Publicación: Adsorción de hidrocarburos aromáticos policíclicos (HAP´s) en microplásticos PET en agua de mar
dc.contributor.advisor | Burgos Núnez, Saudith María | |
dc.contributor.advisor | Enamorado Montes, German Holland | |
dc.contributor.author | Peñate Peña, Anderson Javier | |
dc.contributor.jury | Paternina Uribe Roberth de Jesús | |
dc.contributor.jury | Diaz Pongutá, Basilio | |
dc.date.accessioned | 2023-11-16T19:10:17Z | |
dc.date.available | 2023-11-16T19:10:17Z | |
dc.date.issued | 2023-11-16 | |
dc.description.abstract | El 80% de la basura que ingresa anualmente al mar es plástico, el cual se degrada en fragmentos más pequeños conocidos como microplásticos (MP), cuyo tamaño es menor a 5mm, estos fragmentos transportan diferentes tipos de contaminantes como los hidrocarburos aromáticos policíclicos (HAP´s), que son compuestos formados por más de dos anillos de bencenos, los cuales son otro tipo de contaminantes que amenazan la biota marina. En este estudio se valoró la adsorción de cuatros HAP´s (naftaleno, acenafteno, acenaftileno y fluoreno) en microplásticos tipo PET en agua de mar sintética, empleando la isoterma de Langmuir, Freundlich y Henry. Los microplásticos se obtuvieron de botellas del tipo PET recicladas. El agua de mar sintética se fortificó con estándar de HAP´s a diferentes concentraciones. A cada recipiente con la solución de HAP´s se le agregaron 3 g de microplásticos, luego el sistema se llevó a agitación. Una vez terminado este periodo, se separaron los microplásticos de la solución remante HAP´s. Para el análisis de estos, se utilizó la técnica de extracción en fase sólida (SPE) y cromatografía de gases acoplada a espectrometría de masa. Los resultados mostraron que el naftaleno, acenafteno y fluoreno se ajustan al modelo lineal presentando un r2 de 0,7896, 0,9922 y 1 respectivamente. En cuanto al modelo de Langmuir, este fue favorable para los cuatro HAP’s, presentado capacidades de adsorción de 2500, 238,095, 1428 y 1250 ng/g para naftaleno, acenaftileno, acenafteno y fluoreno respectivamente. El modelo de Freundlich también tuvo lugar, así que la absorción por multicapas también se puede presentar. La hidrofobicidad, el envejecimiento y el tamaño del MP son factores claves en los procesos de adsorción. En base a los resultados obtenidos podemos afirmar que la adsorción de HAP´s en microplásticos se ajusta a más de un modelo de adsorción y que el naftaleno es quien presenta mayor capacidad de adsorción | spa |
dc.description.abstractenglish | 80% of the garbage that enters the sea annually is plastic, which degrades into smaller fragments known as microplastics (MP), whose size is less than 5mm. These fragments carry different types of pollutants such as polycyclic aromatic hydrocarbons (PAH´s), which are compounds formed by more than two benzene rings, which are another type of pollutant that threatens marine biota. In this study, the adsorption of four PAH´s (naphthalene, acenaphthene, acenaphthylene, and fluorene) on PET-type microplastics in synthetic seawater was evaluated using the Langmuir, Freundlich, and Henry isotherms. The microplastics were obtained from recycled PET bottles. The synthetic seawater was fortified with HAP standards at different concentrations. To each container with the HAP´s solution, 3 g of microplastics were added, and then the system was agitated. Once this period was over, the microplastics were separated from the remaining HAP´s solution. For the analysis of these, the solid-phase extraction (SPE) technique and gas chromatography coupled to mass spectrometry were used. The results showed that naphthalene, acenaphthene, and fluorene fit the linear model, presenting an r 2 of 0.7896, 0.9922, and 1, respectively. As for the Langmuir model, this was favorable for the four HAPs, presenting adsorption capacities of 2500, 238.095, 1428, and 1250 ng/g for naphthalene, acenaphthylene, acenaphthene, and fluorene, respectively. The Freundlich model also took place, so absorption by multilayers can also occur. Hydrophobicity, aging, and MP size are key factors in adsorption processes. Based on the results obtained, we can affirm that the adsorption of HAPs on microplastics fits more than one adsorption model and that naphthalene has the highest adsorption capacity. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. RESUMEN.....6 | spa |
dc.description.tableofcontents | 2. INTRODUCCIÓN...8 | spa |
dc.description.tableofcontents | 3. OBJETIVO...9 | spa |
dc.description.tableofcontents | 3.1. Objetivo general........9 | spa |
dc.description.tableofcontents | 3.2. Objetivos especificos.....9 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO........10 | spa |
dc.description.tableofcontents | 4.1. Plástico.....10 | spa |
dc.description.tableofcontents | 4.2. Degradación del plástico....12 | spa |
dc.description.tableofcontents | 4.3. Microplástico.......12 | spa |
dc.description.tableofcontents | 4.4. Microplásticos en el medio acuatico........13 | spa |
dc.description.tableofcontents | 4.5. HIDROCARBUROS AROMATICOS POLICICLICOS (HAP's).....13 | spa |
dc.description.tableofcontents | 4.5.1. Principales HAP's.......13 | spa |
dc.description.tableofcontents | 4.6. Fuente de los HAP's........14 | spa |
dc.description.tableofcontents | 4.6.1. Fuentes naturales......15 | spa |
dc.description.tableofcontents | 4.6.2. Fuentes antropogénicas......15 | spa |
dc.description.tableofcontents | 4.7. Efectos sobre la salud de los HAP's.....15 | spa |
dc.description.tableofcontents | 4.8. Cromatografía de gases........16 | spa |
dc.description.tableofcontents | 4.9. Detector de espectrometría de masa......16 | spa |
dc.description.tableofcontents | 4.10. Extracción en fase sólida (SPE).......17 | spa |
dc.description.tableofcontents | 4.11. Adsorcíon........17 | spa |
dc.description.tableofcontents | 4.11.1. Adsorcíon física........17 | spa |
dc.description.tableofcontents | 4.11.2. Adsorción química....18 | spa |
dc.description.tableofcontents | 4.12. Adsorción de soluciones........18 | spa |
dc.description.tableofcontents | 4.13. Isoterma de Langmuir.......19 | spa |
dc.description.tableofcontents | 4.14. Isoterma de Freundlich......20 | spa |
dc.description.tableofcontents | 4.15. Antecedentes......20 | spa |
dc.description.tableofcontents | 5. METOLOGÍA.........21 | spa |
dc.description.tableofcontents | 5.1. Preparación de microplásticos........21 | spa |
dc.description.tableofcontents | 5.2. Preparación de agua de mar sintética.........22 | spa |
dc.description.tableofcontents | 5.3. Ensayo de adsorción de HAP's en microplásticos.......23 | spa |
dc.description.tableofcontents | 5.4. Isotermas de adsorción........25 | spa |
dc.description.tableofcontents | 5.5. Determinación de la concentración remanente de HAP's en agua........25 | spa |
dc.description.tableofcontents | 5.6. Condiciones cromatográficas para análisis de HAP's........26 | spa |
dc.description.tableofcontents | 5.7. Control de calidad analítico........28 | spa |
dc.description.tableofcontents | 5.8. Tratamiento de datos........28 | spa |
dc.description.tableofcontents | 6. RESULTADOS.....28 | spa |
dc.description.tableofcontents | 6.1. Evaluación del modelo lineal.......31 | spa |
dc.description.tableofcontents | 6.2. Evaluación del modelo de Langmuir......33 | spa |
dc.description.tableofcontents | 6.3. Evaluación del modelo de Freundlich.....39 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES........44 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA.......45 | spa |
dc.description.tableofcontents | 9. ANÉXOS......53 | spa |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7909 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba - Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Acosta Coley, I., Cabarcas Montalvo, M. P., Mallarino Miranda, L. P., Maldonado Rojas, W., Galvis Ballesteros, J., & Olivero Verbel, J. (2021). Comparison of primary microplastics from Cartagena Bay and their toxicological evaluation using «Caenorhabditis elegans» as a biological model. ISEE Conference Abstracts, 2021(1). https://doi.org/10.1289/isee.2021.p-142 | |
dc.relation.references | Acosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., & Olivero-Verbel, J. (2019). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 146, 574–583. https://doi.org/10.1016/j.marpolbul.2019.06.084 | |
dc.relation.references | Asociación española de farmacéuticos de la industria. (2001). Validación de métodos analíticos [Libro electrónico]. Recuperado 23 de junio de 2022, de https://es.scribd.com/doc/79379169/Validacion-de-Metodos-Analiticos-Asociacion-Espanola-de-Farmaceuticos-de-la-Industria | |
dc.relation.references | Barwick, E. Prichard (eds.), Eurachem Guide: Terminology in analytical measurement –Introduction to VIM 3, Eurachem, 2011, ISBN 978-0-948926-29-7, www.eurachem.org. | |
dc.relation.references | Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1–2), 379–386. https://doi.org/10.1016/j.marpolbul.2017.05.016 | |
dc.relation.references | Chengtao Li.2019. Un dispositivo comúnmente disponible y fácil de montar para la extracción de Microplásticos bio/no degradables del suelo por flotación en solución de NaBr. Elsevier B.V. All rights)ttps://doi.org/10.1016/j.scitotenv.2020.1434820048-9697/© 2020 | |
dc.relation.references | Crawford, C. B., & Quinn, B. (2017). Microplastic separation techniques. Microplastic Pollutants, 203–218. doi:10.1016/b978-0-12-809406-8.00009-8 | |
dc.relation.references | De la Torre G. 2019. Micropláticos en el medio marino: una problemática que abordar-Revista ciencia y tecnología’ | |
dc.relation.references | Días Del Castillo Rodriguez, F. (2012). Conformados de materiales plásticos [Libro electrónico]. Universidad Nacional Autónoma de México. Recuperado 31 de marzo de 2022, de http://olimpia.cuautitlan2.unam.mx/pagina_ingenieria/mecanica/mat/mat_mec/m6/conformado%20de%20plasticos.pdf | |
dc.relation.references | Eurolab España. P.P. Morillas y colaboradores. Guia Eurachem: La adecuación al uso de los métodos analíticos – Una Guía de laboratorio para la validación de métodos y temas relacionados (1a ed. 2016). Disponible en www.eurachem.org” | |
dc.relation.references | F.A.O. (2019). LOS MICROPLASTICOSN EN LO SECTORES DE PESCA y AGRICULTURA: ¿QUE SABEMOS? ¿DEBEMOS PREOCUPARNOS? Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado 12 de noviembre de 2021, de https://www.fao.org/documents/card/es/c/CA3540ES/ | |
dc.relation.references | Garcés-Ordóñez, O., Saldarriaga-Vélez, J. F., Espinosa-Díaz, L. F., Patiño, A. D., Cusba, J., Canals, M., Mejía-Esquivia, K., Fragozo-Velásquez, L., Sáenz-Arias, S., Córdoba-Meza, T., & Thiel, M. (2022). Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Science of The Total Environment, 829, 154643. https://doi.org/10.1016/j.scitotenv.2022.154643 | |
dc.relation.references | Garcés-Ordóñez, O., Castillo-Olaya, V. A., Granados-Briceño, A. F., Blandón García, L. M., & Espinosa Díaz, L. F. (2019). Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Marine Pollution Bulletin, 145, 455–462. https://doi.org/10.1016/j.marpolbul.2019.06.058 | |
dc.relation.references | Hielscher Ultrasound Technology. (2022, 30 marzo). Ultrasonic extraction and its working principle. Hielscher Ultrasonics. Recuperado 4 de abril de 2022, de https://www.hielscher.com/es/ultrasonic-extraction-and-its-working-principle.htm | |
dc.relation.references | Instituto Catalán de Oncología. (s. f.). (2010) Los hidrocarburos aromáticos policíclicos (HAP) acercamiento a su problemática como riesgo laboral. UGT Comisión Ejecutiva Confederal. https://www.ugt-fica.org/images/proyectosl/sl/directa/2010/metal/Los%20Hidrocarburos%20Aromáticos%20Policíclicos%20HAP.pdf | |
dc.relation.references | Instituto de salud pública. (2010, diciembre). Validación de métodos y determinación de la incertidumbre de la medición: «aspectos generales sobre la validación de métodos». https://www.studocu.com/pe/document/universidad-nacional-de-trujillo/quimica/guia-tecnica-1-validacion-de-metodos-y-determinacion-de-la-incertidumbre-de-la-medicion-1/4879033 | |
dc.relation.references | International vocabulary of metrology – Basic and general concepts and associated terms (VIM), JCGM 200:2012, www.bipm.org. A previous version is published as ISO/IEC Guide 99:2007, ISO Geneva | |
dc.relation.references | Ivleva, N. P. (2021). Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews. doi:10.1021/acs.chemrev.1c00178 | |
dc.relation.references | Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460–467. https://doi.org/10.1016/j.envpol.2018.02.050 | |
dc.relation.references | Mai, L., Bao, L. J., Shi, L., Liu, L. Y., & Zeng, E. Y. (2018). Polycyclic aromatic hydrocarbons affiliated with microplastics in surface waters of Bohai and Huanghai Seas, China. Environmental Pollution, 241, 834–840. https://doi.org/10.1016/j.envpol.2018.06.012 | |
dc.relation.references | Mastandrea, Carlos, Chichizola, Carlos, Ludueña, Beatriz, Sánchez, Héctor, Álvarez, Horacio, & Gutiérrez, Andrea. (2005). Hidrocarburos aromáticos policíclicos.Riesgos para la salud y marcadores biológicos. Acta bioquímica clínica latinoamericana, 39(1), 27-36. Recuperado en 11 de abril de 2022, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572005000100006&lng=es&tlng=pt | |
dc.relation.references | Mendoza Muñoz N. 2018 .Adsorción de contaminante en microplásticos en ambientes marinos-Ciudad de México | |
dc.relation.references | Miller, J. C., Miller, J. C., Jiménez, C. M., & Hornillos, R. I. (2002). Estadística y quimiometría para química analítica (4.a ed.). Pearson Educación | |
dc.relation.references | Pawliszyn, J., & Lord, H. L. (2010). Sample Preparation Handbook (1. ed.). Wiley- | |
dc.relation.references | Peez, N., Becker, J., Ehlers, S. M., Fritz, M., Fischer, C. B., Koop, J. H. E., … Imhof, W. (2019). Quantitative analysis of PET microplastics in environmental model samples using quantitative 1H-NMR spectroscopy: validation of an optimized and consistent sample clean-up method. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-019-02089-2 | |
dc.relation.references | Rangel-Buitrago, N., Arroyo-Olarte, H., Trilleras, J., Arana, V. A., Mantilla-Barbosa, E., Gracia C., A., Mendoza, A. V., Neal, W. J., Williams, A. T., & Micallef, A. (2021). Microplastics pollution on Colombian Central Caribbean beaches. Marine Pollution Bulletin, 170, 112685. https://doi.org/10.1016/j.marpolbul.2021.112685 | |
dc.relation.references | Reineccius, J., Bresien, J., & Waniek, J. J. (2021). Separation of microplastics from mass-limited samples by an effective adsorption technique. Science of The Total Environment, 788, 147881. doi:10.1016/j.scitotenv.2021.14788• | |
dc.relation.references | Rojo-Nieto, E., & Montoto Martínez, T. (2017). Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global | accedaCRIS. accedaCRIS. Recuperado 9 de mayo de 2022, de https://accedacris.ulpgc.es/handle/10553/56275 | |
dc.relation.references | Skoog, D., West, D., Holler, J., & Crouch, S. (2015). Fundamentos de química analítica (9.a ed.). Cengage Learning | |
dc.relation.references | Solá, Z. A. (2018). Revisión de la literatura sobre efectos nocivos de la exposición laboral a hidrocarburos en trabajadores en ambiente externo. SciELO Analytics. Recuperado 20 de abril de 2022, de https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2018000300271#:%7E:text=Los%20hidrocarburos%20arom%C3%A1ticos%20pueden%20causar,de%20consciencia%20y%20depresi%C3%B3n%20respiratoria | |
dc.relation.references | Tan, X., Yu, X., Cai, L., Wang, J., & Peng, J. (2019). Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere, 221, 834–840. https://doi.org/10.1016/j.chemosphere.2019.01.022 | |
dc.relation.references | Una revisión de los métodos para la extracción, eliminación y degradación estimulada de microplásticos-2021- Tatiana A. Lastovina , Andriy P. Budnyk | |
dc.relation.references | Yuan, C., Almuhtaram, H., McKie, M. J., & Andrews, R. C. (2022). Assessment of microplastic sampling and extraction methods for drinking waters. Chemosphere, 286. https://doi.org/10.1016/j.chemosphere.2021.131881 | |
dc.relation.references | Rouquerol, F., Rouquerol, J., Llewellyn, P., Sing, K. S. W., & Maurin, G. (2013). Adsorption by powders and porous solids: Principles, Methodology and Applications. | |
dc.relation.references | Golomeova, M., & Zendelska, A. (2016). Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions. In InTech eBooks. https://doi.org/10.5772/62347 | |
dc.relation.references | Zhang, P et al., The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments, Environmental Pollution, https://doi.org/10.1016/j.envpol.2019.113525 | |
dc.relation.references | Bakir, A., Rowland, S. J., & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), http://dx.doi.org/10.1016/j.marpolbul.2012.09.010 | |
dc.relation.references | Bao, Zhen-Zong; Chen, Zhi-Feng; Zhong, Yuanhong; Wang, Guangzhao; Qi, Zenghua; Cai, Zongwei (2020). Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis. Science of The Total Environment, (), 142889–. https://doi.org/10.1016/j.scitotenv.2020.142889 | |
dc.relation.references | Gao, L.; Su, Y.; Yang, L.; Li, J.; Bao, R.; Peng, L. Sorption Behaviors of Petroleum on Micro-Sized Polyethylene Aging for Different Time in Seawater. Sci. Total Environ. 2022, 808, 152070, https://doi.org/10.1016/j.scitotenv.2021.152070 | |
dc.relation.references | Gui, B., Xu, X., Zhang, S., Wang, Y., Li, C., Zhang, D., … Zhao, Y. (2021). Prediction of organic compounds adsorbed by polyethylene and chlorinated polyethylene microplastics in freshwater using QSAR. Environmental Research, 197, https://doi.org/10.1016/j.envres.2021.111001 | |
dc.relation.references | Hanslik, L.; Seiwert, B.; Huppertsberg, S.; Knepper, T.P.; Reemtsma, T.; Braunbeck, T. Biomarker Responses in Zebrafish (Danio Rerio) Following Long-Term Exposure to Microplastic-Associated Chlorpyrifos and Benzo(k)Fluoranthene. Aquat. Toxicol. 2022, 245, 106120. https://doi.org/10.1016/j.aquatox.2022.106120 | |
dc.relation.references | Kleinteich, J.; Seidensticker, S.; Marggrander, N.; Zarf, C. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms. Int. J. Environ. Res. Public Health 2018, 15, 287. https://doi.org/10.3390/ijerph15020287 | |
dc.relation.references | Li, Z., Hu, X., Qin, L., & Yin, D. (2019). Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons. Water Research, 115290. https://doi.org/10.1016/j.watres.2019.115290 | |
dc.relation.references | Lin, W., Jiang, R., Wu, J., Wei, S., Yin, L., Xiao, X., … Ouyang, G. (2019). Sorption properties of hydrophobic organic chemicals to micro-sized polystyrene particles. Science of The Total Environment, 690, 565–572. https://doi.org/10.1016/j.scitotenv.2019.06.537 | |
dc.relation.references | Sharma, M. D., Elangickal, A. I., Mankar, J. S., & Krupadam, R. J. (2020). Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 122994. https://doi.org/10.1016/j.jhazmat.2020.122994 | |
dc.relation.references | Sorensen, L.; Rogers, E.; Altin, D.; Salaberria, I.; Booth, A.M. Sorption of PAHs to Microplastic and Their Bioavailability and Toxicity to Marine Copepods under Co-Exposure Conditions. Environ. Pollut. 2020, 258, 113844. https://doi.org/10.1016/j.envpol.2019.113844 | |
dc.relation.references | Yang, C.; Wu, W.; Zhou, X.; Hao, Q.; Li, T.; Liu, Y. Comparing the Sorption of Pyrene and Its Derivatives onto Polystyrene Microplastics: Insights from Experimental and Computational Studies. Mar. Pollut. Bull. 2021, 173, 113086. https://doi.org/10.1016/j.marpolbul.2021.113086 | |
dc.relation.references | Yu, H., Yang, B., Waigi, M. G., Peng, F., Li, Z. y Hu, X. (2020). Los efectos de los grupos funcionales sobre la sorción de naftaleno en microplásticos. Chemosphere, 127592. https://doi.org/10.1016/j.chemosphere.2020.127592 | |
dc.relation.references | Zhang, P., Huang, P., Sun, H., Ma, J. y Li, B. (2019). La estructura de los microplásticos agrícolas (PT, PU y UF) y sus capacidades de sorción para HAP y derivados de PHE bajo diversos tratamientos de salinidad y oxidación. Contaminación ambiental, 113525. https://doi.org/10.1016/j.envpol.2019.113525 | |
dc.relation.references | Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K., & Baker, T. (2020). Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Science of The Total Environment, 137383. https://doi.org/10.1016/j.scitotenv.2020.137383 | |
dc.relation.references | Zhao, L., Rong, L., Xu, J., Lian, J., Wang, L. y Sun, H. (2020). Sorpción de cinco compuestos orgánicos por microplásticos polares y no polares. Chemosphere, 127206. https://doi.org/10.1016/j.chemosphere.2020.127206 | |
dc.relation.references | Zhu, J.; Liu, S.; Shen, Y.; Wang, J.; Wang, H.; Zhan, X. Microplastics Lag the Leaching of Phenanthrene in Soil and Reduce Its Bioavailability to Wheat. Environ. Pollut. 2022, 292, 118472. https://doi.org/10.1016/j.envpol.2021.118472 | |
dc.relation.references | Conesa, J.A. Adsorption of PAHs and PCDD/Fs in Microplastics: A Review. Microplastics 2022, 1, 346–358. https://doi.org/10.3390/ microplastics1030026 | |
dc.relation.references | Camacho, M., Herrera, A., Gómez, M., Acosta-Dacal, A., Martínez, I., Henríquez-Hernández, L.A., Luzardo, O.P., 2019. Organic pollutants in marine plastic debris fromCanary Islands beaches. Sci. Total Environ. 662, 22–31. https://doi.org/10.1016/j.scitotenv.2018.12.422 | |
dc.relation.references | Elseblani Rim, Cobo-Golpe, M., Simon Godin, Javier Jimenez-Lamana, Milad Fakhri, Isaac Rodríguez, & Joanna Szpunar. (2023, mayo 10). Study of metal and organic contaminants transported bymicroplastics in the Lebanese coastal environment using ICP MS, GC-MS, and LC-MS. http://dx.doi.org/10.1016/j.scitotenv.2023.164111 | |
dc.relation.references | Liu, W., Tang, H., Yang, B., Li, C., Chen, Y., & Huang, T. (2023). Molecular level insight into the different interaction intensity between microplastics and aromatic hydrocarbon in pure water and seawater. Science of The Total Environment, 862, 160786. https://doi.org/10.1016/j.scitotenv.2022.160786 | |
dc.relation.references | Fang, S., Yu, W., Li, C., Liu, Y., Qiu, J., & Kong, F. (2019). Adsorption behavior of three triazole fungicides on polystyrene microplastics. Science of The Total Environment, 691, 1119-1126. https://doi.org/10.1016/j.scitotenv.2019.07.176 | |
dc.relation.references | Fu, L., Li, J., Wang, G., Luan, Y., & Dai, W. (2021). Adsorption behavior of organic pollutants on microplastics. Ecotoxicology and Environmental Safety, 217, 112207. https://doi.org/10.1016/j.ecoenv.2021.112207 | |
dc.relation.references | Seidensticker, S., Grathwohl, P., Lamprecht, J., & Zarfl, C. (2018). A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0155-z | |
dc.relation.references | Andrady, A. L. (2011b). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 | |
dc.relation.references | Hong, S. H., Shim, W. J., & Jang, M. (2018). Chemicals Associated With Marine Plastic Debris and Microplastics: Analyses and Contaminant Levels. Microplastic Contamination in Aquatic Environments, 271–315. doi:10.1016/b978-0-12-813747-5.00009-6 | |
dc.relation.references | Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A Global Perspective on Microplastics. Journal of Geophysical Research: Oceans, 125(1). https://doi.org/10.1029/2018jc014719 | |
dc.rights | Copyright Universidad de Córdoba, 2023 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Microplastics | |
dc.subject.keywords | Isotherm | |
dc.subject.keywords | Adsorption | |
dc.subject.keywords | Biota | |
dc.subject.proposal | Microplásticos | spa |
dc.subject.proposal | Isoterma | spa |
dc.subject.proposal | Adsorción | spa |
dc.subject.proposal | Biota | spa |
dc.title | Adsorción de hidrocarburos aromáticos policíclicos (HAP´s) en microplásticos PET en agua de mar | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: