Publicación:
Efecto de cepas nativas de rizobacterias en el crecimiento de plántulas de Solanum melongena L. y su relación con las características edafológicas de los suelos en el Medio Sinú, Córdoba

dc.contributor.advisorJaraba Navas, Juan de Diosspa
dc.contributor.advisorNader Nieto, Anna Camilaspa
dc.contributor.authorLuna Castellanos, Lily Lorena
dc.contributor.refereeBurbano Figueroa, Óscar Alberto
dc.contributor.refereeUrrea-Morawicki, Keiddy
dc.date.accessioned2023-03-02T15:10:42Z
dc.date.available2024-11-30
dc.date.available2023-03-02T15:10:42Z
dc.date.issued2023-03-02
dc.description.abstractEl incremento continuo de la población humana, exige un aumento constante de la producción agrícola mundial, lo cual genera una mayor demanda de productos agrícolas, como, fertilizantes y pesticidas, que impactan de forma negativa la microbiota del suelo y las fuentes hídricas. El cultivo de berenjena (Solanum melongena L.) en el departamento de Córdoba, que depende del uso de fertilizantes para sostener su producción dentro de estándares competentes, además utiliza grandes cantidades de agroinsumos que impactan negativamente la biota, generan contaminación e incrementan los costos de producción y disminuyen la inocuidad de los frutos, ocasionando riesgos para la salud humana. La implementación de rizobacterias promotoras del crecimiento vegetal (RPCV), en producción agrícola, puede ser una alternativa rentable en varios sistemas productivos, por su eficiencia en la regulación del crecimiento vegetal y manejo del estrés abiótico. Por ello, la presente investigación tuvo como objetivo determinar el efecto de cepas nativas de rizobacterias en el crecimiento y fisiología de plántulas de Solanum melongena y su relación con las características edafológicas del suelo, en lotes comerciales del cultivo en el Medio Sinú, Córdoba. Se tomaron 10 muestras de suelo rizosférico de las plantas, a 20 cm de profundidad, en 10 lotes (2.500 a 5.000 m2) ubicados en los municipios de Cereté, Montería, San Pelayo y San Carlos. Las muestras fueron procesadas para el aislamiento de RPCV y para determinar las propiedades físicas y químicas del suelo, en el laboratorio de Fitopatología de la Universidad de Córdoba. Las propiedades físicas y químicas del suelo, fueron determinadas en los laboratorios de Suelos y Agua, de la Facultad de Ciencias Agrícolas de la Universidad de Córdoba. A cada aislamiento se les determinó: actividad fosfato solubilizadoras, producción de AIA, NH4, PO4 y sideróforos, en condiciones in-vitro. Los aislamientos se identificaron mediante secuenciación del gen ARN 16S. La capacidad de los aislamientos para promover el crecimiento vegetal se determinó en plántulas de berenjena, cv C015. spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agronómicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsResumen....................................................................................... XXspa
dc.description.tableofcontents3. MARCO TEÓRICO........................................................................................ 30spa
dc.description.tableofcontents3.1 GENERALIDADES DEL CULTIVO DE BERENJENA (Solanum melongena L.)........................................................ 30spa
dc.description.tableofcontents3.2. IMPORTANCIA NUTRICIONAL DE LA BERENJENA...........................31spa
dc.description.tableofcontents3.3. IMPORTANCIA ECONÓMICA DE LA BERENJENA...........................32spa
dc.description.tableofcontents3.4. RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL (RPCV)...............33spa
dc.description.tableofcontents3.5. COLONIZACIÓN DE LA RIZÓSFERA POR RPCV...................................... 35spa
dc.description.tableofcontents3.5.1 Quimiotaxis hacia exudados radiculares........................................... 36spa
dc.description.tableofcontents3.5.2. Quorum-sensing (QS) de RPCV en la rizósfera ..................................38spa
dc.description.tableofcontents3.5.3. Compuestos orgánicos volátiles (COV)..................................................... 42spa
dc.description.tableofcontents3.6. MECANISMOS DE PROMOCIÓN DEL CRECIMIENTO VEGETAL POR RPCV................................................................................................. 43spa
dc.description.tableofcontents3.6.1. Mecanismos Directos.........................................................45spa
dc.description.tableofcontents3.6.2. Mecanismos Indirectos..............................................53spa
dc.description.tableofcontents3.7. FACTORES EDÁFICOS QUE AFECTAN LA DIVERSIDAD DE LAS RPCV..................57spa
dc.description.tableofcontents3.8. IDENTIFICACIÓN DE GRUPOS BACTERIANOS A PARTIR DEL ARN 16s...................................................................................... 59spa
dc.description.tableofcontents4. OBJETIVOS....................................................... 62spa
dc.description.tableofcontents4.2. OBJETIVOS GENERAL............................................................................. 62spa
dc.description.tableofcontents4.1. OBJETIVOS ESPECÍFICOS............................................................................... 62spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS...........................................................................63spa
dc.description.tableofcontents1. Introducción....................................................................................24spa
dc.description.tableofcontents2. Planteamiento del problema......................................................28spa
dc.description.tableofcontentsCAPÍTULO II....................................................................................................89spa
dc.description.tableofcontentsCARACTERIZACIÓN E IDENTIFICACIÓN DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL ASOCIADAS A Solanum melongena L. EN ZONAS PRODUCTORAS DE CÓRDOBA...........................................89spa
dc.description.tableofcontentsRESUMEN.........................................................................................................................89spa
dc.description.tableofcontentsABSTRACT...........................................................................................90spa
dc.description.tableofcontents1. INTRODUCCIÓN.....................................................................91spa
dc.description.tableofcontents2.MATERIALES Y MÉTODOS...............................................................................................93spa
dc.description.tableofcontents2.1. ÁREA DE ESTUDIO............................................................................................ 93spa
dc.description.tableofcontents2.2. AISLAMIENTO Y CARACTERIZACIÓN DE RIZOBACTERIAS PROMOTORES DEL CRECIMIENTO VEGETAL (RPCV)..................................................................................................... ..........94spa
dc.description.tableofcontents2.2.1. Pruebas cualitativas...................................................................................96spa
dc.description.tableofcontents2.2.2. Pruebas cuantitativas..................................................................................97spa
dc.description.tableofcontents2.3. SELECCIÓN E IDENTIFICACIÓN DE RIZOBACTERIAS CON PROPIEDADES DE PROMOCIÓN DEL CRECIMIENTO VEGETAL....................................................................................................................99spa
dc.description.tableofcontents2.4. ANÁLISIS ESTADÍSTICO..........................................................................................100spa
dc.description.tableofcontents3. RESULTADOS......................................................................101spa
dc.description.tableofcontents3.1. AISLAMIENTO, CARACTERIZACIÓN Y SELECCIÓN DE LOS AISLADOS BACTERIANOS........................................................................................101spa
dc.description.tableofcontents3.1.1. Aislamiento de RPCV..............................................................101spa
dc.description.tableofcontents3.1.2. Caracterización bioquímica de RPCV.................................101spa
dc.description.tableofcontents3.1.3. Selección de microorganismo PCV...............................................................104spa
dc.description.tableofcontents3.2. IDENTIFICACIÓN Y CARACTERIZACIÓN DE RPCV.....................................105spa
dc.description.tableofcontents3.2.1. Identificación molecular de aislados bacterianos................................107spa
dc.description.tableofcontents3.2.2. Estimación cualitativa y cuantitativa in-vitro de la actividad PCV de los aislados seleccionados........................................................................................111spa
dc.description.tableofcontents3.3. RELACIÓN DE PARÁMETROS NUTRICIONALES PARA OPTIMIZAR EL CRECIMIENTO DE RPCV.............................................................................................115spa
dc.description.tableofcontents4. DISCUSIÓN..............................................................................116spa
dc.description.tableofcontents4. CONCLUSIÓN..............................................................................................................125spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS...................................................................................126spa
dc.description.tableofcontentsCAPÍTULO III...................................................................................................................................144spa
dc.description.tableofcontentsEFECTO DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL (RPCV) EN EL CRECIMIENTO Y FISIOLOGÍA DEL CULTIVO DE BERENJENA (Solanum melongena L.), EN CONDICIONES DE CASA MALLA...........................................................................................................................................144spa
dc.description.tableofcontentsRESUMEN................................................................................144spa
dc.description.tableofcontentsABSTRACT...................................................145spa
dc.description.tableofcontents1.INTRODUCCIÓN......................................................................................................146spa
dc.description.tableofcontents2. MATERIALES Y MÉTODOS..............................................................................................149spa
dc.description.tableofcontents2.1. MUESTREO DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL.....................................................................149spa
dc.description.tableofcontents2.2. EFECTO DE RPCV SOBRE CRECIMIENTO Y FISIOLOGÍA DE BERENJENA BAJO CONDICIONES DE CASA MALLA........................................150spa
dc.description.tableofcontents2.2.1. Material vegetal y preparación de inóculo...............................................150spa
dc.description.tableofcontents2.2.2.Ensayo in-vitro, efecto de RPCV sobre la germinación y elongación de la raíz ...........................................................................................151spa
dc.description.tableofcontents2.2.3. Actividad promotora de crecimiento en plántulas de berenjena........153spa
dc.description.tableofcontents2.2.4. Diseño experimental............................................153spa
dc.description.tableofcontents2.3. ANÁLISIS ESTADÍSTICO..............................................157spa
dc.description.tableofcontents3. RESULTADOS...................................................................158spa
dc.description.tableofcontents3.1. EFECTO DE RPCV EN EL ÍNDICE DE VIGOR LONGITUD RADICULAR Y DESARROLLO DEL TALLO A NIVEL IN-VITRO......................................................158spa
dc.description.tableofcontents3.2. EFECTO DE RPCV SOBRE TASAS DE CRECIMIENTO EN CONDICIONES DE CASA MALLA...............................................................................162spa
dc.description.tableofcontents3.3. PARÁMETROS DE CRECIMIENTO, ÁREA FOLIAR Y VARIABLES DE INTERCAMBIO GASEOSO..............................................................................................170spa
dc.description.tableofcontents3.4. CORRELACIÓN Y MODELAMIENTO ENTRE TASA DE CRECIMIENTO Y PARÁMETROS DE INTERCAMBIO GASEOSO......................................................174spa
dc.description.tableofcontents4. DISCUSIÓN..............................................................................179spa
dc.description.tableofcontents5. CONCLUSIONES........................................................................187spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS.................................................................................187spa
dc.description.tableofcontentsCAPÍTULO IV.........................................................................................................................200spa
dc.description.tableofcontentsINFLUENCIA DE LAS CARACTERÍSTICAS FÍSICO QUÍMICAS DE LOS SUELOS CULTIVADOS CON BERENJENA (Solanum melongena L.) EN LA DIVERSIDAD DE RIZOBACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL EN EL SINÚ MEDIO (CÓRDOBA – COLOMBIA).................................................200spa
dc.description.tableofcontentsRESUMEN........................................................................................200spa
dc.description.tableofcontentsABSTRACT..................................................................................................201 spa
dc.description.tableofcontents1.INTRODUCCIÓN...............................................................................202spa
dc.description.tableofcontents2. MATERIALES Y MÉTODOS......................................................205spa
dc.description.tableofcontents2.1. ÁREA DE ESTUDIO Y COLECTA DE MUESTRAS.......................................205spa
dc.description.tableofcontents2.2. ANÁLISIS FÍSICO Y QUÍMICO DEL SUELO CULTIVADO CON BERENJENA..........................................................................................................208spa
dc.description.tableofcontents2.3. IDENTIFICACIÓN DE GRUPOS BACTERIANOS ASOCIADOS A LAS RIZÓSFERA DE CULTIVOS DE BERENJENA...................................................209spa
dc.description.tableofcontents2.4. ÍNDICES DE DIVERSIDAD BIOLÓGICA.............................................................211spa
dc.description.tableofcontents2.5. ANÁLISIS DE DATOS.......................................................................................................211spa
dc.description.tableofcontents3. RESULTADOS................................................................................................................212spa
dc.description.tableofcontents3.1. IDENTIFICACIÓN Y ESTRUCTURA DE LA COMUNIDAD MICROBIANA CULTIVABLE..............................................................................................212spa
dc.description.tableofcontents3.2. CARACTERÍSTICAS EDAFOLÓGICAS DE SUELO Y PARÁMETROS SIGNIFICATIVOS................................................................................216spa
dc.description.tableofcontents3.3. CORRELACIÓN ENTRE LA COMUNIDAD BACTERIANA CULTIVABLE Y LAS CARACTERÍSTICAS EDAFOLÓGICAS DEL SUELO....................223spa
dc.description.tableofcontents4.DISCUSIÓN...................................................................225spa
dc.description.tableofcontents5. CONCLUSIONES ............................................................................232spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS...............................................................................233spa
dc.description.tableofcontentsANEXOS...................................................................................................246spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7299
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Agronómicasspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsEggplanteng
dc.subject.keywordsRPCVeng
dc.subject.keywordsPhysiologyeng
dc.subject.keywordsCPAeng
dc.subject.keywordsSoil propertieseng
dc.subject.keywordsBiofertilizereng
dc.subject.proposalBerenjenaspa
dc.subject.proposalRPCVspa
dc.subject.proposalFisiologíaspa
dc.subject.proposalCPAspa
dc.subject.proposalPropiedades del suelospa
dc.subject.proposalBiofertilizantespa
dc.titleEfecto de cepas nativas de rizobacterias en el crecimiento de plántulas de Solanum melongena L. y su relación con las características edafológicas de los suelos en el Medio Sinú, Córdobaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbd El-Azeem, S., Elwan, M., Sung, J., & Ok, Y. (2012). Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Communications in soil science and plant analysis, 43(9), 1303-1315spa
dcterms.referencesAcuña, J., Campos, M., de la Luz Mora, M., Jaisi, D., & Jorquera, M. (2019). ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Applied Soil Ecology, 136, 184-190.spa
dcterms.referencesAfanador, L. (2017). Biofertilizantes: conceptos, beneficios y su aplicación en Colombia. Ingeciencia, 2(1), 65-76.spa
dcterms.referencesAgronet. (2014). Estadísticas Berenjena. Recuperado de: https://www.agronet.gov.co.spa
dcterms.referencesAgronet. (2018). Área, producción y rendimiento nacional por cultivo. Recuperado de: https://www.agronet.gov.co/estadistica.spa
dcterms.referencesAgronet. (2021). Área, producción y rendimiento nacional por. Recuperado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Consultado en noviembre de 2021.spa
dcterms.referencesAhemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20spa
dcterms.referencesAlamer, A., Sabah, I., Tomah, A., Li, B., & Zhang, J. (2020). Isolation, Identification and Characterization of Rhizobacteria Strains for Biological Control of Bacterial Wilt (Ralstonia solanacearum) of Eggplant in China. Agriculture, 10(37), 1-16.spa
dcterms.referencesAlmeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z., ... & Finn, R. (2021). A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 39(1), 105-114.spa
dcterms.referencesAl Nachar, K. (2019). Investigation and measurement of some mineral and vitamins in eggplant fruit calyx, and the possibility of being used as food supplements and alternative medicine. J Food Nutr, 5, 1-10.spa
dcterms.referencesAlori, E., Glick, B., & Babalola, O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, 8 (971), 1-8.spa
dcterms.referencesAmara, U., Khalid, R., & Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In Bacterial metabolites in sustainable agroecosystem. Springer, Cham, 87-103spa
dcterms.referencesAndersson, D., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12(7), 465-478.spa
dcterms.referencesAnzai, Y., Kim, H., Park, Y., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology, 50(4), 1563-1589.spa
dcterms.referencesAraméndiz, T., Cardona, A., Jarma, O., & Espitia, C. (2008). El cultivo de la berenjena (Solanum melongena L.) (No. F01-49). Universidad de Córdoba (Colombia), Facultad Ciencias Agrariasspa
dcterms.referencesArwiyanto, T., Nurcahyanti, S., Indradewa, D., & Widada, J. (2020). Antagonistic activity of bacterial rhizosphere from rootstocks of tomato and eggplant against Ralstonia solanacearum. Acta Horticulturae, 1270, 321-325spa
dcterms.referencesAuch, A., von Jan, M., Klenk, H., & Göker, M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in genomic sciences, 2(1), 117-134.spa
dcterms.referencesAudrain, B., Farag, M., Ryu, C., & Ghigo, J. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222-233.spa
dcterms.referencesBainard, L., Hamel, C., & Gan, Y. (2016). Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Applied Soil Ecology, 105, 160-168.spa
dcterms.referencesBais, H., Weir, T., Perry, L., Gilroy, S., & Vivanco, J. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol., 57, 233-266.spa
dcterms.referencesBehera, B., Sethi, B., Mishra, R., Dutta, S., & Thatoi, H. (2017). Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197-210.spa
dcterms.referencesBell, T., Newman, J., Silverman, B., Turner, S., & Lilley, A. (2005). The contribution of species richness and composition to bacterial services. Nature, 436(7054), 1157-1160.spa
dcterms.referencesBenizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol science and technology, 11(5), 557-574.spa
dcterms.referencesBhanushree, N., Saha, P., Tomar, B., Lyngdoh, Y., Krishnan, S., Gurung, B., & Ghoshal, C. (2018). Genetic analysis and identification of molecular marker linked to the gene for fruit skin colour in eggplant (Solanum melongena L.). Vegetable Science, 45(2), 149-153.spa
dcterms.referencesBhardwaj, D., Ansari, M., Sahoo, R., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13(1), 1-10spa
dcterms.referencesBitas, V., Kim, H., Bennett, J., & Kang, S. (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26(8), 835-843.spa
dcterms.referencesBraud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280-286.spa
dcterms.referencesBukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., & Naqqash, T. (2020). Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research, 238, 1-20.spa
dcterms.referencesBurbano, O., Sierra, A., David, A., Whitney, C., Borgemeister, C., & Luedeling, E. (2022). Farm-planning under risk: An application of decision analysis and portfolio theory for the assessment of crop diversification strategies in horticultural systems. Agricultural Systems, 199, 103409spa
dcterms.referencesBurns, K., Kluepfel, D., Strauss, S., Bokulich, N., Cantu, D., & Steenwerth, K. (2015). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biology and Biochemistry, 91, 232-247.spa
dcterms.referencesCaporaso, J., Lauber, C., Walters, W.., Berg-Lyons, D., Lozupone, C., Turnbaugh, P., ... & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences, 108(Supplement 1), 4516-4522.spa
dcterms.referencesCarlson, R., Tugizimana, F., Steenkamp, P., Dubery, I., Hassen, A., & Labuschagne, N. (2020). Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiological Research, 232, 1-14.spa
dcterms.referencesCarter, C., Zhong, F., & Zhu, J. (2012). Advances in Chinese agriculture and its global implications. Applied Economic Perspectives and Policy, 34(1), 1-36.spa
dcterms.referencesChamkhi, I., El Omari, N., Benali, T., & Bouyahya, A. (2020). Quorum Sensing and Plant-Bacteria Interaction: Role of Quorum Sensing in the Rhizobacterial Community Colonization in the Rhizosphere. In Quorum Sensing: Microbial Rules of Life. American Chemical Society, 139-153.spa
dcterms.referencesChen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., & Yang, X. (2017). The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Frontiers in microbiology, 8(2538), 1-13spa
dcterms.referencesChen, Y., Huang, B., Hu, W., Weindorf, D., & Yang, L. (2013). Environmental assessment of closed greenhouse vegetable production system in Nanjing, China. Journal of Soils and Sediments, 13(8), 1418-1429.spa
dcterms.referencesCho, S., Kim, M., & Lee, Y. (2016). Effect of pH on soil bacterial diversity. Journal of Ecology and Environment, 40(1), 1-9spa
dcterms.referencesCohan, F. (2001). Bacterial species and speciation. Systematic biology, 50(4), 513-524.spa
dcterms.referencesCompant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 71(9), 4951-4959spa
dcterms.referencesCompant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19, 29-37.spa
dcterms.referencesCosta, O., Raaijmakers, J., & Kuramae, E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9(1636), 1-14spa
dcterms.referencesDaunay, M., & Janick, J. (2007). History and iconography of eggplant. Chronica Horticulturae, 47(3), 16-22.spa
dcterms.referencesDe Leij, F.., Whipps, J., & Lynch, J. M. (1994). The use of colony development for the characterization of bacterial communities in soil and on roots. Microbial ecology, 27(1), 81-97.spa
dcterms.referencesDe Souza, J., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi, V., & Raaijmakers, J. (2003). Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93(8), 966-975.spa
dcterms.referencesDinnage, R., Simonsen, A., Barrett, L., Cardillo, M., Raisbeck, N., Thrall, P., & Prober, S. (2019). Larger plants promote a greater diversity of symbiotic nitrogen‐fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 107(2), 977-991spa
dcterms.referencesDuan, Y., Xu, M., Gao, S., Liu, H., Huang, S., & Wang, B. (2016). Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Scientific Reports, 6, 1-10.spa
dcterms.referencesFAO. 2018. Brinjal production Statistics. En Faostat. Recuperado de: http://www.fao.org/faostat/es/#data/QC (2018) (consulta: enero de 2021).spa
dcterms.referencesFerluga, S., Steindler, L., & Venturi, V. (2008). N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. In Secondary metabolites in soil ecology. Springer, Berlin, Heidelberg, 69-90.spa
dcterms.referencesFraikue, F. (2016). Unveiling the potential utility of eggplant: A review. In Conference Proceedings of INCEDI. 883-895.spa
dcterms.referencesFu, Q., Liu, C., Ding, N., Lin, Y., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994-2000.spa
dcterms.referencesGamalero, E., Lingua, G., Berta, G., & Lemanceau, P. (2009). Methods for studying root colonization by introduced beneficial bacteria. In Sustainable Agriculture. Springer, Dordrecht, 601-615.spa
dcterms.referencesGamalero, E., Lingua, G., Giusy Caprì, F., Fusconi, A., Berta, G., & Lemanceau, P. (2004). Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS microbiology ecology, 48(1), 79-87spa
dcterms.referencesGeng, Y., Guo, R., Zhang, A., Govrin, E., & Li, S. (2020). Growth and yield of eggplant promoted by the application of Bacillus velezensis B006 agent under different soil water potential conditions. Journal of Agricultural Resources and Environment, 37(3), 398-406.spa
dcterms.referencesGhorai, P., & Ghosh, D. (2022). Ameliorating the performance of NPK biofertilizers to attain sustainable agriculture with special emphasis on bioengineering. Bioresource Technology Reports, 101117.spa
dcterms.referencesGhosh, P., Maiti, T., Pramanik, K., Ghosh, S., Mitra, S., & De, T. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407-419.spa
dcterms.referencesGlick, B. (2012). Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation Scientifica,2012, 1-15.spa
dcterms.referencesGonzález, O., & Ruano, D. (2020). Root exudates, a key factor in the plant-bacteria interaction mechanisms. In Molecular Aspects of Plant Beneficial Microbes in Agriculture. Academic Press, 111-121.spa
dcterms.referencesGoswami, M., & Suresh, D (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40-61.spa
dcterms.referencesGrayston, S., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied soil ecology, 5(1), 29-56.spa
dcterms.referencesGrobkinsky, D., van der Graaff, E., & Roitsch, T. (2014). Abscisic acid–cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology, 104(12), 1283-1288.spa
dcterms.referencesGu, B., Ju, X., Chang, S., Ge, Y., & Chang, J. (2017). Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change, 17(4), 1217-1227.spa
dcterms.referencesGupta, G., Parihar, S., Ahirwar, N., Snehi, S., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102.spa
dcterms.referencesHaichar, F., Marol, C., Berge, O., Rangel, J., Prosser, J., Balesdent, J., & Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221-1230.spa
dcterms.referencesHan, H., & Lee, K. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci, 1(2), 176-180.spa
dcterms.referencesHan, X., Wang, Z., Chen, M., Zhang, X., Tang, C., & Wu, Z. (2017). Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environmental science & technology, 51(6), 3233-3241spa
dcterms.referencesHao, Z., Van Tuinen, D., Wipf, D., Fayolle, L., Chataignier, O., Li, X., & Adrian, M. (2017). Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biological Control, 109, 42-50.spa
dcterms.referencesHeydari, M., Brook, R., & Jones, D. (2019). The role of phosphorus sources on root diameter, root length and root dry matter of barley (Hordeum vulgare L.). Journal of plant nutrition, 42(1), 1-15spa
dcterms.referencesImran, A., Saadalla, M., Khan, S., Mirza, M., Malik, K., & Hafeez, F. (2014). Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Annals of Microbiology, 64(4), 1797-1806.spa
dcterms.referencesJi, S., Kim, J., Lee, C., Seo, H., Chun, S., Oh, J., & Park, G. (2019). Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma. Scientific reports, 9(1), 1-16.spa
dcterms.referencesJimenez, E., Yang, Z. Y., Del Campo, J., Cash, V., Seefeldt, L., & Dean, D. (2019). The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. Journal of Biological Chemistry, 294(16), 6204-6213.spa
dcterms.referencesKafle, A., Cope, K., Raths, R., Krishna, J., Subramanian, S., Bücking, H., & Garcia, K. (2019). Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy, 9(3), 1-15.spa
dcterms.referencesKai, M., Effmert, U. y Piechulla, B. (2016). Interacciones bacteriano-planta: enfoques para desentrañar la función biológica de los volátiles bacterianos en la rizósfera. Fronteras en microbiología, 7 (108), 1-14.spa
dcterms.referencesKanchiswamy, C., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in plant science, 6(151), 1-23.spa
dcterms.referencesKang, S., Cho, H., Cheong, H., Ryu, C. M., Kim, J., & Park, S. (2007). Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of microbiology and biotechnology, 17(1), 96-103spa
dcterms.referencesKarthik, C., Elangovan, N., Kumar, T., Govindharaju, S., Barathi, S., Oves, M., & Arulselvi, P. (2017). Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiological research, 204, 65-71spa
dcterms.referencesKennedy, A. (1999). Bacterial diversity in agroecosystems. Invertebrate biodiversity as bioindicators of sustainable landscapes, 65-76spa
dcterms.referencesKhan, M., Fischer, S., Egan, D., & Doohan, F. (2006). Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology, 96(4), 386-394spa
dcterms.referencesKhatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273(111118), 1-20.spa
dcterms.referencesKim, O., Cho, Y., Lee, K., Yoon, S., Kim, M., Na, H., ... & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International journal of systematic and evolutionary microbiology, 62(Pt_3), 716-721.spa
dcterms.referencesKloepper, J., & Schroth, M. (1981). Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 71(10), 1020-1024spa
dcterms.referencesKloepper, J., Zablokovicz, R., Tipping, E., & Lifshitz, R. (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers In DL Keister & P B Cregan (eds) The rhizosphere and plant growth (Pp 315-326). The Netherlands: Kluwer Academic Publishersspa
dcterms.referencesKnee, E., Gong, F., Gao, M., Teplitski, M., Jones, A., Foxworthy, A., ... & Bauer, W. (2001). Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Molecular Plant-Microbe Interactions, 14(6), 775-784spa
dcterms.referencesKonstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1475), 1929-1940.spa
dcterms.referencesKumari, B., Mallick, M., Solanki, M., Solanki, A., Hora, A., & Guo, W. (2019). Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In Plant health under biotic stress (pp. 109-127). Springer, Singapore.spa
dcterms.referencesLi, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in microbiology, 6(883), 1-15spa
dcterms.referencesLugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556.spa
dcterms.referencesLugtenberg, B., Dekkers, L., & Bloemberg, G (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual review of phytopathology, 39(1), 461-490spa
dcterms.referencesMa, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14-25.spa
dcterms.referencesMarques, A., Pires, C., Moreira, H., Rangel, A., & Castro, P. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229-1235.spa
dcterms.referencesMartínez, M., Zumaqué, L., Martínez, L.., & Pinto, M. (2020). Adopción de la variedad de berenjena C015 (Solanum melongena L.) en la región Caribe colombiana. Ciencia y Agricultura, 17(3), 1-10.spa
dcterms.referencesMartins, A., Omena, R., Oliveira,., Silva, W., Hajirezaei, M., Vallarino, J., & Araújo, W. (2019). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331-343.spa
dcterms.referencesMasson, C., & Sachs, J. (2018). Symbiotic nitrogen fixation by rhizobi the roots of a success story. Current opinion in plant biology, 44, 7-15.spa
dcterms.referencesMeena, V., Bahadur, I., Maurya, B., Kumar, A., Meena, R., Meena, S., y Verma, J. (2016). Potassium-solubilizing microorganism in evergreen agriculture: an overview. In Potassium solubilizing microorganisms for sustainable agriculture. New Delhi, Springer, 1-20spa
dcterms.referencesMeier, J., Auch, A., Klenk, H., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC bioinformatics, 14(1), 1-14spa
dcterms.referencesMiller, M., Skorupski, K., Lenz, D., Taylor, R., & Bassler, B. (2002). Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell, 110(3), 303-314.spa
dcterms.referencesMinagricultura (2018). Prducción mundial de hortalizas. Recuperado de https://www.minagricultura.gov.co/paginas/default.aspxspa
dcterms.referencesNandi, L., Saha, P., Behera, T., Lyngdoh, Y., Munshi, A., Saha, N., & Tomar, B. (2020). Genetic characterisation and population structure analysis of indigenous and exotic eggplant (Solanum spp) accessions using microsatellite markers. The Journal of Horticultural Science and Biotechnology, 96(1), 73-86spa
dcterms.referencesNaqqash, T., Hameed, S., Imran, A., Hanif, M., Majeed, A., & van Elsas, J. (2016). Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in plant science, 7, 144.spa
dcterms.referencesNascimento, F., Hernández, A., Glick, B., & Rossi, M. (2020). Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25, 1-9.spa
dcterms.referencesNiño, G., Urías, V., Muy, M., & Heredia, J. (2017). Structure and content of phenolics in eggplant (Solanum melongena)-a review. South African Journal of Botany, 111, 161-169.spa
dcterms.referencesOrozco, M., Rocha, M., Glick, B., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological research, 208, 25-31spa
dcterms.referencesParedes, K., Rodríguez, R., Duarte, B., Caviedes, M., Mateos, E., Redondo, S., & Pajuelo, E. (2018). Investigating the mechanisms underlying phytoprotection by plant growth‐promoting rhizobacteria in Spartina densiflora under metal stress. Plant Biology, 20(3), 497-506spa
dcterms.referencesParks, D., Chuvochina, M., Chaumeil, P., Rinke, C., Mussig, A., & Hugenholtz, P. (2020). A complete domain-to-species taxonomy for Bacteria and Archaea. Nature biotechnology, 38(9), 1079-1086.spa
dcterms.referencesPatel, K., Naik, J., Chaudhari, S., & Amaresan, N. (2017). Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. Comptes Rendus Biologies, 340(4), 244-249spa
dcterms.referencesPaterson, E., & Sim, A. (2000). Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. Journal of Experimental Botany, 51(349), 1449-1457spa
dcterms.referencesPathak, D., Singh, V., Sharma, J., & Sheera, A. (2020). Plant growth promoting rhizobacteria (PGPR): A biological tool for improving plant health. Biotica Research Today, 2(7), 593-595spa
dcterms.referencesPathan, S., Ceccherini, M., Sunseri, F., & Lupini, A. (2020). Rhizosphere as hotspot for plant-soil-microbe interaction. In Carbon and Nitrogen Cycling in Soil, Springer, Singapore, 17-43spa
dcterms.referencesPłociniczak, T., Sinkkonen, A., Romantschuk, M., Sułowicz, S., & Piotrowska-Seget, Z. (2016). Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Frontiers in plant science, 7(101), 1-10.spa
dcterms.referencesPrasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 129-157.spa
dcterms.referencesPuppala, K., Bhavsar, K., Sonalkar, V., Khire, J., & Dharne, M. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology, 18,1-7.spa
dcterms.referencesQuamruzzaman, A., Khatun, A., & Islam, F. (2020). Nutritional Content and Health Benefits of Bangladeshi Eggplant Cultivars. European Journal of Agriculture and Food Sciences, 2(4), 1-7.spa
dcterms.referencesRadzki, W., Mañero, F., Algar, E., García, J., García, A., & Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330.spa
dcterms.referencesRajkumar, M., Ae, N., Prasad, M., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in biotechnology, 28(3), 142-149.spa
dcterms.referencesRangaraj, P., Ryle, M., Lanzilotta, N., Goodwin, J., Dean, R., Shah, K., & Ludden, W. (1999). Inhibition of iron-molybdenum cofactor biosynthesis by L127Δ NifH and evidence for a complex formation between L127Δ NifH and NifNE. Journal of Biological Chemistry, 274(41), 29413-29419.spa
dcterms.referencesRathinasabapathi, B., Liu, X., Cao, Y., & Ma, L. (2018). Phosphate-solubilizing Pseudomonads for improving crop plant nutrition and agricultural productivity. In Crop Improvement Through Microbial Biotechnology. Elsevier, 363-372.spa
dcterms.referencesRehman, F., Kalsoom, M., Adnan, M., Toor, M., & Zulfiqar, A. (2020). Plant Growth Promoting Rhizobacteria and their Mechanisms Involved in Agricultural Crop Production: A Review. SunText Rev. Biotechnol, 1(2), 1-6.spa
dcterms.referencesRen, C., Liu, S., Van Grinsven, H., Reis, S., Jin, S., Liu, H., & Gu, B. (2019). The impact of farm size on agricultural sustainability. Journal of Cleaner Production, 220, 357-367.spa
dcterms.referencesRichter, M., & Rosselló, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126-19131.spa
dcterms.referencesRijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in microbiology, 7(1785), 1-14spa
dcterms.referencesRodriguez, L., Castro, J., Kyrpides, N., Cole, J., Tiedje, J., & Konstantinidis, K. (2018). How much do rRNA gene surveys underestimate extant bacterial diversity?. Applied and environmental microbiology, 84(6).spa
dcterms.referencesRyan, R., An, S., Allan, J., McCarthy, Y., & Dow, J. (2015). The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS pathogens, 11(7), 1-14.spa
dcterms.referencesSalazar, M., Rodriguez, J., Cid, C., & Pignata, M. (2016). Auxin effects on Pb phytoextraction from polluted soils by Tegetes minuta L. and Bidens pilosa L.: Extractive power of their root exudates. Journal of Hazardous Materials, 311, 63-69.spa
dcterms.referencesSemenov, M., Krasnov, G., Semenov, V., & van Bruggen, A. (2020). Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 154, 103641.spa
dcterms.referencesShilev, S., Azaizeh, H., Vassilev, N., Georgiev, D., & Babrikova, I. (2019). Interactions in soil-microbe-plant system: adaptation to stressed agriculture. Microbial Interventions in Agriculture and Environment, 131-171.spa
dcterms.referencesSingh, M., Singh, D., Gupta, A., Pandey, K., Singh, P., & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 41-66.spa
dcterms.referencesStackebrandt, E., & Goebel, B. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International journal of systematic and evolutionary microbiology, 44(4), 846-849.spa
dcterms.referencesStrokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., ... & Zhang, Y. (2014). Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine pollution bulletin, 85(1), 123-140.spa
dcterms.referencesStrokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., ... & Zhang, Y. (2014). Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine pollution bulletin, 85(1), 123-140.spa
dcterms.referencesSytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38(2), 739-752.spa
dcterms.referencesTabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117.spa
dcterms.referencesTan, W., Wang, J., Bai, W., Qi, J., & Chen, W. (2020). Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific reports, 10(1), 1-12.spa
dcterms.referencesWalker, T., Bais, H., Grotewold, E., & Vivanco, J. (2003). Root exudation and rhizosphere biology. Plant physiology, 132(1), 44-51.spa
dcterms.referencesWang, J., Zhang, Y., Jin, J., Li, Q., Zhao, C., Nan, W., & Bi, Y. (2018). An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture altereation in Arabidopsis thaliana seedlings. Plant Growth Regulation, 84(3), 507-518spa
dcterms.referencesWayne, L., Brenner, D., Colwell, R., Grimont, P., Kandler, O., Krichevsky, M., ... & Truper, H. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic and Evolutionary Microbiology, 37(4), 463-464.spa
dcterms.referencesWu, M., Wei, Q., Xu, L., Li, H., Oelmüller, R., & Zhang, W. (2018). Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant and Soil, 432(1-2), 333-344.spa
dcterms.referencesXu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., ... & Zhang, R. (2019). Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Applied and environmental microbiology, 85(5), 1-14.spa
dcterms.referencesZaheer, A., Malik, A., Sher, A., Qaisrani, M., Mehmood, A., Khan, S., ... & Rasool, M. (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi journal of biological sciences, 26(5), 1061-1067.spa
dcterms.referencesZaidi, A., Ahmad, E., Khan, M. S., Saif, S., & Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Scientia Horticulturae, 193, 231-239.spa
dcterms.referencesZaidi, A., Khan, M. S., Saif, S., Rizvi, A., Ahmed, B., & Shahid, M. (2017). Role of nitrogen-fixing plant growth-promoting rhizobacteria in sustainable production of vegetables: current perspective. In Microbial strategies for vegetable production. Springer, Cham, 49-79spa
dcterms.referencesZhang, D., Yang, Y., Liu, C., Zhang, F., Hu, W., Gong, S., & Wu, Q. (2018). Auxin modulates root-hair growth through its signaling pathway in citrus. Scientia Horticulturae, 236, 73-78.spa
dcterms.referencesZhang, W., Dou, Z., He, P., Ju, X., Powlson, D., Chadwick, D., ... & Zhang, F. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110(21), 8375-8380.spa
dcterms.referencesZhou, L., He, Y., Li, J., Liu, Y., & Chen, H. (2020). CBFs Function in Anthocyanin Biosynthesis by Interacting with MYB113 in Eggplant (Solanum melongena L.). Plant and Cell Physiology, 61(2), 416-426.spa
dcterms.referencesAbraham, J., & Silambarasan, S. (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pesticide biochemistry and physiology, 126, 13-21.spa
dcterms.referencesAguado, G., Moreno, B., Jiménez, B., García, E., & Preciado, R. (2012). Impacto de los sideróforos microbianos y fitosidéforos en la asimilación de hierro por las plantas: una síntesis. Revista fitotecnia mexicana, 35(1), 9-21.spa
dcterms.referencesAltinok, H., Dikilitas, M., & Yildiz, H. (2013). Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnology & Biotechnological Equipment, 27(4), 3952-3958.spa
dcterms.referencesAmbawade, M. S., & Pathade, G. R. (2013). Production of indole acetic acid (IAA) by Stenotrophomonas maltophilia BE25 isolated from roots of banana (Musa spp). International Journal of Science and Research, 4(1), 2644-2650.spa
dcterms.referencesAmbrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F., Vargas, L., & Passaglia, L. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant and soil, 356(1-2), 245-264.spa
dcterms.referencesAnzai, Y., Kim, H., Park, J., Wakabayashi, H., & Oyaizu, H. (2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology, 50(4), 1563-1589spa
dcterms.referencesBabu, A., Jogaiah, S., Ito, S., Nagaraj, A., & Tran, L. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62-73.spa
dcterms.referencesBeck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12spa
dcterms.referencesBonachela, J., Nadell, C., Xavier, J., & Levin, S. (2011). Universality in bacterial colonies. Journal of Statistical Physics, 144(2), 303-315.spa
dcterms.referencesBurygin, G. L., Kargapolova, K. Y., Kryuchkova, Y. V., Avdeeva, E. S., Gogoleva, N. E., Ponomaryova, T. S., & Tkachenko, O. V. (2019). Ochrobactrum cytisi IPA7. 2 promotes growth of potato microplants and is resistant to abiotic stress. World Journal of Microbiology and Biotechnology, 35(4), 1-12spa
dcterms.referencesBuyer, J., & Leong, J. (1986). Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. Journal of Biological Chemistry, 261(2), 791-794spa
dcterms.referencesCastro Acuña, N., & Ovalle Díaz, J. (2017). Alternativa de elaboración de sopa de tomate (Lycopersicon esculentum Mill.) a partir de pulpa congelada y estabilizada con y sin tamizar (Doctoral dissertation, Universidad Católica del maule, Facultad de Ciencias Agrarias y Forestales).spa
dcterms.referencesCavalcante, V., & Dobereiner, J. (1988). A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and soil, 108(1), 23-31.spa
dcterms.referencesChakraborty, U., Chakraborty, B., Basnet, M., & Chakraborty, A. (2009). Evaluation of Ochrobactrum anthropi TRS‐2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of applied microbiology, 107(2), 625-634.spa
dcterms.referencesChoudhary, M., Panday, S., Meena, V., Singh, S., Yadav, R., Mahanta, D., & Pattanayak, A. (2018). Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agriculture, Ecosystems & Environment, 257, 38-46.spa
dcterms.referencesCriollo, P., Obando, M., Sánchez, L., & Bonilla, R. (2012). Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense. Ciencia & Tecnología Agropecuaria, 13(2), 189-195.spa
dcterms.referencesDas, S., Jean, J. S., Kar, S., Chou, M. L., & Chen, C. Y. (2014). Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. Journal of hazardous materials, 272, 112-120spa
dcterms.referencesDe Farias, V., de Andrade, D. M., do Santos, R. L., de Oliveira, G., & de Oliveira, F. (2018). The Effects of a Biofertilizer Containing Growth-Promoting Bacteria on the Eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 26(6), 1-8.spa
dcterms.referencesDe Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. J., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and environmental microbiology, 70(11), 6657-6664.spa
dcterms.referencesDinnage, R., Simonsen, A., Barrett, L., Cardillo, M., Raisbeck, N., Thrall, P., & Prober, S. (2019). Larger plants promote a greater diversity of symbiotic nitrogen‐fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 107(2), 977-991spa
dcterms.referencesDöbereiner, J., Baldani, V., & Baldani, J. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa SPI. 1-620.spa
dcterms.referencesElkelany, U., El-Mougy, N., & Abdel, M. M. (2020). Management of root-knot nematode Meloidogyne incognita of eggplant using some growth-promoting rhizobacteria and chitosan under greenhouse conditions. Egyptian Journal of Biological Pest Control, 30(1), 1-7.spa
dcterms.referencesFonseca, E., & Torres, J. (2013). Selección de bacterias promotoras de crecimiento vegetal presentes en una pradera compuesta de pasto Kikuyo Pennicetum clandestinum y Ryegrass Lolium sp y evaluación de su eficiencia en el municipio de Nemocón, Cundinamarca (Trabajo de grado, Corporación Universitaria Minuto de Dios). 1-91spa
dcterms.referencesGarrido, M. (2007). Aislamiento e identificación de bacterias diazotróficas rizosféricas y endófitas asociadas a suelos y pastos del valle y sabana del Cesar en dos épocas climáticas, Bogotá (Trabajo de grado, Universidad Militar Nueva Granada). 1- 71.spa
dcterms.referencesGhosh, P., Maiti, T., Pramanik, K., Ghosh, S., Mitra, S., & De, T. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407-419.spa
dcterms.referencesGlickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology, 61(2), 793-796spa
dcterms.referencesGowtham, H., Hariprasad, P., Singh, S., & Niranjana, S. (2016). Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 101, 123-129.spa
dcterms.referencesHarrington, J., Bargar, J., Jarzecki, A., Roberts, J., Sombers, L., & Duckworth, O. (2012). Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals, 25(2), 393-412.spa
dcterms.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales IDEAN. (2017). Atlas climatológico de Colombia. 1-266.spa
dcterms.referencesKalita, M., Bharadwaz, M., Dey, T., Gogoi, K., Dowarah, P., Unni, B., ... & Saikia, I. (2015). Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian Journal of Experimental Biology, 53, 56-60spa
dcterms.referencesKhan, N., Bano, A. M., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS one, 15(4), e0231426.spa
dcterms.referencesKumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11.spa
dcterms.referencesKumar, C., Sujitha, P., Mamidyala, S., Usharani, P., Das, B., & Reddy, C. (2014). Ochrosin, a new biosurfactant produced by halophilic Ochrobactrum sp. strain BS-206 (MTCC 5720): purification, characterization and its biological evaluation. Process Biochemistry, 49(10), 1708-1717.spa
dcterms.referencesLeclercq, S., Cloeckaert, A., & Zygmunt, M. (2020). Taxonomic organization of the family Brucellaceae based on a phylogenomic approach. Frontiers in microbiology, 10 (3083),1-10.spa
dcterms.referencesLi, H., Ding, X., Chen, C., Zheng, X., Han, H., Li, C., & Li, J. (2019). Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (Solanum melongena L.). FEMS microbiology ecology, 95(3), 1-12.spa
dcterms.referencesLiu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224.spa
dcterms.referencesMahmoud, O., Hidri, R., Talbi, O., Taamalli, W., Abdelly, C., & Djébali, N. (2020). Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 128, 209-217.spa
dcterms.referencesMargenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the total environment, 637, 1166-1174spa
dcterms.referencesMargenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the total environment, 637, 1166-1174spa
dcterms.referencesMartin, J., Ito, Y., Homann, V., Haygood, M., & Butler, A. (2006). Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. JBIC Journal of Biological Inorganic Chemistry, 11(5), 633-641spa
dcterms.referencesMartins, A., Omena, R., Oliveira, F., Silva, W., Hajirezaei, M., Vallarino, J., & Araújo, W. (2019). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331-343.spa
dcterms.referencesMasson, C., & Sachs, J. (2018). Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Current opinion in plant biology, 44, 7-15.spa
dcterms.referencesMatsushita, M., Wakita, J., Itoh, H., Rafols, I., Matsuyama, T., Sakaguchi, H., & Mimura, M. (1998). Interface growth and pattern formation in bacterial colonies. Physica A: Statistical Mechanics and its Applications, 249(1-4), 517-524.spa
dcterms.referencesMessiha, N., Van Diepeningen, A., Farag, N., Abdallah, S., Janse, J., & Van Bruggen, A. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European journal of plant pathology, 118(3), 211-225.spa
dcterms.referencesMorgado, A. (2013). Eficiencia de las rizobacterias promotoras del crecimiento vegetal (RPCV) en plántulas de caña de azúcar (Saccharum spp.) (Trabajo de grado, Colpos-Montecillo). Texcoco, 1-61.spa
dcterms.referencesNascimento, F., Hernández, A., Glick, B., & Rossi, M. (2020). Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25(e00406), 1-8.spa
dcterms.referencesNaureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Al Housni, S. K., ... & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477.spa
dcterms.referencesOhgiwari, M., Matsushita, M., & Matsuyama, T. (1992). Morphological changes in growth phenomena of bacterial colony patterns. Journal of the Physical Society of Japan, 61(3), 816-822.spa
dcterms.referencesOrozco, M., Rocha, M., Glick, B., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological research, 208, 25-31.spa
dcterms.referencesPadró, M. D. A., Caboni, E., Morin, K. A. S., Mercado, M. A. M., & Olalde-Portugal, V. (2021). Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ, 9, e10984.spa
dcterms.referencesPandey, S., Ghosh, P., Ghosh, S., De, T., & Maiti, T. (2013). Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51(1), 11-17.spa
dcterms.referencesParasuraman, P., Pattnaik, S., Busi, S., Marraiki, N., Elgorban, A., & Syed, A. (2020). Isolation and characterization of plant growth promoting rhizobacteria and their biocontrol efficacy against phytopathogens of tomato (Solanum lycopersicum L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 1-7.spa
dcterms.referencesPathan, S., Ceccherini, M., Sunseri, F., & Lupini, A. (2020). Rhizosphere as hotspot for plant-soil-microbe interaction. In Carbon and Nitrogen Cycling in Soil. Springer, Singapore. 17-43.spa
dcterms.referencesPeel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644.spa
dcterms.referencesPrasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture.Woodhead Publishing, 129-157.spa
dcterms.referencesPremono, M., Moawad, A., & Vlek, P. (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere (No. REP-12113. CIMMYT). Indonesian Journal of Crop Science, 11(1), 13-23.spa
dcterms.referencesPuppala, K., Bhavsar, K., Sonalkar, V., Khire, J., & Dharne, M. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology, 18(101020) 1-7. Ramírez, L., Lozano, L., Méndez, M., Rojas, S., & Torres, J. (2017). Bacillusspa
dcterms.referencesRamírez, L., Lozano, L., Méndez, M., Rojas, S., & Torres, J. (2017). Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova, 15(27), 45-65.spa
dcterms.referencesRao, S., & Sinha, M. (1963). Phosphate-dissolving microorganisium in the rhizosphere and soil. India J. Agric. S, 33(4), 272-278.spa
dcterms.referencesRibeiro, V., Marriel, I., Sousa, S., Lana, U., Mattos, B., Oliveira, C.., & Gomes, E. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian journal of microbiology, 49, 40-46.spa
dcterms.referencesRoder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS microbiology letters, 243(1), 219-226.spa
dcterms.referencesRojas, M., Rodríguez, A., González, L., & Heydrich, M. (2015). Influencia de diferentes factores en el crecimiento de bacterias endófitas de caña de azúcar. Revista colombiana de Biotecnología, 17(2), 149-155.spa
dcterms.referencesRuiu, L. (2013). Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects, 4(3), 476-492.spa
dcterms.referencesRuiu, L., Satta, A., & Floris, I. (2013). Emerging entomopathogenic bacteria for insect pest management. Bull Insectol, 66(2), 181-186.spa
dcterms.referencesSaakre, M., Baburao, T. M., Salim, A. P., Ffancies, R. M., Achuthan, V. P., Thomas, G., & Sivarajan, S. R. (2017). Identification and characterization of genes responsible for drought tolerance in rice mediated by Pseudomonas fluorescens. Rice Science, 24(5), 291-298.spa
dcterms.referencesSakthivel, K., Manigundan, K., Gautam, R., Singh, P., Nakkeeran, S., & Sharma, S. (2019). Bacillus spp. for suppression of eggplant bacterial wilt pathogen in Andaman Islands: Isolation and characterization. Indian journal experimental biology, 57, 131-137.spa
dcterms.referencesScagliola, M., Pii, Y., Mimmo, T., Cesco, S., Ricciuti, P., & Crecchio, C. (2016). Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiology and Biochemistry, 107, 187-196.spa
dcterms.referencesShabanamol, S., Divya, K., George, T. K., Rishad, K. S., Sreekumar, T. S., & Jisha, M. S. (2018). Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiological and Molecular Plant Pathology, 102, 46-54.spa
dcterms.referencesShah, A. A., Yasin, N. A., Akram, K., Ahmad, A., Khan, W. U., Akram, W., & Akbar, M. (2021). Ameliorative role of Bacillus subtilis FBL-10 and silicon against lead induced stress in Solanum melongena. Plant Physiology and Biochemistry, 158, 486-496.spa
dcterms.referencesSingh, D., Yadav, D., & Fatima, F. (2020). Characterization and genetic diversity of Pantoea agglomerans isolates having dual potentiality to suppress growth of Ralstonia solanacearum and plant growth promoting ability. Indian Phytopathology, 73(4), 643-653.spa
dcterms.referencesSingh, M., Singh, D., Gupta, A., Pandey, K., Singh, P., & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 41-66.spa
dcterms.referencesSinha, A., & Parli, B. (2020). Siderophore production by bacteria isolated from mangrove sediments: A microcosm study. Journal of Experimental Marine Biology and Ecology, 524(151290), 1-9.spa
dcterms.referencesSohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S., & Sharifi, R. (2018). Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egyptian Journal of Biological Pest Control, 28(1), 1-5.spa
dcterms.referencesSousa, A., Machado, I., Nicolau, A., & Pereira, M. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of microbiological methods, 95(3), 327-335.spa
dcterms.referencesSuckstorff, I., & Berg, G. (2003). Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of Applied Microbiology, 95(4), 656-663.spa
dcterms.referencesSumayo, M., Hahm, M. S., & Ghim, S. Y. (2013). Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in tobacco leaves. The plant pathology journal, 29(2), 174.spa
dcterms.referencesTabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117.spa
dcterms.referencesTeixeira, M., de Melo, I., & Vieira, R. (2005). Diversidade de bactérias endofíticas na cultura da mandioca. Embrapa Meio Ambiente-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E).spa
dcterms.referencesTian, P., Razavi, B., Zhang, X., Wang, Q., & Blagodatskaya, E. (2020). Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry, 141(107662),1-9.spa
dcterms.referencesUzair, B., Kausar, R., Bano, S. A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed research international, 2018.spa
dcterms.referencesValerga, L., Quintero, N., Concellón, A., & Puppo, M. (2020). Technological and nutritional characterization of wheat breads added with eggplant flour: dependence on the level of flour and the size of fruit. Journal of Food Science and Technology, 57(1), 182-190spa
dcterms.referencesVega, P., Canchignia, H., González, M., & Seeger, M. (2016). Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales, 37, 33-39.spa
dcterms.referencesVerma, V., Joshi, K., & Mazumdar, B. (2012). Study of siderophore formation in nodule-forming bacterial species. Research Journal of Chemical Sciences, 2 (11), 26-29.spa
dcterms.referencesWagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied microbiology and biotechnology, 98(11), 5117-5129.spa
dcterms.referencesWeatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974.spa
dcterms.referencesWillems, A., & Gillis, M. (2015). Comamonas. Bergey's Manual of Systematics of Archaea and Bacteria, 1-17.spa
dcterms.referencesWolf, A., Fritze, A., Hagemann, M., & Berg, G. (2002). Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. International journal of systematic and evolutionary microbiology, 52(6), 1937-1944.spa
dcterms.referencesXie, F., Ma, H., Quan, S., Liu, D., & Chen, G. (2016). Comamonas phosphati sp. nov., isolated from a phosphate mine. International Journal of Systematic and Evolutionary Microbiology, 66(1), 456-461.spa
dcterms.referencesYildiz, H., & Dikilitas, M. (2012). Screening of rhizobacteria against Fusarium oxysporum f. sp. melongenae, the causal agent of wilt disease of eggplant. African Journal of Microbiology Research, 6(15), 3700-3706.spa
dcterms.referencesZaheer, A., Malik, A., Sher, A., Qaisrani, M., Mehmood, A., Khan, S., ... & Rasool, M. (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi journal of biological sciences, 26(5), 1061-1067spa
dcterms.referencesAguilar, L., Escalante, J., Fucikovsky, L., Tijerina, L., & Engleman, E. (2005). Área foliar, tasa de asimilación neta, rendimiento y densidad de población en girasol. Terra Latinoamericana, 23(3), 303-310.spa
dcterms.referencesAlexander, A., Singh, V., & Mishra, A. (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Frontiers in Microbiology, 11, 1-12.spa
dcterms.referencesÁlvarez, J., Santoyo, G., & Rocha, M. (2020). Pseudomonas fluorescens: Mecanismos y aplicaciones en la agricultura sustentable. Revista Latinoamericana de Recursos Naturales, 16(1), 01-10.spa
dcterms.referencesAmaya, C., Porcel, M., Mesa, L., & Gómez, M. (2020). A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 86, 1-13.spa
dcterms.referencesArora, N., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., ... & Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26(2020), 69-82.spa
dcterms.referencesAydih, R., Jabnoune, H., & Daamii, M. (2020). Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants. Egyptian Journal of Biological Pest Control, 30(1), 1-13.spa
dcterms.referencesBarquero, M., Pastor, R., Urbano, B., & González, F. (2019). Challenges, regulations and future actions in biofertilizers in the european agriculture: from the lab to the field. Microbial Probiotics for Agricultural Systems, 83-107.spa
dcterms.referencesBashan, Y., de-Bashan, L., Prabhu, S., & Hernandez, J. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and soil, 378(1), 1-33.spa
dcterms.referencesBasu, A., Prasad, P., Das, S., Kalam, S., Sayyed, R., Reddy, M., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140-1160spa
dcterms.referencesBeck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12.spa
dcterms.referencesBerendsen, R., Pieterse, C., & Bakker, P. (2012). The rhizosphere microbiome and plant health. Trends in plant science, 17(8), 478-486.spa
dcterms.referencesBrilli, F., Pollastri, S., Raio, A., Baraldi, R., Neri, L., Bartolini, P., & Balestrini, R. (2019). Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. Journal of plant physiology, 232, 82-93spa
dcterms.referencesBurbano, O., Pérez, J. V., & Moreno, M. (2022). Assessing NPK use efficiency of commercial inoculants in cassava (Manihot esculenta Cratz): an application of data envelopment analysis. Journal of Crop Science and Biotechnology, 25(3), 253-267.spa
dcterms.referencesBulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E., & Schulze, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual review of plant biology, 64, 807-838.spa
dcterms.referencesCadena, J., & Araméndiz, H. (2011). C015 Y C029 nuevas variedades de berenjena para la región Caribe. CORPOICA, 1-23.spa
dcterms.referencesCoronado, M., du Boulois, H., Pertot, I., & Puopolo, G. (2021). Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research, 245,(126672), 1-10.spa
dcterms.referencesDe Castro, G.., Da Silva, D., Viana, R., y Ferreira, M. (2019). Photosynthetic apparatus protection and drought effect mitigation in açaí palm seedlings by rhizobacteria. Acta Physiol Plant, 41, 163-176.spa
dcterms.referencesDemir, Z. (2020). Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum Melongena L.). Communications in Soil Science and Plant Analysis, 51(14), 1888-1903.spa
dcterms.referencesDi Benedetto, A., & Tognetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. RIA. Revista de investigaciones agropecuarias, 42(3), 258-282.spa
dcterms.referencesEaslon, H., & Bloom, A. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1-5.spa
dcterms.referencesEke, P., Kumar, A., Sahu, K., Wakam, L., Sheoran, N., Ashajyothi, M., ... & Fekam, F. (2019). Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological research, 228, 126302spa
dcterms.referencesGil, R., Bautista, I., Boscaiu, M., Lidón, A., Wankhade, S., Sánchez, H., ... & Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants, 6, 1-23.spa
dcterms.referencesGowtham, H., Hariprasad, P., Singh, S., & Niranjana, S. (2016). Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 101, 123-129.spa
dcterms.referencesGowtham, H., Murali, M., Singh, S., Lakshmeesha, T., Murthy, K., Amruthesh, K., & Niranjana, S. (2018). Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biological Control, 126, 209-217spa
dcterms.referencesHernández, M., Ortiz, R., Flores, A., Moggio, I., Arias, E., & Valenzuela, J. (2020). Iqbal, A., & Hasnain, S. (2013). Auxin producing Pseudomonas strains: biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences, 4(09), 1693-1700.spa
dcterms.referencesKloepper, J., & Schroth, M. (1981). Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71(6), 642-644.spa
dcterms.referencesKoohakan, P., Prasom, P., & Sikhao, P. (2020). Application of seed coating with endophytic bacteria for Fusarium wilt disease reduction and growth promotion in tomato. Int J Agr Technol, 16, 55-62.spa
dcterms.referencesKudoyarova, G., Vysotskaya, L., Arkhipova, T., Kuzmina, L., Galimsyanova, N., Sidorova, L., & Veselov, S. (2017). Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta physiologiae plantarum, 39(11), 253- 260.spa
dcterms.referencesKumar, A., Verma, H., Singh, V., Singh, P., Singh, S., Ansari, W., ... & Pandey, K. (2017). Role of Pseudomonas sp. in sustainable agriculture and disease management. In Agriculturally important microbes for sustainable agriculture , 195-215.spa
dcterms.referencesLamasa, C., Ayala, C., Araméndiz, T., Arteaga, R., & Córdoba, C. (2015). Efecto de coberturas y micorrizas nativas sobre el cultivo de berenjena (Solanum melongena L.). Agronomía, 23(1), 7-19.spa
dcterms.referencesLebeis, S., Paredes, S., Lundberg, D., Breakfield, N., Gehring, J., McDonald, M., ... & Dangl, J. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349(6250), 860-864.spa
dcterms.referencesLiaquat, F., Munis, M., Arif, S., Haroon, U., Shengquan, C., & Qunlu, L. (2020). Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: a potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech, 10(12), 1-10.spa
dcterms.referencesMącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31-87.spa
dcterms.referencesMahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315-3335.spa
dcterms.referencesMartínez, A., Tordecilla, L., Grandett, L. M., Rodríguez, M., Cordero, C., Orozco, A., Silva, G., Romero, J., & Correa, E. (2019). Análisis económico de la producción de berenjena (Solanum melongena L.) en dos zonas productoras del Caribe colombiano: Sabanas de Sucre y Valle del Sinú en Córdoba. Ciencia y Agricultura, 16(3), 17-34.spa
dcterms.referencesMetting, F. (1992). Structure and physiological ecology of soil microbial communities. Soil Microbial Ecology, 3-25.spa
dcterms.referencesNakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective non-pathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124spa
dcterms.referencesNicolitch, O., Colin, Y., Turpault, M., & Uroz, S. (2016). Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biology and Biochemistry, 103, 429-445.spa
dcterms.referencesPeel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644.spa
dcterms.referencesPérez, M., Piccoli, P., Anzuay, M., Baraldi, R., Neri, L., Taurian, T., ... & Cohen, A. (2020). Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific reports, 10(1), 1-14.spa
dcterms.referencesRasul, M., Sumera, Y., Mahreen, Y., Breitkreuz, C., Tarkka, M., & Reitz, T. (2021). The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research, 246, 126703.spa
dcterms.referencesSaini, A., Nain, L., Garg, V., & Saxena, J. (2017). Improvement of Growth, Yield, and Pigmentation of Mung Bean Plants Using Ochrobactrum intermedium CP‐2 as Bioinoculant. CLEAN–Soil, Air, Water, 45(6), 1500670spa
dcterms.referencesSaridewi, L., Prihatiningsih, N., & Djatmiko, H. (2020). Characterization of eggplant endophyte bacteria and rhizobacteria as well as their antagonistic ability against Ralstonia solanacearum. Jurnal Hama dan Penyakit Tumbuhan Tropika, 20(2), 150-156spa
dcterms.referencesScagliola, M., Valentinuzzi, F., Mimmo, T., Cesco, S., Crecchio, C., & Pii, Y. (2021). Bioinoculants as promising complement of chemical fertilizers for a more sustainable agricultural practice. Frontiers in Sustainable Food Systems, 4, 305-312.spa
dcterms.referencesSchlatter, D., Bakker, M., Bradeen, J., & Kinkel, L. (2015). Plant community richness and microbial interactions structure bacterial communities in soil. Ecology, 96(1), 134-142.spa
dcterms.referencesSingh, R., & Jha, P. (2017). The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 8, 1945.spa
dcterms.referencesSpaepen, S., Bossuyt, S., Engelen, K., Marchal, K., & Vanderleyden, J. (2014). Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin‐producing bacterium Azospirillum brasilense. New Phytologist, 201(3), 850-861.spa
dcterms.referencesSu, F., Gilard, F., Guérard, F., Citerne, S., Clément, C., Vaillant, N., & Dhondt, S. (2016). Spatio-temporal responses of Arabidopsis leaves in photosynthetic performance and metabolite contents to Burkholderia phytofirmans PsJN. Frontiers in plant science, 7(403), 1-15.spa
dcterms.referencesSuckstorff, I., & Berg, G. (2003). Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of applied microbiology, 95(4), 656-663.spa
dcterms.referencesTejada, M., Benítez, C., Gómez, I., & Parrado, J. (2011). Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Applied Soil Ecology, 49, 11-17spa
dcterms.referencesTimmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in plant science, 8, 49-59.spa
dcterms.referencesValerga, L., Darré, M., Zaro, M., Arambarri, A., Vicente, A., Lemoine, M., & Concellón, A. (2019). Micro-structural and quality changes in growing dark-purple eggplant (Solanum melongena L.) as affected by the harvest season. Scientia Horticulturae, 244, 22-30.spa
dcterms.referencesVessey, J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2), 571-586.spa
dcterms.referencesWakchaure, G., Minhas, P., Meena, K., Kumar, S., & Rane, J. (2020). Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. Journal of Environmental Management, 262, (110320), 1-13.spa
dcterms.referencesZavala, J., Alcarraz, M., & Julian, J. (2020). Evaluación para la producción de Azotobacter sp. promotor de crecimiento para cultivos de Coffea arabica. Ciencia e Investigación, 23(1), 45-50.spa
dcterms.referencesZhang, K., Liu, Z., Shan, X., Li, C., Tang, X., Chi, M., & Feng, H. (2017). Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiologiae Plantarum, 39(1), 22-39.spa
dcterms.referencesZuluaga, M.., Lima Milani, K., Azeredo, L., & Martinez, A. (2020). Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS one, 15(1), 1-25.spa
dcterms.referencesAdviento, M., Doran, J., Drijber, R., & Dobermann, A. (2006). Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. Journal of environmental quality, 35(6), 1999-2010.spa
dcterms.referencesAfzal, M., Yousaf, S., Reichenauer, T. G., Kuffner, M., & Sessitsch, A. (2011). Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. Journal of hazardous materials, 186(2-3), 1568-1575.spa
dcterms.referencesBach, E., Baer, S., Meyer, C., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 42(12), 2182-2191.spa
dcterms.referencesBarragán, W., Mahecha, L., & Cajas, Y. S. (2015). Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agronomía Mesoamericana, 26(2), 211-223.spa
dcterms.referencesBeck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12.spa
dcterms.referencesBlake, G., & Hartge, K. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375.spa
dcterms.referencesBouyoucos, G. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.spa
dcterms.referencesBrady, N., & Weil, R. (1999). Soil organic matter. The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey, 446-490.spa
dcterms.referencesBulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual review of plant biology, 64, 807-838.spa
dcterms.referencesBuzas, M., & Hayek, L. (1998). SHE analysis for biofacies identification. Journal of Foraminiferal Research, (28), 233-239.spa
dcterms.referencesCadena, J., Perez, S., Romero, J., & Perez, K. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141-152.spa
dcterms.referencesChao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265-270.spa
dcterms.referencesChao, A., & Lee, S. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417), 210-217.spa
dcterms.referencesChen, B., Jiao, S., Luo, S., Ma, B., Qi, W., Cao, C., ... & Ma, X. (2021). High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environmental Microbiology, 23(1), 464-477spa
dcterms.referencesChen, S., Waghmode, T., Sun, R., Kuramae, E., Hu, C., & Liu, B. (2019). Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 7(1), 1-13.spa
dcterms.referencesCheng, H., Yuan, M., Duan, Q., Sun, R., Shen, Y., Yu, Q., & Li, S. (2020). Influence of phosphorus fertilization patterns on the bacterial community in upland farmland. Industrial Crops and Products, 155(112761), 1-11.spa
dcterms.referencesCombatt, E., Martinez, G., & Santos, J. (2005). Caracterización química y física de los suelos agroforestales de la zona alta de Córdoba. Temas agrarios, 10(2), 1-14.spa
dcterms.referencesCovacevich, F. (2017). Hongos micorricicos arbusculares: Muestreo de suelo para determinación de actividad y diversidad de hongos micorrícicos arbusculares. En: Metodología de muestreo de suelo y ensayos a campo: Protocolos básicos comunes. D. J. Santos, M. Wilson y M. Ostinelli (Eds.) Ediciones INTA. (En Prensa).spa
dcterms.referencesDe la Torre, M., Salinas, L., Aguirre, J., Fernández, A.., Martínez, F., Montiel, D., & Ramírez, H. (2020). Composition, Structure, and PGPR Traits of the Rhizospheric Bacterial Communities Associated With Wild and Cultivated Echinocactus platyacanthus and Neobuxbaumia polylopha. Frontiers in microbiology, 11 (1424), 1-17.spa
dcterms.referencesDe Zutter, N., Ameye, M., Debode, J., De Tender, C., Ommeslag, S., Verwaeren, J., ... & De Gelder, L. (2021). Shifts in the rhizobiome during consecutive in planta enrichment for phosphate‐solubilizing bacteria differentially affect maize P status. Microbial biotechnology, 14(4), 1594-1612spa
dcterms.referencesDequiedt, S., Saby, N., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., & Ranjard, L. (2011). Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography, 20(4), 641-652.spa
dcterms.referencesDey, R., Pal, K., & Tilak, K. (2012). Influence of soil and plant types on diversity of rhizobacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(3), 341-352.spa
dcterms.referencesDinh, S., Luu, V., Hoang, L., Nguyen, X., & Ho, C. (2020). Biotechnology of Plant‐Associated Microbiomes. The Plant Microbiome in Sustainable Agriculture, 243-277.spa
dcterms.referencesDöbereiner, J., Baldani, V., & Baldani, J. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa SPI. 1-620.spa
dcterms.referencesEscalas, A., Hale, L., Voordeckers, J, Yang, Y., Firestone, M, Alvarez, L. y Zhou, J. (2019). Diversidad funcional microbiana: de los conceptos a las aplicaciones. Ecología y evolución, 9 (20), 12000-12016.spa
dcterms.referencesFierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590.spa
dcterms.referencesFierer, N., Bradford, M., & Jackson, R. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364.spa
dcterms.referencesFinkel, O., Salas, I., Castrillo, G., Spaepen, S., Law, T., Teixeira, P., ... & Dangl, J. (2019). The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 17(11), e3000534.spa
dcterms.referencesFitzpatrick, C., Copeland, J., Wang, P., Guttman, D., Kotanen, P., & Johnson, M. (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences, 115(6), E1157-E1165.spa
dcterms.referencesGargallo, A., Preece, C., Sardans, J., Oravec, M., Urban, O., & Peñuelas, J. (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific reports, 8(1), 1-15spa
dcterms.referencesGirvan, M., Bullimore, J., Pretty, J., Osborn, A., & Ball, A. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and environmental microbiology, 69(3), 1800-1809.spa
dcterms.referencesHartman, K., van der Heijden, M. G., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1-14.spa
dcterms.referencesICA. (1992). Fertilización en diversos cultivos. Quinta aproximación. Produmedios, Santafé de Bogotá.spa
dcterms.referencesIvone, V., Conceição, E., Olga C., & Célia, M. (2013). Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS microbiology ecology, 83(2), 361-374.spa
dcterms.referencesJaraba, J., Lozano, Z., & Espinosa, M. (2007). Nematodos agalladores asociados al cultivo de papaya (Carica papaya L.) en el departamento de Córdoba, Colombia. Agronomía colombiana, 25(1), 124-130.spa
dcterms.referencesJaraba, J., Rothrock, C., Kirkpatrick, T., & Brye, K. (2014). Soil texture influence on Meloidogyne incognita and Thielaviopsis basicola and their interaction on cotton. Plant disease, 98(3), 336-343.spa
dcterms.referencesJing, L., Wu, F., & Yang, Y. (2010). Effects of cinnamic acid on bacterial community diversity in rhizosphere soil of cucumber seedlings under salt stress. Agricultural Sciences in China, 9(2), 266-274.spa
dcterms.referencesKari, A., Nagymáté, Z., Romsics, C., Vajna, B., Tóth, E., Lazanyi, R., ... & Márialigeti, K. (2021). Evaluating the combined effect of biochar and PGPR inoculants on the bacterial community in acidic sandy soil. Applied Soil Ecology, 160, (103856), 1-10spa
dcterms.referencesKhanna, K., Lopez, J., & Pogliano, K. (2020). Shaping an endospore: Architectural transformations during Bacillus subtilis sporulation. Annual Review of Microbiology, 74, 361-386spa
dcterms.referencesLauber, C., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and environmental microbiology, 75(15), 5111-5120.spa
dcterms.referencesLi, D., Zhao, B., Olk, D., & Zhang, J. (2020). Soil texture and straw type modulate the chemical structure of residues during four-year decomposition by regulating bacterial and fungal communities. Applied Soil Ecology, 155(103664), 1-10.spa
dcterms.referencesLi, T., Liu, T., Zheng, C., Kang, C., Yang, Z., Yao, X., & Zhang, C. (2017). Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PloS one, 12(3),1-17.spa
dcterms.referencesLing, N., Chen, D., Guo, H., Wei, J., Bai, Y., Shen, Q., & Hu, S. (2017). Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma, 292, 25-33.spa
dcterms.referencesLiu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., ... & Yan, W. (2020). Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management, 477(118473), 1-11.spa
dcterms.referencesLiu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., ... & Yan, W. (2020). Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management, 477, 118473.spa
dcterms.referencesLupatini, M., Korthals, G. W., De Hollander, M., Janssens, T. K., & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in microbiology, 7, 2064.spa
dcterms.referencesMarín, J., Montaño, N., & Córcega, G. (2020). Efectos de regímenes de riego sobre el rendimiento y el uso del agua en Berenjena (Solanum melongena L.), en condiciones de campo. Apthapi, 6(3), 2013-2026.spa
dcterms.referencesNaveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., & de Jonge, L. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55.spa
dcterms.referencesNelkner, J., Henke, C., Lin, T., Pätzold, W., Hassa, J., Jaenicke, S., ... & Schlüter, A. (2019). Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes, 10(6), 424.spa
dcterms.referencesOgundeji, A., Li, Y., Liu, X., Meng, L., Sang, P., Mu, Y., ... & Li, S. (2021). Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Applied Soil Ecology, 163, 103912.spa
dcterms.referencesOlsen, S. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.spa
dcterms.referencesOr, D., Smets, B., Wraith, J., Dechesne, A., & Friedman, S. (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Advances in Water Resources, 30(6-7), 1505-1527.spa
dcterms.referencesOsorio, W., & Casamitjana, M. (2011). Toma de muestras de suelo para evaluar la fertilidad del suelo. Suelos Ecuatoriales, 41(1), 23-28.spa
dcterms.referencesPant, B., Pant, P., Erban, A., Huhman, D., Kopka, J., & Scheible, W. (2015). Identification of primary and secondary metabolites with phosphorus status‐dependent abundance in Arabidopsis, and of the transcription factor PHR 1 as a major regulator of metabolic changes during phosphorus limitation. Plant, cell & environment, 38(1), 172-187spa
dcterms.referencesPeel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644.spa
dcterms.referencesPii, Y., Borruso, L., Brusetti, L., Crecchio, C., Cesco, S., & Mimmo, T. (2016). The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiology and Biochemistry, 99, 39-48.spa
dcterms.referencesPielou, E. (1969). Ecological diversity and its measurement. An introduction to mathematical ecology, 221-235.spa
dcterms.referencesRamírez, K., Lauber, C., Knight, R., Bradford, M., & Fierer, N. (2010). Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 91(12), 3463-3470.spa
dcterms.referencesReina, A., Zumaqué, L., Martínez, L., & Pinto, M. (2020). Adopción de la variedad de berenjena C015 (Solanum melongena L.) en la región Caribe colombiana. Ciencia y Agricultura, 17(3), 1-10.spa
dcterms.referencesSamba, A., Delafont, V., Rodier, M., Cateau, E., & Héchard, Y. (2019). Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS microbiology reviews, 43(4), 415-434.spa
dcterms.referencesSanger, F. (1988). Sequences, sequences, and sequences. Annual review of biochemistry, 57(1), 1-29.spa
dcterms.referencesSeaton, F., George, P., Lebron, I., Jones, D., Creer, S., & Robinson, D. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144(107766), 1-10.spa
dcterms.referencesShahjee, H., Banerjee, K., & Ahmad, F. (2002). Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses. Journal of biosciences, 27(5), 515-520.spa
dcterms.referencesShannon, C., & Weaver, W. (1949). The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver. University of illinois Press.spa
dcterms.referencesSimpson, E. (1949). Measurement of diversity. nature, 163(4148), 688-688.spa
dcterms.referencesSoussi, A., Ferjani, R., Marasco, R., Guesmi, A., Cherif, H., Rolli, E., ... & Cherif, A. (2016). Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant and Soil, 405(1-2), 357-370.spa
dcterms.referencesStefani, F., Bell, T., Marchand, C., de la Providencia, I., El Yassimi, A., St-Arnaud, M., & Hijri, M. (2015). Culture-dependent and-independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PloS one, 10(6), e0128272.spa
dcterms.referencesTeixeira, M., de Melo, I., & Vieira, R. (2005). Diversidade de bactérias endofíticas na cultura da mandioca. Embrapa Meio Ambiente-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E).spa
dcterms.referencesTejada, M., Benítez, C., Gómez, I., & Parrado, J. (2011). Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Applied Soil Ecology, 49, 11-17.spa
dcterms.referencesThiem, D., Gołębiewski, M., Hulisz, P., Piernik, A., & Hrynkiewicz, K. (2018). How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots?. Frontiers in microbiology, 9(651), 1-15.spa
dcterms.referencesTreseder, K. K., Balser, T. C., Bradford, M. A., Brodie, E. L., Dubinsky, E. A., Eviner, V. T., ... & Waldrop, M. P. (2012). Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry, 109(1), 7-18.spa
dcterms.referencesTrivedi, P., Leach, J., Tringe, S., Sa, T., & Singh, B. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature reviews microbiology, 18(11), 607-621.spa
dcterms.referencesWalkeley, A. (1947). A critical examination of a rapid method for determination of organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents. Soil Sci., 63, 251-257.spa
dcterms.referencesWan, W., Tan, J., Wang, Y., Qin, Y., He, H., Wu, H., ... & He, D. (2020). Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. Science of the Total Environment, 700(134418), 1-10.spa
dcterms.referencesWang, G., Wang, L., & Ma, F. (2022). Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. Chemosphere, 286, 131567.spa
dcterms.referencesXun, W., Li, W., Xiong, W., Ren, Y., Liu, Y., Miao, Y., ... & Zhang, R. (2019). Diversity-triggered deterministic bacterial assembly constrains community functions. Nature communications, 10(1), 1-10.spa
dcterms.referencesZeng, Y., Yu, Z., & Huang, Y. (2014). Combination of culture-dependent and-independent methods reveals diverse acyl homoserine lactone-producers from rhizosphere of wetland plants. Current microbiology, 68(5), 587-593.spa
dcterms.referencesZhai, Y., Wang, Z., Wang, G., Peijnenburg, W., & Vijver, M. (2020). The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. Chemosphere, 249(126564) 1-10.spa
dcterms.referencesZhou, C., Heal, K., Tigabu, M., Xia, L., Hu, H., Yin, D., & Ma, X. (2020). Biochar addition to forest plantation soil enhances phosphorus availability and soil bacterial community diversity. Forest Ecology and Management, 455(117635), 1-11.spa
dcterms.referencesZuluaga, M., Lima, K., Azeredo, L., & Martinez, A. (2020). Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS one, 15(1), e0227422.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Lunacastellanoslilylorena.pdf
Tamaño:
4.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento final de Tesis de Maestria
No hay miniatura disponible
Nombre:
Autorización completo.pdf
Tamaño:
174.26 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Publicación de documentos
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones