Publicación: Evaluación de la viabilidad del polen en cultivares de frijol caupí (Vigna unguiculata L. Walp.) en Montería-Córdoba
dc.contributor.advisor | Aramendiz Tatis, Hermes | spa |
dc.contributor.author | Hernández Murillo, Jenry Rafael | |
dc.date.accessioned | 2021-01-27T00:12:55Z | |
dc.date.available | 2021-01-27T00:12:55Z | |
dc.date.issued | 2021-01-25 | |
dc.description.abstract | La presente investigación se llevó a cabo en la Universidad de Córdoba, Montería; El objetivo fue determinar la viabilidad del polen de frijol caupí colectado a diferentes horas del día en los semestres agrícolas A y B de 2019, la receptividad estigmática, la conservación de polen en bajo las condiciones de nevera y cuarto frio y evaluar dos métodos de hibridación en frijol caupí. La viabilidad del polen se realizó mediante pruebas con acetocarmin y sal de tetrazolium, la receptividad del estigma se determinó con peróxido de hidrogeno. Se evaluó el porcentaje de granos de polen viable e inviable, el tiempo de reacción del estigma al peróxido de hidrógeno y el porcentaje de cruzamientos viables. El diseño utilizado fue completamente al azar con arreglo factorial; para viabilidad del polen a diferentes horas (2 test, 3 genotipos y 4 horas de colecta) con tres repeticiones (plantas); para receptividad del estigma (3 genotipos y 4 horas en el día) con tres repeticiones (flores) para cada ambiente; para el almacenamiento de polen (2 ambientes, 3 tiempos de almacenado y 3 genotipos) con cuatro (4) repeticiones por tratamiento. | spa |
dc.description.abstract | The present investigation was carried out at the University of Córdoba, Monteria; The objective was to determine the viability of the cowpea pollen collected at different times of the day in the agricultural semesters A and B of 2019, the stigmatic receptivity, the conservation of pollen under the conditions of a refrigerator and cold room and to evaluate two hybridization methods. in cowpea beans. The viability of the pollen was performed by tests with acetocarmin and tetrazolium salt, the receptivity of the stigma was determined with hydrogen peroxide. The percentage of viable and non-viable pollen grains, the reaction time of the stigma to hydrogen peroxide and the percentage of viable crosses were evaluated. The design used was completely randomized with factorial arrangement; For pollen viability at different times (2 tests, 3 genotypes and 4 hours of collection) with three repetitions (plants); for stigma receptivity (3 genotypes and 4 hours in the day) with three repetitions (flowers) for each environment; for pollen storage (2 environments, 3 storage times and 3 genotypes) with four (4) repetitions per treatment. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agronómicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN GENERAL. | spa |
dc.description.tableofcontents | GENERAL ABSTRACT | spa |
dc.description.tableofcontents | CAPITULO I: MARCO GENERAL | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN GENERAL..........................................................................20 | spa |
dc.description.tableofcontents | 2. DEFINICIÓN DEL PROBLEMA.....................................................................24 | spa |
dc.description.tableofcontents | 3. GENERALIDADES DE LA TEMÁTICA....................................................... 27 | spa |
dc.description.tableofcontents | 3.1.1. Origen y Clasificación........................................................................27 | spa |
dc.description.tableofcontents | 3.1.2. Requerimientos de la planta .........................................................28 | spa |
dc.description.tableofcontents | 3.2. BIOLOGÍA FLORAL DEL FRIJOL CAUPI...........................................29 | spa |
dc.description.tableofcontents | 3.3. VIABILIDAD DE POLEN.......................................................................31 | spa |
dc.description.tableofcontents | 3.4. RECEPTIVIDAD ESTIGMATICA.........................................................33 | spa |
dc.description.tableofcontents | 3.5. CONSERVACIÓN DE POLEN.......................................................................36 | spa |
dc.description.tableofcontents | 3.6. MÉTODOS DE HIBRIDACIÓN EN FRIJOL CAUPI......................38 | spa |
dc.description.tableofcontents | 3.6.1. Emasculación................................................................................40 | spa |
dc.description.tableofcontents | 3.6.2. Preparación de la flor masculina ............................................................41 | spa |
dc.description.tableofcontents | 3.6.3. Hibridación artificial...........................................................................42 | spa |
dc.description.tableofcontents | 3.6.4. Identificación de los cruces.................................................................43 | spa |
dc.description.tableofcontents | 3.7. EFECTOS DEL AMBIENTE EN LA POLINIZACIÓN ........................43 | spa |
dc.description.tableofcontents | 4. OBJETIVOS......................................................................................50 | spa |
dc.description.tableofcontents | 4.1. OBJETIVO GENERAL........................................................50 | spa |
dc.description.tableofcontents | 4.2. OBJETIVOS ESPECÍFICOS................................................................50 | spa |
dc.description.tableofcontents | 5. HIPÓTESIS ...................................................................................................51 | spa |
dc.description.tableofcontents | 6. PERFIL Y ALCANCE ................................................................................52 | spa |
dc.description.tableofcontents | 7. BIBLIOGRAFÍA ....................................................................................54 | spa |
dc.description.tableofcontents | CAPITULO II: VIABILIDAD DEL POLEN DE CULTIVARES DE FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) COLECTADO EN DOS ÉPOCAS Y DIFERENTES HORAS DEL DÍA EN MONTERÍA - CÓRDOBA. | spa |
dc.description.tableofcontents | RESUMEN .......................................................................................79 | spa |
dc.description.tableofcontents | ABSTRACT ......................................................................80 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ...............................................................................81 | spa |
dc.description.tableofcontents | 2. METODOLOGÍA EXPERIMENTAL .........................................83 | spa |
dc.description.tableofcontents | 2.1. LOCALIZACIÓN ......................................................................83 | spa |
dc.description.tableofcontents | 2.2. VARIABLES E INDICADORES ........................................................83 | spa |
dc.description.tableofcontents | 2.2.1. Variables dependientes .................................................................83 | spa |
dc.description.tableofcontents | 2.2.2. Variables independientes .............................................................83 | spa |
dc.description.tableofcontents | 2.3. PROCEDIMIENTO ...................................................................83 | spa |
dc.description.tableofcontents | 2.3.1. Viabilidad con acetocarmín ..........................................................84 | spa |
dc.description.tableofcontents | 2.3.2. Viabilidad con sal de tetrazolium ...................................................84 | spa |
dc.description.tableofcontents | 2.4. ANÁLISIS ESTADÍSTICO ......................................................................85 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIÓN ..................................................................87 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES .....................................................................................................110 | spa |
dc.description.tableofcontents | 5. BIBLIOGRAFÍA ...........................................................................111 | spa |
dc.description.tableofcontents | CAPITULO III: RECEPTIVIDAD ESTIGMÁTICA EN FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) EN DIFERENTES HORAS DEL DÍA EN MONTERÍA – CÓRDOBA. | spa |
dc.description.tableofcontents | RESUMEN .........................................................................124 | spa |
dc.description.tableofcontents | ABSTRACT ............................................................................125 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ..........................................................................126 | spa |
dc.description.tableofcontents | 2. METODOLOGÍA EXPERIMENTAL ..................................................128 | spa |
dc.description.tableofcontents | 2.1. LOCALIZACIÓN .............................................................................128 | spa |
dc.description.tableofcontents | 2.2. VARIABLES E INDICADORES . ..............................................................128 | spa |
dc.description.tableofcontents | 2.2.1. Variables dependientes ...............................................................128 | spa |
dc.description.tableofcontents | 2.2.2. Variables independientes ...................................................128 | spa |
dc.description.tableofcontents | 2.3. PROCEDIMIENTO ..................................................................128 | spa |
dc.description.tableofcontents | 2.4. ANÁLISIS ESTADÍSTICO ..........................................................129 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIÓN .................................................................130 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES ........................................................................136 | spa |
dc.description.tableofcontents | 5. BIBLIOGRAFÍA .....................................................................................137 | spa |
dc.description.tableofcontents | CAPITULO IV: EVALUACIÓN DE DIFERENTES MÉTODOS DE HIBRIDACIÓN EN FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) EN CONDICIONES DE CAMPO Y CASA MALLA EN MONTERÍA – CÓRDOBA. | spa |
dc.description.tableofcontents | RESUMEN ...........................................................................................................143 | spa |
dc.description.tableofcontents | ABSTRACT ..............................................................................144 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN .........................................................145 | spa |
dc.description.tableofcontents | 2. METODOLOGÍA EXPERIMENTAL ......................................................148 | spa |
dc.description.tableofcontents | 2.1. LOCALIZACIÓN .......................................................................................148 | spa |
dc.description.tableofcontents | 2.2. VARIABLES E INDICADORES ......................................................148 | spa |
dc.description.tableofcontents | 2.2.1. Variables dependientes ............................................................148 | spa |
dc.description.tableofcontents | 2.2.2. Variables independientes .................................................................148 | spa |
dc.description.tableofcontents | 2.3. PROCEDIMIENTO ........................................................................148 | spa |
dc.description.tableofcontents | 2.4. ANÁLISIS ESTADÍSTICO ...................................................................150 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIÓN ........................................................151 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES .................................................................................................159 | spa |
dc.description.tableofcontents | 5. BIBLIOGRAFÍA ................................................................................160 | spa |
dc.description.tableofcontents | CAPITULO V: EFECTO DEL ALMACENAMIENTO DE POLEN DE FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) SOBRE LA VIABILIDAD EN DOS AMBIENTES EN MONTERÍA – CÓRDOBA | spa |
dc.description.tableofcontents | RESUMEN ...................................................................................167 | spa |
dc.description.tableofcontents | ABSTRACT .................................................................................................168 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ...................................................................................169 | spa |
dc.description.tableofcontents | 2. METODOLOGÍA EXPERIMENTAL ...............................................171 | spa |
dc.description.tableofcontents | 2.1. LOCALIZACIÓN .......................................................................................171 | spa |
dc.description.tableofcontents | 2.2. VARIABLES E INDICADORES ....................................................171 | spa |
dc.description.tableofcontents | 2.2.1. Variables dependientes .....................................................................171 | spa |
dc.description.tableofcontents | 2.2.2. Variables independientes ...........................................................171 | spa |
dc.description.tableofcontents | 2.3. PROCEDIMIENTO ............................................................................171 | spa |
dc.description.tableofcontents | 2.4. ANÁLISIS ESTADÍSTICO ....................................................................172 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIÓN .......................................................173 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES .........................................................................184 | spa |
dc.description.tableofcontents | 5. BIBLIOGRAFÍA ................................................................................................185 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES GENERALES ..................................................191 | spa |
dc.format.mimetype | Application/pdf | spa |
dc.identifier.uri | Https://repositorio.unicordoba.edu.co/handle/ucordoba/3974 | |
dc.language.iso | Spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Agronómicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | Info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | Https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Hybridization | spa |
dc.subject.keywords | Viability test | spa |
dc.subject.keywords | Conservation | spa |
dc.subject.proposal | Hibridación | spa |
dc.subject.proposal | Test de viabilidad | spa |
dc.subject.proposal | Conservación | spa |
dc.title | Evaluación de la viabilidad del polen en cultivares de frijol caupí (Vigna unguiculata L. Walp.) en Montería-Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | Http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | Info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | Https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | Info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abdelgadir, H. A., Johnson, S. D., y Van Staden, J. (2012). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany, 79, 132-139. | spa |
dcterms.references | Abeysiriwardena, D. D. Z., Ohba, K., Maruyama, A. (2002). Influence of temperature and relative humidity on grain sterility in rice. Journal of the National Science Foundation of Sri Lanka, 30(1-2), 33-41. | spa |
dcterms.references | Aguirre, P. (2009). Caracterización nutricional del grano de Caupi Vigna unguiculata l. en ratas [Tesis maestría en Ciencias Agrarias]. Palmira (Colombia): Universidad nacional de Colombia, escuela de posgrados, 21-54. | spa |
dcterms.references | Ahdoot, S., y Pacheco, S. E. (2015). Global climate change and children’s health. Pediatrics, 136(5), e1468-e1484. | spa |
dcterms.references | Ahmed, F. E., Hall, A. E., y DeMason, D. A. (1992). Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79(7), 784-791. | spa |
dcterms.references | Akihama, T., Omura, M., Kozaki, I. (1978). Further investigation of freezer-drying for deciduous fruit tree pollen. In: AKIHAMA, T.; NAKAJIMA, K. (Ed.). Long term preservation of favorable germplasm in arboreal crops. Fujimoto: Fruit tree research station. p. 1-7. | spa |
dcterms.references | Akond, A. M., Pounders, C. T., Blythe, E. K., y Wang, X. (2012). Longevity of crapemyrtle pollen stored at different temperatures. Scientia horticulturae, 139, 53-57. | spa |
dcterms.references | Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain technology, 44(3), 117-122. | spa |
dcterms.references | Allen, A. M., Thorogood, C. J., Hegarty, M. J., Lexer, C., y Hiscock, S. J. (2011). Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Annals of Botany, 108(4), 687-698. | spa |
dcterms.references | Albán, M. (2012). Manual del cultivo de fríjol caupí. http://www.swisscontact. org/fileadmin/user_upload/COUNTRIES/Peru/Documents/Publications/CAUPI.pdf [Consultado: 22 de noviembre de 2018]. | spa |
dcterms.references | Alburquerque, N., Burgos, L., Egea, J. (2000). Consequences to fertilization of the developmental stage of apricot ovules at anthesis. The Journal of Horticultural Science and Biotechnology, 75(6), 662-666. | spa |
dcterms.references | Alghali, A. M. (1991). Studies on cowpea farming practices in Nigeria, with emphasis on insect pest control. International Journal of Pest Management, 37(1), 71-74. | spa |
dcterms.references | Alidu, M. S. (2018). Genetic Variability for Flowering Time, Maturity and Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp.]: A Review Paper. Journal of Agriculture and Ecology Research International, 1-18. | spa |
dcterms.references | Annisa, Chen, S., Turner, N. C., Cowling, W. A. (2013). Genetic variation for heat tolerance during the reproductive phase in Brassica rapa. J. Agron. Crop Sci.199, 424-435. | spa |
dcterms.references | Araméndiz, H., Cardona, C. y Combatt, E. (2016). Contenido nutricional de líneas de fríjol caupí (Vigna unguiculata L. Walp.) seleccionadas de una población criolla. Revista Inf. Tecnológica 27(2):53-60. | spa |
dcterms.references | Aronne, G., Buonanno, M., y De Micco, V. (2014). Reproducing under a warming climate: long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula. Plant Biology, 17(2), 535-544. | spa |
dcterms.references | Argerich, C.A.; Gaviola, J.C. (1995). Production de semilla de tomate. 1ed., Argentina: INTA-EEA la Consulta, Fascículo 6, 81p. | spa |
dcterms.references | Asseng, S., Foster, I. A. N., Turner, T. C. (2011). The impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997-1012. | spa |
dcterms.references | Azevedo, C.V.G., Ribeiro, T., Silva, D., Carbonell, S. E Chiorato, A. (2015). Adaptabilidade, estabilidade e resistência a patógenos em genotipos de feijoeiro. Pesquisa Agropecuaria Brasileira, 50(10), 912-922. | spa |
dcterms.references | Bac-Molenaar, J. A., Fradin, E. F., Becker, F. F., Rienstra, J. A., van der Schoot, J., Vreugdenhil, D., Keurentjes, J. J. (2015). Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. The Plant Cell, 27(7), 1857-1874. | spa |
dcterms.references | Barnabás, B., Jäger, K., y Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38. | spa |
dcterms.references | Basso‐Alves, J. P., Agostini, K., y de Pádua Teixeira, S. (2011). Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13(4), 602-610. | spa |
dcterms.references | Bellusci, F., Musacchio, A., Stabile, R., y Pellegrino, G. (2010). Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Annals of botany, 106(5), 769-774. | spa |
dcterms.references | Bernardello, G., Anderson, G. J., Stuessy, T. F., y Crawford, D. J. (2001). A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). The Botanical Review, 67(3), 255-308. | spa |
dcterms.references | Bhat, Z. A., Dhillon, W. S., Shafi, R. H. S., Rather, J. A., Mir, A. H., Shafi, W., ... & Wani, T. A. (2012). Influence of storage temperature on viability and in vitro germination capacity of pear (Pyrus spp.) pollen. Journal of Agricultural Science, 4(11), 128. | spa |
dcterms.references | Bheemanahalli, R., Sunoj, V. J., Saripalli, G., Prasad, P. V., Balyan, H. S., Gupta, P. K., Grant, N. y Jagadish, S. K. (2019). Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Science, 59(2), 684-696. | spa |
dcterms.references | Bita, C., y Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science, 4, 273. | spa |
dcterms.references | Bindumadhava, H., Nair, R. M., Nayyar, H., Riley, J. J., y Easdown, W. (2017). Mungbean production under a changing climate-insights from growth physiology. Mysore Journal of Agricultural Sciences, 51(1), 21-26. | spa |
dcterms.references | Blackhurst, H. T., y Miller, J. C. (1980). Cowpea. Hybridization of crop plants, (hybridizationof). Madson: American Society of Agronomy, 327-337. | spa |
dcterms.references | Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M.L. y Olufajo, O. (2018). Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 1-10 | spa |
dcterms.references | Boukar, O., Fatokun, C. A., Huynh, B. L., Roberts, P. A., y Close, T. J. (2016). Genomic tools in cowpea breeding programs: status and perspectives. Frontiers in plant science, 7, 757. | spa |
dcterms.references | Boukar, O., Bhattacharjee, R., Fatokun, C., Kumar, P. L., y Gueye, B. (2013). Genetic and Genomic Resources of Grain Legume Improvement: 6. Cowpea. Elsevier Inc. Chapters. | spa |
dcterms.references | Boukar, O., Massawe, F., Muranaka, S., Franco, J., Maziya-Dixon, B., Singh, B., y Fatokun, C. (2011). Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genetic Resources, 9(4), 515-522. | spa |
dcterms.references | Borém, A.E. y Miranda, G.V. (2013). Melhoramento de plantas. 6 ed. Viçosa: UFV. 523p. | spa |
dcterms.references | Ćalić, D., Devrnja, N., Kostić, I., y Kostić, M. (2013). Pollen morphology, viability, and germination of Prunus domestica cv. Požegača. Scientia Horticulturae, 155, 118-122. | spa |
dcterms.references | Carmo-Oliveira, R., y Morretes, B. L. D. (2009). Stigmatic surface in the Vochysiaceae: reproductive and taxonomic implications. Acta Botanica Brasilica, 23(3), 780-785. | spa |
dcterms.references | Carvalho, M., Lino‐Neto, T., Rosa, E., y Carnide, V. (2017). Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273-4284. | spa |
dcterms.references | Chae, K., Lord, E. M., (2011). Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108, 627–636. | spa |
dcterms.references | Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., Ferro, C. A. T., Stephenson, D. B. (2007). Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agriculture, ecosystems & environment, 119(1-2), 190-204. | spa |
dcterms.references | Cheng, A. (2018). Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Science, 269, 136-142. | spa |
dcterms.references | Cosio, C., y Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of experimental botany, 60(2), 391-408. | spa |
dcterms.references | Costa, M. F. B., Paulino, J. V., Marinho, C. R., Leite, V. G., Pedersoli, G. D., y Teixeira, S. P. (2014). Stigma diversity in tropical legumes with considerations on stigma classification. The Botanical Review, 80(1), 1-29. | spa |
dcterms.references | Coulibaly S., Pasquet R. S., Papa R, Gepts P. (2002). AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. Reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 104: 358-366. | spa |
dcterms.references | Cuchiara, C. C., Silva, S. D. D. A., y Bobrowski, V. L. (2012). Conservação de grãos de pólen de mamoneira a baixas temperaturas. Revista Ceres, 59(1), 82-87. | spa |
dcterms.references | Dafni A, D Firmage. (2000). Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113-132. | spa |
dcterms.references | Dafni, A., Kevan, P. G., y Husband, B. C. (2005). Practical pollination biology. Practical pollination biology. Enviroquest, Ltd, Cambridge, Ontario, Canada. 590p. | spa |
dcterms.references | Daher, F. B., Chebli, Y., y Geitmann, A. (2009). Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant cell reports, 28(3), 347-357. | spa |
dcterms.references | Dane, F., y Ekici, N. (2011). Pollen tube growth of Paeonia tenuifolia L. (Paeoniaceae) in vitro and in vivo. Bangladesh Journal of Botany, 40(1), 93-95. | spa |
dcterms.references | DaMatta, F.M., Grandis, A., Arenque, B.C., y Buckeridge, M.S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International 43, 1814-1823. | spa |
dcterms.references | De Souza, E. H., Souza, F. V. D., Rossi, M. L., Brancalleao, N., da Silva Ledo, C. A., y Martinelli, A. P. (2014). Viability, storage and ultrastructure analysis of Aechmea bicolor (Bromeliaceae) pollen grains, an endemic species to the Atlantic forest. Euphytica, 204(1), 13-28. | spa |
dcterms.references | Delph, L. F., M. H. Johannsson y A. G. Stephenson. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78(6), 1623-1639. | spa |
dcterms.references | Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., y Trethowan, R. M. (2012a). High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 63(5), 419-428. | spa |
dcterms.references | Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., y Tan, D. K. (2012b). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39(12), 1009-1018. | spa |
dcterms.references | Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., Tan, D. K. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9-19. | spa |
dcterms.references | Djanaguiraman, M., Prasad, P. V., Boyle, D. L., y Schapaugh, W. T. (2013). Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199(3), 171-177. | spa |
dcterms.references | Devi, C. B., Kushwaha, A., y Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional com6position of cowpea (Vigna unguiculata). Journal of food science and technology, 52(10), 6821-6827. | spa |
dcterms.references | Driedonks, N., Rieu, I., y Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reproduction, 29(1-2), 67-79. | spa |
dcterms.references | Dupuis, I., y Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant physiology, 94(2), 665-670. | spa |
dcterms.references | Dutta, S. K., Srivastav, M., Chaudhary, R., Lal, K., Patil, P., Singh, S. K., y Singh, A. K. (2013). Low temperature storage of mango (Mangifera indica L.) pollen. Scientia Horticulturae, 161, 193-197. | spa |
dcterms.references | Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., y Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364-367. | spa |
dcterms.references | Ebong, U. U. (1972). Optimum time for artificial pollination in cowpeas, Vigna sinensis Endl. Samaru Agricultural Newsletter, Zaria, 14(2), 31-35. | spa |
dcterms.references | Edlund, A. F., Swanson, R., y Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, 16(suppl 1), S84-S97. | spa |
dcterms.references | Ehlers, J. y A. Hall. (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Research 53(1-3): 187-204. | spa |
dcterms.references | Erickson, A. N.,y Markhart, A. H. (2002). Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 25, 123-130. | spa |
dcterms.references | Fall, L., Diouf, D., Fall, M. A., Abaye, F., Gueye, M. (2003). Genetic diversity in cowpea (Vigna unguiculata (L.) Walp.) Varieties determined by ARA and RADP techniques. Afr J Biotechnol, 2 (2): 48-50. | spa |
dcterms.references | Fatokun C. A., y Ng Q. (2007). Outcrossing in cowpea. Journal of Food, Agriculture and Environment, 5:334-338. | spa |
dcterms.references | Ferreira, C. A., Von Pinho, É. V. D. R., Alvim, P. D. O., De Andrade, V. I. N. Í. C. I. U. S., Silva, T. T. D. A., y Cardoso, D. L. (2010). Conservação e determinação da viabilidade de grão de pólen de milho. Revista Brasileira de Milho e Sorgo, 6(02). | spa |
dcterms.references | Fery, R. L. (2002). New opportunities in Vigna. Trends in new crops and new uses. ASHS Press, Alexandria, VA, 424-428. | spa |
dcterms.references | Freire Filho, F. R., Ribeiro, V. Q., Barreto, P. D., y Santos, A. D. (2005). Melhoramento genético. Feijão-caupi: avanços tecnológicos. Brasília: Embrapa Informação Tecnológica, 1, 29-92. | spa |
dcterms.references | Freire Filho, F. R., Ribeiro, V. Q., Cardoso, M. J., dos Santos, A. A., Nogueira, M. D. S., Vieira, P. D. M., ... Y Silva, K. (2014). Cruzamentos de feijão-caupi [Vigna unguiculata (L) Walp.] realizados na Embrapa Meio-Norte, no período de 1982 a 2012. Embrapa Meio-Norte-Documentos (INFOTECA-E). | spa |
dcterms.references | Galen, C., y Plowright, R. C. (1987). Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Canadian Journal of Botany, 65(1), 107-111. | spa |
dcterms.references | Gaaliche, B., Majdoub, A., Trad, M., Y Mars, M. (2013). Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agronomy, 2013. 4p. | spa |
dcterms.references | Giorno, F., Wolters-Arts, M., Mariani, C., Rieu, I. (2013). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2(3), 489-506. | spa |
dcterms.references | Gowthami, R., Srivastava, V., Singh, A. P., y Singh, H. (2019). 9. Cryopreservation of Pollen. Laboratory Manual for Eighth International Training Course on, 51. | spa |
dcterms.references | Gross, Y., Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 36, 201-212. | spa |
dcterms.references | Güçlü, S. F., y Koyuncu, F. (2017). Effects of relative humidity on in vitro pollen germination and tube growth in sweet cherries (Prunus Avium L.). Sci Papers Ser B Hortic, 61, 15-20. | spa |
dcterms.references | Hall, A. E. (2004). Comparative ecophysiology of cowpea, common bean and peanut. In: Physiology and biotechnology integration for plant breeding. CRC Press.271-324. | spa |
dcterms.references | Hanna W. W, Towill L. E. (1995). Long-term pollen storage. Plant Breeding Reviews 13:179-207. | spa |
dcterms.references | Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., Sage, T. L., (2013). High temperatura stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J. Exp. Bot. 64, 2971-2983. | spa |
dcterms.references | Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., y Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684. | spa |
dcterms.references | Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A., Wolfe, D. (2011). Climate impacts on agriculture: Implications for cropproduction. Agron. J. 103, 351-370. | spa |
dcterms.references | Heredia, P., Del Castillo, S., Bejarano, P., y Gordillo, M. (2007). Información nutricional para tres regiones de Colombia Costa Atlántica. Nariño, Cauca y Valle (CIAT). 245p. | spa |
dcterms.references | Heslop-Harrison, J., y Heslop-Harrison, Y. (1970). Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain technology, 45(3), 115-120. | spa |
dcterms.references | Heslop-Harrison, Y., y Shivanna, K. R. (1977). The receptive surface of the angiosperm stigma. Annals of botany, 41(6), 1233-1258. | spa |
dcterms.references | Hinojosa, L., Matanguihan, J. B., y Murphy, K. M. (2019). Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science, 205(1), 33-45. | spa |
dcterms.references | Hiscock, S. J., Bown, D., Gurr, S. J., y Dickinson, H. G. (2002). Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sexual Plant Reproduction, 15(2), 65-74. | spa |
dcterms.references | Hiscock, S. J., Hoedemaekers, K., Friedman, W. E., y Dickinson, H. G. (2002). The stigma surface and pollen-stigma interactions in Senecio squalidus L.(Asteraceae) following cross (compatible) and self (incompatible) pollinations. International Journal of Plant Sciences, 163(1), 1-16. | spa |
dcterms.references | Hiscock, S. J., y Allen, A. M. (2008). Diverse cell signalling pathways regulate pollen‐stigma interactions: the search for consensus. New Phytologist, 179(2), 286-317. | spa |
dcterms.references | Hister, C. A. L., y Tedesco, S. B. (2016). Estimativa da viabilidade polínica de araçazeiro (Psidium cattleianum Sabine) através de distintos métodos de coloração. Revista brasileira de plantas medicinais, 18(1), 135-141. | spa |
dcterms.references | Huang, Z., Zhu, J., Mu, X., y Lin, J. (2004). Pollen Dispersion, Pollen Viability and Pistil Receptivity in Leymus chinensis. Annals of Botany, 93, 295-301. | spa |
dcterms.references | Huynh, B. L., Close, T. J., Roberts, P. A., Hu, Z., Wanamaker, S., Lucas, M. R., y Ehlers, J. D. (2013). Gene pools and the genetic architecture of domesticated cowpea. The Plant Genome, 6(3). | spa |
dcterms.references | Iborra, J. L., Guardiola, J., Montaner, S., Canovas, M. And Manjon, A. (1992). 2, 3, 5 Triphenyl tetrazolium chloride as a viable assay for immobilized plant cells. Biotechnology Techniques, 6(4):319-322. | spa |
dcterms.references | Ige, O. E., Olotuah, O. F., Akerele, V. (2011). Floral biology and pollination ecology of cowpea (Vigna unguiculata L. Walp). Modern Applied Science, 5(4), 74. | spa |
dcterms.references | Imani, A., Barzegar, K., Piripireivatlou, S., y Masomi, S. H. (2011). Storage of apple pollen and in vitro germination. African Journal of Agricultural Research, 6(3), 624-629. | spa |
dcterms.references | International Board for Plant Genetic Resources (IBPGR). (1983). Descriptors for cowpea. IBPGR Executive Secretariat. Rome, Italy. 30 p. | spa |
dcterms.references | Jagadish, K. S., Craufurd, P., Shi, W., y Oane, R. (2014). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48-55. | spa |
dcterms.references | Jain, M., Prasad, P. V., Boote, K. J., Hartwell, A. L., y Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to- starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227(1), 67-79. | spa |
dcterms.references | Jiang, Y., Lahlali, R., Karunakaran, C., Kumar, S., Davis, A. R., and Bueckert, R. A. (2015). Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 38, 2387-2397. | spa |
dcterms.references | Johannsson, M. H., Stephenson, A. G. (1998). Effects of temperatura during microsporogenesis on pollen performance in Cucurbita pepo L. (cucurbitaceae). Int. J. PlantSci. 159, 616-626. | spa |
dcterms.references | Jones, P. D., y A. Moberg. (2003). Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J. Climate 16:206-223. | spa |
dcterms.references | Kakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V., Reddy, V. R., Zhao, D. (2005). Differences in vitro pollen germination and pollen tubegrowth of cotton cultivars in response to high temperature. Ann. Bot. 96, 59-67. | spa |
dcterms.references | Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., Nayyar, H. (2013). Heat-stress induced reproductive failures in chickpea (Cicer arietinum L.) are associated with impaired sucrose metabolism in leaves and anthers. Funct.Plant Biol. 40, 1334-1349. | spa |
dcterms.references | Kaushal, N., Bhandari, K., Siddique, K. H. M., Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food and Agriculture, 2(1), 42p. | spa |
dcterms.references | Kearns, C. A., y Inouye, D. W. (1993). Techniques for pollination biologists. University press of Colorado. Niwot, Colorado. 80544, EE. UU., 583p. | spa |
dcterms.references | Khatun, S., y Flowers, T. J. (1995). The estimation of pollen viability in rice. Journal of Experimental Botany, 46(1), 151-154. | spa |
dcterms.references | Kheradnam, M., y Niknejad, M. (1971). Crossing technique in cowpeas. Iran Agricultural Research, 1(1), 57-58. | spa |
dcterms.references | Kumar, P.; Prakash, R.; Haque, M. F. (1976). Floral biology of cowpea (Vigna sinensis L.). Tropical Grain Legume Bulletin, Ibadan, v. 6, p. 9-11. | spa |
dcterms.references | Kumar, P., Pal, M., Joshi, R., Sairam, R. K. (2013). Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiology and Molecular Biology of Plants, 19(2), 209-220. | spa |
dcterms.references | Kumar, R. R., Goswami, S., Shamim, M., Mishra, U., Jain, M., Singh, K., Dubey, K. Singh, G. P., y Rai G.K. (2017). Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Frontiers in Plant Science, 8, 1603. | spa |
dcterms.references | Ladeinde, T. A. O., y Bliss, F. A. (1977). Identification of the bud stage for pollinating without emasculation in cowpea (Vigna unguiculata (L.) Walp.). Nigerian J Sci, 11, 183-194. | spa |
dcterms.references | Lewis, G., Schrire, B., Mackinder, B., y Lock, M. (2005). Legumes of the World., (Royal Botanic Gardens, Kew: London, UK). Bol. Soc.Bot. Méx. 77: 75-77. | spa |
dcterms.references | Li, Z., Palmer, W. M., Martin, A. P., Wang, R., Rainsford, F., Jin, Y., Patrick, J. W., Yang, Y., Ruan, Y. L. (2012). High invertase activity in tomato reproductive organs correlates with en hanced sucrose import into, and heat tolerance of Young fruit. J. Exp. Bot. 63, 1155-1166. | spa |
dcterms.references | Litzenberger S. C. (1991). Guía para Cultivos en los Trópicos y los Sub -Trópicos. AID. México/Buenos Aires. Pág.73-76. | spa |
dcterms.references | Lohani, N., Singh, M. B., y Bhalla, P. L. (2020). High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71(2), 555-568. | spa |
dcterms.references | Long, S. P., y D. R. Ort. (2010). More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13:241-248. | spa |
dcterms.references | Losada, J. M., y Herrero, M. (2012). Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Annals of Botany, 110(3), 573-584. | spa |
dcterms.references | Machado, C. D. A., Moura, C. R. F., Lemos, E. E. P. D., Ramos, S. R. R., Ribeiro, F. E., y Lédo, A. D. S. (2014). Pollen grain viability of coconut accessions at low temperatures. Acta Scientiarum. Agronomy, 36(2), 227-232. | spa |
dcterms.references | Marak, M. K., y Wani, A. M. (2018). Pollen morphology and viability in Gliricidia sepium. Journal of Pharmacognosy and Phytochemistry, 7(5), 19-22. | spa |
dcterms.references | Maréchal, R., Masherpa, J.M. y Stainier, F. (1978). Étude taxonomi-que d’un groupe complexe d’espéces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28: 1-273. | spa |
dcterms.references | Martínez-Gómez, P., Gradziel, T. M., Ortega, E., y Dicenta, F. (2002). Low temperature storage of almond pollen. HortScience, 37(4), 691-692. | spa |
dcterms.references | Maryam, M.J. Jaskani and S.A. Naqvi. 2017. Storage and viability assessment of date palm pollen. Methods Mol. Biol., 1638: 3-13. | spa |
dcterms.references | Matsui, T., O. S. Namuco, L. H. Ziska, T. Horie, (1997): Effect of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 51, 213-219. | spa |
dcterms.references | Mattson, A. M., Jensen, C. O., y Dutcher, R. A. (1947). Triphenyltetrazolium chloride as a dye for vital tissues. Science, 106(2752), 294-295. | spa |
dcterms.references | Menssen, M., Linde, M., Omondi, E. O., Abukutsa-Onyango, M., Dinssa, F. F., y Winkelmann, T. (2017). Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Scientia horticulturae, 226, 268-276. | spa |
dcterms.references | Mesihovic, A., Iannacone, R., Firon, N., y Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant reproduction, 29(1-2), 93-105. | spa |
dcterms.references | Mesnoua, M., Roumani, M., y Salem, A. (2018). The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Scientia Horticulturae, 236, 279-283. | spa |
dcterms.references | Monterroso, V. A. y Wien, H. C., (1990). Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci., 115: 631-634. | spa |
dcterms.references | Mortazavi, S.M.H., Arzani, K., Moini, A. (2010). Optimizing storage and in vitro germination of date palm (Phoenix dactylifera) pollen. J. Agric. Sci. Technol. 12, 181–189. | spa |
dcterms.references | Munhoz, M., Luz, C. F. P. D., Meissner Filho, P. E., Barth, O. M., y Reinert, F. (2008). Viabilidade polínica de Carica papaya L.: uma comparação metodológica. Brazilian Journal of Botany, 31(2), 209-214. | spa |
dcterms.references | Murillo, A. B. D., J. L. Troyo., H.L. García., H. M Landa y J.A. Larrinaga. (2000). El frijol Yarimón leguminosa tolerante a la sequía y salinidad. Programa de salinidad en zonas áridas. Centro de Investigaciones Biológicas del Noroeste, S. C. PYTON Int J Exp Bot 67:71 - 84 (8) | spa |
dcterms.references | Mutters R. G., Ferreira L. G. R., Hall A. E. (1989a). Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Science 29: 1497 - 1500. | spa |
dcterms.references | Mutters, R. G., Hall, A. E., y Patel, P. N. (1989b). Photoperiod and light quality effects on cowpea floral development at high temperatures. Crop science, 29(6), 1501-1505. | spa |
dcterms.references | McInnis, S. M., Emery, D. C., Porter, R., Desikan, R., Hancock, J. T., y Hiscock, S. J. (2006). The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). Journal of Experimental Botany, 57(8), 1835-1846. | spa |
dcterms.references | Myers, G. O. (1993). Croisement manuel du niébé. Ibadan: IITA. 19 p. (Guide de recherche de IITA, n. 42). | spa |
dcterms.references | Neto, O. D. S., Karsburg, I. V., y Yoshitome, M. Y. (2006). Viabilidade e germinabilidade polínica de populações de Jurubeba (Solanum paniculatum l.). Revista de Ciências Agro-Ambientais, Alta Floresta, 4(1), 67-74. | spa |
dcterms.references | Ng N. Q y Padulosi S. (1988). Cowpea genepool distribution and crop improvement, in Crop Genetic Resources of Africa, ed. by Ng Q, Perrino P and Attere FHZ. International Board for Plant Genetic Resources, Rome, 2,161-174 | spa |
dcterms.references | Ng, N. Q., Marechal, R. (1985). Cowpea taxonomy, origin and germplasm. In: Cowpea Research, Production and Utilization. Singh, S.R and K.O. Rachie (eds). John Wiley and Sons, Chichester, pp. 11-12. | spa |
dcterms.references | Nishiyama, I., y T. Satake. (1981): High temperature damage in the rice plant. Jpn. J. Trop. Agric. 26, 19-25. | spa |
dcterms.references | OECD (Organization for Economic Co-operation and Development). (2016). “Cowpea (Vigna unguiculata)”, in Safety Assessment of Transgenic Organisms in the Environment, Volume 6: OECD Consensus Documents, OECD Publishing, Paris, pp 211-241. | spa |
dcterms.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2011). In: P. Conforti (Ed.), Looking Ahead in World Food and Agriculture: Perspectives to 2050. Food and Agriculture Organization, Rome, Italy www.fao.org/docrep/014/i2280e/i2280e.pdf [Consultado: 20 de septiembre de 201720] | spa |
dcterms.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2016). The State of Food and Agriculture Climate Change, Agriculture and Food Security. Food and Agriculture Organization, Rome, Italy. www.fao.org/publications/sofa/2016/en/ [Consultado: 22 de septiembre de 201720] | spa |
dcterms.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2017). Buenas Prácticas Agrícolas en la Producción de Fríjol voluble. http://www.fao.org/3/a-a1359s/a1359s02.pdf. [Consultado: 22 de noviembre de 2017] | spa |
dcterms.references | Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., y Dubash, N. K. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Pan1 el on Climate Change (p. 151). IPCC. | spa |
dcterms.references | Parton, E., Vervaeke, I., Delen, R., Vandenbussche, B., Deroose, R., y De Proft, M. (2002). Viability and storage of bromeliad pollen. Euphytica, 125(2), 155-161. | spa |
dcterms.references | Parvin, K., Nahar, K., Bhuiyan, T. F., & Hasanuzzaman, M. (2020). Fabaceae Plants Response and Tolerance to High Temperature Stress. In The Plant Family Fabaceae (pp. 337-371). Springer, Singapore. | spa |
dcterms.references | Pasquet, R. S., y Padulosi, S. (2012). Genus Vigna and cowpea (Vigna unguiculata (L.) Walp.) taxonomy: Current status and prospects. In O. Boukar, S. Coulibaly, C. A. Fatokun, K. Lopez, & M. Tamò (Eds.), Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, 27 September - 1 October 2010 (pp. 66-87). Ibadan, Nigeria: IITA. | spa |
dcterms.references | Peng, H. Z., Jin, Q. Y., Ye, H. L., y Zhu, T. J. (2015). A novel in vitro germination method revealed the influence of environmental variance on the pecan pollen viability. Scientia Horticulturae, 181, 43-51. | spa |
dcterms.references | Pereira, R. C., Davide Chamma, L., Ramalho Patto, M. A., y Andrade Bolognani, H. (2002). Alternativas para aumentar a eficiência dos cruzamentos em programas de melhoramento de Eucalyptus. Cerne, 8(2). | spa |
dcterms.references | Perveen, A. (2007). Pollen germination capacity, viability and Maintanence of Pisium sativum L papilionaceae. Middle-East Journal of Scientific Research, 2(2), 79-81. | spa |
dcterms.references | Phansak, P. P., Taylor, P. W. J. y Mongkolporn, O. (2005). Genetic diversity in yard long bean (Vigna unguiculata ssp. sesquipedalis) and related Vigna species using sequence tagged microsatellite site analysis. Sci. Horticul. 106(1):137-146. | spa |
dcterms.references | Poonia, A., Phogat, D. S., y Phougat, D. (2018). Cowpea breeding: status and perspectives. Advances in environment and agriculture biotechnology. 50 – 56. | spa |
dcterms.references | Pozzobon, M. T., Bianchetti, L. D. B., Santos, S. D., de Carvalho, S. I. C., Reifschneider, F. J. B., y Ribeiro, C. D. C. (2015). Meiotic behavior in accessions of Capsicum chinense Jacq. from the Embrapa Germplasm Bank, Brazil. Revista Brasileira de Biociências, 13(2), 96-100. | spa |
dcterms.references | Porch, T. G., Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24, 723-731. | spa |
dcterms.references | Powell, N., Ji, X., Ravash, R., Edlington, J., y Dolferus, R. (2012). Yield stability for cereals in a changing climate. Functional Plant Biology, 39(7), 539-552. | spa |
dcterms.references | Pushpavalli, R. (2015). Physiological and genetic deciphering of water, salinity and relative humidity stress in chickpea (Cicer arietinum L.) (Doctoral dissertation, Bharathidasan University, Tiruchirappalli, Tamil Nadu). 199p. | spa |
dcterms.references | Prasad, P.V.V., Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 41, 1261-1269 | spa |
dcterms.references | Rachie, K. O., Rawal, K. M., Franckowiak, J. D. (1975). A rapid method for hand crossing cowpeas. Ibadan: IITA. 5 p. (IITA. Technical Bulletin, 2). | spa |
dcterms.references | Rawal, V., Charrondiere, R., Xipsiti, M. y Grande, F. 2019. Pulses: Nutritional Benefits and Consumption Patterns. In: Rawal, V. and Navarro, D.K eds. The Global Economy of Pulses. Rome. FAO. pp 9-19. | spa |
dcterms.references | Razzaq, M. K., Rauf, S., Khurshid, M., Iqbal, S., Javaid, A. B., Farzand, A., y Gai, J. (2019). Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pakistan Journal of Agricultural Research, 32(4), 609. | spa |
dcterms.references | Reguera, M., Peleg, Z., Blumwald, E. (2012). Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biocim. Biophys. Acta 1819, 186-194. | spa |
dcterms.references | Rejón, J., Suárez, C., Alché, J., Castro, A., y Rodríguez-García, M. (2010). Evaluación de diferentes métodos para estimar la calidad del polen en distintos cultivares de olivo (Olea europea L.). Polen, 20, 61-72. | spa |
dcterms.references | Rezaie, S. F., Hajilou, J., y Nahandi, F. Z. (2011). Pollen germination and pistil performance in several Iranian peach cultivars. International Journal of AgriScience, 1(3), 170-177. | spa |
dcterms.references | Riano, R. T., y Dafni, A. (2000). A new procedure to asses pollen viability. Sexual Plant Reproduction, 12(4), 241-244. | spa |
dcterms.references | Ribeiro, G. S., Ferreira, A. F., De Lyra Neves, C. M., das Mercecirc, S., De Oliveira, C., Alves, E. M., Sousa, F.S., Sodré, G.S., y De Carvalho, C. A. L. (2013). Aspects of the floral biology and pollen properties of Vigna unguiculata L. Walp (Fabaceae). African Journal of Plant Science, 7(5), 149-154. | spa |
dcterms.references | Rizzardo R. A. G. (2007). O papel de Apis mellifera L. como polinizador da mamoneira (Ricinis communis L.): avaliação da eficiência de polinização das abelhas e incremento de produtividade da cultura. 78 f. Dissertação (Mestrado em Zootecnia III) Universidade Federal do Ceará, Fortaleza. | spa |
dcterms.references | Rocha, F. D., Mousinho, S., Freire Filho, F. R., Silva, A. D. S., y Bezerra, A. D. C. (2001). Aspectos da biologia floral do caupi (Vigna unguiculata (L.) Walp.). Reunião Nacional de Pesquisa de Pesquisa de Caupi, 5, 27-29. | spa |
dcterms.references | Rosell, P., Saúco, V. G., y Herrero, M. (2006). Pollen germination as affected by pollen age in cherimoya. Scientia horticulturae, 109(1), 97-100. | spa |
dcterms.references | Ruelland, E., y Zachowski, A. (2010). How plants sense temperature. Environmental and Experimental Botany, 69(3), 225-232. | spa |
dcterms.references | Sage, T. L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H. A., Sultmanis, S., y Sage, R. F. (2015). The effect of high temperature stress on male and female reproduction in plants. Field Crops Research, 182, 30-42. | spa |
dcterms.references | Sage, T. L., Hristova-Sarkovsi, K., Koehl, V., Lyew, J., Pontieri, V., Bernhardt, P., Weston, P., Bagha, S., y Chiu, G. (2009). Transmitting tissue architecture in basal angiosperms: implications for transmitting tissue origins. American Journal of Botany, 96(1), 183-206. | spa |
dcterms.references | Saini, H. S., Sedgley, M., Aspinall, D. (1983). Effect of heat stress during floral development on pollen tube growth and ovary anatomy inWheat (Triticum aestivum L.). Aust. J. Plant Physiol. 10, 137-144. | spa |
dcterms.references | Saini, H. S., y Aspinall, D. (1981). Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Annals of Botany, 48(5), 623-633. | spa |
dcterms.references | Sanchez, A. M., Bosch, M., Bots, M., Nieuwland, J., Feron, R., y Mariani, C. (2004). Pistil factors controlling pollination. The Plant Cell, 16(suppl 1), S98-S106. | spa |
dcterms.references | Sato, S., Peet, M. M., Thomas, J. F. (2000). Physiological factors limit fruit set oftomato (Lycopersicon esculentum mill.) underchronic, mildheat stress. Plant Cell Environ. 23, 719-726. | spa |
dcterms.references | Sato, S., Peet, M. M., Thomas, J. F. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 53(371), 1187-1195. | spa |
dcterms.references | Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., y Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. | spa |
dcterms.references | Sen, N. K., Bhowal, J. G. (1961). Genetics of V. Sinensis (L.) Savi. Genetica 32, 247-266. | spa |
dcterms.references | Semedo, J. N., W. P. Rodrigues, M. Q. Martins, L. D. Martins, I. P. Pais, A. P. Rodrigues, A. E. Leitāo, F. L. Partelli, E. Campostrini, M. A. Tomaz, F. H. Reboredo, P. Scotti-Campos, A. I. RibeiroBarros, F. C. Lidon, F. M. Damatta y J. Alho. (2018). Coffee responses to drought, warming and high [co 2] in a context of future climate change scenarios. In Theory and practice of climate adaptation (pp. 465-477). Springer, Cham. | spa |
dcterms.references | Shakya, R., y Bhatla, S. C. (2010). A comparative analysis of the distribution and composition of lipidic constituents and associated enzymes in pollen and stigma of sunflower. Sexual plant reproduction, 23(2), 163-172. | spa |
dcterms.references | Shakya, R., y Bhatla, S. C. (2018). Pollination, Fertilization and Seed Development. In Plant Physiology, Development and Metabolism (pp. 821-856). Springer, Singapore. | spa |
dcterms.references | Sharma, B., y Bhatla, S. C. (2013). Structural analysis of stigma development in relation with pollen-stigma interaction in sunflower. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(7), 420-429. | spa |
dcterms.references | Shivanna, K. R., y Tandon, R. (2014). Pollen Biology. In Reproductive Ecology of Flowering Plants: A Manual (pp. 35-50). Springer, New Delhi. | spa |
dcterms.references | Shivanna, K. R. (2020). The Pistil: Structure in Relation to Its Function. In Reproductive Ecology of Flowering Plants: Patterns and Processes (pp. 41-50). Springer, Singapore. | spa |
dcterms.references | Sigrist, M. R., y Sazima, M. (2004). Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Annals of Botany, 94(1), 33-41. | spa |
dcterms.references | Singh, B. B. (2014). Future Prospects of Cowpea. Cowpea: The Food Legume of the 21st Century, (cowpeathefoodle), 145-157. | spa |
dcterms.references | Singh, S. K., Kakani, V. G., Surabhi, G. K., y Reddy, K. R. (2010). Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. Journal of Photochemistry and Photobiology B: Biology, 100(3), 135-146. | spa |
dcterms.references | Singh, B. (Ed.). (2020). Cowpea: the food legume of the 21st century (Vol. 164). John Wiley & Sons. 192p. | spa |
dcterms.references | Smýkal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., y Vymyslický, T. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34(1-3), 43-104. | spa |
dcterms.references | Snider, J. L., Oosterhuis, D. M., Skulman, B. W., Kawakami, E. M. (2009). Heat stress‐induced limitations to reproductive success in Gossypium hirsutum. Physiologia plantarum, 137(2), 125-138. | spa |
dcterms.references | Snider, J.L., Oosterhuis, D.M., Kawakami, E.M. (2011). Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J. Plant Physiol. 168, 441-448. | spa |
dcterms.references | Soares, T. L., Silva, S. O., Costa, M. A. P. C., Santos-Serejo, J. A., Souza, A. D. S., Lino, L. S. M., ... y Jesus, O. N. (2008). In vitro germination and viability of pollen grains of banana diploids. Crop Breeding and Applied Biotechnology, 8(2), 111-118. | spa |
dcterms.references | Song, G., Wang, M., Zeng, B., Zhang, J., Jiang, C., Hu, Q., Geng, G., Tang, C. (2015). Anther response to high-temperature stress dueing development and pollen thermo tolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241, 1271-1285. | spa |
dcterms.references | Sorkheh, K., Shiran, B., Rouhi, V., y Khodambashi, M. (2011). Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species. Trees, 25(5), 809-822. | spa |
dcterms.references | Souza, M. D., Pereira, T. N. S., y Martins, E. R. (2002). Microsporogênese e microgametogênese associadas ao tamanho do botão floral e da antera e viabilidade polínica em maracujazeiro-amarelo (Passiflora edulis Sims f. flavicarpa Degener). Ciência e agrotecnologia, 26(6), 1209-1217. | spa |
dcterms.references | Souza V.C y Lorenizi H. (2008). Botânica sistemática: guia ilustrado para identificação de famílias de fanerógamas nativas e exóticas no Brasil, baseado em APG II. 2. ed.; Nova Odessa, SP: Instituto Plantarum. 704p. | spa |
dcterms.references | Spinelli, F., Ciampolini, F., Cresti, M., Geider, K., y Costa, G. (2005). Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans. European journal of plant pathology, 113(4), 395-405. | spa |
dcterms.references | Suzuki, K., Tsukaguchi, T., Takeda, H., y Egawa, Y. (2001). Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126(5), 571-574. | spa |
dcterms.references | Suso, M. J., Bebeli, P. J., y Palmer, R. G. (2015). Reproductive biology of grain legumes. In Grain Legumes (pp. 365-399). Springer, New York, NY. | spa |
dcterms.references | Teale, W. D., Paponov, I. A., Palme, K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847. | spa |
dcterms.references | Teófilo, E. M., Paiva, J. B., y Medeiros Filho, S. (2001). Polinização artificial em feijão caupi. (Vigna unguiculata (L.) Walp.). Ciência e Agrotecnologia, Lavras, 25(1), 220-223. | spa |
dcterms.references | Timko, M. P., Ehlers, J. D., y Roberts, P. A. (2007). Cowpea. In Pulses, sugar and tuber crops (pp. 49-67). Springer, Berlin, Heidelberg. | spa |
dcterms.references | Todaka, D., Nakashima, K., Shinozaki, K., Yamaguchi-Shinozaki, K. (2012). Towar dunder standing transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 1-9. | spa |
dcterms.references | Tuinstra, M.R., Wedel, J. (2000). Estimation of pollen viability in grain sorghum. Crop Science. 40:968-970. | spa |
dcterms.references | Vaknin, Y., y Eisikowitch, D. (2000). Effects of short‐term storage on germinability of pistachio pollen. Plant breeding, 119(4), 347-350. | spa |
dcterms.references | Van der Walt I. D, Littlejohn G. M. (1996). Storage and viability testing of Protea pollen. Journal of the American Society for Horticultural Science 121:804-809. | spa |
dcterms.references | Van Der Walt, I. D., y Littlejohn, G. M. (1996). Storage and viability testing of Protea pollen. Journal of the American Society for Horticultural Science, 121(5), 804-809. | spa |
dcterms.references | Vasil, I.K. (1987). Developing cell and tissue culture systems for the improvement of cereals and grass crops. J. PlantPhysiol. 128, 193-218. | spa |
dcterms.references | Viéitez Cortizo, E. (1952). El uso del cloruro 2, 3, 5-trifeniltetrazolium para determinar la vitalidad del polen. | spa |
dcterms.references | Volk, G. M. (2011). Collecting pollen for genetic resources conservation. Collecting plant genetic diversity: technical guidelines, 1-10. | spa |
dcterms.references | Wahid, A., Gelani, S., Ashraf, M., y Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223. | spa |
dcterms.references | Wang, M. L., Hsu, C. M., Chang, L. C., Wang, C. S., Su, T. H., Huang, Y. J. J., ... y Jauh, G. Y. (2004). Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth. Plant and cell physiology, 45(10), 1519-1528. | spa |
dcterms.references | Warrag, M. O. A., y Hall, A. E. (1984). Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crops Research, 8, 17-33. | spa |
dcterms.references | Massawe, F., Mayes, S., y Cheng, A. (2016). Crop diversity: an unexploited treasure trove for food security. Trends in plant science, 21(5), 365-368. | spa |
dcterms.references | Westphall, E. (1974). Pulses in Ethiopia: their taxonomy and agricultural significance. Field Crop Abstracts 24:213-232. | spa |
dcterms.references | Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., Vara Prasad, P. V. (2000). Temperature variability and the annual yield of crops. Agric. Ecosyst. Environ.82, 159-167. | spa |
dcterms.references | Xiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., y Wu, D. (2016). Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One, 11(8). | spa |
dcterms.references | Yan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I., y Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, 148, 329-339. | spa |
dcterms.references | Yi, W., Law, S. E., Mccoy, D., y Wetzstein, H. Y. (2006). Stigma development and receptivity in almond (Prunus dulcis). Annals of Botany, 97(1), 57-63. | spa |
dcterms.references | Zary, K. W., Miller Junior, J. C. (1982). Comparison of two methods of hand-crossing Vigna unguiculata (L.) Walp. Hort Science, Alexandria, 17(2): 246-248. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | Http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | Http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- HERNANDEZMURILLOJENRY.pdf
- Tamaño:
- 1.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- INFORME FINAL TRABAJO DE GRADO
No hay miniatura disponible
- Nombre:
- Autorización repositorio.pdf
- Tamaño:
- 3.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- FORMATO AUTORIZACIÓN REPOSITORIO
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: