J. G., Fuentes-Vicente, J. A. de, Salazar-Schettino | |
dc.relation.references | . M., Bucio-Torres, M. I., Cabrera-Bravo, M., & Flores-Villegas, A. L. (2022). Enfermedad de Chagas: biología y transmisión de Trypanosoma cruzi. TIP. Revista Especializada En Ciencias Químico-Biológicas, 25, 1–19. https://doi.org/10.22201/FESZ.23958723E.2022.449 | |
dc.relation.references | Pereira, A., Silva, da, Freitas Oliveira, de, Sousa da Silva, de, Silva-Júnior, da, Di Stefano, A., Pia Dimmito, M., Cavalcante Gomes, D., Silva Medeiros, T., Lincoln Alves Pereira, E., Felipe Oliveira da Silva, J., de Freitas Oliveira, J. W., de Freitas Fernandes-Pedrosa, M., de Sousa da Silva, M., & Antônio da Silva-Júnior, A. (2023). From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. International Journal of Molecular Sciences 2023, Vol. 24, Page 13778, 24(18), 13778. https://doi.org/10.3390/IJMS24181377 | |
dc.relation.references | Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. In Clinical and Experimental Dermatology (Vol. 47, Issue 3, pp. 516–521). John Wiley and Sons Inc. https://doi.org/10.1111/ced.14919 | |
dc.relation.references | Rassi, A., de Rezende, J. M., Luquetti, A. O., & Rassi, A. (2017). Clinical phases and forms of Chagas disease. American Trypanosomiasis Chagas Disease: One Hundred Years of Research: Second Edition, 653–686. https://doi.org/10.1016/B978-0-12-801029-7.00029-0 | |
dc.relation.references | Ribeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 12, 7–17. https://doi.org/10.1016/J.IJPDDR.2019.11.004 | |
dc.relation.references | Rojas-Aguirre, Y., Aguado-Castrejón, K., González-Méndez, I., Rojas-Aguirre, Y., Aguado-Castrejón, K., & González-Méndez, I. (2016). La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer? Educación Química, 27(4), 286–291. https://doi.org/10.1016/J.EQ.2016.07.002 | |
dc.relation.references | Saleem, B., Al Sulivany, A., & Ahmed, A. J. (2023). Clinical and Immunopathological Aspects of Cutaneous, Mucocutaneous, Visceral, and Post-kala-azar Leishmaniasis. Journal of Zoonotic Diseases, 2023. https://doi.org/10.22034/jzd.2023.16801 | |
dc.relation.references | Santafé, G. G., Sánchez, E. L., & Torres, O. L. (2016). Síntesis y Actividad Antimalárica de Estirilquinolinas sobre Plasmodium falciparum. Información Tecnológica, 27(2), 97–104. https://doi.org/10.4067/S0718-07642016000200012 | |
dc.relation.references | Sarma, P., Saikia, S., & Borah, R. (2016). Studies on –SO3H functionalized Brønsted acidic imidazolium ionic liquids (ILs) for one-pot, two-step synthesis of 2-styrylquinolines. Synthetic Communications, 46(14), 1187–1196. https://doi.org/10.1080/00397911.2016.1193754 | |
dc.relation.references | Sridharan, V., Avendaño, C., & Carlos Menéndez, J. (2009). Convenient, two-step synthesis of 2-styrylquinolines: an application of the CAN-catalyzed vinylogous type-II Povarov reaction. Tetrahedron, 65(10), 2087–2096. https://doi.org/10.1016/J.TET.2008.12.077 | |
dc.relation.references | Torres, O. L., Marin, F. J., Santafé, G. G., Robledo, S. M., Torres, O. L., Marin, F. J., Santafé, G. G., & Robledo, S. M. (2020). Síntesis de estirilquinolinas con potencial Leishmanicida in vitro sobre Leishmania (Viannia) panamensis. Información Tecnológica, 31(1), 3–12. https://doi.org/10.4067/S0718-07642020000100003 | |
dc.relation.references | Vermelho, A. B., Cardoso, V., Mansoldo, F. R. P., Supuran, C. T., Cedrola, S. M. L., Rodrigues, I. A., & Rodrigues, G. C. (2022). Chagas Disease: Drug Development and Parasite Targets. Topics in Medicinal Chemistry, 39, 49–81. https://doi.org/10.1007/7355_2021_143/COVER | |
dc.relation.references | Weyesa, A., & Mulugeta, E. (2020). Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Advances, 10(35), 20784–20793. https://doi.org/10.1039/D0RA03763J | |
dc.relation.references | WHO. (2023a). La enfermedad de Chagas (tripanosomiasis americana). https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) | |
dc.relation.references | WHO. (2023b). Leishmaniasis. https://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis | |
dc.relation.references | Wijnant, G.-J., Dumetz, F., Dirkx, L., Bulté, D., Cuypers, B., Van Bocxlaer, K., & Hendrickx, S. (2022). Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. Frontiers in Tropical Diseases, 3. https://doi.org/10.3389/fitd.2022.837460 | |
dc.relation.references | Zarougui, S., Er-rajy, M., Faris, A., Imtara, H., El fadili, M., Al kamaly, O., Zuhair Alshawwa, S., Nasr, F. A., Aloui, M., & Elhallaoui, M. (2023). QSAR, DFT studies, docking molecular and simulation dynamic molecular of 2-styrylquinoline derivatives through their anticancer activity. Journal of Saudi Chemical Society, 27(6), 101728. https://doi.org/10.1016/J.JSCS.2023.101728 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Quinolines | eng |
dc.subject.keywords | Chagas disease | eng |
dc.subject.keywords | Cytotoxicity | eng |
dc.subject.keywords | Leishmanicidal activity | eng |
dc.subject.proposal | Quinolinas | spa |
dc.subject.proposal | Enfermedad de chagas | spa |
dc.subject.proposal | Citotoxicidad, | spa |
dc.subject.proposal | Actividad leishmanicida | spa |
dc.title | Síntesis de análogos quinolínicos metoxilados con potencial leishmanicida y anti-Trypanosoma cruzi | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: