Publicación: Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
dc.audience | ||
dc.contributor.advisor | Ortega Quintana, Fabián Alberto | |
dc.contributor.advisor | Caro Atehortúa, Diego Andrés | |
dc.contributor.author | González Peña, Víctor Javier | |
dc.contributor.jury | Vélez Hernández, Gabriel Ignacio | |
dc.contributor.jury | Díaz Ávila, William Yesid | |
dc.date.accessioned | 2025-07-28T23:14:29Z | |
dc.date.available | 2027-07-28 | |
dc.date.available | 2025-07-28T23:14:29Z | |
dc.date.issued | 2025-07-28 | |
dc.description.abstract | La berenjena (Solanum melongena L.) es una hortaliza de alto valor nutricional y potencial industrial, ampliamente cultivada en regiones tropicales y subtropicales. Este estudio tuvo como objetivo determinar los parámetros cinéticos de transferencia de masa, cambio de color y fuerza de fractura en rodajas de berenjena sometidas a distintos pretratamientos durante el freído por inmersión al vacío. Se evaluaron tres pretratamientos: control (sin pretratamiento), escaldado y osmodeshidratación en solución de sacarosa con NaCl (relación: 7.5:1). Las rodajas (diámetro: 3.5 ± 0.001 cm, espesor: 2.4 ± 0.2 mm) se frieron al vacío (180 mm Hg) en aceite vegetal (soya:palma), a distintas temperaturas y tiempos, con una relación rodajas:Litro aceite de 7:1. Se analizaron la perdida de humedad, absorción de aceite, parámetros de color (L*, a*, b*, ΔE*), fuerza de fractura y se realizó una prueba sensorial con 101 catadores no entrenados. Los resultados mostraron que la osmodeshidratación redujo significativamente la absorción de aceite (hasta un 91 %) y mejoró la textura, mientras que el escaldado presentó la mayor retención de color, con un valor promedio del 23.71 % respecto al control (ΔE* promedio: 19.41). La cinética de absorción de aceite se ajustó adecuadamente a los modelos de Moyano y Pedreschi y primer orden. En la evaluación sensorial, las muestras osmodeshidratadas obtuvieron la mayor preferencia (91 %) e intención de compra (81 %). En conclusión, la aplicación de pretratamientos, especialmente la osmodeshidratación, mejora significativamente la calidad fisicoquímica y sensorial de la berenjena frita al vacío, siendo una alternativa prometedora para su industrialización. | spa |
dc.description.abstract | Eggplant (Solanum melongena L.) is a vegetable of high nutritional value and industrial potential, widely cultivated in tropical and subtropical regions. This study aimet to determine the kinetic parameters of mass transfer, color change, and fracture force in eggplant slices subjected to different pretreatments during vacuum immersion frying. Three pretreatments were evaluated: control (no pretreatment), blanching, and osmotic dehydration in a sucrose - NaCl solution (ratio: 7.5:1). The slices (diameter: 3.5 ± 0.001 cm, thickness: 2.4 ± 0.2 mm) were fried under vacuum conditions (180 mm Hg) in vegetable oil (soybean: palm), at different temperatures and times, using a slince-to-oil ratio of 7:1 (slices per liter of oil). Moisture los, oil uptake, color parameters (L*, a*, b*, ΔE*), fracture force, and sensory preference were analyzed using 101 untrained panelists. Results showed that osmotic dehydration significantly reduced oil absorption (up to 91 %) and improved texture, while blanching provided the highest color retention, with an average value of 23.71 % compared to the control (ΔE* average: 19.41). The kinetics of oil absorption fitted well to both the Moyano and Pedreschi model and the first-order model. In the sensory evaluation, osmotic-dehydrated samples received the highest preference (91 %) and purchase intention (81 %). In conclusion, the application of pretreatments, especially osmotic dehydration, significatly improves the physicochemical and sensory quality of vacuum-fried eggplant, positioning it as a promising alternative for industrial processing. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Agroalimentarias | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | LISTA DE TABLAS | spa |
dc.description.tableofcontents | LISTA DE FIGURAS | |
dc.description.tableofcontents | LISTA DE ANEXOS | |
dc.description.tableofcontents | LISTA DE SÍMBOLOS Y ABREVIATURAS | |
dc.description.tableofcontents | RESUMEN | |
dc.description.tableofcontents | ABSTRACT | |
dc.description.tableofcontents | 1. INTRODUCCIÓN | |
dc.description.tableofcontents | 2. REVISIÓN DE LITERATURA | |
dc.description.tableofcontents | 2.1 La berenjena | |
dc.description.tableofcontents | 2.2 Proceso de freído | |
dc.description.tableofcontents | 2.3 Freído al vacío | |
dc.description.tableofcontents | 2.4 Transferencia de calor durante el proceso de freído | |
dc.description.tableofcontents | 2.5 Transferencia de masa durante el proceso de freído | |
dc.description.tableofcontents | 2.5.1 Modelo matemático de pérdida de agua | |
dc.description.tableofcontents | 2.5.2 Modelos matemáticos de absorción de aceite | |
dc.description.tableofcontents | 2.6 El color durante el proceso de freído | |
dc.description.tableofcontents | 2.6.1 Modelamiento de los cambios de color | |
dc.description.tableofcontents | 2.7 Cambios de textura durante el proceso de freído | |
dc.description.tableofcontents | 2.7.1 Modelamiento de la fuerza de fractura durante el freído | |
dc.description.tableofcontents | 2.8 Osmodeshidratación | |
dc.description.tableofcontents | 2.9 Escaldado | |
dc.description.tableofcontents | 3. OBJETIVOS | |
dc.description.tableofcontents | 3.1 Objetivo General | |
dc.description.tableofcontents | 3.2 Objetivos Específicos | |
dc.description.tableofcontents | 3. MATERIALES Y MÉTODOS | |
dc.description.tableofcontents | 3.1 Tipo de investigación | |
dc.description.tableofcontents | 3.2 Universo de estudio | |
dc.description.tableofcontents | 3.3 Localización | |
dc.description.tableofcontents | 3.4 Variables | |
dc.description.tableofcontents | 3.4.1 Variables independientes | |
dc.description.tableofcontents | 3.4.2 Variables dependientes | |
dc.description.tableofcontents | 3.5 Métodos | |
dc.description.tableofcontents | 3.5.1 Preparación de la materia prima | |
dc.description.tableofcontents | 3.5.2 Pretratamientos | |
dc.description.tableofcontents | 3.5.3 Freído por inmersión al vacío | |
dc.description.tableofcontents | 3.5.4 Humedad | |
dc.description.tableofcontents | 3.5.5 Contenido de aceite | |
dc.description.tableofcontents | 3.5.6 Medición de color | |
dc.description.tableofcontents | 3.5.7 Fuerza máxima de fractura | |
dc.description.tableofcontents | 3.5.8 Prueba sensorial de preferencia por ordenamiento e intención de compra | |
dc.description.tableofcontents | 3.6 Diseño experimental y análisis estadístico | |
dc.description.tableofcontents | 4. RESULTADOS Y DISCUSIONES | |
dc.description.tableofcontents | 4.1 Cinética de pérdida de humedad durante el freído al vacío de rodajas de berenjena | |
dc.description.tableofcontents | 4.2 Cinética de absorción de aceite durante el freído al vacío de rodajas de berenjena | |
dc.description.tableofcontents | 4.3 Cinética de cambio de color durante el freído al vacío de rodajas de berenjena | |
dc.description.tableofcontents | 4.4 Cinética de cambio en la fuerza de fractura | |
dc.description.tableofcontents | 4.5 Evaluación sensorial | |
dc.description.tableofcontents | 5. CONCLUSIONES | |
dc.description.tableofcontents | 6. RECOMENDACIONES | |
dc.description.tableofcontents | 7. REFERENCIAS BIBLIOGRÁFICAS | |
dc.description.tableofcontents | ANEXOS | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9502 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Berástegui, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Agroalimentarias | |
dc.relation.references | Acevedo C., D., Montero, P. M., Meza, J. R., Sandrith Sampayo, R., & Martelo, R. J. (2022). Evaluation of the Thermophysical, Sensory, and Microstructural Properties of Colombian Coastal Carimañola Obtained by Atmospheric and Vacuum Frying. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7251584 | |
dc.relation.references | Afshari, F., Seraj, H., Sadat Hashemi, Z., Timajchi, M., Ensiyeh, O., Ladan, G., Asadi, M., Elyasi, Z., & Ganjibakhsh, M. (2018). The Cytotoxic Effects of Eggplant Peel Extract on Human Gastric Adenocarcinoma Cells and Normal Cells. Modern Medical Laboratory Journal, 1(2), 77–83. https://doi.org/10.30699/mmlj17.1.2.77 | |
dc.relation.references | Agronet. (2023). Área, producción y rendimiento nacional de berenjena. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation.references | Al Faruq, A., Zhang, M., & Adhikari, B. (2019). A novel vacuum frying technology of apple slices combined with ultrasound and microwave. Ultrasonics Sonochemistry, 52, 522–529. https://doi.org/10.1016/j.ultsonch.2018.12.033 | |
dc.relation.references | Al-Khusaibi, M. K., & Niranjan, K. (2012). The Impact of Blanching and High-Pressure Pretreatments on Oil Uptake of Fried Potato Slices. Food and Bioprocess Technology, 5(6), 2392–2400. https://doi.org/10.1007/S11947-011-0562-2 | |
dc.relation.references | Amiryousefi, M. R., Mohebbi, M., & Khodaiyan, F. (2014). Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes. Meat Science, 96(1), 172–178. https://doi.org/10.1016/J.MEATSCI.2013.06.018 | |
dc.relation.references | Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46. https://doi.org/10.1016/J.LWT.2016.03.019 | |
dc.relation.references | AOAC International. (1995). Official Methods of Analysis of AOAC International. In AOAC International (925.10; 16th ed.). | |
dc.relation.references | AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.). | |
dc.relation.references | Arias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la Transferencia de Masa en la Deshidratación Osmótica de Mango (Mangifera indica L.) var. Tommy Atkins en Función de la Temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006 | |
dc.relation.references | Astráin-Redín, L., Raso, J., Álvarez, I., Kirkhus, B., Meisland, A., Borge, G. I. A., & Cebrián, G. (2023). New pulsed electric fields approach to improve the blanching of carrots. LWT, 189, 115468. https://doi.org/10.1016/J.LWT.2023.115468 | |
dc.relation.references | Ayustaningwarno, F., Fogliano, V., Verkerk, R., & Dekker, M. (2021). Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Research International, 143, 110230. https://doi.org/10.1016/J.FOODRES.2021.110230 | |
dc.relation.references | Ayustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020a). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7, 544038. https://doi.org/10.3389/FNUT.2020.00095/BIBTEX | |
dc.relation.references | Ayustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020b). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00095 | |
dc.relation.references | Bassama, J., Brat, P., Boulanger, R., Günata, Z., & Bohuon, P. (2012). Modeling deep-fat frying for control of acrylamide reaction in plantain. Journal of Food Engineering, 113(1), 156–166. https://doi.org/10.1016/J.JFOODENG.2012.04.004 | |
dc.relation.references | Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018a). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062 | |
dc.relation.references | Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018b). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062 | |
dc.relation.references | Bouchon, P., & Pyle, D. L. (2004). Studying Oil Absorption in Restructured Potato Chips. In JOURNAL OF FOOD SCIENCE (Vol. 69). www.ift.org | |
dc.relation.references | Bourne, M. (2002). Food Texture and Viscosity: Concept and Measurement. Google Libros. https://books.google.es/books?hl=es&lr=&id=S2HNnvSOuf8C&oi=fnd&pg=PP2&dq=Texture+and+viscosity+of+foods:+concept+and+measurement&ots=u-LTuq_Tzo&sig=l7MRrobp9WiJUMEUX06QIkEM7Xk#v=onepage&q&f=false | |
dc.relation.references | Bravo, J., Sanjuán, N., Ruales, J., & Mulet, A. (2009). Modeling the Dehydration of Apple Slices by Deep Fat Frying. Drying Technology, 27(6), 782–786. https://doi.org/10.1080/07373930902828187 | |
dc.relation.references | Cabrera-Valle, D. I., & Casillas, M. I. (2023). Diseño del proceso de deshidratación osmótica para Cidrayota (Sechium edule) de la variedad virens levis. Ciencias Técnicas y Aplicadas, 8, 1822–1849. https://doi.org/10.23857/pc.v8i12.6791 | |
dc.relation.references | Cadena-Torres, J., Perez-Cantero, S. P., Romero-Ferrer, J. L., & Perez-Cantero, K. L. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141–152. https://doi.org/10.21897/RTA.V25I2.2357 | |
dc.relation.references | Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. In Food Research International (Vol. 52, Issue 1, pp. 243–261). https://doi.org/10.1016/j.foodres.2013.02.033 | |
dc.relation.references | Chuquillanqui Antialón, M. (2014). Influencia de la temperatura y pre-tratamiento osmótico en el tiempo de secado y coeficientes de transferencia de masa y calor en el deshidratado de pera (Pyrus cummunis). [Universidad Nacional del Centro del Perú]. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/2650/Chuquillanqui%20Antialon.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Dadmohammadi, Y., & Datta, A. K. (2022). Food as porous media: a review of the dynamics of porous properties during processing. In Food Reviews International (Vol. 38, Issue 5, pp. 953–985). Taylor and Francis Ltd. https://doi.org/10.1080/87559129.2020.1761376 | |
dc.relation.references | Daunay, M.-C., & Jnick, J. (2007). History and Iconography of Eggplant. Chronica Horticulturae, 47, 16–22. | |
dc.relation.references | de Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., Resende, N. S., & de Barros Vilas Boas, E. V. (2017). Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science & Emerging Technologies, 41, 10–18. https://doi.org/10.1016/J.IFSET.2017.01.006 | |
dc.relation.references | Dehghannya, J., & Ngadi, M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116, 786–801. https://doi.org/10.1016/J.TIFS.2021.03.033 | |
dc.relation.references | Della Rocca, P., & Mascheroni, R. H. (2010). Modelado matemático del proceso de deshidratación osmótica utilizado como pretratamiento en el secado de papas. Proyecciones, 8, 25–32. https://www.researchgate.net/publication/328580875 | |
dc.relation.references | Devi, S., Zhang, M., & Law, C. L. (2018). Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience, 25, 111–117. https://doi.org/10.1016/J.FBIO.2018.08.004 | |
dc.relation.references | Devseren, E., Okut, D., Koç, M., Ocak, Ö. Ö., Karataş, H., & Kaymak-Ertekin, F. (2021). Effect of vacuum frying conditions on quality of french fries and frying oil. Acta Chimica Slovenica, 68(1), 25–36. https://doi.org/10.17344/acsi.2020.5886 | |
dc.relation.references | DigiRoads Research. (2024). Informe del mercado mundial de snacks | Tamaño del mercado, análisis de la industria, oportunidades de crecimiento y pronóstico (2025-2030). Mercado Mundial de Snacks . https://digiroadsresearch.com/es/report/snack-food-market/?srsltid=AfmBOopUWgMgdS-zJ08JkTwW94f43D7OyOYm911xaj3-Af6YYIZ1ylhz&utm_source=chatgpt.com | |
dc.relation.references | Dueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149. https://doi.org/10.1016/j.foodchem.2009.08.027 | |
dc.relation.references | Erdoǧdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering, 68(2), 233–238. https://doi.org/10.1016/J.JFOODENG.2004.05.038 | |
dc.relation.references | Espinosa Carvajal, M., Correa Alvarez, E., Cantero Rivero, J., Bolaños Benavides, M., Corzo Estepa, J., León Pacheco, R., & Luna Castellanos, L. (2020). Interacción caballoneo y nutrición sobre fenología y rendimiento de la berenjena en el Valle del Sinú, Colombia. Avances en Investigación Agropecuaria, 57–70. https://repository.agrosavia.co/bitstream/handle/20.500.12324/40157/Ver_Documento_40157.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Fan, L. P., Zhang, M., & Mujumdar, A. S. (2005). Vacuum frying of carrot chips. Drying Technology, 23(3), 645–656. https://doi.org/10.1081/DRT-200054159 | |
dc.relation.references | FAOSTAT. (2023, November 28). Cultivos y productos de ganadería. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. https://www.fao.org/faostat/es/#data/QCL | |
dc.relation.references | Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/10.1016/0260-8774(95)00072-0 | |
dc.relation.references | Faruq, A. Al, Zhang, M., & Fan, D. (2019). Modeling the dehydration and analysis of dielectric properties of ultrasound and microwave combined vacuum frying apple slices. Drying Technology, 37(3), 409–423. https://doi.org/10.1080/07373937.2018.1465433 | |
dc.relation.references | Fiorentini, C., Demarchi, S. M., Quintero Ruiz, N. A., Torrez Irigoyen, R. M., & Giner, S. A. (2015). Arrhenius activation energy for water diffusion during drying of tomato leathers: The concept of characteristic product temperature. Biosystems Engineering, 132, 39–46. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.02.004 | |
dc.relation.references | García, E., Hernández, E., De Paula, C., & Aramendiz, H. (2003). BROMATOLOGICAL CHARACTERIZATION OF EGGPLANT (Solanum melongena L.) IN THE STATE OF CORDOBA. Temas Agrarios, 8(1), 27–32. | |
dc.relation.references | García-Segovia, P., Urbano-Ramos, A. M., Fiszman, S., & Martínez-Monzó, J. (2016a). Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology, 69, 515–521. https://doi.org/10.1016/J.LWT.2016.02.014 | |
dc.relation.references | Goñi, S. M., & Salvadori, V. O. (2015). MEDICIÓN DE COLOR DE ALIMENTOS EN EL ESPACIO CIELAB A PARTIR DE IMÁGENES. UNLP, 526–531. | |
dc.relation.references | Guevara-Betancourth, C., Arango, O., Suárez-Montenegro, Z. J., Tirado, D. F., & Osorio, O. (2025). Comparison of Vacuum and Atmospheric Deep-Fat Frying of Osmo-Dehydrated Goldenberries. Processes, 13(1). https://doi.org/10.3390/pr13010050 | |
dc.relation.references | Heras, I., Alvis, A., & Arrazola, G. (2013). Optimización del Proceso de Extracción de Antocianinas y Evaluación de la Capacidad Antioxidante de Berenjena (Solana melonera L.). Información Tecnológica, 24(5), 93–102. https://doi.org/10.4067/S0718-07642013000500011 | |
dc.relation.references | Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/10.1016/J.LWT.2014.02.038 | |
dc.relation.references | ICONTEC. (1996). NTC 3884. Análisis sensorial. Guía general para el diseño de cuartos de prueba. In ICONTEC (NTC 3884). NTC 3884. https://es.scribd.com/doc/127542666/NTC3884-pdf | |
dc.relation.references | Iglesias-Carres, L., Racine, K. C., Chadwick, S., Nunn, C., Kalambur, S. B., Neilson, A. P., & Ferruzzi, M. G. (2023). Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. LWT, 179, 114682. https://doi.org/10.1016/J.LWT.2023.114682 | |
dc.relation.references | Im, K., Lee, J. Y., Byeon, H., Hwang, K. W., Kang, W., Whang, W. K., & Min, H. (2016). In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food and Agricultural Immunology, 27(6), 758–771. https://doi.org/10.1080/09540105.2016.1150427 | |
dc.relation.references | Islam, M., Zhang, M., & Fan, D. (2019). Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes. Drying Technology, 37(16), 2087–2104. https://doi.org/10.1080/07373937.2018.1558234 | |
dc.relation.references | Junqueira, J. R., Corrêa Gomes, J. L., de Mendonça, K. S., de Mello Junior, R. E., & Souza, A. U. (2020). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439–448. https://doi.org/10.1590/FST.02420 | |
dc.relation.references | Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E., & de Souza, A. U. (2018). Pulsed Vacuum Osmotic Dehydration of Beetroot, Carrot and Eggplant Slices: Effect of Vacuum Pressure on the Quality Parameters. Food and Bioprocess Technology, 11(10), 1863–1875. https://doi.org/10.1007/S11947-018-2147-9/METRICS | |
dc.relation.references | Kaur, H., Rai, K. N., & Upadhyay, S. (2022). A numerical study of moving boundary problem involving dual phase lag model of heat mass transfer during immersion frying. Mathematics and Computers in Simulation, 202, 79–100. https://doi.org/10.1016/J.MATCOM.2022.05.025 | |
dc.relation.references | Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44(1), 39–46. https://doi.org/10.1016/S0260-8774(99)00163-6 | |
dc.relation.references | Liberty, J. T., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050 | |
dc.relation.references | Liu, C., Lv, M., Du, H., Deng, H., Zhou, L., Li, P., Li, X., & Li, B. (2023). Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods, 12(11), 2147. https://doi.org/10.3390/FOODS12112147 | |
dc.relation.references | Liu, S., Dong, H., Ji, W., Zhang, M., Duan, W., & Wang, X. (2023). Change in physicochemical properties, aroma components, and potentially beneficial compounds during the stir-frying of Massa Medicata Fermentata. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100340 | |
dc.relation.references | Maity, T., Bawa, A. S., & Raju, P. S. (2014). Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science, 2014. https://doi.org/10.1155/2014/752047 | |
dc.relation.references | Martínez Reina, A. M., Tordecilla Zumaqué, L., Grandett Martínez, L. M., & Rodríguez Pinto, M. del V. (2021). Eficiencia técnica del cultivo de berenjena (Solanum melongena L.) en zona productoras del caribe colombiano. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(3), 66–76. https://doi.org/10.53287/mvqd3972pu29t | |
dc.relation.references | Meyer, R. S., Bamshad, M., Fuller, D. Q., & Litt, A. (2014). Comparing Medicinal Uses of Eggplant and Related Solanaceae in China, India, and the Philippines Suggests the Independent Development of Uses, Cultural Diffusion, and Recent Species Substitutions. Economic Botany, 68(2), 137–152. https://doi.org/10.1007/S12231-014-9267-6/METRICS | |
dc.relation.references | Mohammadalinejhad, S., & Dehghannya, J. (2018). Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innovative Food Science & Emerging Technologies, 47, 493–503. https://doi.org/10.1016/J.IFSET.2018.05.001 | |
dc.relation.references | Mojaharul Islam, M., Zhang, M., Bhandari, B., & Guo, Z. (2019). A hybrid vacuum frying process assisted by ultrasound and microwave to enhance the kinetics of moisture loss and quality of fried edamame. Food and Bioproducts Processing, 118, 326–335. https://doi.org/10.1016/j.fbp.2019.10.004 | |
dc.relation.references | Morakabati, N., Shahidi, S. A., Roozbeh Nasiraie, L., Ghorbani-HasanSaraei, A., & Naghizadeh Raeisi, S. (2024). Vacuum frying of parsnip slices: Optimization by taguchi and response surface methodology and modeling the kinetics of water loss. Alexandria Engineering Journal, 100, 312–321. https://doi.org/10.1016/j.aej.2024.05.052 | |
dc.relation.references | Moreira, R. G., Sun, X., & Chen, Y. (1997). Factors affecting oil uptake in tortilla chips in deep-fat frying. Journal of Food Engineering, 31(4), 485–498. https://doi.org/10.1016/S0260-8774(96)00088-X | |
dc.relation.references | Moreno, M. C., & Bouchon, P. (2008). A different perspective to study the effect of freeze, air, and osmotic drying on oil absorption during potato frying. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00669.x | |
dc.relation.references | Mosquera-Vivas, E. S., Ayala-Aponte, A. A., & Serna-Cock, L. (2019). Ultrasound and Osmotic Dehydration as Pre-treatments to Melon (Cucumis melo L.) Drying by Freeze-drying. Informacion Tecnologica, 30(3), 179–188. https://doi.org/10.4067/S0718-07642019000300179 | |
dc.relation.references | Mowafy, S., Guo, J., Lei, D., & Liu, Y. (2024). Application of novel blanching and drying technologies improves the potato drying kinetics and maintains its physicochemical attributes and flour functional properties. Innovative Food Science & Emerging Technologies, 94, 103648. https://doi.org/10.1016/J.IFSET.2024.103648 | |
dc.relation.references | Moyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: Effect of solute impregnation. Drying Technology, 20(7), 1303–1318. https://doi.org/10.1081/DRT-120005854 | |
dc.relation.references | Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices:: Effect of pre-treatments. LWT - Food Science and Technology, 39(3), 285–291. https://doi.org/10.1016/J.LWT.2005.01.010 | |
dc.relation.references | Nguyen, T. H., & Phan, H. T. (2022). Solutions for effective prevention of after-cooking discoloration in deep-fried eggplant (Solanum melongena L.). Agriculture and Natural Resources, 56(6), 1153–1162. https://doi.org/10.34044/j.anres.2022.56.6.09 | |
dc.relation.references | Niño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. South African Journal of Botany, 111, 161–169. https://doi.org/10.1016/J.SAJB.2017.03.016 | |
dc.relation.references | Oke, E. K., Idowu, M. A., Sobukola, O. P., Adeyeye, S. A. O., & Akinsola, A. O. (2018). Frying of Food: A Critical Review. Journal of Culinary Science & Technology, 16(2), 107–127. https://doi.org/10.1080/15428052.2017.1333936 | |
dc.relation.references | Ortega, F. A., & Montes, E. J. (2014). Parámetros cinéticos de transferencia de masa durante el freído por inmersión de rodajas de yuca (Manihot esculenta Crantz). INGENIERÍA Y COMPETITIVIDAD, 16(2), 247–255. https://doi.org/10.25100/iyc.v16i2.3699 | |
dc.relation.references | Ortega-Quintana, F. A., Montes-Montes, E. J., Pérez-Sierra, O. A., & Vélez-Hernández, G. I. (2019). Effect of osmotic dehydration and temperature on color and fracture maximum force of yucca root slices in deep-fat frying. Informacion Tecnologica, 30(1), 311–320. https://doi.org/10.4067/S0718-07642019000100311 | |
dc.relation.references | Pankaj, S. K., & Keener, K. M. (2017). A review and research trends in alternate frying technologies. Current Opinion in Food Science, 16, 74–79. https://doi.org/10.1016/J.COFS.2017.09.001 | |
dc.relation.references | Patra, A., Prasath, V. A., Sutar, P. P., Pandian, N. K. S., & Pandiselvam, R. (2022a). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162, 112074. https://doi.org/10.1016/J.FOODRES.2022.112074 | |
dc.relation.references | Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001 | |
dc.relation.references | Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599–604. https://doi.org/10.1016/J.LWT.2004.08.008 | |
dc.relation.references | Perez-Tinoco, M. R., Perez, A., Salgado-Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945–953. https://doi.org/10.1002/JSFA.3171 | |
dc.relation.references | Piyalungka, P., Sadiq, M. B., Assavarachan, R., & Nguyen, L. T. (2019). Effects of osmotic pretreatment and frying conditions on quality and storage stability of vacuum-fried pumpkin chips. International Journal of Food Science and Technology, 54(10), 2963–2972. https://doi.org/10.1111/ijfs.14209 | |
dc.relation.references | Pooja, B. M. (2018). DEVELOPMENT AND EVALUATION OF PROCESS PROTOCOL FOR VACUUM FRIED BITTER GOURD CHIPS (Momordica charantia) [DEPARTMENT OF PROCESSING AND FOOD ENGINEERING KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY]. http://14.139.181.140:8080/xmlui/bitstream/handle/123456789/410/T430.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Praveena, N., Surya, R., Fairoosa, K., Rajesh, G. K., George, A. K., & Tasneem, S. A. F. (2024). Development and Quality Evaluation of Vacuum Fried Jackfruit (Artocarpus heterophyllus) Chips. Asian Journal of Dairy and Food Research, 43(1), 116–123. https://doi.org/10.18805/ajdfr.DR-1549 | |
dc.relation.references | Priyadarshini, A., Rayaguru, K., Biswal, A. K., Panda, P. K., Lenka, C., & Misra, P. K. (2023). Impact of conventional and ohmic blanching on color, phytochemical, structural, and sensory properties of mango (Mangifera indica L.) cubes: A comparative analysis. Food Chemistry Advances, 2, 100308. https://doi.org/10.1016/J.FOCHA.2023.100308 | |
dc.relation.references | Puente, L., Lastreto, S., José Mosqueda, M., & Saavedra, J. (2010). Influencia de un pre-tratamiento osmótico sobre la deshidratación por aire caliente de manzana Granny Smith. Dyna, 77, 274–283. https://www.redalyc.org/articulo.oa?id=49620414027 | |
dc.relation.references | Ramesh, M. N., Wolf, W., Tevini, D., & Bognár, A. (2002). Microwave Blanching of Vegetables. Journal of Food Science, 67(1), 390–398. https://doi.org/10.1111/J.1365-2621.2002.TB11416.X | |
dc.relation.references | Ramya, V., & Jain, N. K. (2017). A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40(3), e12440. https://doi.org/10.1111/JFPE.12440 | |
dc.relation.references | Ran, X., Lin, D., Zheng, L., Li, Y., & Yang, H. (2023). Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. Journal of Food Engineering, 350, 111457. https://doi.org/10.1016/J.JFOODENG.2023.111457 | |
dc.relation.references | Ren, A., Pan, S., Li, W., Chen, G., & Duan, X. (2018). Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/4510126 | |
dc.relation.references | Salehi, F. (2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. International Journal of Food Properties, 22(1), 511–519. https://doi.org/10.1080/10942912.2019.1593616 | |
dc.relation.references | Salhuana, J., Siche, R., Abanto, L., Vásquez, V., Salhuana, J., Siche, R., Abanto, L., & Vásquez, V. (2022). Determinación del cambio de color en fritura de cuatro variedades de papa (Solanum tuberosum) utilizando visión computacional. Manglar, 19(1), 45–52. https://doi.org/10.17268/MANGLAR.2022.006 | |
dc.relation.references | Sharma, P., Venugopal, A. P., & Sutar, P. P. (2024). Development of steam-impinged microwave-vacuum assisted blanching of ready-to-cook vegan patties. Innovative Food Science & Emerging Technologies, 92, 103595. https://doi.org/10.1016/J.IFSET.2024.103595 | |
dc.relation.references | Soto, M., Pérez, M. M., Servent, A., Vaillant, F., & Achir, N. (2021). Monitoring and modelling of physicochemical properties of papaya chips during vacuum frying to control their sensory attributes and nutritional value. Journal of Food Engineering, 299. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021.110514 | |
dc.relation.references | Su, Y., Zhang, M., Adhikari, B., Mujumdar, A. S., & Zhang, W. (2018). Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science and Emerging Technologies, 50, 148–159. https://doi.org/10.1016/j.ifset.2018.10.011 | |
dc.relation.references | Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2020). Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2020.104958 | |
dc.relation.references | Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2021a). Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Bioscience, 39, 100825. https://doi.org/10.1016/J.FBIO.2020.100825 | |
dc.relation.references | Thongcharoenpipat, C., & Yamsaengsung, R. (2022). Improving the drying kinetics and microstructure of vacuum-fried ripened durian chips. International Journal of Food Science and Technology, 57(5), 2862–2871. https://doi.org/10.1111/ijfs.15547 | |
dc.relation.references | Tizhe, J., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050 | |
dc.relation.references | Torres, J. D., Alvis, A., Acevedo, D., Montero, P. M., & Tirado, D. F. (2017). Optimización de las condiciones de fritura al vacío de rodajas de berenjena (Solanum melongena L.) utilizando la metodología de superficie de respuesta. Interciencia, 42(10), 683–691. | |
dc.relation.references | Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT, 42(6), 1164–1173. https://doi.org/10.1016/j.lwt.2009.01.008 | |
dc.relation.references | Vallejos Maureira, R. (2024). EFECTO DE LA DESHIDRATACIÓN DE LA PULPA DE CEREZA POR VENTANA DE REFRACTANCIA Y COMPARACIÓN ENTRE LA APLICACIÓN DE PRESIONES REDUCIDAS Y PRETRATAMIENTO POR ULTRASONIDO. Universidad de Chile. | |
dc.relation.references | Varidi, M., Ahmadzadeh-Hashemi, S., & Nooshkam, M. (2023). Changes in fat uptake, color, texture, and sensory properties of Aloe vera gel-coated eggplant rings during deep-fat frying process. Food Science & Nutrition, 11(4), 2027–2035. https://doi.org/10.1002/FSN3.3238 | |
dc.relation.references | Verma, V., Singh, V., Chauhan, O. P., & Yadav, N. (2023). Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Innovative Food Science & Emerging Technologies, 83, 103233. https://doi.org/10.1016/J.IFSET.2022.103233 | |
dc.relation.references | Wang, Y., Zhang, H., Cui, J., Gao, S., Bai, S., You, L., Ji, C., & Wang, S. (2024). Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Research International, 175, 113715. https://doi.org/10.1016/J.FOODRES.2023.113715 | |
dc.relation.references | Xu, Z., Leong, S. Y., Farid, M., Silcock, P., Bremer, P., & Oey, I. (2020). Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods 2020, Vol. 9, Page 949, 9(7), 949. https://doi.org/10.3390/FOODS9070949 | |
dc.relation.references | Yagua, C. V., & Moreira, R. G. (2011). Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 104(2), 272–283. https://doi.org/10.1016/J.JFOODENG.2010.12.018 | |
dc.relation.references | Yamsaengsung, R., & Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part I: model development. Journal of Food Engineering, 53(1), 1–10. https://doi.org/10.1016/S0260-8774(01)00134-0 | |
dc.relation.references | Yarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(4), 420. https://doi.org/10.22038/IJBMS.2021.50276.11452 | |
dc.relation.references | Yildiz, A., Koray Palazoǧlu, T., & Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1), 11–17. https://doi.org/10.1016/J.JFOODENG.2006.01.021 | |
dc.relation.references | Zhang, Y., Deng, Z., Li, H., Zheng, L., Liu, R., & Zhang, B. (2020). Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. Journal of Agricultural and Food Chemistry, 68(42), 11817–11828. https://doi.org/10.1021/ACS.JAFC.0C05224/ASSET/IMAGES/MEDIUM/JF0C05224_0008.GIF | |
dc.relation.references | Zhao, S., Wang, S., Lu, Q., & Liu, Y. (2024). Effect of calcium chloride blanching combined with acetic acid soaking pretreatment on oil absorption of fried potato chips. Food Chemistry, 460. https://doi.org/10.1016/j.foodchem.2024.140661 | |
dc.relation.references | Zheng, T., & Moreira, R. G. (2020). Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon, 6(12). https://doi.org/10.1016/j.heliyon.2020.e05834 | |
dc.relation.references | Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Kinetic parameters | |
dc.subject.keywords | Vacuum frying | |
dc.subject.keywords | Moisture | |
dc.subject.keywords | Oil absorption | |
dc.subject.keywords | Color | |
dc.subject.keywords | Fracture force | |
dc.subject.keywords | Eggplant | |
dc.subject.proposal | Parámetros cinéticos | |
dc.subject.proposal | Fritura al vacío | |
dc.subject.proposal | Humedad | |
dc.subject.proposal | Absorción de aceite | |
dc.subject.proposal | Color | |
dc.subject.proposal | Fuerza de fractura | |
dc.subject.proposal | Berenjena | |
dc.title | Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: