Examinando por Materia "Sensibilidad."
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Background sobre el estudio de potencia y sensibilidad para dieciséis pruebas de normalidad a diferentes niveles de No normalidad(5.2.1. Bajo el método de estimación de Fleishman . . . . . . . . . . . . . . . . . 69, 2021-06-25) Zumaqué Ballesteros, Antonio Elías; Bru Cordero, Osnamir Elias; Rojas Mora, Jessica MaríaEn estudios donde se requiere un rigor académico, las pruebas de normalidad son fundamentales puesto que de esto depende una decisión muy fuerte, el cual hace relación a usar métodos paramétricos, de lo contrario no sería posible. las pruebas de normalidad se puede clasificar según los siguientes aspectos: momento, distribución empírica, especificación y correlación. Este trabajo estudia y compara la sensibilidad y potencia de las dieciséis pruebas de normalidad; Agostino Pearson [DK], Jarque Bera [JB], Robusta de Jarque Bera [RJB], Bonett-Seier [BS], Bontemps-Meddahi [BM1BM2], Sesgo [SK], Curtosis [KU], Lilliefors[LL], Anderson Darling [AD], Snedecor Cochran [CS], Chen Ye [G], Brys-Hubert-Struyf MC-MR [BH], Shapiro-Wilk [SW], Shapiro-Francia[SF], Doornik-Hansen [DH] y Brys-Hubert-Struyf-Bonett-Seier [BHBS]. Las comparaciones de la sensibilidad y la potencia de estas dieciséis pruebas se obtuvieron mediante simulación de Monte Carlo de datos generados a partir del sistema de contaminación de Fleishman, el cual da vía a escenarios de no normalidad y la clasificación de diez distribuciones con un alejamiento de la normalidad medible. Los resultados de nuestro estudio muestran que las pruebas de normalidad basadas en correlación y regresión Shapiro-Wilk [SW] y Shapiro-Francia [SF] resultan ser mejores que el resto de las demás pruebas, su potencia es mayor, pero solo para muestras no normales grandes y alejamientos fuertes. Para alejamientos moderados las pruebas Agostino Pearson [DK] y la prueba del Sesgo [SK] sobresalen con mayor potencia y alejamientos bajos la prueba Robusta de Jarque Bera [RJB] y la prueba Jarque Bera [JB]. En el caso de las distribuciones simétricas mesocúrticas las pruebas Snedecor Cochran [CS] y Chen-Ye [G] tiene una baja potencia con respecto al resto con una distribución Logistica(9,3).