Publicación: Background sobre el estudio de potencia y sensibilidad para dieciséis pruebas de normalidad a diferentes niveles de No normalidad
Portada
Citas bibliográficas
Código QR
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
En estudios donde se requiere un rigor académico, las pruebas de normalidad son fundamentales puesto que de esto depende una decisión muy fuerte, el cual hace relación a usar métodos paramétricos, de lo contrario no sería posible. las pruebas de normalidad se puede clasificar según los siguientes aspectos: momento, distribución empírica, especificación y correlación. Este trabajo estudia y compara la sensibilidad y potencia de las dieciséis pruebas de normalidad; Agostino Pearson [DK], Jarque Bera [JB], Robusta de Jarque Bera [RJB], Bonett-Seier [BS], Bontemps-Meddahi [BM1BM2], Sesgo [SK], Curtosis [KU], Lilliefors[LL], Anderson Darling [AD], Snedecor Cochran [CS], Chen Ye [G], Brys-Hubert-Struyf MC-MR [BH], Shapiro-Wilk [SW], Shapiro-Francia[SF], Doornik-Hansen [DH] y Brys-Hubert-Struyf-Bonett-Seier [BHBS]. Las comparaciones de la sensibilidad y la potencia de estas dieciséis pruebas se obtuvieron mediante simulación de Monte Carlo de datos generados a partir del sistema de contaminación de Fleishman, el cual da vía a escenarios de no normalidad y la clasificación de diez distribuciones con un alejamiento de la normalidad medible. Los resultados de nuestro estudio muestran que las pruebas de normalidad basadas en correlación y regresión Shapiro-Wilk [SW] y Shapiro-Francia [SF] resultan ser mejores que el resto de las demás pruebas, su potencia es mayor, pero solo para muestras no normales grandes y alejamientos fuertes. Para alejamientos moderados las pruebas Agostino Pearson [DK] y la prueba del Sesgo [SK] sobresalen con mayor potencia y alejamientos bajos la prueba Robusta de Jarque Bera [RJB] y la prueba Jarque Bera [JB]. En el caso de las distribuciones simétricas mesocúrticas las pruebas Snedecor Cochran [CS] y Chen-Ye [G] tiene una baja potencia con respecto al resto con una distribución Logistica(9,3).