Publicación:
Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío

dc.audience
dc.contributor.advisorOrtega Quintana, Fabián Alberto
dc.contributor.advisorCaro Atehortúa, Diego Andrés
dc.contributor.authorGonzález Peña, Víctor Javier
dc.contributor.juryVélez Hernández, Gabriel Ignacio
dc.contributor.juryDíaz Ávila, William Yesid
dc.date.accessioned2025-07-28T23:14:29Z
dc.date.available2027-07-28
dc.date.available2025-07-28T23:14:29Z
dc.date.issued2025-07-28
dc.description.abstractLa berenjena (Solanum melongena L.) es una hortaliza de alto valor nutricional y potencial industrial, ampliamente cultivada en regiones tropicales y subtropicales. Este estudio tuvo como objetivo determinar los parámetros cinéticos de transferencia de masa, cambio de color y fuerza de fractura en rodajas de berenjena sometidas a distintos pretratamientos durante el freído por inmersión al vacío. Se evaluaron tres pretratamientos: control (sin pretratamiento), escaldado y osmodeshidratación en solución de sacarosa con NaCl (relación: 7.5:1). Las rodajas (diámetro: 3.5 ± 0.001 cm, espesor: 2.4 ± 0.2 mm) se frieron al vacío (180 mm Hg) en aceite vegetal (soya:palma), a distintas temperaturas y tiempos, con una relación rodajas:Litro aceite de 7:1. Se analizaron la perdida de humedad, absorción de aceite, parámetros de color (L*, a*, b*, ΔE*), fuerza de fractura y se realizó una prueba sensorial con 101 catadores no entrenados. Los resultados mostraron que la osmodeshidratación redujo significativamente la absorción de aceite (hasta un 91 %) y mejoró la textura, mientras que el escaldado presentó la mayor retención de color, con un valor promedio del 23.71 % respecto al control (ΔE* promedio: 19.41). La cinética de absorción de aceite se ajustó adecuadamente a los modelos de Moyano y Pedreschi y primer orden. En la evaluación sensorial, las muestras osmodeshidratadas obtuvieron la mayor preferencia (91 %) e intención de compra (81 %). En conclusión, la aplicación de pretratamientos, especialmente la osmodeshidratación, mejora significativamente la calidad fisicoquímica y sensorial de la berenjena frita al vacío, siendo una alternativa prometedora para su industrialización.spa
dc.description.abstractEggplant (Solanum melongena L.) is a vegetable of high nutritional value and industrial potential, widely cultivated in tropical and subtropical regions. This study aimet to determine the kinetic parameters of mass transfer, color change, and fracture force in eggplant slices subjected to different pretreatments during vacuum immersion frying. Three pretreatments were evaluated: control (no pretreatment), blanching, and osmotic dehydration in a sucrose - NaCl solution (ratio: 7.5:1). The slices (diameter: 3.5 ± 0.001 cm, thickness: 2.4 ± 0.2 mm) were fried under vacuum conditions (180 mm Hg) in vegetable oil (soybean: palm), at different temperatures and times, using a slince-to-oil ratio of 7:1 (slices per liter of oil). Moisture los, oil uptake, color parameters (L*, a*, b*, ΔE*), fracture force, and sensory preference were analyzed using 101 untrained panelists. Results showed that osmotic dehydration significantly reduced oil absorption (up to 91 %) and improved texture, while blanching provided the highest color retention, with an average value of 23.71 % compared to the control (ΔE* average: 19.41). The kinetics of oil absorption fitted well to both the Moyano and Pedreschi model and the first-order model. In the sensory evaluation, osmotic-dehydrated samples received the highest preference (91 %) and purchase intention (81 %). In conclusion, the application of pretreatments, especially osmotic dehydration, significatly improves the physicochemical and sensory quality of vacuum-fried eggplant, positioning it as a promising alternative for industrial processing.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agroalimentarias
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsLISTA DE TABLASspa
dc.description.tableofcontentsLISTA DE FIGURAS
dc.description.tableofcontentsLISTA DE ANEXOS
dc.description.tableofcontentsLISTA DE SÍMBOLOS Y ABREVIATURAS
dc.description.tableofcontentsRESUMEN
dc.description.tableofcontentsABSTRACT
dc.description.tableofcontents1. INTRODUCCIÓN
dc.description.tableofcontents2. REVISIÓN DE LITERATURA
dc.description.tableofcontents2.1 La berenjena
dc.description.tableofcontents2.2 Proceso de freído
dc.description.tableofcontents2.3 Freído al vacío
dc.description.tableofcontents2.4 Transferencia de calor durante el proceso de freído
dc.description.tableofcontents2.5 Transferencia de masa durante el proceso de freído
dc.description.tableofcontents2.5.1 Modelo matemático de pérdida de agua
dc.description.tableofcontents2.5.2 Modelos matemáticos de absorción de aceite
dc.description.tableofcontents2.6 El color durante el proceso de freído
dc.description.tableofcontents2.6.1 Modelamiento de los cambios de color
dc.description.tableofcontents2.7 Cambios de textura durante el proceso de freído
dc.description.tableofcontents2.7.1 Modelamiento de la fuerza de fractura durante el freído
dc.description.tableofcontents2.8 Osmodeshidratación
dc.description.tableofcontents2.9 Escaldado
dc.description.tableofcontents3. OBJETIVOS
dc.description.tableofcontents3.1 Objetivo General
dc.description.tableofcontents3.2 Objetivos Específicos
dc.description.tableofcontents3. MATERIALES Y MÉTODOS
dc.description.tableofcontents3.1 Tipo de investigación
dc.description.tableofcontents3.2 Universo de estudio
dc.description.tableofcontents3.3 Localización
dc.description.tableofcontents3.4 Variables
dc.description.tableofcontents3.4.1 Variables independientes
dc.description.tableofcontents3.4.2 Variables dependientes
dc.description.tableofcontents3.5 Métodos
dc.description.tableofcontents3.5.1 Preparación de la materia prima
dc.description.tableofcontents3.5.2 Pretratamientos
dc.description.tableofcontents3.5.3 Freído por inmersión al vacío
dc.description.tableofcontents3.5.4 Humedad
dc.description.tableofcontents3.5.5 Contenido de aceite
dc.description.tableofcontents3.5.6 Medición de color
dc.description.tableofcontents3.5.7 Fuerza máxima de fractura
dc.description.tableofcontents3.5.8 Prueba sensorial de preferencia por ordenamiento e intención de compra
dc.description.tableofcontents3.6 Diseño experimental y análisis estadístico
dc.description.tableofcontents4. RESULTADOS Y DISCUSIONES
dc.description.tableofcontents4.1 Cinética de pérdida de humedad durante el freído al vacío de rodajas de berenjena
dc.description.tableofcontents4.2 Cinética de absorción de aceite durante el freído al vacío de rodajas de berenjena
dc.description.tableofcontents4.3 Cinética de cambio de color durante el freído al vacío de rodajas de berenjena
dc.description.tableofcontents4.4 Cinética de cambio en la fuerza de fractura
dc.description.tableofcontents4.5 Evaluación sensorial
dc.description.tableofcontents5. CONCLUSIONES
dc.description.tableofcontents6. RECOMENDACIONES
dc.description.tableofcontents7. REFERENCIAS BIBLIOGRÁFICAS
dc.description.tableofcontentsANEXOS
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9502
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBerástegui, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Agroalimentarias
dc.relation.referencesAcevedo C., D., Montero, P. M., Meza, J. R., Sandrith Sampayo, R., & Martelo, R. J. (2022). Evaluation of the Thermophysical, Sensory, and Microstructural Properties of Colombian Coastal Carimañola Obtained by Atmospheric and Vacuum Frying. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7251584
dc.relation.referencesAfshari, F., Seraj, H., Sadat Hashemi, Z., Timajchi, M., Ensiyeh, O., Ladan, G., Asadi, M., Elyasi, Z., & Ganjibakhsh, M. (2018). The Cytotoxic Effects of Eggplant Peel Extract on Human Gastric Adenocarcinoma Cells and Normal Cells. Modern Medical Laboratory Journal, 1(2), 77–83. https://doi.org/10.30699/mmlj17.1.2.77
dc.relation.referencesAgronet. (2023). Área, producción y rendimiento nacional de berenjena. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesAl Faruq, A., Zhang, M., & Adhikari, B. (2019). A novel vacuum frying technology of apple slices combined with ultrasound and microwave. Ultrasonics Sonochemistry, 52, 522–529. https://doi.org/10.1016/j.ultsonch.2018.12.033
dc.relation.referencesAl-Khusaibi, M. K., & Niranjan, K. (2012). The Impact of Blanching and High-Pressure Pretreatments on Oil Uptake of Fried Potato Slices. Food and Bioprocess Technology, 5(6), 2392–2400. https://doi.org/10.1007/S11947-011-0562-2
dc.relation.referencesAmiryousefi, M. R., Mohebbi, M., & Khodaiyan, F. (2014). Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes. Meat Science, 96(1), 172–178. https://doi.org/10.1016/J.MEATSCI.2013.06.018
dc.relation.referencesAndo, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46. https://doi.org/10.1016/J.LWT.2016.03.019
dc.relation.referencesAOAC International. (1995). Official Methods of Analysis of AOAC International. In AOAC International (925.10; 16th ed.).
dc.relation.referencesAOAC International. (2005). Official methods of analysis of AOAC International (18th ed.).
dc.relation.referencesArias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la Transferencia de Masa en la Deshidratación Osmótica de Mango (Mangifera indica L.) var. Tommy Atkins en Función de la Temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006
dc.relation.referencesAstráin-Redín, L., Raso, J., Álvarez, I., Kirkhus, B., Meisland, A., Borge, G. I. A., & Cebrián, G. (2023). New pulsed electric fields approach to improve the blanching of carrots. LWT, 189, 115468. https://doi.org/10.1016/J.LWT.2023.115468
dc.relation.referencesAyustaningwarno, F., Fogliano, V., Verkerk, R., & Dekker, M. (2021). Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Research International, 143, 110230. https://doi.org/10.1016/J.FOODRES.2021.110230
dc.relation.referencesAyustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020a). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7, 544038. https://doi.org/10.3389/FNUT.2020.00095/BIBTEX
dc.relation.referencesAyustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020b). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00095
dc.relation.referencesBassama, J., Brat, P., Boulanger, R., Günata, Z., & Bohuon, P. (2012). Modeling deep-fat frying for control of acrylamide reaction in plantain. Journal of Food Engineering, 113(1), 156–166. https://doi.org/10.1016/J.JFOODENG.2012.04.004
dc.relation.referencesBelkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018a). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062
dc.relation.referencesBelkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018b). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062
dc.relation.referencesBouchon, P., & Pyle, D. L. (2004). Studying Oil Absorption in Restructured Potato Chips. In JOURNAL OF FOOD SCIENCE (Vol. 69). www.ift.org
dc.relation.referencesBourne, M. (2002). Food Texture and Viscosity: Concept and Measurement. Google Libros. https://books.google.es/books?hl=es&lr=&id=S2HNnvSOuf8C&oi=fnd&pg=PP2&dq=Texture+and+viscosity+of+foods:+concept+and+measurement&ots=u-LTuq_Tzo&sig=l7MRrobp9WiJUMEUX06QIkEM7Xk#v=onepage&q&f=false
dc.relation.referencesBravo, J., Sanjuán, N., Ruales, J., & Mulet, A. (2009). Modeling the Dehydration of Apple Slices by Deep Fat Frying. Drying Technology, 27(6), 782–786. https://doi.org/10.1080/07373930902828187
dc.relation.referencesCabrera-Valle, D. I., & Casillas, M. I. (2023). Diseño del proceso de deshidratación osmótica para Cidrayota (Sechium edule) de la variedad virens levis. Ciencias Técnicas y Aplicadas, 8, 1822–1849. https://doi.org/10.23857/pc.v8i12.6791
dc.relation.referencesCadena-Torres, J., Perez-Cantero, S. P., Romero-Ferrer, J. L., & Perez-Cantero, K. L. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141–152. https://doi.org/10.21897/RTA.V25I2.2357
dc.relation.referencesChandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. In Food Research International (Vol. 52, Issue 1, pp. 243–261). https://doi.org/10.1016/j.foodres.2013.02.033
dc.relation.referencesChuquillanqui Antialón, M. (2014). Influencia de la temperatura y pre-tratamiento osmótico en el tiempo de secado y coeficientes de transferencia de masa y calor en el deshidratado de pera (Pyrus cummunis). [Universidad Nacional del Centro del Perú]. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/2650/Chuquillanqui%20Antialon.pdf?sequence=1&isAllowed=y
dc.relation.referencesDadmohammadi, Y., & Datta, A. K. (2022). Food as porous media: a review of the dynamics of porous properties during processing. In Food Reviews International (Vol. 38, Issue 5, pp. 953–985). Taylor and Francis Ltd. https://doi.org/10.1080/87559129.2020.1761376
dc.relation.referencesDaunay, M.-C., & Jnick, J. (2007). History and Iconography of Eggplant. Chronica Horticulturae, 47, 16–22.
dc.relation.referencesde Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., Resende, N. S., & de Barros Vilas Boas, E. V. (2017). Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science & Emerging Technologies, 41, 10–18. https://doi.org/10.1016/J.IFSET.2017.01.006
dc.relation.referencesDehghannya, J., & Ngadi, M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116, 786–801. https://doi.org/10.1016/J.TIFS.2021.03.033
dc.relation.referencesDella Rocca, P., & Mascheroni, R. H. (2010). Modelado matemático del proceso de deshidratación osmótica utilizado como pretratamiento en el secado de papas. Proyecciones, 8, 25–32. https://www.researchgate.net/publication/328580875
dc.relation.referencesDevi, S., Zhang, M., & Law, C. L. (2018). Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience, 25, 111–117. https://doi.org/10.1016/J.FBIO.2018.08.004
dc.relation.referencesDevseren, E., Okut, D., Koç, M., Ocak, Ö. Ö., Karataş, H., & Kaymak-Ertekin, F. (2021). Effect of vacuum frying conditions on quality of french fries and frying oil. Acta Chimica Slovenica, 68(1), 25–36. https://doi.org/10.17344/acsi.2020.5886
dc.relation.referencesDigiRoads Research. (2024). Informe del mercado mundial de snacks | Tamaño del mercado, análisis de la industria, oportunidades de crecimiento y pronóstico (2025-2030). Mercado Mundial de Snacks . https://digiroadsresearch.com/es/report/snack-food-market/?srsltid=AfmBOopUWgMgdS-zJ08JkTwW94f43D7OyOYm911xaj3-Af6YYIZ1ylhz&utm_source=chatgpt.com
dc.relation.referencesDueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149. https://doi.org/10.1016/j.foodchem.2009.08.027
dc.relation.referencesErdoǧdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering, 68(2), 233–238. https://doi.org/10.1016/J.JFOODENG.2004.05.038
dc.relation.referencesEspinosa Carvajal, M., Correa Alvarez, E., Cantero Rivero, J., Bolaños Benavides, M., Corzo Estepa, J., León Pacheco, R., & Luna Castellanos, L. (2020). Interacción caballoneo y nutrición sobre fenología y rendimiento de la berenjena en el Valle del Sinú, Colombia. Avances en Investigación Agropecuaria, 57–70. https://repository.agrosavia.co/bitstream/handle/20.500.12324/40157/Ver_Documento_40157.pdf?sequence=1&isAllowed=y
dc.relation.referencesFan, L. P., Zhang, M., & Mujumdar, A. S. (2005). Vacuum frying of carrot chips. Drying Technology, 23(3), 645–656. https://doi.org/10.1081/DRT-200054159
dc.relation.referencesFAOSTAT. (2023, November 28). Cultivos y productos de ganadería. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. https://www.fao.org/faostat/es/#data/QCL
dc.relation.referencesFarkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/10.1016/0260-8774(95)00072-0
dc.relation.referencesFaruq, A. Al, Zhang, M., & Fan, D. (2019). Modeling the dehydration and analysis of dielectric properties of ultrasound and microwave combined vacuum frying apple slices. Drying Technology, 37(3), 409–423. https://doi.org/10.1080/07373937.2018.1465433
dc.relation.referencesFiorentini, C., Demarchi, S. M., Quintero Ruiz, N. A., Torrez Irigoyen, R. M., & Giner, S. A. (2015). Arrhenius activation energy for water diffusion during drying of tomato leathers: The concept of characteristic product temperature. Biosystems Engineering, 132, 39–46. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.02.004
dc.relation.referencesGarcía, E., Hernández, E., De Paula, C., & Aramendiz, H. (2003). BROMATOLOGICAL CHARACTERIZATION OF EGGPLANT (Solanum melongena L.) IN THE STATE OF CORDOBA. Temas Agrarios, 8(1), 27–32.
dc.relation.referencesGarcía-Segovia, P., Urbano-Ramos, A. M., Fiszman, S., & Martínez-Monzó, J. (2016a). Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology, 69, 515–521. https://doi.org/10.1016/J.LWT.2016.02.014
dc.relation.referencesGoñi, S. M., & Salvadori, V. O. (2015). MEDICIÓN DE COLOR DE ALIMENTOS EN EL ESPACIO CIELAB A PARTIR DE IMÁGENES. UNLP, 526–531.
dc.relation.referencesGuevara-Betancourth, C., Arango, O., Suárez-Montenegro, Z. J., Tirado, D. F., & Osorio, O. (2025). Comparison of Vacuum and Atmospheric Deep-Fat Frying of Osmo-Dehydrated Goldenberries. Processes, 13(1). https://doi.org/10.3390/pr13010050
dc.relation.referencesHeras, I., Alvis, A., & Arrazola, G. (2013). Optimización del Proceso de Extracción de Antocianinas y Evaluación de la Capacidad Antioxidante de Berenjena (Solana melonera L.). Información Tecnológica, 24(5), 93–102. https://doi.org/10.4067/S0718-07642013000500011
dc.relation.referencesHeredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/10.1016/J.LWT.2014.02.038
dc.relation.referencesICONTEC. (1996). NTC 3884. Análisis sensorial. Guía general para el diseño de cuartos de prueba. In ICONTEC (NTC 3884). NTC 3884. https://es.scribd.com/doc/127542666/NTC3884-pdf
dc.relation.referencesIglesias-Carres, L., Racine, K. C., Chadwick, S., Nunn, C., Kalambur, S. B., Neilson, A. P., & Ferruzzi, M. G. (2023). Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. LWT, 179, 114682. https://doi.org/10.1016/J.LWT.2023.114682
dc.relation.referencesIm, K., Lee, J. Y., Byeon, H., Hwang, K. W., Kang, W., Whang, W. K., & Min, H. (2016). In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food and Agricultural Immunology, 27(6), 758–771. https://doi.org/10.1080/09540105.2016.1150427
dc.relation.referencesIslam, M., Zhang, M., & Fan, D. (2019). Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes. Drying Technology, 37(16), 2087–2104. https://doi.org/10.1080/07373937.2018.1558234
dc.relation.referencesJunqueira, J. R., Corrêa Gomes, J. L., de Mendonça, K. S., de Mello Junior, R. E., & Souza, A. U. (2020). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439–448. https://doi.org/10.1590/FST.02420
dc.relation.referencesJunqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E., & de Souza, A. U. (2018). Pulsed Vacuum Osmotic Dehydration of Beetroot, Carrot and Eggplant Slices: Effect of Vacuum Pressure on the Quality Parameters. Food and Bioprocess Technology, 11(10), 1863–1875. https://doi.org/10.1007/S11947-018-2147-9/METRICS
dc.relation.referencesKaur, H., Rai, K. N., & Upadhyay, S. (2022). A numerical study of moving boundary problem involving dual phase lag model of heat mass transfer during immersion frying. Mathematics and Computers in Simulation, 202, 79–100. https://doi.org/10.1016/J.MATCOM.2022.05.025
dc.relation.referencesKrokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44(1), 39–46. https://doi.org/10.1016/S0260-8774(99)00163-6
dc.relation.referencesLiberty, J. T., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050
dc.relation.referencesLiu, C., Lv, M., Du, H., Deng, H., Zhou, L., Li, P., Li, X., & Li, B. (2023). Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods, 12(11), 2147. https://doi.org/10.3390/FOODS12112147
dc.relation.referencesLiu, S., Dong, H., Ji, W., Zhang, M., Duan, W., & Wang, X. (2023). Change in physicochemical properties, aroma components, and potentially beneficial compounds during the stir-frying of Massa Medicata Fermentata. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100340
dc.relation.referencesMaity, T., Bawa, A. S., & Raju, P. S. (2014). Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science, 2014. https://doi.org/10.1155/2014/752047
dc.relation.referencesMartínez Reina, A. M., Tordecilla Zumaqué, L., Grandett Martínez, L. M., & Rodríguez Pinto, M. del V. (2021). Eficiencia técnica del cultivo de berenjena (Solanum melongena L.) en zona productoras del caribe colombiano. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(3), 66–76. https://doi.org/10.53287/mvqd3972pu29t
dc.relation.referencesMeyer, R. S., Bamshad, M., Fuller, D. Q., & Litt, A. (2014). Comparing Medicinal Uses of Eggplant and Related Solanaceae in China, India, and the Philippines Suggests the Independent Development of Uses, Cultural Diffusion, and Recent Species Substitutions. Economic Botany, 68(2), 137–152. https://doi.org/10.1007/S12231-014-9267-6/METRICS
dc.relation.referencesMohammadalinejhad, S., & Dehghannya, J. (2018). Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innovative Food Science & Emerging Technologies, 47, 493–503. https://doi.org/10.1016/J.IFSET.2018.05.001
dc.relation.referencesMojaharul Islam, M., Zhang, M., Bhandari, B., & Guo, Z. (2019). A hybrid vacuum frying process assisted by ultrasound and microwave to enhance the kinetics of moisture loss and quality of fried edamame. Food and Bioproducts Processing, 118, 326–335. https://doi.org/10.1016/j.fbp.2019.10.004
dc.relation.referencesMorakabati, N., Shahidi, S. A., Roozbeh Nasiraie, L., Ghorbani-HasanSaraei, A., & Naghizadeh Raeisi, S. (2024). Vacuum frying of parsnip slices: Optimization by taguchi and response surface methodology and modeling the kinetics of water loss. Alexandria Engineering Journal, 100, 312–321. https://doi.org/10.1016/j.aej.2024.05.052
dc.relation.referencesMoreira, R. G., Sun, X., & Chen, Y. (1997). Factors affecting oil uptake in tortilla chips in deep-fat frying. Journal of Food Engineering, 31(4), 485–498. https://doi.org/10.1016/S0260-8774(96)00088-X
dc.relation.referencesMoreno, M. C., & Bouchon, P. (2008). A different perspective to study the effect of freeze, air, and osmotic drying on oil absorption during potato frying. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00669.x
dc.relation.referencesMosquera-Vivas, E. S., Ayala-Aponte, A. A., & Serna-Cock, L. (2019). Ultrasound and Osmotic Dehydration as Pre-treatments to Melon (Cucumis melo L.) Drying by Freeze-drying. Informacion Tecnologica, 30(3), 179–188. https://doi.org/10.4067/S0718-07642019000300179
dc.relation.referencesMowafy, S., Guo, J., Lei, D., & Liu, Y. (2024). Application of novel blanching and drying technologies improves the potato drying kinetics and maintains its physicochemical attributes and flour functional properties. Innovative Food Science & Emerging Technologies, 94, 103648. https://doi.org/10.1016/J.IFSET.2024.103648
dc.relation.referencesMoyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: Effect of solute impregnation. Drying Technology, 20(7), 1303–1318. https://doi.org/10.1081/DRT-120005854
dc.relation.referencesMoyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices:: Effect of pre-treatments. LWT - Food Science and Technology, 39(3), 285–291. https://doi.org/10.1016/J.LWT.2005.01.010
dc.relation.referencesNguyen, T. H., & Phan, H. T. (2022). Solutions for effective prevention of after-cooking discoloration in deep-fried eggplant (Solanum melongena L.). Agriculture and Natural Resources, 56(6), 1153–1162. https://doi.org/10.34044/j.anres.2022.56.6.09
dc.relation.referencesNiño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. South African Journal of Botany, 111, 161–169. https://doi.org/10.1016/J.SAJB.2017.03.016
dc.relation.referencesOke, E. K., Idowu, M. A., Sobukola, O. P., Adeyeye, S. A. O., & Akinsola, A. O. (2018). Frying of Food: A Critical Review. Journal of Culinary Science & Technology, 16(2), 107–127. https://doi.org/10.1080/15428052.2017.1333936
dc.relation.referencesOrtega, F. A., & Montes, E. J. (2014). Parámetros cinéticos de transferencia de masa durante el freído por inmersión de rodajas de yuca (Manihot esculenta Crantz). INGENIERÍA Y COMPETITIVIDAD, 16(2), 247–255. https://doi.org/10.25100/iyc.v16i2.3699
dc.relation.referencesOrtega-Quintana, F. A., Montes-Montes, E. J., Pérez-Sierra, O. A., & Vélez-Hernández, G. I. (2019). Effect of osmotic dehydration and temperature on color and fracture maximum force of yucca root slices in deep-fat frying. Informacion Tecnologica, 30(1), 311–320. https://doi.org/10.4067/S0718-07642019000100311
dc.relation.referencesPankaj, S. K., & Keener, K. M. (2017). A review and research trends in alternate frying technologies. Current Opinion in Food Science, 16, 74–79. https://doi.org/10.1016/J.COFS.2017.09.001
dc.relation.referencesPatra, A., Prasath, V. A., Sutar, P. P., Pandian, N. K. S., & Pandiselvam, R. (2022a). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162, 112074. https://doi.org/10.1016/J.FOODRES.2022.112074
dc.relation.referencesPedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001
dc.relation.referencesPedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599–604. https://doi.org/10.1016/J.LWT.2004.08.008
dc.relation.referencesPerez-Tinoco, M. R., Perez, A., Salgado-Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945–953. https://doi.org/10.1002/JSFA.3171
dc.relation.referencesPiyalungka, P., Sadiq, M. B., Assavarachan, R., & Nguyen, L. T. (2019). Effects of osmotic pretreatment and frying conditions on quality and storage stability of vacuum-fried pumpkin chips. International Journal of Food Science and Technology, 54(10), 2963–2972. https://doi.org/10.1111/ijfs.14209
dc.relation.referencesPooja, B. M. (2018). DEVELOPMENT AND EVALUATION OF PROCESS PROTOCOL FOR VACUUM FRIED BITTER GOURD CHIPS (Momordica charantia) [DEPARTMENT OF PROCESSING AND FOOD ENGINEERING KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY]. http://14.139.181.140:8080/xmlui/bitstream/handle/123456789/410/T430.pdf?sequence=1&isAllowed=y
dc.relation.referencesPraveena, N., Surya, R., Fairoosa, K., Rajesh, G. K., George, A. K., & Tasneem, S. A. F. (2024). Development and Quality Evaluation of Vacuum Fried Jackfruit (Artocarpus heterophyllus) Chips. Asian Journal of Dairy and Food Research, 43(1), 116–123. https://doi.org/10.18805/ajdfr.DR-1549
dc.relation.referencesPriyadarshini, A., Rayaguru, K., Biswal, A. K., Panda, P. K., Lenka, C., & Misra, P. K. (2023). Impact of conventional and ohmic blanching on color, phytochemical, structural, and sensory properties of mango (Mangifera indica L.) cubes: A comparative analysis. Food Chemistry Advances, 2, 100308. https://doi.org/10.1016/J.FOCHA.2023.100308
dc.relation.referencesPuente, L., Lastreto, S., José Mosqueda, M., & Saavedra, J. (2010). Influencia de un pre-tratamiento osmótico sobre la deshidratación por aire caliente de manzana Granny Smith. Dyna, 77, 274–283. https://www.redalyc.org/articulo.oa?id=49620414027
dc.relation.referencesRamesh, M. N., Wolf, W., Tevini, D., & Bognár, A. (2002). Microwave Blanching of Vegetables. Journal of Food Science, 67(1), 390–398. https://doi.org/10.1111/J.1365-2621.2002.TB11416.X
dc.relation.referencesRamya, V., & Jain, N. K. (2017). A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40(3), e12440. https://doi.org/10.1111/JFPE.12440
dc.relation.referencesRan, X., Lin, D., Zheng, L., Li, Y., & Yang, H. (2023). Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. Journal of Food Engineering, 350, 111457. https://doi.org/10.1016/J.JFOODENG.2023.111457
dc.relation.referencesRen, A., Pan, S., Li, W., Chen, G., & Duan, X. (2018). Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/4510126
dc.relation.referencesSalehi, F. (2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. International Journal of Food Properties, 22(1), 511–519. https://doi.org/10.1080/10942912.2019.1593616
dc.relation.referencesSalhuana, J., Siche, R., Abanto, L., Vásquez, V., Salhuana, J., Siche, R., Abanto, L., & Vásquez, V. (2022). Determinación del cambio de color en fritura de cuatro variedades de papa (Solanum tuberosum) utilizando visión computacional. Manglar, 19(1), 45–52. https://doi.org/10.17268/MANGLAR.2022.006
dc.relation.referencesSharma, P., Venugopal, A. P., & Sutar, P. P. (2024). Development of steam-impinged microwave-vacuum assisted blanching of ready-to-cook vegan patties. Innovative Food Science & Emerging Technologies, 92, 103595. https://doi.org/10.1016/J.IFSET.2024.103595
dc.relation.referencesSoto, M., Pérez, M. M., Servent, A., Vaillant, F., & Achir, N. (2021). Monitoring and modelling of physicochemical properties of papaya chips during vacuum frying to control their sensory attributes and nutritional value. Journal of Food Engineering, 299. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021.110514
dc.relation.referencesSu, Y., Zhang, M., Adhikari, B., Mujumdar, A. S., & Zhang, W. (2018). Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science and Emerging Technologies, 50, 148–159. https://doi.org/10.1016/j.ifset.2018.10.011
dc.relation.referencesSu, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2020). Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2020.104958
dc.relation.referencesSu, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2021a). Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Bioscience, 39, 100825. https://doi.org/10.1016/J.FBIO.2020.100825
dc.relation.referencesThongcharoenpipat, C., & Yamsaengsung, R. (2022). Improving the drying kinetics and microstructure of vacuum-fried ripened durian chips. International Journal of Food Science and Technology, 57(5), 2862–2871. https://doi.org/10.1111/ijfs.15547
dc.relation.referencesTizhe, J., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050
dc.relation.referencesTorres, J. D., Alvis, A., Acevedo, D., Montero, P. M., & Tirado, D. F. (2017). Optimización de las condiciones de fritura al vacío de rodajas de berenjena (Solanum melongena L.) utilizando la metodología de superficie de respuesta. Interciencia, 42(10), 683–691.
dc.relation.referencesTroncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT, 42(6), 1164–1173. https://doi.org/10.1016/j.lwt.2009.01.008
dc.relation.referencesVallejos Maureira, R. (2024). EFECTO DE LA DESHIDRATACIÓN DE LA PULPA DE CEREZA POR VENTANA DE REFRACTANCIA Y COMPARACIÓN ENTRE LA APLICACIÓN DE PRESIONES REDUCIDAS Y PRETRATAMIENTO POR ULTRASONIDO. Universidad de Chile.
dc.relation.referencesVaridi, M., Ahmadzadeh-Hashemi, S., & Nooshkam, M. (2023). Changes in fat uptake, color, texture, and sensory properties of Aloe vera gel-coated eggplant rings during deep-fat frying process. Food Science & Nutrition, 11(4), 2027–2035. https://doi.org/10.1002/FSN3.3238
dc.relation.referencesVerma, V., Singh, V., Chauhan, O. P., & Yadav, N. (2023). Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Innovative Food Science & Emerging Technologies, 83, 103233. https://doi.org/10.1016/J.IFSET.2022.103233
dc.relation.referencesWang, Y., Zhang, H., Cui, J., Gao, S., Bai, S., You, L., Ji, C., & Wang, S. (2024). Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Research International, 175, 113715. https://doi.org/10.1016/J.FOODRES.2023.113715
dc.relation.referencesXu, Z., Leong, S. Y., Farid, M., Silcock, P., Bremer, P., & Oey, I. (2020). Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods 2020, Vol. 9, Page 949, 9(7), 949. https://doi.org/10.3390/FOODS9070949
dc.relation.referencesYagua, C. V., & Moreira, R. G. (2011). Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 104(2), 272–283. https://doi.org/10.1016/J.JFOODENG.2010.12.018
dc.relation.referencesYamsaengsung, R., & Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part I: model development. Journal of Food Engineering, 53(1), 1–10. https://doi.org/10.1016/S0260-8774(01)00134-0
dc.relation.referencesYarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(4), 420. https://doi.org/10.22038/IJBMS.2021.50276.11452
dc.relation.referencesYildiz, A., Koray Palazoǧlu, T., & Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1), 11–17. https://doi.org/10.1016/J.JFOODENG.2006.01.021
dc.relation.referencesZhang, Y., Deng, Z., Li, H., Zheng, L., Liu, R., & Zhang, B. (2020). Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. Journal of Agricultural and Food Chemistry, 68(42), 11817–11828. https://doi.org/10.1021/ACS.JAFC.0C05224/ASSET/IMAGES/MEDIUM/JF0C05224_0008.GIF
dc.relation.referencesZhao, S., Wang, S., Lu, Q., & Liu, Y. (2024). Effect of calcium chloride blanching combined with acetic acid soaking pretreatment on oil absorption of fried potato chips. Food Chemistry, 460. https://doi.org/10.1016/j.foodchem.2024.140661
dc.relation.referencesZheng, T., & Moreira, R. G. (2020). Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon, 6(12). https://doi.org/10.1016/j.heliyon.2020.e05834
dc.relation.referencesZiaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsKinetic parameters
dc.subject.keywordsVacuum frying
dc.subject.keywordsMoisture
dc.subject.keywordsOil absorption
dc.subject.keywordsColor
dc.subject.keywordsFracture force
dc.subject.keywordsEggplant
dc.subject.proposalParámetros cinéticos
dc.subject.proposalFritura al vacío
dc.subject.proposalHumedad
dc.subject.proposalAbsorción de aceite
dc.subject.proposalColor
dc.subject.proposalFuerza de fractura
dc.subject.proposalBerenjena
dc.titleEvaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacíospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Informe Final Trabajo de Grado MCA_Victor_Gonzalez.pdf
Tamaño:
2.7 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Carta de autorización.pdf
Tamaño:
360.17 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones