Publicación: Efecto de cepas nativas de rizobacterias en el crecimiento de plántulas de Solanum melongena L. y su relación con las características edafológicas de los suelos en el Medio Sinú, Córdoba
dc.contributor.advisor | Jaraba Navas, Juan de Dios | spa |
dc.contributor.advisor | Nader Nieto, Anna Camila | spa |
dc.contributor.author | Luna Castellanos, Lily Lorena | |
dc.contributor.referee | Burbano Figueroa, Óscar Alberto | |
dc.contributor.referee | Urrea-Morawicki, Keiddy | |
dc.date.accessioned | 2023-03-02T15:10:42Z | |
dc.date.available | 2024-11-30 | |
dc.date.available | 2023-03-02T15:10:42Z | |
dc.date.issued | 2023-03-02 | |
dc.description.abstract | El incremento continuo de la población humana, exige un aumento constante de la producción agrícola mundial, lo cual genera una mayor demanda de productos agrícolas, como, fertilizantes y pesticidas, que impactan de forma negativa la microbiota del suelo y las fuentes hídricas. El cultivo de berenjena (Solanum melongena L.) en el departamento de Córdoba, que depende del uso de fertilizantes para sostener su producción dentro de estándares competentes, además utiliza grandes cantidades de agroinsumos que impactan negativamente la biota, generan contaminación e incrementan los costos de producción y disminuyen la inocuidad de los frutos, ocasionando riesgos para la salud humana. La implementación de rizobacterias promotoras del crecimiento vegetal (RPCV), en producción agrícola, puede ser una alternativa rentable en varios sistemas productivos, por su eficiencia en la regulación del crecimiento vegetal y manejo del estrés abiótico. Por ello, la presente investigación tuvo como objetivo determinar el efecto de cepas nativas de rizobacterias en el crecimiento y fisiología de plántulas de Solanum melongena y su relación con las características edafológicas del suelo, en lotes comerciales del cultivo en el Medio Sinú, Córdoba. Se tomaron 10 muestras de suelo rizosférico de las plantas, a 20 cm de profundidad, en 10 lotes (2.500 a 5.000 m2) ubicados en los municipios de Cereté, Montería, San Pelayo y San Carlos. Las muestras fueron procesadas para el aislamiento de RPCV y para determinar las propiedades físicas y químicas del suelo, en el laboratorio de Fitopatología de la Universidad de Córdoba. Las propiedades físicas y químicas del suelo, fueron determinadas en los laboratorios de Suelos y Agua, de la Facultad de Ciencias Agrícolas de la Universidad de Córdoba. A cada aislamiento se les determinó: actividad fosfato solubilizadoras, producción de AIA, NH4, PO4 y sideróforos, en condiciones in-vitro. Los aislamientos se identificaron mediante secuenciación del gen ARN 16S. La capacidad de los aislamientos para promover el crecimiento vegetal se determinó en plántulas de berenjena, cv C015. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agronómicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Resumen....................................................................................... XX | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO........................................................................................ 30 | spa |
dc.description.tableofcontents | 3.1 GENERALIDADES DEL CULTIVO DE BERENJENA (Solanum melongena L.)........................................................ 30 | spa |
dc.description.tableofcontents | 3.2. IMPORTANCIA NUTRICIONAL DE LA BERENJENA...........................31 | spa |
dc.description.tableofcontents | 3.3. IMPORTANCIA ECONÓMICA DE LA BERENJENA...........................32 | spa |
dc.description.tableofcontents | 3.4. RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL (RPCV)...............33 | spa |
dc.description.tableofcontents | 3.5. COLONIZACIÓN DE LA RIZÓSFERA POR RPCV...................................... 35 | spa |
dc.description.tableofcontents | 3.5.1 Quimiotaxis hacia exudados radiculares........................................... 36 | spa |
dc.description.tableofcontents | 3.5.2. Quorum-sensing (QS) de RPCV en la rizósfera ..................................38 | spa |
dc.description.tableofcontents | 3.5.3. Compuestos orgánicos volátiles (COV)..................................................... 42 | spa |
dc.description.tableofcontents | 3.6. MECANISMOS DE PROMOCIÓN DEL CRECIMIENTO VEGETAL POR RPCV................................................................................................. 43 | spa |
dc.description.tableofcontents | 3.6.1. Mecanismos Directos.........................................................45 | spa |
dc.description.tableofcontents | 3.6.2. Mecanismos Indirectos..............................................53 | spa |
dc.description.tableofcontents | 3.7. FACTORES EDÁFICOS QUE AFECTAN LA DIVERSIDAD DE LAS RPCV..................57 | spa |
dc.description.tableofcontents | 3.8. IDENTIFICACIÓN DE GRUPOS BACTERIANOS A PARTIR DEL ARN 16s...................................................................................... 59 | spa |
dc.description.tableofcontents | 4. OBJETIVOS....................................................... 62 | spa |
dc.description.tableofcontents | 4.2. OBJETIVOS GENERAL............................................................................. 62 | spa |
dc.description.tableofcontents | 4.1. OBJETIVOS ESPECÍFICOS............................................................................... 62 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS...........................................................................63 | spa |
dc.description.tableofcontents | 1. Introducción....................................................................................24 | spa |
dc.description.tableofcontents | 2. Planteamiento del problema......................................................28 | spa |
dc.description.tableofcontents | CAPÍTULO II....................................................................................................89 | spa |
dc.description.tableofcontents | CARACTERIZACIÓN E IDENTIFICACIÓN DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL ASOCIADAS A Solanum melongena L. EN ZONAS PRODUCTORAS DE CÓRDOBA...........................................89 | spa |
dc.description.tableofcontents | RESUMEN.........................................................................................................................89 | spa |
dc.description.tableofcontents | ABSTRACT...........................................................................................90 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN.....................................................................91 | spa |
dc.description.tableofcontents | 2.MATERIALES Y MÉTODOS...............................................................................................93 | spa |
dc.description.tableofcontents | 2.1. ÁREA DE ESTUDIO............................................................................................ 93 | spa |
dc.description.tableofcontents | 2.2. AISLAMIENTO Y CARACTERIZACIÓN DE RIZOBACTERIAS PROMOTORES DEL CRECIMIENTO VEGETAL (RPCV)..................................................................................................... ..........94 | spa |
dc.description.tableofcontents | 2.2.1. Pruebas cualitativas...................................................................................96 | spa |
dc.description.tableofcontents | 2.2.2. Pruebas cuantitativas..................................................................................97 | spa |
dc.description.tableofcontents | 2.3. SELECCIÓN E IDENTIFICACIÓN DE RIZOBACTERIAS CON PROPIEDADES DE PROMOCIÓN DEL CRECIMIENTO VEGETAL....................................................................................................................99 | spa |
dc.description.tableofcontents | 2.4. ANÁLISIS ESTADÍSTICO..........................................................................................100 | spa |
dc.description.tableofcontents | 3. RESULTADOS......................................................................101 | spa |
dc.description.tableofcontents | 3.1. AISLAMIENTO, CARACTERIZACIÓN Y SELECCIÓN DE LOS AISLADOS BACTERIANOS........................................................................................101 | spa |
dc.description.tableofcontents | 3.1.1. Aislamiento de RPCV..............................................................101 | spa |
dc.description.tableofcontents | 3.1.2. Caracterización bioquímica de RPCV.................................101 | spa |
dc.description.tableofcontents | 3.1.3. Selección de microorganismo PCV...............................................................104 | spa |
dc.description.tableofcontents | 3.2. IDENTIFICACIÓN Y CARACTERIZACIÓN DE RPCV.....................................105 | spa |
dc.description.tableofcontents | 3.2.1. Identificación molecular de aislados bacterianos................................107 | spa |
dc.description.tableofcontents | 3.2.2. Estimación cualitativa y cuantitativa in-vitro de la actividad PCV de los aislados seleccionados........................................................................................111 | spa |
dc.description.tableofcontents | 3.3. RELACIÓN DE PARÁMETROS NUTRICIONALES PARA OPTIMIZAR EL CRECIMIENTO DE RPCV.............................................................................................115 | spa |
dc.description.tableofcontents | 4. DISCUSIÓN..............................................................................116 | spa |
dc.description.tableofcontents | 4. CONCLUSIÓN..............................................................................................................125 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS...................................................................................126 | spa |
dc.description.tableofcontents | CAPÍTULO III...................................................................................................................................144 | spa |
dc.description.tableofcontents | EFECTO DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL (RPCV) EN EL CRECIMIENTO Y FISIOLOGÍA DEL CULTIVO DE BERENJENA (Solanum melongena L.), EN CONDICIONES DE CASA MALLA...........................................................................................................................................144 | spa |
dc.description.tableofcontents | RESUMEN................................................................................144 | spa |
dc.description.tableofcontents | ABSTRACT...................................................145 | spa |
dc.description.tableofcontents | 1.INTRODUCCIÓN......................................................................................................146 | spa |
dc.description.tableofcontents | 2. MATERIALES Y MÉTODOS..............................................................................................149 | spa |
dc.description.tableofcontents | 2.1. MUESTREO DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL.....................................................................149 | spa |
dc.description.tableofcontents | 2.2. EFECTO DE RPCV SOBRE CRECIMIENTO Y FISIOLOGÍA DE BERENJENA BAJO CONDICIONES DE CASA MALLA........................................150 | spa |
dc.description.tableofcontents | 2.2.1. Material vegetal y preparación de inóculo...............................................150 | spa |
dc.description.tableofcontents | 2.2.2.Ensayo in-vitro, efecto de RPCV sobre la germinación y elongación de la raíz ...........................................................................................151 | spa |
dc.description.tableofcontents | 2.2.3. Actividad promotora de crecimiento en plántulas de berenjena........153 | spa |
dc.description.tableofcontents | 2.2.4. Diseño experimental............................................153 | spa |
dc.description.tableofcontents | 2.3. ANÁLISIS ESTADÍSTICO..............................................157 | spa |
dc.description.tableofcontents | 3. RESULTADOS...................................................................158 | spa |
dc.description.tableofcontents | 3.1. EFECTO DE RPCV EN EL ÍNDICE DE VIGOR LONGITUD RADICULAR Y DESARROLLO DEL TALLO A NIVEL IN-VITRO......................................................158 | spa |
dc.description.tableofcontents | 3.2. EFECTO DE RPCV SOBRE TASAS DE CRECIMIENTO EN CONDICIONES DE CASA MALLA...............................................................................162 | spa |
dc.description.tableofcontents | 3.3. PARÁMETROS DE CRECIMIENTO, ÁREA FOLIAR Y VARIABLES DE INTERCAMBIO GASEOSO..............................................................................................170 | spa |
dc.description.tableofcontents | 3.4. CORRELACIÓN Y MODELAMIENTO ENTRE TASA DE CRECIMIENTO Y PARÁMETROS DE INTERCAMBIO GASEOSO......................................................174 | spa |
dc.description.tableofcontents | 4. DISCUSIÓN..............................................................................179 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES........................................................................187 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS.................................................................................187 | spa |
dc.description.tableofcontents | CAPÍTULO IV.........................................................................................................................200 | spa |
dc.description.tableofcontents | INFLUENCIA DE LAS CARACTERÍSTICAS FÍSICO QUÍMICAS DE LOS SUELOS CULTIVADOS CON BERENJENA (Solanum melongena L.) EN LA DIVERSIDAD DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL EN EL SINÚ MEDIO (CÓRDOBA – COLOMBIA).................................................200 | spa |
dc.description.tableofcontents | RESUMEN........................................................................................200 | spa |
dc.description.tableofcontents | ABSTRACT..................................................................................................201 | spa |
dc.description.tableofcontents | 1.INTRODUCCIÓN...............................................................................202 | spa |
dc.description.tableofcontents | 2. MATERIALES Y MÉTODOS......................................................205 | spa |
dc.description.tableofcontents | 2.1. ÁREA DE ESTUDIO Y COLECTA DE MUESTRAS.......................................205 | spa |
dc.description.tableofcontents | 2.2. ANÁLISIS FÍSICO Y QUÍMICO DEL SUELO CULTIVADO CON BERENJENA..........................................................................................................208 | spa |
dc.description.tableofcontents | 2.3. IDENTIFICACIÓN DE GRUPOS BACTERIANOS ASOCIADOS A LAS RIZÓSFERA DE CULTIVOS DE BERENJENA...................................................209 | spa |
dc.description.tableofcontents | 2.4. ÍNDICES DE DIVERSIDAD BIOLÓGICA.............................................................211 | spa |
dc.description.tableofcontents | 2.5. ANÁLISIS DE DATOS.......................................................................................................211 | spa |
dc.description.tableofcontents | 3. RESULTADOS................................................................................................................212 | spa |
dc.description.tableofcontents | 3.1. IDENTIFICACIÓN Y ESTRUCTURA DE LA COMUNIDAD MICROBIANA CULTIVABLE..............................................................................................212 | spa |
dc.description.tableofcontents | 3.2. CARACTERÍSTICAS EDAFOLÓGICAS DE SUELO Y PARÁMETROS SIGNIFICATIVOS................................................................................216 | spa |
dc.description.tableofcontents | 3.3. CORRELACIÓN ENTRE LA COMUNIDAD BACTERIANA CULTIVABLE Y LAS CARACTERÍSTICAS EDAFOLÓGICAS DEL SUELO....................223 | spa |
dc.description.tableofcontents | 4.DISCUSIÓN...................................................................225 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES ............................................................................232 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS...............................................................................233 | spa |
dc.description.tableofcontents | ANEXOS...................................................................................................246 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7299 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Agronómicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Eggplant | eng |
dc.subject.keywords | RPCV | eng |
dc.subject.keywords | Physiology | eng |
dc.subject.keywords | CPA | eng |
dc.subject.keywords | Soil properties | eng |
dc.subject.keywords | Biofertilizer | eng |
dc.subject.proposal | Berenjena | spa |
dc.subject.proposal | RPCV | spa |
dc.subject.proposal | Fisiología | spa |
dc.subject.proposal | CPA | spa |
dc.subject.proposal | Propiedades del suelo | spa |
dc.subject.proposal | Biofertilizante | spa |
dc.title | Efecto de cepas nativas de rizobacterias en el crecimiento de plántulas de Solanum melongena L. y su relación con las características edafológicas de los suelos en el Medio Sinú, Córdoba | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abd El-Azeem, S., Elwan, M., Sung, J., & Ok, Y. (2012). Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Communications in soil science and plant analysis, 43(9), 1303-1315 | spa |
dcterms.references | Acuña, J., Campos, M., de la Luz Mora, M., Jaisi, D., & Jorquera, M. (2019). ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Applied Soil Ecology, 136, 184-190. | spa |
dcterms.references | Afanador, L. (2017). Biofertilizantes: conceptos, beneficios y su aplicación en Colombia. Ingeciencia, 2(1), 65-76. | spa |
dcterms.references | Agronet. (2014). Estadísticas Berenjena. Recuperado de: https://www.agronet.gov.co. | spa |
dcterms.references | Agronet. (2018). Área, producción y rendimiento nacional por cultivo. Recuperado de: https://www.agronet.gov.co/estadistica. | spa |
dcterms.references | Agronet. (2021). Área, producción y rendimiento nacional por. Recuperado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Consultado en noviembre de 2021. | spa |
dcterms.references | Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20 | spa |
dcterms.references | Alamer, A., Sabah, I., Tomah, A., Li, B., & Zhang, J. (2020). Isolation, Identification and Characterization of Rhizobacteria Strains for Biological Control of Bacterial Wilt (Ralstonia solanacearum) of Eggplant in China. Agriculture, 10(37), 1-16. | spa |
dcterms.references | Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z., ... & Finn, R. (2021). A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 39(1), 105-114. | spa |
dcterms.references | Al Nachar, K. (2019). Investigation and measurement of some mineral and vitamins in eggplant fruit calyx, and the possibility of being used as food supplements and alternative medicine. J Food Nutr, 5, 1-10. | spa |
dcterms.references | Alori, E., Glick, B., & Babalola, O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, 8 (971), 1-8. | spa |
dcterms.references | Amara, U., Khalid, R., & Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In Bacterial metabolites in sustainable agroecosystem. Springer, Cham, 87-103 | spa |
dcterms.references | Andersson, D., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12(7), 465-478. | spa |
dcterms.references | Anzai, Y., Kim, H., Park, Y., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology, 50(4), 1563-1589. | spa |
dcterms.references | Araméndiz, T., Cardona, A., Jarma, O., & Espitia, C. (2008). El cultivo de la berenjena (Solanum melongena L.) (No. F01-49). Universidad de Córdoba (Colombia), Facultad Ciencias Agrarias | spa |
dcterms.references | Arwiyanto, T., Nurcahyanti, S., Indradewa, D., & Widada, J. (2020). Antagonistic activity of bacterial rhizosphere from rootstocks of tomato and eggplant against Ralstonia solanacearum. Acta Horticulturae, 1270, 321-325 | spa |
dcterms.references | Auch, A., von Jan, M., Klenk, H., & Göker, M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in genomic sciences, 2(1), 117-134. | spa |
dcterms.references | Audrain, B., Farag, M., Ryu, C., & Ghigo, J. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222-233. | spa |
dcterms.references | Bainard, L., Hamel, C., & Gan, Y. (2016). Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Applied Soil Ecology, 105, 160-168. | spa |
dcterms.references | Bais, H., Weir, T., Perry, L., Gilroy, S., & Vivanco, J. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol., 57, 233-266. | spa |
dcterms.references | Behera, B., Sethi, B., Mishra, R., Dutta, S., & Thatoi, H. (2017). Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197-210. | spa |
dcterms.references | Bell, T., Newman, J., Silverman, B., Turner, S., & Lilley, A. (2005). The contribution of species richness and composition to bacterial services. Nature, 436(7054), 1157-1160. | spa |
dcterms.references | Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol science and technology, 11(5), 557-574. | spa |
dcterms.references | Bhanushree, N., Saha, P., Tomar, B., Lyngdoh, Y., Krishnan, S., Gurung, B., & Ghoshal, C. (2018). Genetic analysis and identification of molecular marker linked to the gene for fruit skin colour in eggplant (Solanum melongena L.). Vegetable Science, 45(2), 149-153. | spa |
dcterms.references | Bhardwaj, D., Ansari, M., Sahoo, R., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13(1), 1-10 | spa |
dcterms.references | Bitas, V., Kim, H., Bennett, J., & Kang, S. (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26(8), 835-843. | spa |
dcterms.references | Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280-286. | spa |
dcterms.references | Bukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., & Naqqash, T. (2020). Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research, 238, 1-20. | spa |
dcterms.references | Burbano, O., Sierra, A., David, A., Whitney, C., Borgemeister, C., & Luedeling, E. (2022). Farm-planning under risk: An application of decision analysis and portfolio theory for the assessment of crop diversification strategies in horticultural systems. Agricultural Systems, 199, 103409 | spa |
dcterms.references | Burns, K., Kluepfel, D., Strauss, S., Bokulich, N., Cantu, D., & Steenwerth, K. (2015). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biology and Biochemistry, 91, 232-247. | spa |
dcterms.references | Caporaso, J., Lauber, C., Walters, W.., Berg-Lyons, D., Lozupone, C., Turnbaugh, P., ... & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences, 108(Supplement 1), 4516-4522. | spa |
dcterms.references | Carlson, R., Tugizimana, F., Steenkamp, P., Dubery, I., Hassen, A., & Labuschagne, N. (2020). Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiological Research, 232, 1-14. | spa |
dcterms.references | Carter, C., Zhong, F., & Zhu, J. (2012). Advances in Chinese agriculture and its global implications. Applied Economic Perspectives and Policy, 34(1), 1-36. | spa |
dcterms.references | Chamkhi, I., El Omari, N., Benali, T., & Bouyahya, A. (2020). Quorum Sensing and Plant-Bacteria Interaction: Role of Quorum Sensing in the Rhizobacterial Community Colonization in the Rhizosphere. In Quorum Sensing: Microbial Rules of Life. American Chemical Society, 139-153. | spa |
dcterms.references | Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., & Yang, X. (2017). The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Frontiers in microbiology, 8(2538), 1-13 | spa |
dcterms.references | Chen, Y., Huang, B., Hu, W., Weindorf, D., & Yang, L. (2013). Environmental assessment of closed greenhouse vegetable production system in Nanjing, China. Journal of Soils and Sediments, 13(8), 1418-1429. | spa |
dcterms.references | Cho, S., Kim, M., & Lee, Y. (2016). Effect of pH on soil bacterial diversity. Journal of Ecology and Environment, 40(1), 1-9 | spa |
dcterms.references | Cohan, F. (2001). Bacterial species and speciation. Systematic biology, 50(4), 513-524. | spa |
dcterms.references | Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 71(9), 4951-4959 | spa |
dcterms.references | Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19, 29-37. | spa |
dcterms.references | Costa, O., Raaijmakers, J., & Kuramae, E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9(1636), 1-14 | spa |
dcterms.references | Daunay, M., & Janick, J. (2007). History and iconography of eggplant. Chronica Horticulturae, 47(3), 16-22. | spa |
dcterms.references | De Leij, F.., Whipps, J., & Lynch, J. M. (1994). The use of colony development for the characterization of bacterial communities in soil and on roots. Microbial ecology, 27(1), 81-97. | spa |
dcterms.references | De Souza, J., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi, V., & Raaijmakers, J. (2003). Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93(8), 966-975. | spa |
dcterms.references | Dinnage, R., Simonsen, A., Barrett, L., Cardillo, M., Raisbeck, N., Thrall, P., & Prober, S. (2019). Larger plants promote a greater diversity of symbiotic nitrogen‐fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 107(2), 977-991 | spa |
dcterms.references | Duan, Y., Xu, M., Gao, S., Liu, H., Huang, S., & Wang, B. (2016). Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Scientific Reports, 6, 1-10. | spa |
dcterms.references | FAO. 2018. Brinjal production Statistics. En Faostat. Recuperado de: http://www.fao.org/faostat/es/#data/QC (2018) (consulta: enero de 2021). | spa |
dcterms.references | Ferluga, S., Steindler, L., & Venturi, V. (2008). N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. In Secondary metabolites in soil ecology. Springer, Berlin, Heidelberg, 69-90. | spa |
dcterms.references | Fraikue, F. (2016). Unveiling the potential utility of eggplant: A review. In Conference Proceedings of INCEDI. 883-895. | spa |
dcterms.references | Fu, Q., Liu, C., Ding, N., Lin, Y., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994-2000. | spa |
dcterms.references | Gamalero, E., Lingua, G., Berta, G., & Lemanceau, P. (2009). Methods for studying root colonization by introduced beneficial bacteria. In Sustainable Agriculture. Springer, Dordrecht, 601-615. | spa |
dcterms.references | Gamalero, E., Lingua, G., Giusy Caprì, F., Fusconi, A., Berta, G., & Lemanceau, P. (2004). Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS microbiology ecology, 48(1), 79-87 | spa |
dcterms.references | Geng, Y., Guo, R., Zhang, A., Govrin, E., & Li, S. (2020). Growth and yield of eggplant promoted by the application of Bacillus velezensis B006 agent under different soil water potential conditions. Journal of Agricultural Resources and Environment, 37(3), 398-406. | spa |
dcterms.references | Ghorai, P., & Ghosh, D. (2022). Ameliorating the performance of NPK biofertilizers to attain sustainable agriculture with special emphasis on bioengineering. Bioresource Technology Reports, 101117. | spa |
dcterms.references | Ghosh, P., Maiti, T., Pramanik, K., Ghosh, S., Mitra, S., & De, T. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407-419. | spa |
dcterms.references | Glick, B. (2012). Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation Scientifica,2012, 1-15. | spa |
dcterms.references | González, O., & Ruano, D. (2020). Root exudates, a key factor in the plant-bacteria interaction mechanisms. In Molecular Aspects of Plant Beneficial Microbes in Agriculture. Academic Press, 111-121. | spa |
dcterms.references | Goswami, M., & Suresh, D (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40-61. | spa |
dcterms.references | Grayston, S., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied soil ecology, 5(1), 29-56. | spa |
dcterms.references | Grobkinsky, D., van der Graaff, E., & Roitsch, T. (2014). Abscisic acid–cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology, 104(12), 1283-1288. | spa |
dcterms.references | Gu, B., Ju, X., Chang, S., Ge, Y., & Chang, J. (2017). Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change, 17(4), 1217-1227. | spa |
dcterms.references | Gupta, G., Parihar, S., Ahirwar, N., Snehi, S., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102. | spa |
dcterms.references | Haichar, F., Marol, C., Berge, O., Rangel, J., Prosser, J., Balesdent, J., & Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221-1230. | spa |
dcterms.references | Han, H., & Lee, K. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci, 1(2), 176-180. | spa |
dcterms.references | Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C., & Wu, Z. (2017). Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environmental science & technology, 51(6), 3233-3241 | spa |
dcterms.references | Hao, Z., Van Tuinen, D., Wipf, D., Fayolle, L., Chataignier, O., Li, X., & Adrian, M. (2017). Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biological Control, 109, 42-50. | spa |
dcterms.references | Heydari, M., Brook, R., & Jones, D. (2019). The role of phosphorus sources on root diameter, root length and root dry matter of barley (Hordeum vulgare L.). Journal of plant nutrition, 42(1), 1-15 | spa |
dcterms.references | Imran, A., Saadalla, M., Khan, S., Mirza, M., Malik, K., & Hafeez, F. (2014). Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Annals of Microbiology, 64(4), 1797-1806. | spa |
dcterms.references | Ji, S., Kim, J., Lee, C., Seo, H., Chun, S., Oh, J., & Park, G. (2019). Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma. Scientific reports, 9(1), 1-16. | spa |
dcterms.references | Jimenez, E., Yang, Z. Y., Del Campo, J., Cash, V., Seefeldt, L., & Dean, D. (2019). The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. Journal of Biological Chemistry, 294(16), 6204-6213. | spa |
dcterms.references | Kafle, A., Cope, K., Raths, R., Krishna, J., Subramanian, S., Bücking, H., & Garcia, K. (2019). Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy, 9(3), 1-15. | spa |
dcterms.references | Kai, M., Effmert, U. y Piechulla, B. (2016). Interacciones bacteriano-planta: enfoques para desentrañar la función biológica de los volátiles bacterianos en la rizósfera. Fronteras en microbiología, 7 (108), 1-14. | spa |
dcterms.references | Kanchiswamy, C., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in plant science, 6(151), 1-23. | spa |
dcterms.references | Kang, S., Cho, H., Cheong, H., Ryu, C. M., Kim, J., & Park, S. (2007). Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of microbiology and biotechnology, 17(1), 96-103 | spa |
dcterms.references | Karthik, C., Elangovan, N., Kumar, T., Govindharaju, S., Barathi, S., Oves, M., & Arulselvi, P. (2017). Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiological research, 204, 65-71 | spa |
dcterms.references | Kennedy, A. (1999). Bacterial diversity in agroecosystems. Invertebrate biodiversity as bioindicators of sustainable landscapes, 65-76 | spa |
dcterms.references | Khan, M., Fischer, S., Egan, D., & Doohan, F. (2006). Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology, 96(4), 386-394 | spa |
dcterms.references | Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273(111118), 1-20. | spa |
dcterms.references | Kim, O., Cho, Y., Lee, K., Yoon, S., Kim, M., Na, H., ... & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International journal of systematic and evolutionary microbiology, 62(Pt_3), 716-721. | spa |
dcterms.references | Kloepper, J., & Schroth, M. (1981). Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 71(10), 1020-1024 | spa |
dcterms.references | Kloepper, J., Zablokovicz, R., Tipping, E., & Lifshitz, R. (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers In DL Keister & P B Cregan (eds) The rhizosphere and plant growth (Pp 315-326). The Netherlands: Kluwer Academic Publishers | spa |
dcterms.references | Knee, E., Gong, F., Gao, M., Teplitski, M., Jones, A., Foxworthy, A., ... & Bauer, W. (2001). Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Molecular Plant-Microbe Interactions, 14(6), 775-784 | spa |
dcterms.references | Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1475), 1929-1940. | spa |
dcterms.references | Kumari, B., Mallick, M., Solanki, M., Solanki, A., Hora, A., & Guo, W. (2019). Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In Plant health under biotic stress (pp. 109-127). Springer, Singapore. | spa |
dcterms.references | Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in microbiology, 6(883), 1-15 | spa |
dcterms.references | Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556. | spa |
dcterms.references | Lugtenberg, B., Dekkers, L., & Bloemberg, G (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual review of phytopathology, 39(1), 461-490 | spa |
dcterms.references | Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14-25. | spa |
dcterms.references | Marques, A., Pires, C., Moreira, H., Rangel, A., & Castro, P. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229-1235. | spa |
dcterms.references | Martínez, M., Zumaqué, L., Martínez, L.., & Pinto, M. (2020). Adopción de la variedad de berenjena C015 (Solanum melongena L.) en la región Caribe colombiana. Ciencia y Agricultura, 17(3), 1-10. | spa |
dcterms.references | Martins, A., Omena, R., Oliveira,., Silva, W., Hajirezaei, M., Vallarino, J., & Araújo, W. (2019). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331-343. | spa |
dcterms.references | Masson, C., & Sachs, J. (2018). Symbiotic nitrogen fixation by rhizobi the roots of a success story. Current opinion in plant biology, 44, 7-15. | spa |
dcterms.references | Meena, V., Bahadur, I., Maurya, B., Kumar, A., Meena, R., Meena, S., y Verma, J. (2016). Potassium-solubilizing microorganism in evergreen agriculture: an overview. In Potassium solubilizing microorganisms for sustainable agriculture. New Delhi, Springer, 1-20 | spa |
dcterms.references | Meier, J., Auch, A., Klenk, H., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC bioinformatics, 14(1), 1-14 | spa |
dcterms.references | Miller, M., Skorupski, K., Lenz, D., Taylor, R., & Bassler, B. (2002). Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell, 110(3), 303-314. | spa |
dcterms.references | Minagricultura (2018). Prducción mundial de hortalizas. Recuperado de https://www.minagricultura.gov.co/paginas/default.aspx | spa |
dcterms.references | Nandi, L., Saha, P., Behera, T., Lyngdoh, Y., Munshi, A., Saha, N., & Tomar, B. (2020). Genetic characterisation and population structure analysis of indigenous and exotic eggplant (Solanum spp) accessions using microsatellite markers. The Journal of Horticultural Science and Biotechnology, 96(1), 73-86 | spa |
dcterms.references | Naqqash, T., Hameed, S., Imran, A., Hanif, M., Majeed, A., & van Elsas, J. (2016). Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in plant science, 7, 144. | spa |
dcterms.references | Nascimento, F., Hernández, A., Glick, B., & Rossi, M. (2020). Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25, 1-9. | spa |
dcterms.references | Niño, G., Urías, V., Muy, M., & Heredia, J. (2017). Structure and content of phenolics in eggplant (Solanum melongena)-a review. South African Journal of Botany, 111, 161-169. | spa |
dcterms.references | Orozco, M., Rocha, M., Glick, B., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological research, 208, 25-31 | spa |
dcterms.references | Paredes, K., Rodríguez, R., Duarte, B., Caviedes, M., Mateos, E., Redondo, S., & Pajuelo, E. (2018). Investigating the mechanisms underlying phytoprotection by plant growth‐promoting rhizobacteria in Spartina densiflora under metal stress. Plant Biology, 20(3), 497-506 | spa |
dcterms.references | Parks, D., Chuvochina, M., Chaumeil, P., Rinke, C., Mussig, A., & Hugenholtz, P. (2020). A complete domain-to-species taxonomy for Bacteria and Archaea. Nature biotechnology, 38(9), 1079-1086. | spa |
dcterms.references | Patel, K., Naik, J., Chaudhari, S., & Amaresan, N. (2017). Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. Comptes Rendus Biologies, 340(4), 244-249 | spa |
dcterms.references | Paterson, E., & Sim, A. (2000). Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. Journal of Experimental Botany, 51(349), 1449-1457 | spa |
dcterms.references | Pathak, D., Singh, V., Sharma, J., & Sheera, A. (2020). Plant growth promoting rhizobacteria (PGPR): A biological tool for improving plant health. Biotica Research Today, 2(7), 593-595 | spa |
dcterms.references | Pathan, S., Ceccherini, M., Sunseri, F., & Lupini, A. (2020). Rhizosphere as hotspot for plant-soil-microbe interaction. In Carbon and Nitrogen Cycling in Soil, Springer, Singapore, 17-43 | spa |
dcterms.references | Płociniczak, T., Sinkkonen, A., Romantschuk, M., Sułowicz, S., & Piotrowska-Seget, Z. (2016). Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Frontiers in plant science, 7(101), 1-10. | spa |
dcterms.references | Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 129-157. | spa |
dcterms.references | Puppala, K., Bhavsar, K., Sonalkar, V., Khire, J., & Dharne, M. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology, 18,1-7. | spa |
dcterms.references | Quamruzzaman, A., Khatun, A., & Islam, F. (2020). Nutritional Content and Health Benefits of Bangladeshi Eggplant Cultivars. European Journal of Agriculture and Food Sciences, 2(4), 1-7. | spa |
dcterms.references | Radzki, W., Mañero, F., Algar, E., García, J., García, A., & Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330. | spa |
dcterms.references | Rajkumar, M., Ae, N., Prasad, M., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in biotechnology, 28(3), 142-149. | spa |
dcterms.references | Rangaraj, P., Ryle, M., Lanzilotta, N., Goodwin, J., Dean, R., Shah, K., & Ludden, W. (1999). Inhibition of iron-molybdenum cofactor biosynthesis by L127Δ NifH and evidence for a complex formation between L127Δ NifH and NifNE. Journal of Biological Chemistry, 274(41), 29413-29419. | spa |
dcterms.references | Rathinasabapathi, B., Liu, X., Cao, Y., & Ma, L. (2018). Phosphate-solubilizing Pseudomonads for improving crop plant nutrition and agricultural productivity. In Crop Improvement Through Microbial Biotechnology. Elsevier, 363-372. | spa |
dcterms.references | Rehman, F., Kalsoom, M., Adnan, M., Toor, M., & Zulfiqar, A. (2020). Plant Growth Promoting Rhizobacteria and their Mechanisms Involved in Agricultural Crop Production: A Review. SunText Rev. Biotechnol, 1(2), 1-6. | spa |
dcterms.references | Ren, C., Liu, S., Van Grinsven, H., Reis, S., Jin, S., Liu, H., & Gu, B. (2019). The impact of farm size on agricultural sustainability. Journal of Cleaner Production, 220, 357-367. | spa |
dcterms.references | Richter, M., & Rosselló, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126-19131. | spa |
dcterms.references | Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in microbiology, 7(1785), 1-14 | spa |
dcterms.references | Rodriguez, L., Castro, J., Kyrpides, N., Cole, J., Tiedje, J., & Konstantinidis, K. (2018). How much do rRNA gene surveys underestimate extant bacterial diversity?. Applied and environmental microbiology, 84(6). | spa |
dcterms.references | Ryan, R., An, S., Allan, J., McCarthy, Y., & Dow, J. (2015). The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS pathogens, 11(7), 1-14. | spa |
dcterms.references | Salazar, M., Rodriguez, J., Cid, C., & Pignata, M. (2016). Auxin effects on Pb phytoextraction from polluted soils by Tegetes minuta L. and Bidens pilosa L.: Extractive power of their root exudates. Journal of Hazardous Materials, 311, 63-69. | spa |
dcterms.references | Semenov, M., Krasnov, G., Semenov, V., & van Bruggen, A. (2020). Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 154, 103641. | spa |
dcterms.references | Shilev, S., Azaizeh, H., Vassilev, N., Georgiev, D., & Babrikova, I. (2019). Interactions in soil-microbe-plant system: adaptation to stressed agriculture. Microbial Interventions in Agriculture and Environment, 131-171. | spa |
dcterms.references | Singh, M., Singh, D., Gupta, A., Pandey, K., Singh, P., & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 41-66. | spa |
dcterms.references | Stackebrandt, E., & Goebel, B. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International journal of systematic and evolutionary microbiology, 44(4), 846-849. | spa |
dcterms.references | Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., ... & Zhang, Y. (2014). Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine pollution bulletin, 85(1), 123-140. | spa |
dcterms.references | Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., ... & Zhang, Y. (2014). Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine pollution bulletin, 85(1), 123-140. | spa |
dcterms.references | Sytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38(2), 739-752. | spa |
dcterms.references | Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. | spa |
dcterms.references | Tan, W., Wang, J., Bai, W., Qi, J., & Chen, W. (2020). Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific reports, 10(1), 1-12. | spa |
dcterms.references | Walker, T., Bais, H., Grotewold, E., & Vivanco, J. (2003). Root exudation and rhizosphere biology. Plant physiology, 132(1), 44-51. | spa |
dcterms.references | Wang, J., Zhang, Y., Jin, J., Li, Q., Zhao, C., Nan, W., & Bi, Y. (2018). An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture altereation in Arabidopsis thaliana seedlings. Plant Growth Regulation, 84(3), 507-518 | spa |
dcterms.references | Wayne, L., Brenner, D., Colwell, R., Grimont, P., Kandler, O., Krichevsky, M., ... & Truper, H. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic and Evolutionary Microbiology, 37(4), 463-464. | spa |
dcterms.references | Wu, M., Wei, Q., Xu, L., Li, H., Oelmüller, R., & Zhang, W. (2018). Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant and Soil, 432(1-2), 333-344. | spa |
dcterms.references | Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., ... & Zhang, R. (2019). Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Applied and environmental microbiology, 85(5), 1-14. | spa |
dcterms.references | Zaheer, A., Malik, A., Sher, A., Qaisrani, M., Mehmood, A., Khan, S., ... & Rasool, M. (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi journal of biological sciences, 26(5), 1061-1067. | spa |
dcterms.references | Zaidi, A., Ahmad, E., Khan, M. S., Saif, S., & Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Scientia Horticulturae, 193, 231-239. | spa |
dcterms.references | Zaidi, A., Khan, M. S., Saif, S., Rizvi, A., Ahmed, B., & Shahid, M. (2017). Role of nitrogen-fixing plant growth-promoting rhizobacteria in sustainable production of vegetables: current perspective. In Microbial strategies for vegetable production. Springer, Cham, 49-79 | spa |
dcterms.references | Zhang, D., Yang, Y., Liu, C., Zhang, F., Hu, W., Gong, S., & Wu, Q. (2018). Auxin modulates root-hair growth through its signaling pathway in citrus. Scientia Horticulturae, 236, 73-78. | spa |
dcterms.references | Zhang, W., Dou, Z., He, P., Ju, X., Powlson, D., Chadwick, D., ... & Zhang, F. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110(21), 8375-8380. | spa |
dcterms.references | Zhou, L., He, Y., Li, J., Liu, Y., & Chen, H. (2020). CBFs Function in Anthocyanin Biosynthesis by Interacting with MYB113 in Eggplant (Solanum melongena L.). Plant and Cell Physiology, 61(2), 416-426. | spa |
dcterms.references | Abraham, J., & Silambarasan, S. (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pesticide biochemistry and physiology, 126, 13-21. | spa |
dcterms.references | Aguado, G., Moreno, B., Jiménez, B., García, E., & Preciado, R. (2012). Impacto de los sideróforos microbianos y fitosidéforos en la asimilación de hierro por las plantas: una síntesis. Revista fitotecnia mexicana, 35(1), 9-21. | spa |
dcterms.references | Altinok, H., Dikilitas, M., & Yildiz, H. (2013). Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnology & Biotechnological Equipment, 27(4), 3952-3958. | spa |
dcterms.references | Ambawade, M. S., & Pathade, G. R. (2013). Production of indole acetic acid (IAA) by Stenotrophomonas maltophilia BE25 isolated from roots of banana (Musa spp). International Journal of Science and Research, 4(1), 2644-2650. | spa |
dcterms.references | Ambrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F., Vargas, L., & Passaglia, L. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant and soil, 356(1-2), 245-264. | spa |
dcterms.references | Anzai, Y., Kim, H., Park, J., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology, 50(4), 1563-1589 | spa |
dcterms.references | Babu, A., Jogaiah, S., Ito, S., Nagaraj, A., & Tran, L. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62-73. | spa |
dcterms.references | Beck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12 | spa |
dcterms.references | Bonachela, J., Nadell, C., Xavier, J., & Levin, S. (2011). Universality in bacterial colonies. Journal of Statistical Physics, 144(2), 303-315. | spa |
dcterms.references | Burygin, G. L., Kargapolova, K. Y., Kryuchkova, Y. V., Avdeeva, E. S., Gogoleva, N. E., Ponomaryova, T. S., & Tkachenko, O. V. (2019). Ochrobactrum cytisi IPA7. 2 promotes growth of potato microplants and is resistant to abiotic stress. World Journal of Microbiology and Biotechnology, 35(4), 1-12 | spa |
dcterms.references | Buyer, J., & Leong, J. (1986). Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. Journal of Biological Chemistry, 261(2), 791-794 | spa |
dcterms.references | Castro Acuña, N., & Ovalle Díaz, J. (2017). Alternativa de elaboración de sopa de tomate (Lycopersicon esculentum Mill.) a partir de pulpa congelada y estabilizada con y sin tamizar (Doctoral dissertation, Universidad Católica del maule, Facultad de Ciencias Agrarias y Forestales). | spa |
dcterms.references | Cavalcante, V., & Dobereiner, J. (1988). A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and soil, 108(1), 23-31. | spa |
dcterms.references | Chakraborty, U., Chakraborty, B., Basnet, M., & Chakraborty, A. (2009). Evaluation of Ochrobactrum anthropi TRS‐2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of applied microbiology, 107(2), 625-634. | spa |
dcterms.references | Choudhary, M., Panday, S., Meena, V., Singh, S., Yadav, R., Mahanta, D., & Pattanayak, A. (2018). Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agriculture, Ecosystems & Environment, 257, 38-46. | spa |
dcterms.references | Criollo, P., Obando, M., Sánchez, L., & Bonilla, R. (2012). Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense. Ciencia & Tecnología Agropecuaria, 13(2), 189-195. | spa |
dcterms.references | Das, S., Jean, J. S., Kar, S., Chou, M. L., & Chen, C. Y. (2014). Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. Journal of hazardous materials, 272, 112-120 | spa |
dcterms.references | De Farias, V., de Andrade, D. M., do Santos, R. L., de Oliveira, G., & de Oliveira, F. (2018). The Effects of a Biofertilizer Containing Growth-Promoting Bacteria on the Eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 26(6), 1-8. | spa |
dcterms.references | De Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. J., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and environmental microbiology, 70(11), 6657-6664. | spa |
dcterms.references | Dinnage, R., Simonsen, A., Barrett, L., Cardillo, M., Raisbeck, N., Thrall, P., & Prober, S. (2019). Larger plants promote a greater diversity of symbiotic nitrogen‐fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 107(2), 977-991 | spa |
dcterms.references | Döbereiner, J., Baldani, V., & Baldani, J. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa SPI. 1-620. | spa |
dcterms.references | Elkelany, U., El-Mougy, N., & Abdel, M. M. (2020). Management of root-knot nematode Meloidogyne incognita of eggplant using some growth-promoting rhizobacteria and chitosan under greenhouse conditions. Egyptian Journal of Biological Pest Control, 30(1), 1-7. | spa |
dcterms.references | Fonseca, E., & Torres, J. (2013). Selección de bacterias promotoras de crecimiento vegetal presentes en una pradera compuesta de pasto Kikuyo Pennicetum clandestinum y Ryegrass Lolium sp y evaluación de su eficiencia en el municipio de Nemocón, Cundinamarca (Trabajo de grado, Corporación Universitaria Minuto de Dios). 1-91 | spa |
dcterms.references | Garrido, M. (2007). Aislamiento e identificación de bacterias diazotróficas rizosféricas y endófitas asociadas a suelos y pastos del valle y sabana del Cesar en dos épocas climáticas, Bogotá (Trabajo de grado, Universidad Militar Nueva Granada). 1- 71. | spa |
dcterms.references | Ghosh, P., Maiti, T., Pramanik, K., Ghosh, S., Mitra, S., & De, T. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407-419. | spa |
dcterms.references | Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology, 61(2), 793-796 | spa |
dcterms.references | Gowtham, H., Hariprasad, P., Singh, S., & Niranjana, S. (2016). Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 101, 123-129. | spa |
dcterms.references | Harrington, J., Bargar, J., Jarzecki, A., Roberts, J., Sombers, L., & Duckworth, O. (2012). Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals, 25(2), 393-412. | spa |
dcterms.references | Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAN. (2017). Atlas climatológico de Colombia. 1-266. | spa |
dcterms.references | Kalita, M., Bharadwaz, M., Dey, T., Gogoi, K., Dowarah, P., Unni, B., ... & Saikia, I. (2015). Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian Journal of Experimental Biology, 53, 56-60 | spa |
dcterms.references | Khan, N., Bano, A. M., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS one, 15(4), e0231426. | spa |
dcterms.references | Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11. | spa |
dcterms.references | Kumar, C., Sujitha, P., Mamidyala, S., Usharani, P., Das, B., & Reddy, C. (2014). Ochrosin, a new biosurfactant produced by halophilic Ochrobactrum sp. strain BS-206 (MTCC 5720): purification, characterization and its biological evaluation. Process Biochemistry, 49(10), 1708-1717. | spa |
dcterms.references | Leclercq, S., Cloeckaert, A., & Zygmunt, M. (2020). Taxonomic organization of the family Brucellaceae based on a phylogenomic approach. Frontiers in microbiology, 10 (3083),1-10. | spa |
dcterms.references | Li, H., Ding, X., Chen, C., Zheng, X., Han, H., Li, C., & Li, J. (2019). Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (Solanum melongena L.). FEMS microbiology ecology, 95(3), 1-12. | spa |
dcterms.references | Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. | spa |
dcterms.references | Mahmoud, O., Hidri, R., Talbi, O., Taamalli, W., Abdelly, C., & Djébali, N. (2020). Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 128, 209-217. | spa |
dcterms.references | Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the total environment, 637, 1166-1174 | spa |
dcterms.references | Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the total environment, 637, 1166-1174 | spa |
dcterms.references | Martin, J., Ito, Y., Homann, V., Haygood, M., & Butler, A. (2006). Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. JBIC Journal of Biological Inorganic Chemistry, 11(5), 633-641 | spa |
dcterms.references | Martins, A., Omena, R., Oliveira, F., Silva, W., Hajirezaei, M., Vallarino, J., & Araújo, W. (2019). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331-343. | spa |
dcterms.references | Masson, C., & Sachs, J. (2018). Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Current opinion in plant biology, 44, 7-15. | spa |
dcterms.references | Matsushita, M., Wakita, J., Itoh, H., Rafols, I., Matsuyama, T., Sakaguchi, H., & Mimura, M. (1998). Interface growth and pattern formation in bacterial colonies. Physica A: Statistical Mechanics and its Applications, 249(1-4), 517-524. | spa |
dcterms.references | Messiha, N., Van Diepeningen, A., Farag, N., Abdallah, S., Janse, J., & Van Bruggen, A. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European journal of plant pathology, 118(3), 211-225. | spa |
dcterms.references | Morgado, A. (2013). Eficiencia de las rizobacterias promotoras del crecimiento vegetal (RPCV) en plántulas de caña de azúcar (Saccharum spp.) (Trabajo de grado, Colpos-Montecillo). Texcoco, 1-61. | spa |
dcterms.references | Nascimento, F., Hernández, A., Glick, B., & Rossi, M. (2020). Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25(e00406), 1-8. | spa |
dcterms.references | Naureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Al Housni, S. K., ... & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477. | spa |
dcterms.references | Ohgiwari, M., Matsushita, M., & Matsuyama, T. (1992). Morphological changes in growth phenomena of bacterial colony patterns. Journal of the Physical Society of Japan, 61(3), 816-822. | spa |
dcterms.references | Orozco, M., Rocha, M., Glick, B., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological research, 208, 25-31. | spa |
dcterms.references | Padró, M. D. A., Caboni, E., Morin, K. A. S., Mercado, M. A. M., & Olalde-Portugal, V. (2021). Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ, 9, e10984. | spa |
dcterms.references | Pandey, S., Ghosh, P., Ghosh, S., De, T., & Maiti, T. (2013). Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51(1), 11-17. | spa |
dcterms.references | Parasuraman, P., Pattnaik, S., Busi, S., Marraiki, N., Elgorban, A., & Syed, A. (2020). Isolation and characterization of plant growth promoting rhizobacteria and their biocontrol efficacy against phytopathogens of tomato (Solanum lycopersicum L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 1-7. | spa |
dcterms.references | Pathan, S., Ceccherini, M., Sunseri, F., & Lupini, A. (2020). Rhizosphere as hotspot for plant-soil-microbe interaction. In Carbon and Nitrogen Cycling in Soil. Springer, Singapore. 17-43. | spa |
dcterms.references | Peel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644. | spa |
dcterms.references | Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture.Woodhead Publishing, 129-157. | spa |
dcterms.references | Premono, M., Moawad, A., & Vlek, P. (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere (No. REP-12113. CIMMYT). Indonesian Journal of Crop Science, 11(1), 13-23. | spa |
dcterms.references | Puppala, K., Bhavsar, K., Sonalkar, V., Khire, J., & Dharne, M. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology, 18(101020) 1-7. Ramírez, L., Lozano, L., Méndez, M., Rojas, S., & Torres, J. (2017). Bacillus | spa |
dcterms.references | Ramírez, L., Lozano, L., Méndez, M., Rojas, S., & Torres, J. (2017). Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova, 15(27), 45-65. | spa |
dcterms.references | Rao, S., & Sinha, M. (1963). Phosphate-dissolving microorganisium in the rhizosphere and soil. India J. Agric. S, 33(4), 272-278. | spa |
dcterms.references | Ribeiro, V., Marriel, I., Sousa, S., Lana, U., Mattos, B., Oliveira, C.., & Gomes, E. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian journal of microbiology, 49, 40-46. | spa |
dcterms.references | Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS microbiology letters, 243(1), 219-226. | spa |
dcterms.references | Rojas, M., Rodríguez, A., González, L., & Heydrich, M. (2015). Influencia de diferentes factores en el crecimiento de bacterias endófitas de caña de azúcar. Revista colombiana de Biotecnología, 17(2), 149-155. | spa |
dcterms.references | Ruiu, L. (2013). Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects, 4(3), 476-492. | spa |
dcterms.references | Ruiu, L., Satta, A., & Floris, I. (2013). Emerging entomopathogenic bacteria for insect pest management. Bull Insectol, 66(2), 181-186. | spa |
dcterms.references | Saakre, M., Baburao, T. M., Salim, A. P., Ffancies, R. M., Achuthan, V. P., Thomas, G., & Sivarajan, S. R. (2017). Identification and characterization of genes responsible for drought tolerance in rice mediated by Pseudomonas fluorescens. Rice Science, 24(5), 291-298. | spa |
dcterms.references | Sakthivel, K., Manigundan, K., Gautam, R., Singh, P., Nakkeeran, S., & Sharma, S. (2019). Bacillus spp. for suppression of eggplant bacterial wilt pathogen in Andaman Islands: Isolation and characterization. Indian journal experimental biology, 57, 131-137. | spa |
dcterms.references | Scagliola, M., Pii, Y., Mimmo, T., Cesco, S., Ricciuti, P., & Crecchio, C. (2016). Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiology and Biochemistry, 107, 187-196. | spa |
dcterms.references | Shabanamol, S., Divya, K., George, T. K., Rishad, K. S., Sreekumar, T. S., & Jisha, M. S. (2018). Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiological and Molecular Plant Pathology, 102, 46-54. | spa |
dcterms.references | Shah, A. A., Yasin, N. A., Akram, K., Ahmad, A., Khan, W. U., Akram, W., & Akbar, M. (2021). Ameliorative role of Bacillus subtilis FBL-10 and silicon against lead induced stress in Solanum melongena. Plant Physiology and Biochemistry, 158, 486-496. | spa |
dcterms.references | Singh, D., Yadav, D., & Fatima, F. (2020). Characterization and genetic diversity of Pantoea agglomerans isolates having dual potentiality to suppress growth of Ralstonia solanacearum and plant growth promoting ability. Indian Phytopathology, 73(4), 643-653. | spa |
dcterms.references | Singh, M., Singh, D., Gupta, A., Pandey, K., Singh, P., & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 41-66. | spa |
dcterms.references | Sinha, A., & Parli, B. (2020). Siderophore production by bacteria isolated from mangrove sediments: A microcosm study. Journal of Experimental Marine Biology and Ecology, 524(151290), 1-9. | spa |
dcterms.references | Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2018). Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egyptian Journal of Biological Pest Control, 28(1), 1-5. | spa |
dcterms.references | Sousa, A., Machado, I., Nicolau, A., & Pereira, M. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of microbiological methods, 95(3), 327-335. | spa |
dcterms.references | Suckstorff, I., & Berg, G. (2003). Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of Applied Microbiology, 95(4), 656-663. | spa |
dcterms.references | Sumayo, M., Hahm, M. S., & Ghim, S. Y. (2013). Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in tobacco leaves. The plant pathology journal, 29(2), 174. | spa |
dcterms.references | Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. | spa |
dcterms.references | Teixeira, M., de Melo, I., & Vieira, R. (2005). Diversidade de bactérias endofíticas na cultura da mandioca. Embrapa Meio Ambiente-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). | spa |
dcterms.references | Tian, P., Razavi, B., Zhang, X., Wang, Q., & Blagodatskaya, E. (2020). Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry, 141(107662),1-9. | spa |
dcterms.references | Uzair, B., Kausar, R., Bano, S. A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed research international, 2018. | spa |
dcterms.references | Valerga, L., Quintero, N., Concellón, A., & Puppo, M. (2020). Technological and nutritional characterization of wheat breads added with eggplant flour: dependence on the level of flour and the size of fruit. Journal of Food Science and Technology, 57(1), 182-190 | spa |
dcterms.references | Vega, P., Canchignia, H., González, M., & Seeger, M. (2016). Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales, 37, 33-39. | spa |
dcterms.references | Verma, V., Joshi, K., & Mazumdar, B. (2012). Study of siderophore formation in nodule-forming bacterial species. Research Journal of Chemical Sciences, 2 (11), 26-29. | spa |
dcterms.references | Wagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied microbiology and biotechnology, 98(11), 5117-5129. | spa |
dcterms.references | Weatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974. | spa |
dcterms.references | Willems, A., & Gillis, M. (2015). Comamonas. Bergey's Manual of Systematics of Archaea and Bacteria, 1-17. | spa |
dcterms.references | Wolf, A., Fritze, A., Hagemann, M., & Berg, G. (2002). Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. International journal of systematic and evolutionary microbiology, 52(6), 1937-1944. | spa |
dcterms.references | Xie, F., Ma, H., Quan, S., Liu, D., & Chen, G. (2016). Comamonas phosphati sp. nov., isolated from a phosphate mine. International Journal of Systematic and Evolutionary Microbiology, 66(1), 456-461. | spa |
dcterms.references | Yildiz, H., & Dikilitas, M. (2012). Screening of rhizobacteria against Fusarium oxysporum f. sp. melongenae, the causal agent of wilt disease of eggplant. African Journal of Microbiology Research, 6(15), 3700-3706. | spa |
dcterms.references | Zaheer, A., Malik, A., Sher, A., Qaisrani, M., Mehmood, A., Khan, S., ... & Rasool, M. (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi journal of biological sciences, 26(5), 1061-1067 | spa |
dcterms.references | Aguilar, L., Escalante, J., Fucikovsky, L., Tijerina, L., & Engleman, E. (2005). Área foliar, tasa de asimilación neta, rendimiento y densidad de población en girasol. Terra Latinoamericana, 23(3), 303-310. | spa |
dcterms.references | Alexander, A., Singh, V., & Mishra, A. (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Frontiers in Microbiology, 11, 1-12. | spa |
dcterms.references | Álvarez, J., Santoyo, G., & Rocha, M. (2020). Pseudomonas fluorescens: Mecanismos y aplicaciones en la agricultura sustentable. Revista Latinoamericana de Recursos Naturales, 16(1), 01-10. | spa |
dcterms.references | Amaya, C., Porcel, M., Mesa, L., & Gómez, M. (2020). A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 86, 1-13. | spa |
dcterms.references | Arora, N., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., ... & Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26(2020), 69-82. | spa |
dcterms.references | Aydih, R., Jabnoune, H., & Daamii, M. (2020). Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants. Egyptian Journal of Biological Pest Control, 30(1), 1-13. | spa |
dcterms.references | Barquero, M., Pastor, R., Urbano, B., & González, F. (2019). Challenges, regulations and future actions in biofertilizers in the european agriculture: from the lab to the field. Microbial Probiotics for Agricultural Systems, 83-107. | spa |
dcterms.references | Bashan, Y., de-Bashan, L., Prabhu, S., & Hernandez, J. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and soil, 378(1), 1-33. | spa |
dcterms.references | Basu, A., Prasad, P., Das, S., Kalam, S., Sayyed, R., Reddy, M., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140-1160 | spa |
dcterms.references | Beck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12. | spa |
dcterms.references | Berendsen, R., Pieterse, C., & Bakker, P. (2012). The rhizosphere microbiome and plant health. Trends in plant science, 17(8), 478-486. | spa |
dcterms.references | Brilli, F., Pollastri, S., Raio, A., Baraldi, R., Neri, L., Bartolini, P., & Balestrini, R. (2019). Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. Journal of plant physiology, 232, 82-93 | spa |
dcterms.references | Burbano, O., Pérez, J. V., & Moreno, M. (2022). Assessing NPK use efficiency of commercial inoculants in cassava (Manihot esculenta Cratz): an application of data envelopment analysis. Journal of Crop Science and Biotechnology, 25(3), 253-267. | spa |
dcterms.references | Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E., & Schulze, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual review of plant biology, 64, 807-838. | spa |
dcterms.references | Cadena, J., & Araméndiz, H. (2011). C015 Y C029 nuevas variedades de berenjena para la región Caribe. CORPOICA, 1-23. | spa |
dcterms.references | Coronado, M., du Boulois, H., Pertot, I., & Puopolo, G. (2021). Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research, 245,(126672), 1-10. | spa |
dcterms.references | De Castro, G.., Da Silva, D., Viana, R., y Ferreira, M. (2019). Photosynthetic apparatus protection and drought effect mitigation in açaí palm seedlings by rhizobacteria. Acta Physiol Plant, 41, 163-176. | spa |
dcterms.references | Demir, Z. (2020). Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum Melongena L.). Communications in Soil Science and Plant Analysis, 51(14), 1888-1903. | spa |
dcterms.references | Di Benedetto, A., & Tognetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. RIA. Revista de investigaciones agropecuarias, 42(3), 258-282. | spa |
dcterms.references | Easlon, H., & Bloom, A. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1-5. | spa |
dcterms.references | Eke, P., Kumar, A., Sahu, K., Wakam, L., Sheoran, N., Ashajyothi, M., ... & Fekam, F. (2019). Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological research, 228, 126302 | spa |
dcterms.references | Gil, R., Bautista, I., Boscaiu, M., Lidón, A., Wankhade, S., Sánchez, H., ... & Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants, 6, 1-23. | spa |
dcterms.references | Gowtham, H., Hariprasad, P., Singh, S., & Niranjana, S. (2016). Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 101, 123-129. | spa |
dcterms.references | Gowtham, H., Murali, M., Singh, S., Lakshmeesha, T., Murthy, K., Amruthesh, K., & Niranjana, S. (2018). Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biological Control, 126, 209-217 | spa |
dcterms.references | Hernández, M., Ortiz, R., Flores, A., Moggio, I., Arias, E., & Valenzuela, J. (2020). Iqbal, A., & Hasnain, S. (2013). Auxin producing Pseudomonas strains: biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences, 4(09), 1693-1700. | spa |
dcterms.references | Kloepper, J., & Schroth, M. (1981). Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71(6), 642-644. | spa |
dcterms.references | Koohakan, P., Prasom, P., & Sikhao, P. (2020). Application of seed coating with endophytic bacteria for Fusarium wilt disease reduction and growth promotion in tomato. Int J Agr Technol, 16, 55-62. | spa |
dcterms.references | Kudoyarova, G., Vysotskaya, L., Arkhipova, T., Kuzmina, L., Galimsyanova, N., Sidorova, L., & Veselov, S. (2017). Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta physiologiae plantarum, 39(11), 253- 260. | spa |
dcterms.references | Kumar, A., Verma, H., Singh, V., Singh, P., Singh, S., Ansari, W., ... & Pandey, K. (2017). Role of Pseudomonas sp. in sustainable agriculture and disease management. In Agriculturally important microbes for sustainable agriculture , 195-215. | spa |
dcterms.references | Lamasa, C., Ayala, C., Araméndiz, T., Arteaga, R., & Córdoba, C. (2015). Efecto de coberturas y micorrizas nativas sobre el cultivo de berenjena (Solanum melongena L.). Agronomía, 23(1), 7-19. | spa |
dcterms.references | Lebeis, S., Paredes, S., Lundberg, D., Breakfield, N., Gehring, J., McDonald, M., ... & Dangl, J. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349(6250), 860-864. | spa |
dcterms.references | Liaquat, F., Munis, M., Arif, S., Haroon, U., Shengquan, C., & Qunlu, L. (2020). Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: a potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech, 10(12), 1-10. | spa |
dcterms.references | Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31-87. | spa |
dcterms.references | Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315-3335. | spa |
dcterms.references | Martínez, A., Tordecilla, L., Grandett, L. M., Rodríguez, M., Cordero, C., Orozco, A., Silva, G., Romero, J., & Correa, E. (2019). Análisis económico de la producción de berenjena (Solanum melongena L.) en dos zonas productoras del Caribe colombiano: Sabanas de Sucre y Valle del Sinú en Córdoba. Ciencia y Agricultura, 16(3), 17-34. | spa |
dcterms.references | Metting, F. (1992). Structure and physiological ecology of soil microbial communities. Soil Microbial Ecology, 3-25. | spa |
dcterms.references | Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective non-pathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124 | spa |
dcterms.references | Nicolitch, O., Colin, Y., Turpault, M., & Uroz, S. (2016). Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biology and Biochemistry, 103, 429-445. | spa |
dcterms.references | Peel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644. | spa |
dcterms.references | Pérez, M., Piccoli, P., Anzuay, M., Baraldi, R., Neri, L., Taurian, T., ... & Cohen, A. (2020). Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific reports, 10(1), 1-14. | spa |
dcterms.references | Rasul, M., Sumera, Y., Mahreen, Y., Breitkreuz, C., Tarkka, M., & Reitz, T. (2021). The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research, 246, 126703. | spa |
dcterms.references | Saini, A., Nain, L., Garg, V., & Saxena, J. (2017). Improvement of Growth, Yield, and Pigmentation of Mung Bean Plants Using Ochrobactrum intermedium CP‐2 as Bioinoculant. CLEAN–Soil, Air, Water, 45(6), 1500670 | spa |
dcterms.references | Saridewi, L., Prihatiningsih, N., & Djatmiko, H. (2020). Characterization of eggplant endophyte bacteria and rhizobacteria as well as their antagonistic ability against Ralstonia solanacearum. Jurnal Hama dan Penyakit Tumbuhan Tropika, 20(2), 150-156 | spa |
dcterms.references | Scagliola, M., Valentinuzzi, F., Mimmo, T., Cesco, S., Crecchio, C., & Pii, Y. (2021). Bioinoculants as promising complement of chemical fertilizers for a more sustainable agricultural practice. Frontiers in Sustainable Food Systems, 4, 305-312. | spa |
dcterms.references | Schlatter, D., Bakker, M., Bradeen, J., & Kinkel, L. (2015). Plant community richness and microbial interactions structure bacterial communities in soil. Ecology, 96(1), 134-142. | spa |
dcterms.references | Singh, R., & Jha, P. (2017). The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 8, 1945. | spa |
dcterms.references | Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K., & Vanderleyden, J. (2014). Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin‐producing bacterium Azospirillum brasilense. New Phytologist, 201(3), 850-861. | spa |
dcterms.references | Su, F., Gilard, F., Guérard, F., Citerne, S., Clément, C., Vaillant, N., & Dhondt, S. (2016). Spatio-temporal responses of Arabidopsis leaves in photosynthetic performance and metabolite contents to Burkholderia phytofirmans PsJN. Frontiers in plant science, 7(403), 1-15. | spa |
dcterms.references | Suckstorff, I., & Berg, G. (2003). Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of applied microbiology, 95(4), 656-663. | spa |
dcterms.references | Tejada, M., Benítez, C., Gómez, I., & Parrado, J. (2011). Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Applied Soil Ecology, 49, 11-17 | spa |
dcterms.references | Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in plant science, 8, 49-59. | spa |
dcterms.references | Valerga, L., Darré, M., Zaro, M., Arambarri, A., Vicente, A., Lemoine, M., & Concellón, A. (2019). Micro-structural and quality changes in growing dark-purple eggplant (Solanum melongena L.) as affected by the harvest season. Scientia Horticulturae, 244, 22-30. | spa |
dcterms.references | Vessey, J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2), 571-586. | spa |
dcterms.references | Wakchaure, G., Minhas, P., Meena, K., Kumar, S., & Rane, J. (2020). Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. Journal of Environmental Management, 262, (110320), 1-13. | spa |
dcterms.references | Zavala, J., Alcarraz, M., & Julian, J. (2020). Evaluación para la producción de Azotobacter sp. promotor de crecimiento para cultivos de Coffea arabica. Ciencia e Investigación, 23(1), 45-50. | spa |
dcterms.references | Zhang, K., Liu, Z., Shan, X., Li, C., Tang, X., Chi, M., & Feng, H. (2017). Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiologiae Plantarum, 39(1), 22-39. | spa |
dcterms.references | Zuluaga, M.., Lima Milani, K., Azeredo, L., & Martinez, A. (2020). Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS one, 15(1), 1-25. | spa |
dcterms.references | Adviento, M., Doran, J., Drijber, R., & Dobermann, A. (2006). Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. Journal of environmental quality, 35(6), 1999-2010. | spa |
dcterms.references | Afzal, M., Yousaf, S., Reichenauer, T. G., Kuffner, M., & Sessitsch, A. (2011). Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. Journal of hazardous materials, 186(2-3), 1568-1575. | spa |
dcterms.references | Bach, E., Baer, S., Meyer, C., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 42(12), 2182-2191. | spa |
dcterms.references | Barragán, W., Mahecha, L., & Cajas, Y. S. (2015). Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agronomía Mesoamericana, 26(2), 211-223. | spa |
dcterms.references | Beck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12. | spa |
dcterms.references | Blake, G., & Hartge, K. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375. | spa |
dcterms.references | Bouyoucos, G. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465. | spa |
dcterms.references | Brady, N., & Weil, R. (1999). Soil organic matter. The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey, 446-490. | spa |
dcterms.references | Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual review of plant biology, 64, 807-838. | spa |
dcterms.references | Buzas, M., & Hayek, L. (1998). SHE analysis for biofacies identification. Journal of Foraminiferal Research, (28), 233-239. | spa |
dcterms.references | Cadena, J., Perez, S., Romero, J., & Perez, K. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141-152. | spa |
dcterms.references | Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265-270. | spa |
dcterms.references | Chao, A., & Lee, S. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417), 210-217. | spa |
dcterms.references | Chen, B., Jiao, S., Luo, S., Ma, B., Qi, W., Cao, C., ... & Ma, X. (2021). High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environmental Microbiology, 23(1), 464-477 | spa |
dcterms.references | Chen, S., Waghmode, T., Sun, R., Kuramae, E., Hu, C., & Liu, B. (2019). Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 7(1), 1-13. | spa |
dcterms.references | Cheng, H., Yuan, M., Duan, Q., Sun, R., Shen, Y., Yu, Q., & Li, S. (2020). Influence of phosphorus fertilization patterns on the bacterial community in upland farmland. Industrial Crops and Products, 155(112761), 1-11. | spa |
dcterms.references | Combatt, E., Martinez, G., & Santos, J. (2005). Caracterización química y física de los suelos agroforestales de la zona alta de Córdoba. Temas agrarios, 10(2), 1-14. | spa |
dcterms.references | Covacevich, F. (2017). Hongos micorricicos arbusculares: Muestreo de suelo para determinación de actividad y diversidad de hongos micorrícicos arbusculares. En: Metodología de muestreo de suelo y ensayos a campo: Protocolos básicos comunes. D. J. Santos, M. Wilson y M. Ostinelli (Eds.) Ediciones INTA. (En Prensa). | spa |
dcterms.references | De la Torre, M., Salinas, L., Aguirre, J., Fernández, A.., Martínez, F., Montiel, D., & Ramírez, H. (2020). Composition, Structure, and PGPR Traits of the Rhizospheric Bacterial Communities Associated With Wild and Cultivated Echinocactus platyacanthus and Neobuxbaumia polylopha. Frontiers in microbiology, 11 (1424), 1-17. | spa |
dcterms.references | De Zutter, N., Ameye, M., Debode, J., De Tender, C., Ommeslag, S., Verwaeren, J., ... & De Gelder, L. (2021). Shifts in the rhizobiome during consecutive in planta enrichment for phosphate‐solubilizing bacteria differentially affect maize P status. Microbial biotechnology, 14(4), 1594-1612 | spa |
dcterms.references | Dequiedt, S., Saby, N., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., & Ranjard, L. (2011). Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography, 20(4), 641-652. | spa |
dcterms.references | Dey, R., Pal, K., & Tilak, K. (2012). Influence of soil and plant types on diversity of rhizobacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(3), 341-352. | spa |
dcterms.references | Dinh, S., Luu, V., Hoang, L., Nguyen, X., & Ho, C. (2020). Biotechnology of Plant‐Associated Microbiomes. The Plant Microbiome in Sustainable Agriculture, 243-277. | spa |
dcterms.references | Döbereiner, J., Baldani, V., & Baldani, J. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa SPI. 1-620. | spa |
dcterms.references | Escalas, A., Hale, L., Voordeckers, J, Yang, Y., Firestone, M, Alvarez, L. y Zhou, J. (2019). Diversidad funcional microbiana: de los conceptos a las aplicaciones. Ecología y evolución, 9 (20), 12000-12016. | spa |
dcterms.references | Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590. | spa |
dcterms.references | Fierer, N., Bradford, M., & Jackson, R. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364. | spa |
dcterms.references | Finkel, O., Salas, I., Castrillo, G., Spaepen, S., Law, T., Teixeira, P., ... & Dangl, J. (2019). The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 17(11), e3000534. | spa |
dcterms.references | Fitzpatrick, C., Copeland, J., Wang, P., Guttman, D., Kotanen, P., & Johnson, M. (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences, 115(6), E1157-E1165. | spa |
dcterms.references | Gargallo, A., Preece, C., Sardans, J., Oravec, M., Urban, O., & Peñuelas, J. (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific reports, 8(1), 1-15 | spa |
dcterms.references | Girvan, M., Bullimore, J., Pretty, J., Osborn, A., & Ball, A. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and environmental microbiology, 69(3), 1800-1809. | spa |
dcterms.references | Hartman, K., van der Heijden, M. G., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1-14. | spa |
dcterms.references | ICA. (1992). Fertilización en diversos cultivos. Quinta aproximación. Produmedios, Santafé de Bogotá. | spa |
dcterms.references | Ivone, V., Conceição, E., Olga C., & Célia, M. (2013). Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS microbiology ecology, 83(2), 361-374. | spa |
dcterms.references | Jaraba, J., Lozano, Z., & Espinosa, M. (2007). Nematodos agalladores asociados al cultivo de papaya (Carica papaya L.) en el departamento de Córdoba, Colombia. Agronomía colombiana, 25(1), 124-130. | spa |
dcterms.references | Jaraba, J., Rothrock, C., Kirkpatrick, T., & Brye, K. (2014). Soil texture influence on Meloidogyne incognita and Thielaviopsis basicola and their interaction on cotton. Plant disease, 98(3), 336-343. | spa |
dcterms.references | Jing, L., Wu, F., & Yang, Y. (2010). Effects of cinnamic acid on bacterial community diversity in rhizosphere soil of cucumber seedlings under salt stress. Agricultural Sciences in China, 9(2), 266-274. | spa |
dcterms.references | Kari, A., Nagymáté, Z., Romsics, C., Vajna, B., Tóth, E., Lazanyi, R., ... & Márialigeti, K. (2021). Evaluating the combined effect of biochar and PGPR inoculants on the bacterial community in acidic sandy soil. Applied Soil Ecology, 160, (103856), 1-10 | spa |
dcterms.references | Khanna, K., Lopez, J., & Pogliano, K. (2020). Shaping an endospore: Architectural transformations during Bacillus subtilis sporulation. Annual Review of Microbiology, 74, 361-386 | spa |
dcterms.references | Lauber, C., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and environmental microbiology, 75(15), 5111-5120. | spa |
dcterms.references | Li, D., Zhao, B., Olk, D., & Zhang, J. (2020). Soil texture and straw type modulate the chemical structure of residues during four-year decomposition by regulating bacterial and fungal communities. Applied Soil Ecology, 155(103664), 1-10. | spa |
dcterms.references | Li, T., Liu, T., Zheng, C., Kang, C., Yang, Z., Yao, X., & Zhang, C. (2017). Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PloS one, 12(3),1-17. | spa |
dcterms.references | Ling, N., Chen, D., Guo, H., Wei, J., Bai, Y., Shen, Q., & Hu, S. (2017). Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma, 292, 25-33. | spa |
dcterms.references | Liu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., ... & Yan, W. (2020). Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management, 477(118473), 1-11. | spa |
dcterms.references | Liu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., ... & Yan, W. (2020). Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management, 477, 118473. | spa |
dcterms.references | Lupatini, M., Korthals, G. W., De Hollander, M., Janssens, T. K., & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in microbiology, 7, 2064. | spa |
dcterms.references | Marín, J., Montaño, N., & Córcega, G. (2020). Efectos de regímenes de riego sobre el rendimiento y el uso del agua en Berenjena (Solanum melongena L.), en condiciones de campo. Apthapi, 6(3), 2013-2026. | spa |
dcterms.references | Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., & de Jonge, L. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. | spa |
dcterms.references | Nelkner, J., Henke, C., Lin, T., Pätzold, W., Hassa, J., Jaenicke, S., ... & Schlüter, A. (2019). Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes, 10(6), 424. | spa |
dcterms.references | Ogundeji, A., Li, Y., Liu, X., Meng, L., Sang, P., Mu, Y., ... & Li, S. (2021). Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Applied Soil Ecology, 163, 103912. | spa |
dcterms.references | Olsen, S. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture. | spa |
dcterms.references | Or, D., Smets, B., Wraith, J., Dechesne, A., & Friedman, S. (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Advances in Water Resources, 30(6-7), 1505-1527. | spa |
dcterms.references | Osorio, W., & Casamitjana, M. (2011). Toma de muestras de suelo para evaluar la fertilidad del suelo. Suelos Ecuatoriales, 41(1), 23-28. | spa |
dcterms.references | Pant, B., Pant, P., Erban, A., Huhman, D., Kopka, J., & Scheible, W. (2015). Identification of primary and secondary metabolites with phosphorus status‐dependent abundance in Arabidopsis, and of the transcription factor PHR 1 as a major regulator of metabolic changes during phosphorus limitation. Plant, cell & environment, 38(1), 172-187 | spa |
dcterms.references | Peel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644. | spa |
dcterms.references | Pii, Y., Borruso, L., Brusetti, L., Crecchio, C., Cesco, S., & Mimmo, T. (2016). The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiology and Biochemistry, 99, 39-48. | spa |
dcterms.references | Pielou, E. (1969). Ecological diversity and its measurement. An introduction to mathematical ecology, 221-235. | spa |
dcterms.references | Ramírez, K., Lauber, C., Knight, R., Bradford, M., & Fierer, N. (2010). Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 91(12), 3463-3470. | spa |
dcterms.references | Reina, A., Zumaqué, L., Martínez, L., & Pinto, M. (2020). Adopción de la variedad de berenjena C015 (Solanum melongena L.) en la región Caribe colombiana. Ciencia y Agricultura, 17(3), 1-10. | spa |
dcterms.references | Samba, A., Delafont, V., Rodier, M., Cateau, E., & Héchard, Y. (2019). Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS microbiology reviews, 43(4), 415-434. | spa |
dcterms.references | Sanger, F. (1988). Sequences, sequences, and sequences. Annual review of biochemistry, 57(1), 1-29. | spa |
dcterms.references | Seaton, F., George, P., Lebron, I., Jones, D., Creer, S., & Robinson, D. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144(107766), 1-10. | spa |
dcterms.references | Shahjee, H., Banerjee, K., & Ahmad, F. (2002). Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses. Journal of biosciences, 27(5), 515-520. | spa |
dcterms.references | Shannon, C., & Weaver, W. (1949). The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver. University of illinois Press. | spa |
dcterms.references | Simpson, E. (1949). Measurement of diversity. nature, 163(4148), 688-688. | spa |
dcterms.references | Soussi, A., Ferjani, R., Marasco, R., Guesmi, A., Cherif, H., Rolli, E., ... & Cherif, A. (2016). Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant and Soil, 405(1-2), 357-370. | spa |
dcterms.references | Stefani, F., Bell, T., Marchand, C., de la Providencia, I., El Yassimi, A., St-Arnaud, M., & Hijri, M. (2015). Culture-dependent and-independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PloS one, 10(6), e0128272. | spa |
dcterms.references | Teixeira, M., de Melo, I., & Vieira, R. (2005). Diversidade de bactérias endofíticas na cultura da mandioca. Embrapa Meio Ambiente-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). | spa |
dcterms.references | Tejada, M., Benítez, C., Gómez, I., & Parrado, J. (2011). Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Applied Soil Ecology, 49, 11-17. | spa |
dcterms.references | Thiem, D., Gołębiewski, M., Hulisz, P., Piernik, A., & Hrynkiewicz, K. (2018). How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots?. Frontiers in microbiology, 9(651), 1-15. | spa |
dcterms.references | Treseder, K. K., Balser, T. C., Bradford, M. A., Brodie, E. L., Dubinsky, E. A., Eviner, V. T., ... & Waldrop, M. P. (2012). Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry, 109(1), 7-18. | spa |
dcterms.references | Trivedi, P., Leach, J., Tringe, S., Sa, T., & Singh, B. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature reviews microbiology, 18(11), 607-621. | spa |
dcterms.references | Walkeley, A. (1947). A critical examination of a rapid method for determination of organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents. Soil Sci., 63, 251-257. | spa |
dcterms.references | Wan, W., Tan, J., Wang, Y., Qin, Y., He, H., Wu, H., ... & He, D. (2020). Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. Science of the Total Environment, 700(134418), 1-10. | spa |
dcterms.references | Wang, G., Wang, L., & Ma, F. (2022). Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. Chemosphere, 286, 131567. | spa |
dcterms.references | Xun, W., Li, W., Xiong, W., Ren, Y., Liu, Y., Miao, Y., ... & Zhang, R. (2019). Diversity-triggered deterministic bacterial assembly constrains community functions. Nature communications, 10(1), 1-10. | spa |
dcterms.references | Zeng, Y., Yu, Z., & Huang, Y. (2014). Combination of culture-dependent and-independent methods reveals diverse acyl homoserine lactone-producers from rhizosphere of wetland plants. Current microbiology, 68(5), 587-593. | spa |
dcterms.references | Zhai, Y., Wang, Z., Wang, G., Peijnenburg, W., & Vijver, M. (2020). The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. Chemosphere, 249(126564) 1-10. | spa |
dcterms.references | Zhou, C., Heal, K., Tigabu, M., Xia, L., Hu, H., Yin, D., & Ma, X. (2020). Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity. Forest Ecology and Management, 455(117635), 1-11. | spa |
dcterms.references | Zuluaga, M., Lima, K., Azeredo, L., & Martinez, A. (2020). Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS one, 15(1), e0227422. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Lunacastellanoslilylorena.pdf
- Tamaño:
- 4.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento final de Tesis de Maestria
No hay miniatura disponible
- Nombre:
- Autorización completo.pdf
- Tamaño:
- 174.26 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización Publicación de documentos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: