Publicación:
Evaluación del potencial antifúngico del extracto etanólico de Oxandra venezuelana contra aislamientos clínicos de candida spp

dc.contributor.advisorContreras Martínez, Orfa Inés
dc.contributor.advisorAngulo Ortiz, Alberto
dc.contributor.authorCastro Arrieta, Yessica Paola
dc.contributor.juryVillegas Gonzalez, Jazmith Paola
dc.contributor.juryLorduy Rodriguez, Alvaro Jose
dc.date.accessioned2025-07-15T18:12:05Z
dc.date.available2025-07-15T18:12:05Z
dc.date.issued2025-07-14
dc.description.abstractLas infecciones causadas por Candida spp., son una de las principales preocupaciones en la práctica médica, especialmente debido a la resistencia a los tratamientos convencionales y la capacidad de estas levaduras para formar biopelículas, lo que dificulta su erradicación. Es por esto que, los productos de origen vegetal emergen como una opción prometedora, ya que incluyen una variedad de compuestos bioactivos con propiedades antimicrobianas reconocidas. Esta investigación tuvo como objetivo evaluar el potencial antifúngico del extracto etanólico de Oxandra venezuelana contra aislamientos clínicos de Candida spp. La sensibilidad de las levaduras se determinó a través del método de microdilución en caldo y su efecto contra las biopelículas fúngicas se evaluó empleando la técnica de cristal violeta; Todos los aislamientos fueron sensibles al extracto evaluado, con valores de CMI90 entre 3920 y 9911 μg/mL. El extracto etanólico de hoja de O. venezuelana inhibió la formación de biopelículas fúngicas de todos los aislamientos clínicos evaluados, mostrando para C. krusei 07, C. parapsilosis 02, C. parapsilosis 03 y C. glabrata 85 más del 50 % de inhibición, superando los valores reportados con Anfotericina B (AFB). Así mismo, el efecto inhibitorio contra las biopelículas maduras se observó en la mayoría de los aislamientos, siendo este efecto mayor que el observado con AFB. Los resultados de esta investigación contribuyen a la búsqueda de compuestos bioactivos contra levaduras patógenas del género Candida y sirven como base a estudios futuros en miras de dilucidar compuestos de estos extractos y sus mecanismos de acción antimicrobianos.spa
dc.description.abstractInfections caused by Candida spp. are a major concern in medical practice, especially due to their resistance to conventional treatments and their ability to form biofilms, making their eradication difficult. Therefore, plant-based products are emerging as a promising option, as they include a variety of bioactive compounds with recognized antimicrobial properties. This research aimed to evaluate the antifungal potential of the ethanolic extract of Oxandra venezuelana against clinical isolates of Candida spp. The sensitivity of the yeasts was determined using the broth microdilution method, and their effect against fungal biofilms was evaluated using the crystal violet technique. All isolates were sensitive to the extract tested, with MIC90 values between 3920 and 9911 μg/mL. The ethanolic extract of O. venezuelana leaves inhibited fungal biofilm formation in all clinical isolates tested, showing over 50% inhibition for C. krusei 07, C. parapsilosis 02, C. parapsilosis 03, and C. glabrata 85, exceeding the values reported with Amphotericin B (AFB). Furthermore, the inhibitory effect against mature biofilms was observed in most isolates, a effect that was greater than that observed with AFB. The results of this research contribute to the search for bioactive compounds against pathogenic yeasts of the genus Candida and serve as a basis for future studies aimed at elucidating the compounds of these extracts and their antimicrobial mechanisms of action.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9346
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesPerlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology, 45(4), 321–346. https://doi.org/10.1080/13693780701218689
dc.relation.referencesAtiencia-Carrera, M. B., Cabezas-Mera, F. S., Tejera, E., & Machado, A. (2022). Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLOS ONE, 17(2), e0263522. https://doi.org/10.1371/journal.pone.0263522
dc.relation.referencesBarantsevich, N., & Barantsevich, E. (2022). Diagnosis and Treatment of Invasive Candidiasis. Antibiotics, 11(6), 718. https://doi.org/10.3390/antibiotics11060718
dc.relation.referencesBedout, C., & Gómez, B. L. (2010). Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano. Infectio, 14, s159–s171. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922010000600008
dc.relation.referencesAlvarez, C., Cortes, A., & Denning, W. (2018). Burden of Fungal Infections in Colombia. Journal of Fungi, 4(2). https://doi.org/10.3390/JOF4020041
dc.relation.referencesPristov, K. E., & Ghannoum, M. A. (2019). Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection, 25(7), 792–798. https://doi.org/10.1016/j.cmi.2019.03.028
dc.relation.referencesLee, Y., Puumala, E., Robbins, N., & Cowen, L. E. (2021). Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chemical Reviews, 121(6), 3390–3411. https://doi.org/10.1021/acs.chemrev.0c00199
dc.relation.referencesBilal, H., Shafiq, M., Hou, B., Islam, R., Khan, M. N., Khan, R. U., & Zeng, Y. (2022). Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence, 13(1), 1573–1589. https://doi.org/10.1080/21505594.2022.2123325
dc.relation.referencesCortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia in Colombia. Biomedica, 40(1), 195-207. https://doi.org/10.7705/biomedica.4400
dc.relation.referencesGaziano, R., et al. (2019). Antimicrobial properties of the medicinal plant Cardiospermum halicacabum L: new evidence and future perspectives. European Review for Medical and Pharmacological Sciences, 23(16), 7135–7143. https://doi.org/10.26355/eurrev_201908_18759
dc.relation.referencesFamuyide, I. M., et al. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2547-z
dc.relation.referencesCruz-Chacón, I. D., et al. (2019). Antifungal activity in vitro of Sapranthus microcarpus (Annonaceae) against phytopathogens. Acta Botánica Mexicana, 126. https://doi.org/10.21829/abm127.2019.1420
dc.relation.referencesSharma, G., et al. (2023). Plants from Annonaceae family as antimalarials: An ethnopharmacology and phytochemistry review to identify potential lead molecules. South African Journal of Botany, 155(1). https://doi.org/10.1016/j.sajb.2023.02.015
dc.relation.referencesHarahap, D., et al. (2022). Antibacterial activities of seven ethnomedicinal plants from family Annonaceae. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 148–153. https://doi.org/10.4103/japtr.japtr_111_22
dc.relation.referencesKojima, N., & Tanaka, T. (2009). Medicinal Chemistry of Annonaceous Acetogenins: Design, Synthesis, and Biological Evaluation of Novel Analogues. Molecules, 14(9), 3621–3661. https://doi.org/10.3390/molecules14093621
dc.relation.referencesContreras Martínez, O. I., et al. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004. https://doi.org/10.3390/molecules27228004
dc.relation.referencesContreras, O., et al. (2023). Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12). https://doi.org/10.3390/IJMS241210187
dc.relation.referencesRojano, B., et al. (2007). Constituents of Oxandra cf. xylopioides with anti-inflammatory activity. Journal of Natural Products, 70(5), 835–838. https://doi.org/10.1021/np060333v
dc.relation.referencesCampos, L. M., et al. (2023). Antifungal Annona muricata L. (soursop) extract targets the cell envelope of multi-drug resistant Candida albicans. Journal of Ethnopharmacology, 301, 115856. https://doi.org/10.1016/j.jep.2022.115856
dc.relation.referencesKayo, M. T., et al. (2021). Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Natural Product Research, 35(24), 5732-5736. https://doi.org/10.1080/14786419.2020.1828409
dc.relation.referencesIssakou Bakarnga-Via, et al. (2022). Antifungal, antiradical, anti-inflammatory and antineoplastic activities of essential oils of some medicinal plants of the Annonaceae family of Chad and Cameroon. Journal of Phytomolecules and Pharmacology, 1(2), 75–87. https://doi.org/10.56717/jpp.2022.v01i02.01
dc.relation.referencesContreras Martínez, O. I., et al. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides Diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8(10), e11110. https://doi.org/10.1016/j.heliyon.2022.e11110
dc.relation.referencesCiurea, C. N., et al. (2020). Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms, 8(6), 857. https://doi.org/10.3390/microorganisms8060857
dc.relation.referencesPonde, N. O., et al. (2021). Candida albicans biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 47(1), 91–111. https://doi.org/10.1080/1040841x.2020.1843400
dc.relation.referencesSilva, S., et al. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, Pathogenicity and Antifungal Resistance. FEMS Microbiology Reviews, 36(2), 288–305. https://doi.org/10.1111/j.1574-6976.2011.00278.x
dc.relation.referencesGarcía, C. S., et al. (2020). Candida auris: descripción de un brote. Enfermedades Infecciosas Y Microbiología Clínica, 38, 39–44. https://doi.org/10.1016/j.eimc.2020.02.007
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2007). Natural Products as Sources of New Drugs over the Last 25 Years. Journal of Natural Products, 70(3), 461–477. https://doi.org/10.1021/np068054v
dc.relation.referencesJunikka, L., et al. (2016). Revision of Oxandra (Annonaceae). Blumea - Biodiversity, Evolution and Biogeography of Plants, 61(3), 215–266. https://doi.org/10.3767/000651916x694283
dc.relation.referencesUuh-Narvaez, J. J., et al. (2023). Antioxidant Potential and Known Secondary Metabolites of Rare or Underutilized Plants of Yucatan Region. Future Pharmacology, 3(4), 664–685. https://doi.org/10.3390/futurepharmacol3040042
dc.relation.referencesShehata, M. G., et al. (2021). Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (Annona squamosa) fruits. Scientific Reports, 11(1), 6224. https://doi.org/10.1038/s41598-021-85772-8
dc.relation.referencesTaborda, M. (2025). Evaluación del potencial antifúngico de los extractos etanólicos de corteza y madera obtenidos de Duguetia vallicola (Annonaceae) contra aislamientos clínicos de Candida spp. Repositorio Institucional Unicordoba; Universidad de Córdoba. https://repositorio.unicordoba.edu.co/entities/publication/2f42d56d-ba60-4e16-b0c1-866f01fef52d
dc.relation.referencesTascini, C., et al. (2018). The role of biofilm forming on mortality in patients with candidemia: a study derived from real world data. Infectious Diseases (London), 50(3), 214-219. https://doi.org/10.1080/23744235.2017.1384956
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCandida sppeng
dc.subject.keywordsOxandra venezuelanaeng
dc.subject.keywordsNatural productseng
dc.subject.keywordsAntifungaleng
dc.subject.proposalCandida sppspa
dc.subject.proposalOxandra venezuelanaspa
dc.subject.proposalProductos naturalesspa
dc.subject.proposalAntifúngicospa
dc.titleEvaluación del potencial antifúngico del extracto etanólico de Oxandra venezuelana contra aislamientos clínicos de candida sppspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CastroArrietaYessicaPaola.pdf
Tamaño:
514.67 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
382.07 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: