Publicación:
Evaluación de la viabilidad del polen en cultivares de frijol caupí (Vigna unguiculata L. Walp.) en Montería-Córdoba

dc.contributor.advisorAramendiz Tatis, Hermesspa
dc.contributor.authorHernández Murillo, Jenry Rafael
dc.date.accessioned2021-01-27T00:12:55Z
dc.date.available2021-01-27T00:12:55Z
dc.date.issued2021-01-25
dc.description.abstractLa presente investigación se llevó a cabo en la Universidad de Córdoba, Montería; El objetivo fue determinar la viabilidad del polen de frijol caupí colectado a diferentes horas del día en los semestres agrícolas A y B de 2019, la receptividad estigmática, la conservación de polen en bajo las condiciones de nevera y cuarto frio y evaluar dos métodos de hibridación en frijol caupí. La viabilidad del polen se realizó mediante pruebas con acetocarmin y sal de tetrazolium, la receptividad del estigma se determinó con peróxido de hidrogeno. Se evaluó el porcentaje de granos de polen viable e inviable, el tiempo de reacción del estigma al peróxido de hidrógeno y el porcentaje de cruzamientos viables. El diseño utilizado fue completamente al azar con arreglo factorial; para viabilidad del polen a diferentes horas (2 test, 3 genotipos y 4 horas de colecta) con tres repeticiones (plantas); para receptividad del estigma (3 genotipos y 4 horas en el día) con tres repeticiones (flores) para cada ambiente; para el almacenamiento de polen (2 ambientes, 3 tiempos de almacenado y 3 genotipos) con cuatro (4) repeticiones por tratamiento. spa
dc.description.abstractThe present investigation was carried out at the University of Córdoba, Monteria; The objective was to determine the viability of the cowpea pollen collected at different times of the day in the agricultural semesters A and B of 2019, the stigmatic receptivity, the conservation of pollen under the conditions of a refrigerator and cold room and to evaluate two hybridization methods. in cowpea beans. The viability of the pollen was performed by tests with acetocarmin and tetrazolium salt, the receptivity of the stigma was determined with hydrogen peroxide. The percentage of viable and non-viable pollen grains, the reaction time of the stigma to hydrogen peroxide and the percentage of viable crosses were evaluated. The design used was completely randomized with factorial arrangement; For pollen viability at different times (2 tests, 3 genotypes and 4 hours of collection) with three repetitions (plants); for stigma receptivity (3 genotypes and 4 hours in the day) with three repetitions (flowers) for each environment; for pollen storage (2 environments, 3 storage times and 3 genotypes) with four (4) repetitions per treatment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agronómicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN GENERAL.spa
dc.description.tableofcontentsGENERAL ABSTRACTspa
dc.description.tableofcontentsCAPITULO I: MARCO GENERALspa
dc.description.tableofcontents1. INTRODUCCIÓN GENERAL..........................................................................20spa
dc.description.tableofcontents2. DEFINICIÓN DEL PROBLEMA.....................................................................24spa
dc.description.tableofcontents3. GENERALIDADES DE LA TEMÁTICA....................................................... 27spa
dc.description.tableofcontents3.1.1. Origen y Clasificación........................................................................27spa
dc.description.tableofcontents3.1.2. Requerimientos de la planta .........................................................28spa
dc.description.tableofcontents3.2. BIOLOGÍA FLORAL DEL FRIJOL CAUPI...........................................29spa
dc.description.tableofcontents3.3. VIABILIDAD DE POLEN.......................................................................31spa
dc.description.tableofcontents3.4. RECEPTIVIDAD ESTIGMATICA.........................................................33spa
dc.description.tableofcontents3.5. CONSERVACIÓN DE POLEN.......................................................................36spa
dc.description.tableofcontents3.6. MÉTODOS DE HIBRIDACIÓN EN FRIJOL CAUPI......................38spa
dc.description.tableofcontents3.6.1. Emasculación................................................................................40spa
dc.description.tableofcontents3.6.2. Preparación de la flor masculina ............................................................41spa
dc.description.tableofcontents3.6.3. Hibridación artificial...........................................................................42spa
dc.description.tableofcontents3.6.4. Identificación de los cruces.................................................................43spa
dc.description.tableofcontents3.7. EFECTOS DEL AMBIENTE EN LA POLINIZACIÓN ........................43spa
dc.description.tableofcontents4. OBJETIVOS......................................................................................50spa
dc.description.tableofcontents4.1. OBJETIVO GENERAL........................................................50spa
dc.description.tableofcontents4.2. OBJETIVOS ESPECÍFICOS................................................................50spa
dc.description.tableofcontents5. HIPÓTESIS ...................................................................................................51spa
dc.description.tableofcontents6. PERFIL Y ALCANCE ................................................................................52spa
dc.description.tableofcontents7. BIBLIOGRAFÍA ....................................................................................54spa
dc.description.tableofcontentsCAPITULO II: VIABILIDAD DEL POLEN DE CULTIVARES DE FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) COLECTADO EN DOS ÉPOCAS Y DIFERENTES HORAS DEL DÍA EN MONTERÍA - CÓRDOBA.spa
dc.description.tableofcontentsRESUMEN .......................................................................................79spa
dc.description.tableofcontentsABSTRACT ......................................................................80spa
dc.description.tableofcontents1. INTRODUCCIÓN ...............................................................................81spa
dc.description.tableofcontents2. METODOLOGÍA EXPERIMENTAL .........................................83spa
dc.description.tableofcontents2.1. LOCALIZACIÓN ......................................................................83spa
dc.description.tableofcontents2.2. VARIABLES E INDICADORES ........................................................83spa
dc.description.tableofcontents2.2.1. Variables dependientes .................................................................83spa
dc.description.tableofcontents2.2.2. Variables independientes .............................................................83spa
dc.description.tableofcontents2.3. PROCEDIMIENTO ...................................................................83spa
dc.description.tableofcontents2.3.1. Viabilidad con acetocarmín ..........................................................84spa
dc.description.tableofcontents2.3.2. Viabilidad con sal de tetrazolium ...................................................84spa
dc.description.tableofcontents2.4. ANÁLISIS ESTADÍSTICO ......................................................................85spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIÓN ..................................................................87spa
dc.description.tableofcontents4. CONCLUSIONES .....................................................................................................110spa
dc.description.tableofcontents5. BIBLIOGRAFÍA ...........................................................................111spa
dc.description.tableofcontentsCAPITULO III: RECEPTIVIDAD ESTIGMÁTICA EN FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) EN DIFERENTES HORAS DEL DÍA EN MONTERÍA – CÓRDOBA.spa
dc.description.tableofcontentsRESUMEN .........................................................................124spa
dc.description.tableofcontentsABSTRACT ............................................................................125spa
dc.description.tableofcontents1. INTRODUCCIÓN ..........................................................................126spa
dc.description.tableofcontents2. METODOLOGÍA EXPERIMENTAL ..................................................128spa
dc.description.tableofcontents2.1. LOCALIZACIÓN .............................................................................128spa
dc.description.tableofcontents2.2. VARIABLES E INDICADORES . ..............................................................128spa
dc.description.tableofcontents2.2.1. Variables dependientes ...............................................................128spa
dc.description.tableofcontents2.2.2. Variables independientes ...................................................128spa
dc.description.tableofcontents2.3. PROCEDIMIENTO ..................................................................128spa
dc.description.tableofcontents2.4. ANÁLISIS ESTADÍSTICO ..........................................................129spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIÓN .................................................................130spa
dc.description.tableofcontents4. CONCLUSIONES ........................................................................136spa
dc.description.tableofcontents5. BIBLIOGRAFÍA .....................................................................................137spa
dc.description.tableofcontentsCAPITULO IV: EVALUACIÓN DE DIFERENTES MÉTODOS DE HIBRIDACIÓN EN FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) EN CONDICIONES DE CAMPO Y CASA MALLA EN MONTERÍA – CÓRDOBA.spa
dc.description.tableofcontentsRESUMEN ...........................................................................................................143spa
dc.description.tableofcontentsABSTRACT ..............................................................................144spa
dc.description.tableofcontents1. INTRODUCCIÓN .........................................................145spa
dc.description.tableofcontents2. METODOLOGÍA EXPERIMENTAL ......................................................148spa
dc.description.tableofcontents2.1. LOCALIZACIÓN .......................................................................................148spa
dc.description.tableofcontents2.2. VARIABLES E INDICADORES ......................................................148spa
dc.description.tableofcontents2.2.1. Variables dependientes ............................................................148spa
dc.description.tableofcontents2.2.2. Variables independientes .................................................................148spa
dc.description.tableofcontents2.3. PROCEDIMIENTO ........................................................................148spa
dc.description.tableofcontents2.4. ANÁLISIS ESTADÍSTICO ...................................................................150spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIÓN ........................................................151spa
dc.description.tableofcontents4. CONCLUSIONES .................................................................................................159spa
dc.description.tableofcontents5. BIBLIOGRAFÍA ................................................................................160spa
dc.description.tableofcontentsCAPITULO V: EFECTO DEL ALMACENAMIENTO DE POLEN DE FRIJOL CAUPI (Vigna unguiculata L. (Walp.)) SOBRE LA VIABILIDAD EN DOS AMBIENTES EN MONTERÍA – CÓRDOBAspa
dc.description.tableofcontentsRESUMEN ...................................................................................167spa
dc.description.tableofcontentsABSTRACT .................................................................................................168spa
dc.description.tableofcontents1. INTRODUCCIÓN ...................................................................................169spa
dc.description.tableofcontents2. METODOLOGÍA EXPERIMENTAL ...............................................171spa
dc.description.tableofcontents2.1. LOCALIZACIÓN .......................................................................................171spa
dc.description.tableofcontents2.2. VARIABLES E INDICADORES ....................................................171spa
dc.description.tableofcontents2.2.1. Variables dependientes .....................................................................171spa
dc.description.tableofcontents2.2.2. Variables independientes ...........................................................171spa
dc.description.tableofcontents2.3. PROCEDIMIENTO ............................................................................171spa
dc.description.tableofcontents2.4. ANÁLISIS ESTADÍSTICO ....................................................................172spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIÓN .......................................................173spa
dc.description.tableofcontents4. CONCLUSIONES .........................................................................184spa
dc.description.tableofcontents5. BIBLIOGRAFÍA ................................................................................................185spa
dc.description.tableofcontents6. CONCLUSIONES GENERALES ..................................................191spa
dc.format.mimetypeApplication/pdfspa
dc.identifier.uriHttps://repositorio.unicordoba.edu.co/handle/ucordoba/3974
dc.language.isoSpaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Agronómicasspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsInfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.uriHttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsHybridizationspa
dc.subject.keywordsViability testspa
dc.subject.keywordsConservationspa
dc.subject.proposalHibridaciónspa
dc.subject.proposalTest de viabilidadspa
dc.subject.proposalConservaciónspa
dc.titleEvaluación de la viabilidad del polen en cultivares de frijol caupí (Vigna unguiculata L. Walp.) en Montería-Córdobaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarHttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverInfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolHttps://purl.org/redcol/resource_type/TPspa
dc.type.versionInfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbdelgadir, H. A., Johnson, S. D., y Van Staden, J. (2012). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany, 79, 132-139.spa
dcterms.referencesAbeysiriwardena, D. D. Z., Ohba, K., Maruyama, A. (2002). Influence of temperature and relative humidity on grain sterility in rice. Journal of the National Science Foundation of Sri Lanka, 30(1-2), 33-41.spa
dcterms.referencesAguirre, P. (2009). Caracterización nutricional del grano de Caupi Vigna unguiculata l. en ratas [Tesis maestría en Ciencias Agrarias]. Palmira (Colombia): Universidad nacional de Colombia, escuela de posgrados, 21-54.spa
dcterms.referencesAhdoot, S., y Pacheco, S. E. (2015). Global climate change and children’s health. Pediatrics, 136(5), e1468-e1484.spa
dcterms.referencesAhmed, F. E., Hall, A. E., y DeMason, D. A. (1992). Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79(7), 784-791.spa
dcterms.referencesAkihama, T., Omura, M., Kozaki, I. (1978). Further investigation of freezer-drying for deciduous fruit tree pollen. In: AKIHAMA, T.; NAKAJIMA, K. (Ed.). Long term preservation of favorable germplasm in arboreal crops. Fujimoto: Fruit tree research station. p. 1-7.spa
dcterms.referencesAkond, A. M., Pounders, C. T., Blythe, E. K., y Wang, X. (2012). Longevity of crapemyrtle pollen stored at different temperatures. Scientia horticulturae, 139, 53-57.spa
dcterms.referencesAlexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain technology, 44(3), 117-122.spa
dcterms.referencesAllen, A. M., Thorogood, C. J., Hegarty, M. J., Lexer, C., y Hiscock, S. J. (2011). Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Annals of Botany, 108(4), 687-698.spa
dcterms.referencesAlbán, M. (2012). Manual del cultivo de fríjol caupí. http://www.swisscontact. org/fileadmin/user_upload/COUNTRIES/Peru/Documents/Publications/CAUPI.pdf [Consultado: 22 de noviembre de 2018].spa
dcterms.referencesAlburquerque, N., Burgos, L., Egea, J. (2000). Consequences to fertilization of the developmental stage of apricot ovules at anthesis. The Journal of Horticultural Science and Biotechnology, 75(6), 662-666.spa
dcterms.referencesAlghali, A. M. (1991). Studies on cowpea farming practices in Nigeria, with emphasis on insect pest control. International Journal of Pest Management, 37(1), 71-74.spa
dcterms.referencesAlidu, M. S. (2018). Genetic Variability for Flowering Time, Maturity and Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp.]: A Review Paper. Journal of Agriculture and Ecology Research International, 1-18.spa
dcterms.referencesAnnisa, Chen, S., Turner, N. C., Cowling, W. A. (2013). Genetic variation for heat tolerance during the reproductive phase in Brassica rapa. J. Agron. Crop Sci.199, 424-435.spa
dcterms.referencesAraméndiz, H., Cardona, C. y Combatt, E. (2016). Contenido nutricional de líneas de fríjol caupí (Vigna unguiculata L. Walp.) seleccionadas de una población criolla. Revista Inf. Tecnológica 27(2):53-60.spa
dcterms.referencesAronne, G., Buonanno, M., y De Micco, V. (2014). Reproducing under a warming climate: long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula. Plant Biology, 17(2), 535-544.spa
dcterms.referencesArgerich, C.A.; Gaviola, J.C. (1995). Production de semilla de tomate. 1ed., Argentina: INTA-EEA la Consulta, Fascículo 6, 81p.spa
dcterms.referencesAsseng, S., Foster, I. A. N., Turner, T. C. (2011). The impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997-1012.spa
dcterms.referencesAzevedo, C.V.G., Ribeiro, T., Silva, D., Carbonell, S. E Chiorato, A. (2015). Adaptabilidade, estabilidade e resistência a patógenos em genotipos de feijoeiro. Pesquisa Agropecuaria Brasileira, 50(10), 912-922.spa
dcterms.referencesBac-Molenaar, J. A., Fradin, E. F., Becker, F. F., Rienstra, J. A., van der Schoot, J., Vreugdenhil, D., Keurentjes, J. J. (2015). Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. The Plant Cell, 27(7), 1857-1874.spa
dcterms.referencesBarnabás, B., Jäger, K., y Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38.spa
dcterms.referencesBasso‐Alves, J. P., Agostini, K., y de Pádua Teixeira, S. (2011). Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators. Plant Biology, 13(4), 602-610.spa
dcterms.referencesBellusci, F., Musacchio, A., Stabile, R., y Pellegrino, G. (2010). Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Annals of botany, 106(5), 769-774.spa
dcterms.referencesBernardello, G., Anderson, G. J., Stuessy, T. F., y Crawford, D. J. (2001). A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). The Botanical Review, 67(3), 255-308.spa
dcterms.referencesBhat, Z. A., Dhillon, W. S., Shafi, R. H. S., Rather, J. A., Mir, A. H., Shafi, W., ... & Wani, T. A. (2012). Influence of storage temperature on viability and in vitro germination capacity of pear (Pyrus spp.) pollen. Journal of Agricultural Science, 4(11), 128.spa
dcterms.referencesBheemanahalli, R., Sunoj, V. J., Saripalli, G., Prasad, P. V., Balyan, H. S., Gupta, P. K., Grant, N. y Jagadish, S. K. (2019). Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Science, 59(2), 684-696.spa
dcterms.referencesBita, C., y Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science, 4, 273.spa
dcterms.referencesBindumadhava, H., Nair, R. M., Nayyar, H., Riley, J. J., y Easdown, W. (2017). Mungbean production under a changing climate-insights from growth physiology. Mysore Journal of Agricultural Sciences, 51(1), 21-26.spa
dcterms.referencesBlackhurst, H. T., y Miller, J. C. (1980). Cowpea. Hybridization of crop plants, (hybridizationof). Madson: American Society of Agronomy, 327-337.spa
dcterms.referencesBoukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M.L. y Olufajo, O. (2018). Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 1-10spa
dcterms.referencesBoukar, O., Fatokun, C. A., Huynh, B. L., Roberts, P. A., y Close, T. J. (2016). Genomic tools in cowpea breeding programs: status and perspectives. Frontiers in plant science, 7, 757.spa
dcterms.referencesBoukar, O., Bhattacharjee, R., Fatokun, C., Kumar, P. L., y Gueye, B. (2013). Genetic and Genomic Resources of Grain Legume Improvement: 6. Cowpea. Elsevier Inc. Chapters.spa
dcterms.referencesBoukar, O., Massawe, F., Muranaka, S., Franco, J., Maziya-Dixon, B., Singh, B., y Fatokun, C. (2011). Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genetic Resources, 9(4), 515-522.spa
dcterms.referencesBorém, A.E. y Miranda, G.V. (2013). Melhoramento de plantas. 6 ed. Viçosa: UFV. 523p.spa
dcterms.referencesĆalić, D., Devrnja, N., Kostić, I., y Kostić, M. (2013). Pollen morphology, viability, and germination of Prunus domestica cv. Požegača. Scientia Horticulturae, 155, 118-122.spa
dcterms.referencesCarmo-Oliveira, R., y Morretes, B. L. D. (2009). Stigmatic surface in the Vochysiaceae: reproductive and taxonomic implications. Acta Botanica Brasilica, 23(3), 780-785.spa
dcterms.referencesCarvalho, M., Lino‐Neto, T., Rosa, E., y Carnide, V. (2017). Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273-4284.spa
dcterms.referencesChae, K., Lord, E. M., (2011). Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108, 627–636.spa
dcterms.referencesChallinor, A. J., Wheeler, T. R., Craufurd, P. Q., Ferro, C. A. T., Stephenson, D. B. (2007). Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agriculture, ecosystems & environment, 119(1-2), 190-204.spa
dcterms.referencesCheng, A. (2018). Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Science, 269, 136-142.spa
dcterms.referencesCosio, C., y Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of experimental botany, 60(2), 391-408.spa
dcterms.referencesCosta, M. F. B., Paulino, J. V., Marinho, C. R., Leite, V. G., Pedersoli, G. D., y Teixeira, S. P. (2014). Stigma diversity in tropical legumes with considerations on stigma classification. The Botanical Review, 80(1), 1-29.spa
dcterms.referencesCoulibaly S., Pasquet R. S., Papa R, Gepts P. (2002). AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. Reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 104: 358-366.spa
dcterms.referencesCuchiara, C. C., Silva, S. D. D. A., y Bobrowski, V. L. (2012). Conservação de grãos de pólen de mamoneira a baixas temperaturas. Revista Ceres, 59(1), 82-87.spa
dcterms.referencesDafni A, D Firmage. (2000). Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113-132.spa
dcterms.referencesDafni, A., Kevan, P. G., y Husband, B. C. (2005). Practical pollination biology. Practical pollination biology. Enviroquest, Ltd, Cambridge, Ontario, Canada. 590p.spa
dcterms.referencesDaher, F. B., Chebli, Y., y Geitmann, A. (2009). Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant cell reports, 28(3), 347-357.spa
dcterms.referencesDane, F., y Ekici, N. (2011). Pollen tube growth of Paeonia tenuifolia L. (Paeoniaceae) in vitro and in vivo. Bangladesh Journal of Botany, 40(1), 93-95.spa
dcterms.referencesDaMatta, F.M., Grandis, A., Arenque, B.C., y Buckeridge, M.S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International 43, 1814-1823.spa
dcterms.referencesDe Souza, E. H., Souza, F. V. D., Rossi, M. L., Brancalleao, N., da Silva Ledo, C. A., y Martinelli, A. P. (2014). Viability, storage and ultrastructure analysis of Aechmea bicolor (Bromeliaceae) pollen grains, an endemic species to the Atlantic forest. Euphytica, 204(1), 13-28.spa
dcterms.referencesDelph, L. F., M. H. Johannsson y A. G. Stephenson. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78(6), 1623-1639.spa
dcterms.referencesDevasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., y Trethowan, R. M. (2012a). High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 63(5), 419-428.spa
dcterms.referencesDevasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., y Tan, D. K. (2012b). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39(12), 1009-1018.spa
dcterms.referencesDevasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., Tan, D. K. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9-19.spa
dcterms.referencesDjanaguiraman, M., Prasad, P. V., Boyle, D. L., y Schapaugh, W. T. (2013). Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199(3), 171-177.spa
dcterms.referencesDevi, C. B., Kushwaha, A., y Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional com6position of cowpea (Vigna unguiculata). Journal of food science and technology, 52(10), 6821-6827.spa
dcterms.referencesDriedonks, N., Rieu, I., y Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reproduction, 29(1-2), 67-79.spa
dcterms.referencesDupuis, I., y Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant physiology, 94(2), 665-670.spa
dcterms.referencesDutta, S. K., Srivastav, M., Chaudhary, R., Lal, K., Patil, P., Singh, S. K., y Singh, A. K. (2013). Low temperature storage of mango (Mangifera indica L.) pollen. Scientia Horticulturae, 161, 193-197.spa
dcterms.referencesEasterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., y Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364-367.spa
dcterms.referencesEbong, U. U. (1972). Optimum time for artificial pollination in cowpeas, Vigna sinensis Endl. Samaru Agricultural Newsletter, Zaria, 14(2), 31-35.spa
dcterms.referencesEdlund, A. F., Swanson, R., y Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, 16(suppl 1), S84-S97.spa
dcterms.referencesEhlers, J. y A. Hall. (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Research 53(1-3): 187-204.spa
dcterms.referencesErickson, A. N.,y Markhart, A. H. (2002). Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 25, 123-130.spa
dcterms.referencesFall, L., Diouf, D., Fall, M. A., Abaye, F., Gueye, M. (2003). Genetic diversity in cowpea (Vigna unguiculata (L.) Walp.) Varieties determined by ARA and RADP techniques. Afr J Biotechnol, 2 (2): 48-50.spa
dcterms.referencesFatokun C. A., y Ng Q. (2007). Outcrossing in cowpea. Journal of Food, Agriculture and Environment, 5:334-338.spa
dcterms.referencesFerreira, C. A., Von Pinho, É. V. D. R., Alvim, P. D. O., De Andrade, V. I. N. Í. C. I. U. S., Silva, T. T. D. A., y Cardoso, D. L. (2010). Conservação e determinação da viabilidade de grão de pólen de milho. Revista Brasileira de Milho e Sorgo, 6(02).spa
dcterms.referencesFery, R. L. (2002). New opportunities in Vigna. Trends in new crops and new uses. ASHS Press, Alexandria, VA, 424-428.spa
dcterms.referencesFreire Filho, F. R., Ribeiro, V. Q., Barreto, P. D., y Santos, A. D. (2005). Melhoramento genético. Feijão-caupi: avanços tecnológicos. Brasília: Embrapa Informação Tecnológica, 1, 29-92.spa
dcterms.referencesFreire Filho, F. R., Ribeiro, V. Q., Cardoso, M. J., dos Santos, A. A., Nogueira, M. D. S., Vieira, P. D. M., ... Y Silva, K. (2014). Cruzamentos de feijão-caupi [Vigna unguiculata (L) Walp.] realizados na Embrapa Meio-Norte, no período de 1982 a 2012. Embrapa Meio-Norte-Documentos (INFOTECA-E).spa
dcterms.referencesGalen, C., y Plowright, R. C. (1987). Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Canadian Journal of Botany, 65(1), 107-111.spa
dcterms.referencesGaaliche, B., Majdoub, A., Trad, M., Y Mars, M. (2013). Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agronomy, 2013. 4p.spa
dcterms.referencesGiorno, F., Wolters-Arts, M., Mariani, C., Rieu, I. (2013). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2(3), 489-506.spa
dcterms.referencesGowthami, R., Srivastava, V., Singh, A. P., y Singh, H. (2019). 9. Cryopreservation of Pollen. Laboratory Manual for Eighth International Training Course on, 51.spa
dcterms.referencesGross, Y., Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 36, 201-212.spa
dcterms.referencesGüçlü, S. F., y Koyuncu, F. (2017). Effects of relative humidity on in vitro pollen germination and tube growth in sweet cherries (Prunus Avium L.). Sci Papers Ser B Hortic, 61, 15-20.spa
dcterms.referencesHall, A. E. (2004). Comparative ecophysiology of cowpea, common bean and peanut. In: Physiology and biotechnology integration for plant breeding. CRC Press.271-324.spa
dcterms.referencesHanna W. W, Towill L. E. (1995). Long-term pollen storage. Plant Breeding Reviews 13:179-207.spa
dcterms.referencesHarsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., Sage, T. L., (2013). High temperatura stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J. Exp. Bot. 64, 2971-2983.spa
dcterms.referencesHasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., y Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684.spa
dcterms.referencesHatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A., Wolfe, D. (2011). Climate impacts on agriculture: Implications for cropproduction. Agron. J. 103, 351-370.spa
dcterms.referencesHeredia, P., Del Castillo, S., Bejarano, P., y Gordillo, M. (2007). Información nutricional para tres regiones de Colombia Costa Atlántica. Nariño, Cauca y Valle (CIAT). 245p.spa
dcterms.referencesHeslop-Harrison, J., y Heslop-Harrison, Y. (1970). Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain technology, 45(3), 115-120.spa
dcterms.referencesHeslop-Harrison, Y., y Shivanna, K. R. (1977). The receptive surface of the angiosperm stigma. Annals of botany, 41(6), 1233-1258.spa
dcterms.referencesHinojosa, L., Matanguihan, J. B., y Murphy, K. M. (2019). Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science, 205(1), 33-45.spa
dcterms.referencesHiscock, S. J., Bown, D., Gurr, S. J., y Dickinson, H. G. (2002). Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sexual Plant Reproduction, 15(2), 65-74.spa
dcterms.referencesHiscock, S. J., Hoedemaekers, K., Friedman, W. E., y Dickinson, H. G. (2002). The stigma surface and pollen-stigma interactions in Senecio squalidus L.(Asteraceae) following cross (compatible) and self (incompatible) pollinations. International Journal of Plant Sciences, 163(1), 1-16.spa
dcterms.referencesHiscock, S. J., y Allen, A. M. (2008). Diverse cell signalling pathways regulate pollen‐stigma interactions: the search for consensus. New Phytologist, 179(2), 286-317.spa
dcterms.referencesHister, C. A. L., y Tedesco, S. B. (2016). Estimativa da viabilidade polínica de araçazeiro (Psidium cattleianum Sabine) através de distintos métodos de coloração. Revista brasileira de plantas medicinais, 18(1), 135-141.spa
dcterms.referencesHuang, Z., Zhu, J., Mu, X., y Lin, J. (2004). Pollen Dispersion, Pollen Viability and Pistil Receptivity in Leymus chinensis. Annals of Botany, 93, 295-301.spa
dcterms.referencesHuynh, B. L., Close, T. J., Roberts, P. A., Hu, Z., Wanamaker, S., Lucas, M. R., y Ehlers, J. D. (2013). Gene pools and the genetic architecture of domesticated cowpea. The Plant Genome, 6(3).spa
dcterms.referencesIborra, J. L., Guardiola, J., Montaner, S., Canovas, M. And Manjon, A. (1992). 2, 3, 5 Triphenyl tetrazolium chloride as a viable assay for immobilized plant cells. Biotechnology Techniques, 6(4):319-322.spa
dcterms.referencesIge, O. E., Olotuah, O. F., Akerele, V. (2011). Floral biology and pollination ecology of cowpea (Vigna unguiculata L. Walp). Modern Applied Science, 5(4), 74.spa
dcterms.referencesImani, A., Barzegar, K., Piripireivatlou, S., y Masomi, S. H. (2011). Storage of apple pollen and in vitro germination. African Journal of Agricultural Research, 6(3), 624-629.spa
dcterms.referencesInternational Board for Plant Genetic Resources (IBPGR). (1983). Descriptors for cowpea. IBPGR Executive Secretariat. Rome, Italy. 30 p.spa
dcterms.referencesJagadish, K. S., Craufurd, P., Shi, W., y Oane, R. (2014). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48-55.spa
dcterms.referencesJain, M., Prasad, P. V., Boote, K. J., Hartwell, A. L., y Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to- starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227(1), 67-79.spa
dcterms.referencesJiang, Y., Lahlali, R., Karunakaran, C., Kumar, S., Davis, A. R., and Bueckert, R. A. (2015). Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 38, 2387-2397.spa
dcterms.referencesJohannsson, M. H., Stephenson, A. G. (1998). Effects of temperatura during microsporogenesis on pollen performance in Cucurbita pepo L. (cucurbitaceae). Int. J. PlantSci. 159, 616-626.spa
dcterms.referencesJones, P. D., y A. Moberg. (2003). Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J. Climate 16:206-223.spa
dcterms.referencesKakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V., Reddy, V. R., Zhao, D. (2005). Differences in vitro pollen germination and pollen tubegrowth of cotton cultivars in response to high temperature. Ann. Bot. 96, 59-67.spa
dcterms.referencesKaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., Nayyar, H. (2013). Heat-stress induced reproductive failures in chickpea (Cicer arietinum L.) are associated with impaired sucrose metabolism in leaves and anthers. Funct.Plant Biol. 40, 1334-1349.spa
dcterms.referencesKaushal, N., Bhandari, K., Siddique, K. H. M., Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food and Agriculture, 2(1), 42p.spa
dcterms.referencesKearns, C. A., y Inouye, D. W. (1993). Techniques for pollination biologists. University press of Colorado. Niwot, Colorado. 80544, EE. UU., 583p.spa
dcterms.referencesKhatun, S., y Flowers, T. J. (1995). The estimation of pollen viability in rice. Journal of Experimental Botany, 46(1), 151-154.spa
dcterms.referencesKheradnam, M., y Niknejad, M. (1971). Crossing technique in cowpeas. Iran Agricultural Research, 1(1), 57-58.spa
dcterms.referencesKumar, P.; Prakash, R.; Haque, M. F. (1976). Floral biology of cowpea (Vigna sinensis L.). Tropical Grain Legume Bulletin, Ibadan, v. 6, p. 9-11.spa
dcterms.referencesKumar, P., Pal, M., Joshi, R., Sairam, R. K. (2013). Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiology and Molecular Biology of Plants, 19(2), 209-220.spa
dcterms.referencesKumar, R. R., Goswami, S., Shamim, M., Mishra, U., Jain, M., Singh, K., Dubey, K. Singh, G. P., y Rai G.K. (2017). Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Frontiers in Plant Science, 8, 1603.spa
dcterms.referencesLadeinde, T. A. O., y Bliss, F. A. (1977). Identification of the bud stage for pollinating without emasculation in cowpea (Vigna unguiculata (L.) Walp.). Nigerian J Sci, 11, 183-194.spa
dcterms.referencesLewis, G., Schrire, B., Mackinder, B., y Lock, M. (2005). Legumes of the World., (Royal Botanic Gardens, Kew: London, UK). Bol. Soc.Bot. Méx. 77: 75-77.spa
dcterms.referencesLi, Z., Palmer, W. M., Martin, A. P., Wang, R., Rainsford, F., Jin, Y., Patrick, J. W., Yang, Y., Ruan, Y. L. (2012). High invertase activity in tomato reproductive organs correlates with en hanced sucrose import into, and heat tolerance of Young fruit. J. Exp. Bot. 63, 1155-1166.spa
dcterms.referencesLitzenberger S. C. (1991). Guía para Cultivos en los Trópicos y los Sub -Trópicos. AID. México/Buenos Aires. Pág.73-76.spa
dcterms.referencesLohani, N., Singh, M. B., y Bhalla, P. L. (2020). High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71(2), 555-568.spa
dcterms.referencesLong, S. P., y D. R. Ort. (2010). More than taking the heat: crops and global change. Curr. Opin. Plant Biol. 13:241-248.spa
dcterms.referencesLosada, J. M., y Herrero, M. (2012). Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Annals of Botany, 110(3), 573-584.spa
dcterms.referencesMachado, C. D. A., Moura, C. R. F., Lemos, E. E. P. D., Ramos, S. R. R., Ribeiro, F. E., y Lédo, A. D. S. (2014). Pollen grain viability of coconut accessions at low temperatures. Acta Scientiarum. Agronomy, 36(2), 227-232.spa
dcterms.referencesMarak, M. K., y Wani, A. M. (2018). Pollen morphology and viability in Gliricidia sepium. Journal of Pharmacognosy and Phytochemistry, 7(5), 19-22.spa
dcterms.referencesMaréchal, R., Masherpa, J.M. y Stainier, F. (1978). Étude taxonomi-que d’un groupe complexe d’espéces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28: 1-273.spa
dcterms.referencesMartínez-Gómez, P., Gradziel, T. M., Ortega, E., y Dicenta, F. (2002). Low temperature storage of almond pollen. HortScience, 37(4), 691-692.spa
dcterms.referencesMaryam, M.J. Jaskani and S.A. Naqvi. 2017. Storage and viability assessment of date palm pollen. Methods Mol. Biol., 1638: 3-13.spa
dcterms.referencesMatsui, T., O. S. Namuco, L. H. Ziska, T. Horie, (1997): Effect of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 51, 213-219.spa
dcterms.referencesMattson, A. M., Jensen, C. O., y Dutcher, R. A. (1947). Triphenyltetrazolium chloride as a dye for vital tissues. Science, 106(2752), 294-295.spa
dcterms.referencesMenssen, M., Linde, M., Omondi, E. O., Abukutsa-Onyango, M., Dinssa, F. F., y Winkelmann, T. (2017). Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Scientia horticulturae, 226, 268-276.spa
dcterms.referencesMesihovic, A., Iannacone, R., Firon, N., y Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant reproduction, 29(1-2), 93-105.spa
dcterms.referencesMesnoua, M., Roumani, M., y Salem, A. (2018). The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Scientia Horticulturae, 236, 279-283.spa
dcterms.referencesMonterroso, V. A. y Wien, H. C., (1990). Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci., 115: 631-634.spa
dcterms.referencesMortazavi, S.M.H., Arzani, K., Moini, A. (2010). Optimizing storage and in vitro germination of date palm (Phoenix dactylifera) pollen. J. Agric. Sci. Technol. 12, 181–189.spa
dcterms.referencesMunhoz, M., Luz, C. F. P. D., Meissner Filho, P. E., Barth, O. M., y Reinert, F. (2008). Viabilidade polínica de Carica papaya L.: uma comparação metodológica. Brazilian Journal of Botany, 31(2), 209-214.spa
dcterms.referencesMurillo, A. B. D., J. L. Troyo., H.L. García., H. M Landa y J.A. Larrinaga. (2000). El frijol Yarimón leguminosa tolerante a la sequía y salinidad. Programa de salinidad en zonas áridas. Centro de Investigaciones Biológicas del Noroeste, S. C. PYTON Int J Exp Bot 67:71 - 84 (8)spa
dcterms.referencesMutters R. G., Ferreira L. G. R., Hall A. E. (1989a). Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Science 29: 1497 - 1500.spa
dcterms.referencesMutters, R. G., Hall, A. E., y Patel, P. N. (1989b). Photoperiod and light quality effects on cowpea floral development at high temperatures. Crop science, 29(6), 1501-1505.spa
dcterms.referencesMcInnis, S. M., Emery, D. C., Porter, R., Desikan, R., Hancock, J. T., y Hiscock, S. J. (2006). The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). Journal of Experimental Botany, 57(8), 1835-1846.spa
dcterms.referencesMyers, G. O. (1993). Croisement manuel du niébé. Ibadan: IITA. 19 p. (Guide de recherche de IITA, n. 42).spa
dcterms.referencesNeto, O. D. S., Karsburg, I. V., y Yoshitome, M. Y. (2006). Viabilidade e germinabilidade polínica de populações de Jurubeba (Solanum paniculatum l.). Revista de Ciências Agro-Ambientais, Alta Floresta, 4(1), 67-74.spa
dcterms.referencesNg N. Q y Padulosi S. (1988). Cowpea genepool distribution and crop improvement, in Crop Genetic Resources of Africa, ed. by Ng Q, Perrino P and Attere FHZ. International Board for Plant Genetic Resources, Rome, 2,161-174spa
dcterms.referencesNg, N. Q., Marechal, R. (1985). Cowpea taxonomy, origin and germplasm. In: Cowpea Research, Production and Utilization. Singh, S.R and K.O. Rachie (eds). John Wiley and Sons, Chichester, pp. 11-12.spa
dcterms.referencesNishiyama, I., y T. Satake. (1981): High temperature damage in the rice plant. Jpn. J. Trop. Agric. 26, 19-25.spa
dcterms.referencesOECD (Organization for Economic Co-operation and Development). (2016). “Cowpea (Vigna unguiculata)”, in Safety Assessment of Transgenic Organisms in the Environment, Volume 6: OECD Consensus Documents, OECD Publishing, Paris, pp 211-241.spa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2011). In: P. Conforti (Ed.), Looking Ahead in World Food and Agriculture: Perspectives to 2050. Food and Agriculture Organization, Rome, Italy www.fao.org/docrep/014/i2280e/i2280e.pdf [Consultado: 20 de septiembre de 201720]spa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2016). The State of Food and Agriculture Climate Change, Agriculture and Food Security. Food and Agriculture Organization, Rome, Italy. www.fao.org/publications/sofa/2016/en/ [Consultado: 22 de septiembre de 201720]spa
dcterms.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2017). Buenas Prácticas Agrícolas en la Producción de Fríjol voluble. http://www.fao.org/3/a-a1359s/a1359s02.pdf. [Consultado: 22 de noviembre de 2017]spa
dcterms.referencesPachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., y Dubash, N. K. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Pan1 el on Climate Change (p. 151). IPCC.spa
dcterms.referencesParton, E., Vervaeke, I., Delen, R., Vandenbussche, B., Deroose, R., y De Proft, M. (2002). Viability and storage of bromeliad pollen. Euphytica, 125(2), 155-161.spa
dcterms.referencesParvin, K., Nahar, K., Bhuiyan, T. F., & Hasanuzzaman, M. (2020). Fabaceae Plants Response and Tolerance to High Temperature Stress. In The Plant Family Fabaceae (pp. 337-371). Springer, Singapore.spa
dcterms.referencesPasquet, R. S., y Padulosi, S. (2012). Genus Vigna and cowpea (Vigna unguiculata (L.) Walp.) taxonomy: Current status and prospects. In O. Boukar, S. Coulibaly, C. A. Fatokun, K. Lopez, & M. Tamò (Eds.), Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, 27 September - 1 October 2010 (pp. 66-87). Ibadan, Nigeria: IITA.spa
dcterms.referencesPeng, H. Z., Jin, Q. Y., Ye, H. L., y Zhu, T. J. (2015). A novel in vitro germination method revealed the influence of environmental variance on the pecan pollen viability. Scientia Horticulturae, 181, 43-51.spa
dcterms.referencesPereira, R. C., Davide Chamma, L., Ramalho Patto, M. A., y Andrade Bolognani, H. (2002). Alternativas para aumentar a eficiência dos cruzamentos em programas de melhoramento de Eucalyptus. Cerne, 8(2).spa
dcterms.referencesPerveen, A. (2007). Pollen germination capacity, viability and Maintanence of Pisium sativum L papilionaceae. Middle-East Journal of Scientific Research, 2(2), 79-81.spa
dcterms.referencesPhansak, P. P., Taylor, P. W. J. y Mongkolporn, O. (2005). Genetic diversity in yard long bean (Vigna unguiculata ssp. sesquipedalis) and related Vigna species using sequence tagged microsatellite site analysis. Sci. Horticul. 106(1):137-146.spa
dcterms.referencesPoonia, A., Phogat, D. S., y Phougat, D. (2018). Cowpea breeding: status and perspectives. Advances in environment and agriculture biotechnology. 50 – 56.spa
dcterms.referencesPozzobon, M. T., Bianchetti, L. D. B., Santos, S. D., de Carvalho, S. I. C., Reifschneider, F. J. B., y Ribeiro, C. D. C. (2015). Meiotic behavior in accessions of Capsicum chinense Jacq. from the Embrapa Germplasm Bank, Brazil. Revista Brasileira de Biociências, 13(2), 96-100.spa
dcterms.referencesPorch, T. G., Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24, 723-731.spa
dcterms.referencesPowell, N., Ji, X., Ravash, R., Edlington, J., y Dolferus, R. (2012). Yield stability for cereals in a changing climate. Functional Plant Biology, 39(7), 539-552.spa
dcterms.referencesPushpavalli, R. (2015). Physiological and genetic deciphering of water, salinity and relative humidity stress in chickpea (Cicer arietinum L.) (Doctoral dissertation, Bharathidasan University, Tiruchirappalli, Tamil Nadu). 199p.spa
dcterms.referencesPrasad, P.V.V., Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 41, 1261-1269spa
dcterms.referencesRachie, K. O., Rawal, K. M., Franckowiak, J. D. (1975). A rapid method for hand crossing cowpeas. Ibadan: IITA. 5 p. (IITA. Technical Bulletin, 2).spa
dcterms.referencesRawal, V., Charrondiere, R., Xipsiti, M. y Grande, F. 2019. Pulses: Nutritional Benefits and Consumption Patterns. In: Rawal, V. and Navarro, D.K eds. The Global Economy of Pulses. Rome. FAO. pp 9-19.spa
dcterms.referencesRazzaq, M. K., Rauf, S., Khurshid, M., Iqbal, S., Javaid, A. B., Farzand, A., y Gai, J. (2019). Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pakistan Journal of Agricultural Research, 32(4), 609.spa
dcterms.referencesReguera, M., Peleg, Z., Blumwald, E. (2012). Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biocim. Biophys. Acta 1819, 186-194.spa
dcterms.referencesRejón, J., Suárez, C., Alché, J., Castro, A., y Rodríguez-García, M. (2010). Evaluación de diferentes métodos para estimar la calidad del polen en distintos cultivares de olivo (Olea europea L.). Polen, 20, 61-72.spa
dcterms.referencesRezaie, S. F., Hajilou, J., y Nahandi, F. Z. (2011). Pollen germination and pistil performance in several Iranian peach cultivars. International Journal of AgriScience, 1(3), 170-177.spa
dcterms.referencesRiano, R. T., y Dafni, A. (2000). A new procedure to asses pollen viability. Sexual Plant Reproduction, 12(4), 241-244.spa
dcterms.referencesRibeiro, G. S., Ferreira, A. F., De Lyra Neves, C. M., das Mercecirc, S., De Oliveira, C., Alves, E. M., Sousa, F.S., Sodré, G.S., y De Carvalho, C. A. L. (2013). Aspects of the floral biology and pollen properties of Vigna unguiculata L. Walp (Fabaceae). African Journal of Plant Science, 7(5), 149-154.spa
dcterms.referencesRizzardo R. A. G. (2007). O papel de Apis mellifera L. como polinizador da mamoneira (Ricinis communis L.): avaliação da eficiência de polinização das abelhas e incremento de produtividade da cultura. 78 f. Dissertação (Mestrado em Zootecnia III) Universidade Federal do Ceará, Fortaleza.spa
dcterms.referencesRocha, F. D., Mousinho, S., Freire Filho, F. R., Silva, A. D. S., y Bezerra, A. D. C. (2001). Aspectos da biologia floral do caupi (Vigna unguiculata (L.) Walp.). Reunião Nacional de Pesquisa de Pesquisa de Caupi, 5, 27-29.spa
dcterms.referencesRosell, P., Saúco, V. G., y Herrero, M. (2006). Pollen germination as affected by pollen age in cherimoya. Scientia horticulturae, 109(1), 97-100.spa
dcterms.referencesRuelland, E., y Zachowski, A. (2010). How plants sense temperature. Environmental and Experimental Botany, 69(3), 225-232.spa
dcterms.referencesSage, T. L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H. A., Sultmanis, S., y Sage, R. F. (2015). The effect of high temperature stress on male and female reproduction in plants. Field Crops Research, 182, 30-42.spa
dcterms.referencesSage, T. L., Hristova-Sarkovsi, K., Koehl, V., Lyew, J., Pontieri, V., Bernhardt, P., Weston, P., Bagha, S., y Chiu, G. (2009). Transmitting tissue architecture in basal angiosperms: implications for transmitting tissue origins. American Journal of Botany, 96(1), 183-206.spa
dcterms.referencesSaini, H. S., Sedgley, M., Aspinall, D. (1983). Effect of heat stress during floral development on pollen tube growth and ovary anatomy inWheat (Triticum aestivum L.). Aust. J. Plant Physiol. 10, 137-144.spa
dcterms.referencesSaini, H. S., y Aspinall, D. (1981). Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Annals of Botany, 48(5), 623-633.spa
dcterms.referencesSanchez, A. M., Bosch, M., Bots, M., Nieuwland, J., Feron, R., y Mariani, C. (2004). Pistil factors controlling pollination. The Plant Cell, 16(suppl 1), S98-S106.spa
dcterms.referencesSato, S., Peet, M. M., Thomas, J. F. (2000). Physiological factors limit fruit set oftomato (Lycopersicon esculentum mill.) underchronic, mildheat stress. Plant Cell Environ. 23, 719-726.spa
dcterms.referencesSato, S., Peet, M. M., Thomas, J. F. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 53(371), 1187-1195.spa
dcterms.referencesSato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., y Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738.spa
dcterms.referencesSen, N. K., Bhowal, J. G. (1961). Genetics of V. Sinensis (L.) Savi. Genetica 32, 247-266.spa
dcterms.referencesSemedo, J. N., W. P. Rodrigues, M. Q. Martins, L. D. Martins, I. P. Pais, A. P. Rodrigues, A. E. Leitāo, F. L. Partelli, E. Campostrini, M. A. Tomaz, F. H. Reboredo, P. Scotti-Campos, A. I. RibeiroBarros, F. C. Lidon, F. M. Damatta y J. Alho. (2018). Coffee responses to drought, warming and high [co 2] in a context of future climate change scenarios. In Theory and practice of climate adaptation (pp. 465-477). Springer, Cham.spa
dcterms.referencesShakya, R., y Bhatla, S. C. (2010). A comparative analysis of the distribution and composition of lipidic constituents and associated enzymes in pollen and stigma of sunflower. Sexual plant reproduction, 23(2), 163-172.spa
dcterms.referencesShakya, R., y Bhatla, S. C. (2018). Pollination, Fertilization and Seed Development. In Plant Physiology, Development and Metabolism (pp. 821-856). Springer, Singapore.spa
dcterms.referencesSharma, B., y Bhatla, S. C. (2013). Structural analysis of stigma development in relation with pollen-stigma interaction in sunflower. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(7), 420-429.spa
dcterms.referencesShivanna, K. R., y Tandon, R. (2014). Pollen Biology. In Reproductive Ecology of Flowering Plants: A Manual (pp. 35-50). Springer, New Delhi.spa
dcterms.referencesShivanna, K. R. (2020). The Pistil: Structure in Relation to Its Function. In Reproductive Ecology of Flowering Plants: Patterns and Processes (pp. 41-50). Springer, Singapore.spa
dcterms.referencesSigrist, M. R., y Sazima, M. (2004). Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Annals of Botany, 94(1), 33-41.spa
dcterms.referencesSingh, B. B. (2014). Future Prospects of Cowpea. Cowpea: The Food Legume of the 21st Century, (cowpeathefoodle), 145-157.spa
dcterms.referencesSingh, S. K., Kakani, V. G., Surabhi, G. K., y Reddy, K. R. (2010). Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. Journal of Photochemistry and Photobiology B: Biology, 100(3), 135-146.spa
dcterms.referencesSingh, B. (Ed.). (2020). Cowpea: the food legume of the 21st century (Vol. 164). John Wiley & Sons. 192p.spa
dcterms.referencesSmýkal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., y Vymyslický, T. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34(1-3), 43-104.spa
dcterms.referencesSnider, J. L., Oosterhuis, D. M., Skulman, B. W., Kawakami, E. M. (2009). Heat stress‐induced limitations to reproductive success in Gossypium hirsutum. Physiologia plantarum, 137(2), 125-138.spa
dcterms.referencesSnider, J.L., Oosterhuis, D.M., Kawakami, E.M. (2011). Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J. Plant Physiol. 168, 441-448.spa
dcterms.referencesSoares, T. L., Silva, S. O., Costa, M. A. P. C., Santos-Serejo, J. A., Souza, A. D. S., Lino, L. S. M., ... y Jesus, O. N. (2008). In vitro germination and viability of pollen grains of banana diploids. Crop Breeding and Applied Biotechnology, 8(2), 111-118.spa
dcterms.referencesSong, G., Wang, M., Zeng, B., Zhang, J., Jiang, C., Hu, Q., Geng, G., Tang, C. (2015). Anther response to high-temperature stress dueing development and pollen thermo tolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241, 1271-1285.spa
dcterms.referencesSorkheh, K., Shiran, B., Rouhi, V., y Khodambashi, M. (2011). Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species. Trees, 25(5), 809-822.spa
dcterms.referencesSouza, M. D., Pereira, T. N. S., y Martins, E. R. (2002). Microsporogênese e microgametogênese associadas ao tamanho do botão floral e da antera e viabilidade polínica em maracujazeiro-amarelo (Passiflora edulis Sims f. flavicarpa Degener). Ciência e agrotecnologia, 26(6), 1209-1217.spa
dcterms.referencesSouza V.C y Lorenizi H. (2008). Botânica sistemática: guia ilustrado para identificação de famílias de fanerógamas nativas e exóticas no Brasil, baseado em APG II. 2. ed.; Nova Odessa, SP: Instituto Plantarum. 704p.spa
dcterms.referencesSpinelli, F., Ciampolini, F., Cresti, M., Geider, K., y Costa, G. (2005). Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans. European journal of plant pathology, 113(4), 395-405.spa
dcterms.referencesSuzuki, K., Tsukaguchi, T., Takeda, H., y Egawa, Y. (2001). Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126(5), 571-574.spa
dcterms.referencesSuso, M. J., Bebeli, P. J., y Palmer, R. G. (2015). Reproductive biology of grain legumes. In Grain Legumes (pp. 365-399). Springer, New York, NY.spa
dcterms.referencesTeale, W. D., Paponov, I. A., Palme, K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847.spa
dcterms.referencesTeófilo, E. M., Paiva, J. B., y Medeiros Filho, S. (2001). Polinização artificial em feijão caupi. (Vigna unguiculata (L.) Walp.). Ciência e Agrotecnologia, Lavras, 25(1), 220-223.spa
dcterms.referencesTimko, M. P., Ehlers, J. D., y Roberts, P. A. (2007). Cowpea. In Pulses, sugar and tuber crops (pp. 49-67). Springer, Berlin, Heidelberg.spa
dcterms.referencesTodaka, D., Nakashima, K., Shinozaki, K., Yamaguchi-Shinozaki, K. (2012). Towar dunder standing transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 1-9.spa
dcterms.referencesTuinstra, M.R., Wedel, J. (2000). Estimation of pollen viability in grain sorghum. Crop Science. 40:968-970.spa
dcterms.referencesVaknin, Y., y Eisikowitch, D. (2000). Effects of short‐term storage on germinability of pistachio pollen. Plant breeding, 119(4), 347-350.spa
dcterms.referencesVan der Walt I. D, Littlejohn G. M. (1996). Storage and viability testing of Protea pollen. Journal of the American Society for Horticultural Science 121:804-809.spa
dcterms.referencesVan Der Walt, I. D., y Littlejohn, G. M. (1996). Storage and viability testing of Protea pollen. Journal of the American Society for Horticultural Science, 121(5), 804-809.spa
dcterms.referencesVasil, I.K. (1987). Developing cell and tissue culture systems for the improvement of cereals and grass crops. J. PlantPhysiol. 128, 193-218.spa
dcterms.referencesViéitez Cortizo, E. (1952). El uso del cloruro 2, 3, 5-trifeniltetrazolium para determinar la vitalidad del polen.spa
dcterms.referencesVolk, G. M. (2011). Collecting pollen for genetic resources conservation. Collecting plant genetic diversity: technical guidelines, 1-10.spa
dcterms.referencesWahid, A., Gelani, S., Ashraf, M., y Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223.spa
dcterms.referencesWang, M. L., Hsu, C. M., Chang, L. C., Wang, C. S., Su, T. H., Huang, Y. J. J., ... y Jauh, G. Y. (2004). Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth. Plant and cell physiology, 45(10), 1519-1528.spa
dcterms.referencesWarrag, M. O. A., y Hall, A. E. (1984). Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crops Research, 8, 17-33.spa
dcterms.referencesMassawe, F., Mayes, S., y Cheng, A. (2016). Crop diversity: an unexploited treasure trove for food security. Trends in plant science, 21(5), 365-368.spa
dcterms.referencesWestphall, E. (1974). Pulses in Ethiopia: their taxonomy and agricultural significance. Field Crop Abstracts 24:213-232.spa
dcterms.referencesWheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., Vara Prasad, P. V. (2000). Temperature variability and the annual yield of crops. Agric. Ecosyst. Environ.82, 159-167.spa
dcterms.referencesXiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., y Wu, D. (2016). Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One, 11(8).spa
dcterms.referencesYan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I., y Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, 148, 329-339.spa
dcterms.referencesYi, W., Law, S. E., Mccoy, D., y Wetzstein, H. Y. (2006). Stigma development and receptivity in almond (Prunus dulcis). Annals of Botany, 97(1), 57-63.spa
dcterms.referencesZary, K. W., Miller Junior, J. C. (1982). Comparison of two methods of hand-crossing Vigna unguiculata (L.) Walp. Hort Science, Alexandria, 17(2): 246-248.spa
dspace.entity.typePublication
oaire.accessrightsHttp://purl.org/coar/access_right/c_abf2spa
oaire.versionHttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
HERNANDEZMURILLOJENRY.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
Descripción:
INFORME FINAL TRABAJO DE GRADO
No hay miniatura disponible
Nombre:
Autorización repositorio.pdf
Tamaño:
3.19 MB
Formato:
Adobe Portable Document Format
Descripción:
FORMATO AUTORIZACIÓN REPOSITORIO
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones