Publicación:
Morfología del desarrollo embrionario y uso de probióticos como herramienta biotecnológica en la fase larval de blanquillo Sorubim cuspicaudus

dc.contributor.advisorAtencio García, Víctor Julio
dc.contributor.advisorYepes Blandón, Jonny Andrés
dc.contributor.authorHerrera Cruz, Edwin Enrique
dc.date.accessioned2021-07-14T23:50:23Z
dc.date.available2022-07-08
dc.date.available2021-07-14T23:50:23Z
dc.date.issued2021-07-10
dc.description.abstractSorubim cuspicaudus, es un bagre migratorio de importancia comercial, categorizado como especie vulnerable a la extinción. Es fundamental el conocimiento del desarrollo embrionario en peces nativos con potencial para la acuicultura, porque permite identificar eventos morfológicos y cronológicos, necesarios para establecer prácticas de manejo durante las fases de incubación y larvicultura. Para evaluar el desarrollo embrionario y larval, se tomaron dos machos y una hembra en maduración final y se indujeron a la reproducción con una dosis de 10 µg de análogo de GnRH/kg de peso vivo. Los ovocitos seminados fueron incubados en un sistema de flujo ascendente de 60 L, a 28±0.5 °C. Se observaron embriones en etapa temprana (cigoto, clivaje, blástula y gástrula) a intervalos de 5 minutos y tardía (segmentación hasta eclosión) a intervalos de 15 y 30 minutos. Además, se evaluó el uso de Bacillus subtilis y Bacillus licheniformis en larvas de Sorubim cuspicaudus de 42 horas post-eclosión (peso 1.5±0.1mg, longitud total 5.7±0.4mm), las cuales fueron sometidas a cuatro diferentes niveles de inclusión de probióticos en el agua 0, 5, 10 y 20 ppm durante 22 días y se evaluaron parámetros de desempeño productivo (ganancia de peso GP, ganancia en longitud GL, tasa de crecimiento específico TCE, Sobrevivencia y resistencia al estrés). spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Biotecnologíaspa
dc.description.modalityTrabajo de Investigación y/o Extensiónspa
dc.description.tableofcontents1. INTRODUCCIÓN ....................................................................................................................8spa
dc.description.tableofcontents2. MARCO TEORICO Y ESTADO DEL ARTE ...............................................................................10spa
dc.description.tableofcontents2.1. Blanquillo Sorubim cuspicaudus ............................................................................10spa
dc.description.tableofcontents2.2. Desarrollo ontogénico .............................................................................................12spa
dc.description.tableofcontents2.2.1. Periodo de cigoto .............................................................................................13spa
dc.description.tableofcontents2.2.2. Periodo de escisión o clivaje ..........................................................................13spa
dc.description.tableofcontents2.2.3. Periodo de blástula ..........................................................................................13spa
dc.description.tableofcontents2.2.4. Periodo de gástrula..........................................................................................14spa
dc.description.tableofcontents2.2.5. Periodo de segmentación y organogénesis .................................................14spa
dc.description.tableofcontents2.2.6. Periodo de faríngula ........................................................................................15spa
dc.description.tableofcontents2.2.7. Eclosión .............................................................................................................15spa
dc.description.tableofcontents2.2.8. Periodo pos eclosión .......................................................................................15spa
dc.description.tableofcontents2.2.9. Manejo de larvas ..............................................................................................15spa
dc.description.tableofcontents2.2.10. Ontogenia del sistema digestivo ................................................................16spa
dc.description.tableofcontents2.3. Uso de probióticos en acuicultura. ........................................................................19spa
dc.description.tableofcontents2.3.1. Mecanismos de acción ....................................................................................20spa
dc.description.tableofcontents2.3.2. Bacillus sp. ........................................................................................................23spa
dc.description.tableofcontents2.3.3. Bacillus subtilis .................................................................................................26spa
dc.description.tableofcontents2.3.4. Bacillus licheniformis .......................................................................................26spa
dc.description.tableofcontents3. OBJETIVOS ..........................................................................................................................28spa
dc.description.tableofcontents3.1. Objetivo general .......................................................................................................28spa
dc.description.tableofcontents3.2. Objetivos específicos ..............................................................................................28spa
dc.description.tableofcontents4. MEDODOLOGIA ..................................................................................................................29spa
dc.description.tableofcontents4.1. Localización ..............................................................................................................29spa
dc.description.tableofcontents4.2. Fuente de peces ......................................................................................................29spa
dc.description.tableofcontents4.3. Recolección de gametos y fertilización .................................................................29spa
dc.description.tableofcontents4.4. Histología de las etapas embrionarias ..................................................................30spa
dc.description.tableofcontents4.5. Histología del desarrollo larvario ...........................................................................30spa
dc.description.tableofcontents4.6. Evaluación del efecto de la suplementación de probióticos Bacillus subtilis y Bacillus licheniformis en el desarrollo gastrointestinal de larvas de blanquillo. ..........31spa
dc.description.tableofcontents4.6.1. Crecimiento y sobrevivencia ..........................................................................32spa
dc.description.tableofcontents4.6.2. Análisis microbiológico del agua ....................................................................32spa
dc.description.tableofcontents4.6.3. Análisis histológico ..........................................................................................33spa
dc.description.tableofcontents4.6.4. Análisis estadístico ..........................................................................................33spa
dc.description.tableofcontents5. RESULTADOS ......................................................................................................................34spa
dc.description.tableofcontents5.1. Ontogenia .................................................................................................................34spa
dc.description.tableofcontents5.1.1. Período de zigoto (una célula) .......................................................................34spa
dc.description.tableofcontents5.1.2. Período de escisión (Clivaje) 2-64 células ...................................................35spa
dc.description.tableofcontents5.1.3. Período de blástula (1.5 a 4.37 HPF) ............................................................38spa
dc.description.tableofcontents5.1.4. Periodo gástrula (4.7 a 6.87 HPF) .................................................................40spa
dc.description.tableofcontents5.1.5. Periodo de segmentación y organogénesis (7.37 a 11.37 HPF)...............41spa
dc.description.tableofcontents5.1.6. Período de faríngula (11.87 a 13.37 HPF) ...................................................42spa
dc.description.tableofcontents5.1.7. Período de eclosión y desarrollo larvario temprano (15.92 HPF) .............43spa
dc.description.tableofcontents5.2. Probióticos ................................................................................................................54spa
dc.description.tableofcontents5.2.1. Desempeño productivo ...................................................................................54spa
dc.description.tableofcontents5.2.2. Tracto digestivo y pliegues intestinales ............................................................55spa
dc.description.tableofcontents5.2.3. Parámetros físico-químicos del agua ............................................................58spa
dc.description.tableofcontents5.2.4. Análisis microbiológico del agua ....................................................................59spa
dc.description.tableofcontents6. DISCUSION..........................................................................................................................60spa
dc.description.tableofcontents6.1. Desarrollo embrionario y larvario ...........................................................................60spa
dc.description.tableofcontents6.2. Probióticos ................................................................................................................66spa
dc.description.tableofcontents7. CONCLUSIONES ..................................................................................................................71spa
dc.description.tableofcontentsBIBLIOGRAFIA .............................................................................................................................72spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4316
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Biotecnologíaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSorubim cuspicaudusspa
dc.subject.keywordsOntogenyeng
dc.subject.keywordsProbioticseng
dc.subject.keywordsLarvicultureeng
dc.subject.keywordsFisheseng
dc.subject.proposalSorubim cuspicaudusspa
dc.subject.proposalOntogeniaspa
dc.subject.proposalProbióticosspa
dc.subject.proposalLarviculturaspa
dc.subject.proposalPecesspa
dc.titleMorfología del desarrollo embrionario y uso de probióticos como herramienta biotecnológica en la fase larval de blanquillo Sorubim cuspicaudusspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAdeoye, A., Yomla, R., Jaramillo, A., Rodiles, A., Merrifield, D., Davies, S. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture. 463, 61–70. http://dx.doi.org/10.1016/j.aquaculture.2016.05.028spa
dcterms.referencesAerts, J., Schaeck, M., De Swaef, E., Ampe, B., & Decostere, A. (2018). Vibrio lentus as a probiotic candidate lowers glucocorticoid levels in gnotobiotic sea bass larvae. Aquaculture, 492, 40-45.spa
dcterms.referencesAlbus, U. (2012). Guide for the Care and Use of Laboratory Animals (8th edn). Laboratory Animals, 46(3), 267–268. https://doi.org/10.1258/la.2012.150312spa
dcterms.referencesÁlvarez-Perdomo, Natalia, Castillo-Pastuzan, Edison, R, Gallardo-Aza, Novoa-Serna, Jairo F., & Eslava-Mocha, Pedro R. (2016). Eugenol como anestésico para el manejo de juveniles de Pavón (Cichla orinocensis). ORINOQUIA, 20(2), 30-33. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092016000200004&lng=en&tlng=esspa
dcterms.referencesAmorim, M., Gomes, B., Martins, Y., Sato, Y., Rizzo, E., Bazzoli, N. (2009). Early development of the silver catfish Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Heptapteridae) from the São Francisco River Basin, Brazil. Aquaculture Research, 40(2), 172-180.spa
dcterms.referencesArambam, K., Singh, S. K., Biswas, P., Patel, A. B., Jena, A. K., & Pandey, P. K. (2020). Influence of light intensity and photoperiod on embryonic development, survival and growth of threatened catfish Ompok bimaculatus early larvae. Journal of Fish Biology, 97(3), 740-752.spa
dcterms.referencesAtencio, V., Buelvas, V. M. P., Espitia, F. P., Mestra, R. O., & Carrasco, S. C. P. (2010). Manejo de la primera alimentación de dorada Brycon sinuensis ofreciendo larvas de bocachico Prochilodus magdalenae. Revista Colombiana de Ciencias Pecuarias, 23(3), 317-324.spa
dcterms.referencesAtencio-García, V., Kerguelén, E., Wadnipar, L., & Narváez, A. (2003). Manejo de la primera alimentación del bocachico (Prochilodus magdalenae). Revista MVZ Córdoba, 254-260. https://doi.org/10.21897/rmvz.1049spa
dcterms.referencesAvella, M. A., Place, A., Du, S. J., Williams, E., Silvi, S., Zohar, Y., & Carnevali, O. (2012). Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PloS one, 7(9). https://doi.org/10.1371/journal.pone.0045572spa
dcterms.referencesBalcázar, J., Decamp, O., Vendrell, D., De Blas, I., & Ruiz-Zarzuela, I. (2006). Health and nutritional properties of probiotics in fish and shellfish. Microbial Ecology in Health and Disease, 18(2), 65-70. DOI: 10.1080/08910600600799497spa
dcterms.referencesBegley, M., Hill, C., & Gahan, C. G. (2006). Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72(3), 1729-1738. DOI: 10.1128/AEM.72.3.1729-1738.2006spa
dcterms.referencesBenítez, J. V., & Nava, A. F. (2016). Contribución de la pesca artesanal a la seguridad alimentaria, el empleo rural y el ingreso familliar en países de América del Sur. Santiago de Chile. Obtenido de http://www. fao. org/3/bi5768s. pdf.spa
dcterms.referencesBoglione, C., Gavaia, P., Koumoundouros, G., Gisbert, E., Moren, M., Fontagné, S., & Witten, P. E. (2013). Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Reviews in Aquaculture, 5, S99-S120.spa
dcterms.referencesBolasina, S., Pérez, A., & Yamashita, Y. (2006). Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture, 252(2-4), 503-515.spa
dcterms.referencesBritz, P., Pienaar, A. (1992). Laboratory experiments on the effect of light and cover on the behaviour and growth of African catfish, Clarias gariepinus (Pisces: Clariidae). Journal of Zoology, 227(1), 43-62. https://doi.org/10.1111/j.1469-7998.1992.tb04343.xspa
dcterms.referencesBuendía, D., Díaz, J. A., Olaya-Nieto, C., Segura-Guevara, F., Brú-Cordero, S., & Tordecilla-Petro, G. (2006). Biología reproductiva del blanquillo (Sorubim cuspicaudus Littmann et al., 2000) en la cuenca del Río Sinú, Colombia. Revista MVZ Córdoba, 11(Su1), 71-78.spa
dcterms.referencesCai, Y., Yuan, W., Wang, S., Guo, W., Li, A., Wu, Y., & Zhou, Y. (2019). In vitro screening of putative probiotics and their dual beneficial effects: To white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquaculture, 498, 61-71. https://doi.org/10.1016/j.aquaculture.2018.08.024spa
dcterms.referencesCao, H., Yu, R., Zhang, Y., Hu, B., Jian, S., Wen, C., & Yang, G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508, 106-112. https://doi.org/10.1016/j.aquaculture.2019.04.064spa
dcterms.referencesCarnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1-4), 430-438. https://doi.org/10.1016/j.aquaculture.2006.04.025spa
dcterms.referencesCarnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: the role of probiotic. Aquaculture, 472, 144-155. http://dx.doi.org/10.1016/j.aquaculture.2016.03.037spa
dcterms.referencesCastro-Ruiz, D., Mozanzadeh, M., Fernández-Méndez, C., Andree, K., García-Dávila, C., Cahu, C., Darias, M. (2019). Ontogeny of the digestive enzyme activity of the Amazonian pimelodid catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture, 504, 210-218. https://doi.org/10.1016/j.aquaculture.2019-.01.059spa
dcterms.referencesÇelik, P., & Cirik, Ş. (2019). Embryonic and larval development of serpae tetra Hyphessobrycon eques (Steindachner, 1882). Aquaculture Research, 51(1), 292-306. DOI: 10.1111/are.14375spa
dcterms.referencesCerdà, J. (2002). Mecanismos fisiológicos durante la hidratación del huevo de teleósteos: hacia el desarrollo de nuevos métodos de criopreservación. Boletín. Instituto Español de Oceanografía, 18(1-4), 145-152.spa
dcterms.referencesCerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. Á., & Esteban, M. Á. (2012). Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell and tissue research, 350(3), 477-489. DOI 10.1007/s00441-012-1495-4spa
dcterms.referencesChapman, F. 2000. Farm-Raised Channel Catfish. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS.spa
dcterms.referencesChen, B., Peng, M., Tong, W., Zhang, Q., & Song, Z. (2020). The quorum quenching bacterium Bacillus licheniformis T-1 protects zebrafish against Aeromonas hydrophila infection. Probiotics and antimicrobial proteins, 12(1), 160-171.spa
dcterms.referencesChu, W., Lu, F., Zhu, W., & Kang, C. (2011). Isolation and characterization of new potential probiotic bacteria based on quorum‐sensing system. Journal of applied microbiology, 110(1), 202-208.spa
dcterms.referencesDahl, G. (1971). Los Peces del Norte de Colombia (p. 391). Bogotá DC: Ministerio de Agricultura, Instituto de Desarrollo de los recursos Naturales Renovables (INDERENA).spa
dcterms.referencesDarias, M. J., Castro‐Ruiz, D., Estivals, G., Quazuguel, P., Fernández‐Méndez, C., Núñez‐Rodríguez, J., Cahu, C. (2015). Influence of dietary protein and lipid levels on growth performance and the incidence of cannibalism in Pseudoplatystoma punctifer (Castelnau, 1855) larvae and early juveniles. Journal of Applied Ichthyology, 31, 74-82. doi: 10.1111/jai.12978spa
dcterms.referencesDe la Hoz-M. J., L. O. Duarte., L. Manjarrés–Martínez. (2017). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales e industriales de Colombia entre marzo y diciembre de 2017. Informe técnico. Autoridad Nacional de Acuicultura y Pesca (AU NAP), Universidad del Magdalena, 84 p.spa
dcterms.referencesDi, J., Chu, Z., Zhang, S., Huang, J., Du, H., & Wei, Q. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish and shellfish immunology, 93, 711-719. https://doi.org/10.1016/j.fsi .2019.08.020spa
dcterms.referencesDong, Y. H., Xu, J. L., Li, X. Z., & Zhang, L. H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 97(7), 3526-3531.spa
dcterms.referencesFaccioli, C., Chedid, R., Mori, R., do Amaral, A., Belmont, R., Vicentini, I., Vicentini, C. (2016). Organogenesis of the digestive system in Neotropical carnivorous freshwater catfish Hemisorubim platyrhynchos (Siluriformes: Pimelodidae). Aquaculture, 451, 205-212.spa
dcterms.referencesFaccioli, C. K., Chedid, R. A., do Amaral, A. C., Vicentini, I. B. F., & Vicentini, C. A. (2014). Morphology and histochemistry of the digestive tract in carnivorous freshwater Hemisorubim platyrhynchos (Siluriformes: Pimelodidae). Micron, 64, 10-19. https://doi.org/10.1016/j.micron.2014.03.011spa
dcterms.referencesFAO., Joint (2002). WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30.spa
dcterms.referencesFernández‐Méndez, C., David, F., Darias, M., Castro‐Ruiz, D., Núñez‐Rodríguez, J. (2015). Rearing of the Amazon catfish Pseudoplatystoma punctifer (Castelnau, 1855): weaning with dry and moist diets. Journal of Applied Ichthyology, 31, 83-87. https://doi.org/10.1111/jai.12979spa
dcterms.referencesFrías-Quintana, C., Márquez-Couturier, G., Álvarez-González, C., Tovar-Ramírez, D., Nolasco-Soria, H., Galaviz-Espinosa, M., Gisbert, E. (2015). Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiology and Biochemistry, 41(5), 1075-1091. DOI 10.1007/s10695-015-0070-9spa
dcterms.referencesGalvão, M., Fenerich-Verani, N., Yamanaka, N., Oliveira, I., 1997. Histologia do sistema digestivo da tainha Mugil platunus Gunther, 1880 (Osteithes, Mugilidae) durante as fases larval e juvenil. Bol. Inst. Pesca 24, 91–100.spa
dcterms.referencesGalvis, G., Mojica, J., & Camargo, M. (1997). Los peces del Catatumbo, Asociación Cravo Norte. Ecopetrol. Bogotá, Colombia, 118.spa
dcterms.referencesGillooly, J., Charnov, E., West, G., Savage, V., Brown, J. (2002). Effects of size and temperature on developmental time. Nature, 417(6884), 70-73.spa
dcterms.referencesGisbert, E., Nolasco, H., Solovyev, M. (2018). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487, 102-108. https://doi.org/10.1016/j.aquaculture.2018.01.004spa
dcterms.referencesGisbert, E., Moreira, C., Castro-Ruiz, D., Öztürk, S., Fernández, C., Gilles, S., García-Dávila, C. (2014). Histological development of the digestive system of the Amazonian pimelodid catfish Pseudoplatystoma punctifer. animal, 8(11), 1765-1776. doi:10.1017/S1751731114001797spa
dcterms.referencesGisbert, E., Castillo, M., Skalli, A., Andree, K. B., & Badiola, I. (2013). Bacillus cereus var. toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in Rainbow trout fingerlings. Journal of animal science, 91(6), 2766-2774. https://doi.org/10.2527/jas.2012-5414spa
dcterms.referencesGómez, E. M., Sánchez, C., & Mojica, C. P. (2018). Estudio histológico y morfológico del desarrollo embrionario del pez capitán de la sabana (Eremophilus mutisii). Revista UDCA Actualidad & Divulgación Científica, 21(2), 479-489. doi.org/10.31910/rudca.v21.n2.2018.1073spa
dcterms.referencesGovoni, J. J., Boehlert, G. W., & Watanabe, Y. (1986). The physiology of digestion in fish larvae. Environmental Biology of Fishes, 16(1-3), 59–77. https://doi.org/10.1007/bf00005160spa
dcterms.referencesGuo, M., Hao, G., Wang, B., Li, N., Li, R., Wei, L., & Chai, T. (2016). Dietary administration of Bacillus subtilis enhances growth performance, immune response and disease resistance in Cherry Valley ducks. Frontiers in microbiology, 7, 1975.spa
dcterms.referencesHoseinifar, S. H., Hosseini, M., Paknejad, H., Safari, R., Jafar, A., Yousefi, M., & Mozanzadeh, M. T. (2019). Enhanced mucosal immune responses, immune related genes and growth performance in common carp (Cyprinus carpio) juveniles fed dietary Pediococcus acidilactici MA18/5M and raffinose. Developmental & Comparative Immunology, 94, 59-65.spa
dcterms.referencesHoseinifar, S. H., Sun, Y. Z., & Caipang, C. M. (2017). Short‐chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquaculture Research, 48(4), 1380-1391. https://doi.org/10.1111/are.13239.spa
dcterms.referencesHosoi, T., Hirose, R., Saegusa, S., Ametani, A., Kiuchi, K., & Kaminogawa, S. (2003). Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). International journal of food microbiology, 82(3), 255-264.spa
dcterms.referencesInteraminense, J. A., Vogeley, J. L., Gouveia, C. K., Portela, R. W., Oliveira, J. P., Andrade, H. A., & Bezerra, R. S. (2018). In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture, 488, 114-122. https://doi.org/10.1016/j.aquaculture. 2018.01.027spa
dcterms.referencesInstituto Colombiano de Desarrollo Rural-INCODER y Corporación Colombia Internacional–CCI. (2007). Pesca y Acuicultura Colombia 2006. Corporación Colombia Internacional. Bogotá, Colombia.spa
dcterms.referencesIslam, A. (2005). Embryonic and larval development of Thai Pangas (Pangasius sutchi Fowler, 1937). Development, growth & differentiation, 47(1), 1-6.spa
dcterms.referencesJimenez-Martinez, L. D., Alvarez-González, C. A., Tovar-Ramírez, D., Gaxiola, G., Sanchez-Zamora, A., Moyano, F. J., & Palomino-Albarrán, I. G. (2012). Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). Fish Physiology and Biochemistry, 38(2), 441-454. DOI 10.1007/s10695-011-9525-9spa
dcterms.referencesJomori, R. K. (2005). Organismos vivos e dietas secas na larvicultura do pacu Piaractus mesopotamicus e o uso dos isótopos estáveis de carbono (δ13C) e nitrogênico (δ15N) como indicadores naturais da incorporação do alimento no tecido larval. Tese de Doutorado.spa
dcterms.referencesJomori, R. K., Carneiro, D. J., Malheiros, E. B., & Portella, M. C. (2003). Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1-4), 277-287.spa
dcterms.referencesKamler, E. (2002). Ontogeny of yolk-feeding fish: an ecological perspective. Reviews in Fish Biology and Fisheries, 12(1), 79-103.spa
dcterms.referencesKimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302.spa
dcterms.referencesKjørsvik, E., Galloway, T. F., Estevez, A., Sæle, Ø., & Moren, M. (2011). Effects of larval nutrition on development. Larval Fish Nutrition, 219-248.spa
dcterms.referencesKojima, J. T. (2012). Ponto-de-não-retorno e períodos de restrição alimentar nos parâmetros zootécnicos e no desenvolvimento muscular de larvas de pacu.spa
dcterms.referencesKong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. doi.org/10.1016/j.aquaculture.2020.-735852spa
dcterms.referencesKozarić, Z., Kužir, S., Petrinec, Z., Gjurčević, E., Božić, M. (2008). The development of the digestive tract in larval European catfish (Silurus glanis L.). Anatomia, histologia, embryologia, 37(2), 141-146.spa
dcterms.referencesKuebutornye, F., Tang, J., Cai, J., Yu, H., Wang, Z., Abarike, E., Afriyie, G. (2020). In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture, 735440. https://doi.org/10.1016/j.aquaculture.2020.735440spa
dcterms.referencesKumar, V., Roy, S., Meena, D. K., & Sarkar, U. K. (2016). Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science & Aquaculture, 24(4), 342-368. https://doi.org/10.1080/23308249.2016.1193841spa
dcterms.referencesLacerda, C. H. F., Hayashi, C., Soares, C. M., & Fernandes, C. E. B. (2010). Influence of aquatic plants on the predation of Piaractus mesopotamicus larvae by Pantala flavescens. Acta Scientiarum. Biological Sciences, 32(2), 147-151.spa
dcterms.referencesLazo, J.P., Darias, M.J., Gisbert, E., (2011). Ontogeny of the digestive tract. Larval fish nutrition (Holt, G. J., ed.). Wiley & Sons Inc., Chichester, pp. 5–46.spa
dcterms.referencesLencer, E., McCune, A. (2018). An embryonic staging series up to hatching for Cyprinodon variegatus: An emerging fish model for developmental, evolutionary, and ecological research. Journal of Morphology, 279(11), 1559-1578.spa
dcterms.referencesLi, I., Lee, S., Abe, G., Ota, K. (2019). Embryonic and postembryonic development of the ornamental twin‐tail goldfish. Developmental Dynamics, 248(4), 251-283.spa
dcterms.referencesLittmann, M. W., Burr, B. M., & Nass, P. (2000). Sorubim cuspicaudus, a new long-whiskered catfish from northwestern South America (Siluriformes: Pimelodidae). Proceedings-Biological Society Of Washington, 113(4), 900-917.spa
dcterms.referencesLozano, G., Hernández, D., Chaves, N., Valderrama, M., Mojica, J., & Gómez, F. (2017, December). Characterization of skin patterns in Pseudoplatystoma Magdaleniatum. In 2017 Sustainable Internet and ICT for Sustainability (SustainIT) (pp. 1-3). IEEE.spa
dcterms.referencesMa, Z., Guo, H., Zheng, P., Wang, L., Jiang, S., Qin, J., Zhang, D. (2014). Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus (Linnaeus 1758). Fish physiology and biochemistry, 40(4), 1157-1167.spa
dcterms.referencesMai, M. G., & Zaniboni-Filho, E. (2005). Efeito da idade de estocagem em tanques externos no desempenho da larvicultura do dourado Salminus brasiliensis (Osteichthyes, Characidae. Acta Scientiarum. Animal Sciences, 27(2), 287-296.spa
dcterms.referencesMartínez, P. C., Ibáñez, A. L., Monroy, O. H., & Ramírez, H. S. (2012). Use of probiotics in aquaculture. ISRN microbiology, 2012, 916845-916845. https:// doi.org/10.5402/2012/916845spa
dcterms.referencesMenossi, O. C. C., Takata, R., Sánchez-Amaya, M. I., Freitas, T. M. D., Yúfera, M., & Portella, M. C. (2012). Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia, 41(1), 1-10.spa
dcterms.referencesMerrifield, D. L., Harper, G. M., Mustafa, S., Carnevali, O., Picchietti, S., & Davies, S. J. (2011). Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell and Tissue Research, 344(1), 135-146. DOI 10.1007/s00441-010-1125-yspa
dcterms.referencesMidhun, S. J., Neethu, S., Arun, D., Vysakh, A., Divya, L., Radhakrishnan, E. K., & Jyothis, M. (2019). Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture, 505, 289-296.spa
dcterms.referencesMillán-Ocampo, Laura, Torres-Cortés, Anyi, Marín-Méndez, Gira Alejandra, Ramírez-Duart, Wilson, Vásquez-Piñeros, Mónica Andrea, & Schroniltgen Rondón-Barragán, Iang. (2012). CONCENTRACIÓN ANESTÉSICA DEL EUGENOL EN PECES ESCALARES (Pterophyllum scalare). Revista de Investigaciones Veterinarias del Perú, 23(2), 171-181. Recuperado en 31 de agosto de 2020, de http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=-S1609-91172012000200007&lng=es&tlng=es.spa
dcterms.referencesMoguel-Hernández, I., Peña, R., Nolasco-Soria, H., Dumas, S., & Zavala-Leal, I. (2014). Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae. Fish physiology and biochemistry, 40(3), 839-848. https://doi.org/10.1007/s10695-013-9890-7spa
dcterms.referencesMojica JI, Usma JS; Álvarez-León R, Lasso CA (Eds). 2012. Libro rojo de peces dulceacuícolas de Colombia 2012. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. Bogotá, D. C., Colombia, 155 pp.spa
dcterms.referencesMokhtar, D. M., Abd-Elhafez, E. A., & Hassan, A. H. (2015). Light and scanning electron microscopic studies on the intestine of grass carp (Ctenopharyngodon idella): I-anterior intestine. Journal of Aquaculture Research & Development, 6(11), 1. doi:10.4172/2155-9546.1000374spa
dcterms.referencesMukherjee, A., Chandra, G., & Ghosh, K. (2019). Single or conjoint application of autochthonous Bacillus strains as potential probiotics: Effects on growth, feed utilization, immunity and disease resistance in rohu, Labeo rohita (Hamilton). Aquaculture, 512, 734302. https://doi.org/10.1016/j.aquaculture.2019.734302spa
dcterms.referencesNayak, S. K. (2010). Probiotics and immunity: a fish perspective. Fish & shellfish immunology, 29(1), 2-14. https://doi.org/10.1016/j.fsi.2010.02.017spa
dcterms.referencesNewaj-Fyzul, A., Al-Harbi, A. H., & Austin, B. (2014). Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1-11. https://doi.org/10.1016/j.aquaculture.2013.08.026spa
dcterms.referencesNicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262-1267. DOI: 10.1126 / science.1223813spa
dcterms.referencesNinhaus-Silveira, A., Foresti, F., & De Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote, 217-229.spa
dcterms.referencesNwosu, B., & Holzlöhner, S. (2000). Influence of temperature on egg hatching, growth and survival of larvae of Heterobranchus longifilis Val. 1840 (Teleostei: Clariidae). Journal of Applied Ichthyology, 16(1), 20-23.spa
dcterms.referencesOkomoda, V., Tiamiyu, L., Wase, G. (2017). Effects of tank background colour on growth performance and feed utilization of African catfish Clarias gariepinus (Burchell, 1822) fingerlings. Croatian Journal of Fisheries: Ribarstvo, 75(1), 5-11. DOI:10.1515/cjf-2017-0002spa
dcterms.referencesOsman, A., Wuertz, S., Mekkawy, I., Verreth, J., Kirschbaum, F. (2008). Early development of the African catfish Clarias gariepinus (Burchell, 1822), focusing on the ontogeny of selected organs. Journal of Applied Ichthyology, 24(2), 187-195.spa
dcterms.referencesPaixão, P. E. G., do Couto, M. V. S., da Costa Sousa, N., Abe, H. A., Reis, R. G. A., Dias, J. A. R., & dos Santos Medeiros, E. (2020). Autochthonous bacterium Lactobacillus plantarum as probiotic supplementation for productive performance and sanitary improvements on clownfish Amphiprion ocellaris. Aquaculture, 735395. https://doi.org/10.1016/j.aquaculture.2020.735395spa
dcterms.referencesPapadakis, I., Kentouri, M., Divanach, P., Mylonas, C. (2018). Ontogeny of the eye of meagre (Argyrosomus regius) from hatching to juvenile and implications to commercial larval rearing. Aquaculture, 484, 32-43.spa
dcterms.referencesPardo-Carrasco, S., Salas Villalva, J., Reza Gaviria, L., Espinosa-Araujo, J. A., & Atencio-García, V. J. (2015). Criopreservación de semen de Bagre blanco (Sorubim cuspicaudus) com dimetilacetamida como crioprotector. CES Medicina Veterinaria y Zootecnia, 10(2), 122-131.spa
dcterms.referencesPérez-Sánchez, T., Mora-Sánchez, B., & Balcázar, J. L. (2018). Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends in microbiology, 26(11), 896-903. doi.org/10.1016/j.tim. 2018.05.002spa
dcterms.referencesPérez‐Sánchez, T., Ruiz‐Zarzuela, I., de Blas, I., & Balcázar, J. L. (2014). Probiotics in aquaculture: a current assessment. Reviews in Aquaculture, 6(3), 133-146. doi: 10.1111/raq.12033spa
dcterms.referencesPortella, M., Jomori, R., Leitão, N., Menossi, O., Freitas, T., Kojima, J., Carneiro, D. (2014). Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture, 432, 402-417.spa
dcterms.referencesPradhan, P., Jena, J., Mitra, G., Sood, N., Gisbert, E. (2013). Ontogeny of the digestive enzymes in butter catfish Ompok bimaculatus (Bloch) larvae. Aquaculture, 372, 62-69.spa
dcterms.referencesPradhan, P. K., Jena, J. K., Mitra, G., Sood, N., & Gisbert, E. (2012). Ontogeny of the digestive tract in butter catfish Ompok bimaculatus (Bloch) larvae. Fish physiology and biochemistry, 38(6), 1601-1617. DOI 10.1007/s10695-012-96558spa
dcterms.referencesPrieto, M., Atencio, V., Pardo, S. (2015). El bagre blanco Sorubim cuspicaudus y su potencial en Acuicultura. Fondo Editorial Universidad de Córdoba.spa
dcterms.referencesPrieto, M., & Atencio, V. (2008). Zooplankton in larviculture of neotropical fishes. Revista MVZ Córdoba, 13(2), 1415-1415.spa
dcterms.referencesQi, Z., Zhang, X. H., Boon, N., & Bossier, P. (2009). Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture, 290(1-2), 15-21. https://doi.org/10.1016/j.aquaculture.2009.02.012spa
dcterms.referencesRan, C., Carrias, A., Williams, M. A., Capps, N., Dan, B. C., Newton, J. C., & Liles, M. R. (2012). Identification of Bacillus strains for biological control of catfish pathogens. PLoS One, 7(9), e45793.spa
dcterms.referencesRangsin, W., Areechon, N., & Yoonpundh, R. (2012). Digestive Enzyme Activities During Larval Development of Striped Catfish, Pangasianodon hypophthalmus (Sauvage, 1878). Agriculture and Natural Resources, 46(2), 217-228.spa
dcterms.referencesRibas, L., & Piferrer, F. (2014). The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture, 6(4), 209-240. doi: 10.1111/raq.12041spa
dcterms.referencesRingø, E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology. doi:10.1111/jam.14628spa
dcterms.referencesRønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø., & Boglione, C. (2013). Feeding behavior and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5, S59-S98.spa
dcterms.referencesRueda, P. A. (2004). Towards assessment of welfare in Africal catfish, Clarias gariepinus: the first step.spa
dcterms.referencesSampaio, K. H. (2006). Superfície ovocitária e desenvolvimento inicial de quatro espécies de peixes de interesse comercial da bacia do rio São Francisco.spa
dcterms.referencesShan, X., Xiao, Z., Huang, W., & Dou, S. (2008). Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture, 281(1-4), 70-76.spa
dcterms.referencesSewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish and shellfish immunology, 86, 260-268. https://doi.org/10.1016/j.fsi.2018.11.026spa
dcterms.referencesSoltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. (2019). Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331-379. DOI:-10.1080/23308249.2019.1597010spa
dcterms.referencesSolovyev, M. M., Campoverde, C., Öztürk, S., Moreira, C., Diaz, M., Moyano, F. J., & Gisbert, E. (2016). Morphological and functional description of the development of the digestive system in meagre (Argyrosomus regius): An integrative approach. Aquaculture, 464, 381-391. http://dx.-doi.org/10.1016/j.aquaculture.2016.07.008spa
dcterms.referencesSorieul, L., Wabete, N., Ansquer, D., Mailliez, J. R., Pallud, M., Zhang, C., & Pham, D. (2018). Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture, 495, 888-898. https://doi.org/10.1016/ j.aquaculture.2018.06.058spa
dcterms.referencesSrichanun, M., Tantikitti, C., Vatanakul, V., Musikarune, P. (2012). Digestive enzyme activity during ontogenetic development and effect of live feed in green catfish larvae Mystus nemurus Cuv. & Val. Songklanakarin Journal of Science & Technology, 34(3).spa
dcterms.referencesSudha, A., Bhavan, P. S., Manjula, T., Kalpana, R., & Karthik, M. (2019). Bacillus licheniformis as a probiotic bacterium for culture of the prawn Macrobrachium rosenbergii. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(4), 44-61.spa
dcterms.referencesSuva, M. A., Sureja, V. P., & Kheni, D. B. (2016). Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2(2), 65.spa
dcterms.referencesTang, Y., Han, L., Chen, X., Xie, M., Kong, W., & Wu, Z. (2019). Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge. Probiotics and antimicrobial proteins, 11(2), 545-558. https://doi.org/10.1007/ s12602-018-9409-8spa
dcterms.referencesTreviño, L., Álvarez‐González, C., Perales‐García, N., Arévalo‐Galán, L., Uscanga‐Martínez, A., Márquez‐Couturier, G., Gisbert, E. (2011). A histological study of the organogenesis of the digestive system in bay snook Petenia splendida Günther, 1862 from hatching to the juvenile stage. Journal of Applied Ichthyology, 27(1), 73-82. doi:10.1111/j.1439-0426.2010.01608.xspa
dcterms.referencesTsai, C., Chi, C., & Liu, C. (2019). The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research, 50(5), 1475-1481. https://doi.org/10.1111/are.14022spa
dcterms.referencesTesser, M. B. (2002). Desenvolvimento do trato digestório e crescimento de larvas de pacu, Piaractus mesopotamicus (Holmberg, 1887) em sistemas de co-alimentação com náuplios de Artemia e dieta microencapsulada (Doctoral dissertation, Universidade Estadual Paulista, Centro de Aquicultura).spa
dcterms.referencesTorres, I. F. A., Júlio, G. S. D. C., Figueiredo, L. G., de Lima, N. L., Soares, A. P. N., & Luz, R. K. (2017). Larviculture of a carnivorous freshwater catfish, Lophiosilurus alexandri, screened by personality type. Behavioural processes, 145, 44-47.spa
dcterms.referencesTreviño, L., Alvarez‐González, C., Perales‐García, N., Arévalo‐Galán, L., Uscanga‐Martínez, A., Marquez‐Couturier, G., Gisbert, E. (2011). A histological study of the organogenesis of the digestive system in bay snook Petenia splendida Günther, 1862 from hatching to the juvenile stage. Journal of Applied Ichthyology, 27(1), 73-82.spa
dcterms.referencesUscanga-Martínez, A., Perales-García, N., Álvarez-González, C., Moyano, F., Tovar-Ramírez, D., Gisbert, G., Indy, J. (2011). Changes in digestive enzyme activity during initial ontogeny of bay snook Petenia splendida. Fish Physiology and Biochemistry, 37(3), 667-680.spa
dcterms.referencesValbuena-Villarreal, R., Zapata-Berruecos, B., David-Ruales, C., Cruz-Casallas, P. (2012). Desarrollo embrionario del capaz Pimelodus grosskopfii (Steindachner, 1879). International Journal of Morphology, 30(1), 150-156.spa
dcterms.referencesVan Doan, H., Hoseinifar, S. H., Ringø, E., Ángeles Esteban, M., Dadar, M., Dawood, M. A., & Faggio, C. (2020). Host-associated probiotics: a key factor in sustainable aquaculture. Reviews in fisheries science & aquaculture, 28(1), 16-42.spa
dcterms.referencesVan Doan, H., Hoseinifar, S. H., Khanongnuch, C., Kanpiengjai, A., Unban, K., & Srichaiyo, S. (2018). Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture, 491, 94-100. https://doi.org/10.1016/j.aquaculture.2018.03.019spa
dcterms.referencesVan Doan, H., Hoseinifar, S. H., Tapingkae, W., Tongsiri, S., & Khamtavee, P. (2016). Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 58, 678-685.spa
dcterms.referencesValderrama, M., & Zárate, M. (1989). Some ecological aspects and present state of the fishery of the Magdalena River basin, Colombia, South America. Canadian special publication of fisheries and aquatic sciences/Publication speciale canadienne des sciences halieutiques et aquatiques. 1989.spa
dcterms.referencesWijayanti, G. E., Setyawan, P., & Kurniawati, I. D. (2017). A Simple Paraffin Embedded Protocol for Fish Egg, Embryo, and Larvae. Scripta Biologica, 4(2). https://doi.org/10.20884/1.sb.2017.4.2.420spa
dcterms.referencesXia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., & Yi, M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & shellfish immunology, 76, 368-379.spa
dcterms.referencesYang, G., Peng, M., Tian, X., & Dong, S. (2017). Molecular ecological network analysis reveals the effects of probiotics and florfenicol on intestinal microbiota homeostasis: An example of sea cucumber. Scientific reports, 7(1), 1-12.spa
dcterms.referencesYang, R., Xie, C., Fan, Q., Gao, C., Fang, L. (2010). Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2), 112-123. https://doi.org/10.1016/j.aquaculture.2010.02.020spa
dcterms.referencesZadmajid, V., Sørensen, S., Butts, I. (2018). Embryogenesis and early larval development in wild‐caught Levantine scraper, Capoeta damascina (Valenciennes, 1842). Journal of Morphology, 280(1), 133-148.spa
dcterms.referencesZadmajid, V., Mirzaee, R., Hoseinpour, H., Vahedi, N., & Butts, I. A. E. (2017). Hormonal induction of ovulation using Ovaprim™ [(D-Arg 6, Pro 9 NEt)-sGnRH + domperidone] and its impact on embryonic development of wild-caught Longspine scraper, Capoeta trutta (Heckel, 1843). Animal Reproduction Science, 187, 79–90. https://doi.org/10.1016/j.anireprosci.2017.10.009spa
dcterms.referencesZapata-Berruecos, B., Mira, T., Medina, V., & Otero-Paternina, A. 2007. Descripción preliminar del desarrollo embrionario de bagre rayado (Pseudoplatystoma fasciatum). FAO Fisheries Technical Paper, 1, 6spa
dcterms.referencesZhang, Q., Ma, H., Mai, K., Zhang, W., Liufu, Z., & Xu, W. (2010). Interaction of dietary Bacillus subtilis and fructo-oligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish and Shellfish Immunology, 29(2), 204-211. doi:10.1016/j.fsi.2010.03.009spa
dcterms.referencesZokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish and shellfish immunology, 33(4), 683-689. doi:10.1016/j.fsi.2012.05.027spa
dcterms.referencesZokaeifar, H., Babaei, N., Saad, C. R., Kamarudin, M. S., Sijam, K., & Balcazar, J. L. (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish and shellfish immunology, 36(1), 68-74. http://dx.doi.org /10.1016/j.fsi.2013.10.007spa
dcterms.referencesZorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
HerreraCruzEdwinEnrique.pdf
Tamaño:
3.11 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
619.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones