Publicación:
Evaluación de la actividad antifúngica del flavonoide diosmina frente a aislados clínicos de Candida spp

dc.contributor.advisorContreras Martínez, Orfa Inés
dc.contributor.advisorAngulo Ortiz, Alberto Antonio
dc.contributor.authorRivera Castillo, Norella Esther
dc.contributor.juryVillegas Gonzalez, Jazmith Paola
dc.contributor.juryPeñata Taborda, Ana Marcela
dc.date.accessioned2025-07-18T18:48:04Z
dc.date.available2025-07-18T18:48:04Z
dc.date.issued2025-07-18
dc.description.abstractLas infecciones fúngicas, especialmente la candidiasis, representan un desafío creciente para la salud pública debido a su alta mortalidad, resistencia antifúngica y costos hospitalarios elevados (CDC, 2024). En este contexto, la búsqueda de nuevas alternativas terapéuticas es crucial, y los flavonoides emergen como una opción prometedora. El objetivo de este estudio fue evaluar el potencial antifúngico del flavonoide diosmina (DIO) frente a aislamientos clínicos de Candida spp., mediante la determinación de su concentración mínima inhibitoria (CMI), su capacidad para inhibir biopelículas fúngicas, y su efecto sobre la integridad de la membrana en Candida spp. DIO mostró actividad inhibidora frente a los siete aislamientos clínicos evaluados, con valores de CMI₉₀ entre 1150 y 2251 µg/mL. Asimismo, se observó una inhibición marcada en la formación de biopelículas, y una reducción significativa en biopelículas maduras, con un efecto particularmente notable frente a C. auris. Por otro lado, los ensayos de liberación de material intracelular evidenciaron daño en la permeabilidad de la membrana, luego de ser expuesta a DIO lo que sugiere un mecanismo de acción asociado a la pérdida de integridad celular. Adicionalmente, se exploró el efecto combinado de DIO con antifúngicos comerciales, revelando interacciones sinérgicas relevantes: en 4 de los 7 aislamientos se observó sinergismo con fluconazol, y en 5 con anfotericina B, destacando nuevamente el efecto sobre C. auris. En conjunto, estos hallazgos respaldan el potencial de DIO como agente antifúngico multifuncional, con capacidad de interferir en la viabilidad, estructura y resistencia de Candida spp., y aportan evidencia valiosa para el desarrollo futuro de terapias basadas en compuestos naturales.spa
dc.description.abstractFungal infections, particularly candidiasis, represent a growing public health challenge due to their high mortality rates, antifungal resistance, and elevated hospital costs (CDC, 2024). In this context, the search for new therapeutic alternatives is crucial, and flavonoids have emerged as a promising option. The aim of this study was to evaluate the antifungal potential of the flavonoid diosmin (DIO) against clinical isolates of Candida spp., by determining its minimum inhibitory concentration (MIC), its ability to inhibit fungal biofilms, and its effect on membrane integrity in Candida spp. DIO exhibited inhibitory activity against all seven clinical isolates tested, with MIC₉₀ values ranging from 1150 to 2251 µg/mL. A marked inhibition of biofilm formation was observed, as well as a significant reduction in mature biofilms, with a particularly notable effect against C. auris. Moreover, assays measuring the release of intracellular material revealed damage to membrane permeability following exposure to DIO, suggesting a mechanism of action associated with the loss of cellular integrity. Additionally, the combined effect of DIO with commercial antifungals was explored, revealing relevant synergistic interactions: synergy with fluconazole was observed in 4 out of 7 isolates, and with amphotericin B in 5 out of 7, again highlighting the effect against C. auris. Taken together, these findings support the potential of DIO as a multifunctional antifungal agent capable of interfering with the viability, structure, and resistance of Candida spp., and provide valuable evidence for the future development of therapies based on natural compounds.eng
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9411
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.references1. Abdel-Reheim, M. A., Messiha, B. A. S., & Abo-Saif, A. A. (2017). Hepatoprotective effect of diosmin on iron-induced liver damage. International Journal of Pharmacology, 13(6), 529-540.
dc.relation.references2. Aboody, M. S. A., & Mickymaray, S. (2020). Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel, Switzerland), 9(2), 45. https://doi.org/10.3390/antibiotics9020045
dc.relation.references3. Álvarez, N., Vicente, V., & Martínez, C. (2009). Synergistic effect of diosmin and Interferon-α on metastatic pulmonary melanoma. Cancer Biotherapy and Radiopharmaceuticals, 24(3), 347–352. https://doi.org/10.1089/cbr.2008.0565
dc.relation.references4. Álvarez-Moreno, C. A., Cortés, J. A., & Denning, D. W. (2018). Carga de las infecciones por hongos en Colombia. J. Hongos, 4, 41. https://doi.org/10.3390/jof4020041
dc.relation.references5. American Society for Microbiology. (2019). How Candida auris became a serious global health threat and what we’re doing about it. https://asm.org/articles/2019/july/how-candida-auris-became-a-serious-global-health-t
dc.relation.references6. Arifin, SF, Al Shami, A., Omar, SSS, Jalil, MAA, Khalid, KA y Hadi, H. (2019). Impacto de la tecnología moderna en el desarrollo de productos naturales. Revista de Medicina Ayurvédica y Herbal , 5 (4), 133-142
dc.relation.references7. Benedict, Kaitlin., Whitham, Hilary K., & Jackson, Brendan R. (2022). Economic Burden of Fungal Diseases in the United States, Open Forum Infectious Diseases, Volume 9, Issue 4, April 2022, ofac097, https://doi.org/10.1093/ofid/ofac097
dc.relation.references8. Beyaz, M. O., & Ata, E. C. (2021). Effects of diosmin-hesperidin and low pressure compression stocking combination in superficial venous insufficiency. Annals of Medical Research, 28(1), 0132-0135. https://annalsmedres.org/index.php/aomr/article/view/341
dc.relation.references9. Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. Journal of fungi (Basel, Switzerland), 3(4), 57. https://doi.org/10.3390/jof3040057
dc.relation.references10. Butassi, E., Svetaz, L., & Sortino, M. (2023). Antifungal Agents (pp. 108–134). BENTHAM SCIENCE PUBLISHERS. https://doi.org/10.2174/9789815049428123010008
dc.relation.references11. Cantón, E., Martín, E., & Espinel-Ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Rev. Iberoam. Micol., 15(1).
dc.relation.references12. Carević, T., Kolarević, S., Kolarević, M. K., Nestorović, N., Novović, K., Nikolić, B., & Ivanov, M. (2024). Citrus flavonoids diosmin, myricetin and neohesperidin as inhibitors of Pseudomonas aeruginosa: Evidence from antibiofilm, gene expression and in vivo analysis. Biomedicine & Pharmacotherapy, 181, 117642.
dc.relation.references13. CDC, 2024. Centers for Disease Control and Prevention). (2024). Data and Statistics on Fungal Diseases. https://www.cdc.gov/fungal/data-research/
dc.relation.references14. CDC, 2024a. Centers for Disease Control and Prevention. 2024. Antimicrobial-Resistant Fungal Diseases. Fungal Diseases
dc.relation.references15. Chaisin, T., Rudeekulthamrong, P., & Kaulpiboon, J. (2021). Enzymatic synthesis, structural analysis, and evaluation of antibacterial activity and α-glucosidase inhibition of hesperidin glycosides. Catalysts, 11(5), 532.
dc.relation.references16. Chan, B. C., Ip, M., Gong, H., Lui, S. L., See, R. H., Jolivalt, C., ... & Lau, C. B. (2013). Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 20(7), 611-614.
dc.relation.references17. Chang, Y.-L., Yu, S.-J., Heitman, J., Wellington, M., & Chen, Y.-L. (2017). New facets of antifungal therapy. Virulence, 8(2), 222–236. https://doi.org/10.1080/21505594.2016.1257457
dc.relation.references18. Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022)a. Antibacterial screening of isoespintanol, an aromatic monoterpene isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004.
dc.relation.references19. Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18), 5808. https://doi.org/10.3390/molecules27185808
dc.relation.references20. Contreras-Martínez, OI, Angulo-Ortíz, A., Santafé Patiño, G., Sierra Martinez, J., Berrio Soto, R., de Almeida Rodolpho, JM, de Godoy, KF, de Freitas Aníbal, F., & de Lima Fragelli, BD (2024). Efecto antifúngico sinérgico y toxicidad in vivo de un isoespintanol monoterpénico obtenido de Oxandra xylopioides Diels. Moléculas , 29 (18), 4417. https://doi.org/10.3390/molecules29184417
dc.relation.references21. Contreras, O., Angulo, A., Santafé, G., Peñata, A., & Berrio, R. (2023). Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12). https://doi.org/10.3390/IJMS241210187
dc.relation.references22. Coronel, C., Méndez, C., Battaglia, P., Llanes, G., Melo, C., & Vallejos, M. (2024). Efectos adversos secundarios a Anfotericina B Liposomal. Rev. Inst. Med. Trop.
dc.relation.references23. Cortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia in Colombia. Biomedica, 40, 195–207. https://doi.org/10.7705/biomedica.4400
dc.relation.references24. De Gaetano, S., Midiri, A., Mancuso, G., Avola, MG y Biondo, C. (2024). Brotes de Candida auris: situación actual y perspectivas de futuro. Microorganismos , 12 (5), 927.
dc.relation.references25. Deng, S., Bai, Y., Guo, J., Kai, G., Huang, X., & Jia, X. (2022). Promising natural products against SARS‐CoV‐2: Structure, function, and clinical trials. Phytotherapy Research, 36(10), 3833–3858. https://doi.org/10.1002/ptr.7580
dc.relation.references26. Denning, D. W. (2024). Global incidene and mortality of severe fungal disease. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(23)00692-8
dc.relation.references27. Ellwanger, J. H., & Chies, J. A. B. (2022). Candida auris emergence as a consequence of climate change: Impacts on Americas and the need to contain greenhouse gas emissions. The Lancet Regional Health–Americas, 11. https://doi.org/10.1016/j.lana.2022.100250.
dc.relation.references28. Franco, D. (2017). Estudio comparativo de la Candidiasis Invasiva en México y España, in Proceedings of the MOL2NET'17, Conference on Molecular, Biomed., Comput. & Network Science and Engineering, 3rd ed., 15 January–15 December 2017, MDPI: Basel, Switzerland, doi:10.3390/mol2net-03-09182
dc.relation.references29. Gervasi, T. , Patanè, GT , Calderaro, A. , Mandalari, G. y Barreca, D. ( 2023 ). Diosmina: avances en recursos, vía de biosíntesis, biodisponibilidad, bioactividad y farmacología . En J. Xiao (Ed.), Manual de flavonoides dietéticos (págs. 1-22 ) . Springer International Publishing. https://link.springer.com/referenceworkentry/10.1007/978-3-030-94753-8_7-1
dc.relation.references30. Global Action Fund for Fungal Infections (GAFFI). (2023). Las infecciones fúngicas: una amenaza creciente. En PMC-NCBI. https://pmc.ncbi.nlm.nih.gov/articles/PMC10581601/
dc.relation.references31. Gosslau, A., Ho, C.-T., & Li, S. (2019). The role of rutin and diosmin, two citrus polyhydroxyflavones in disease prevention and treatment. 5, 43–56. https://doi.org/10.31665/JFB.2019.5177
dc.relation.references32. Hajimaghsoudi, L., Ahmadinejad, M., Karimian, M., Bahri, M. H., Karbalaeikhani, A., & Ahmadinejad, I. (2024). The Use of Daflon Tablets in Treating Hemorrhoids and Alleviating Symptoms. Current Drug Therapy, 19(5), 613-619.
dc.relation.references33. Helmy, M. W., Ghoneim, A. I., Katary, M. A., & Elmahdy, R. K. (2020). The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis. Molecular Biology Reports, 47(3), 2217–2230.
dc.relation.references34. Huwait, E., & Mobashir, M. (2022). Potential and therapeutic roles of diosmin in human diseases. Biomedicines, 10(5), 1076. https://doi.org/10.3390/biomedicines10051076
dc.relation.references35. Ilk, S., Saglam, N., & Özgen, M. (2017). Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial cells, nanomedicine, and biotechnology, 45(5), 907-916. https://doi.org/10.1080/21691401.2016.1192040
dc.relation.references36. Ismail, W. N. A. W., Jasmi, N., Khan, T. M., Hong, Y. H., & Neoh, C. F. (2020). The economic burden of candidemia and invasive candidiasis: a systematic review. Value in health regional issues, 21, 53-58.
dc.relation.references37. Kaur, J., & Nobile, C. J. (2023). Antifungal drug-resistance mechanisms in Candida biofilms. Current opinion in microbiology, 71, 102237. https://doi.org/10.1016/j.mib.2022.102237
dc.relation.references38. Kullberg, B. J., Arendrup, M. C., & Oude Lashof, A. M. (2021). Candidemia in the intensive care unit: Insights into epidemiology, risk factors, and outcomes. Critical Care Medicine, 49(8), 1234-1245. https://doi.org/10.1097/CCM.0000000000005000
dc.relation.references39. Lee, W.-Y., & Lee, D. G. (2014). An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. Iubmb Life, 66(11), 780–785. https://doi.org/10.1002/IUB.1326
dc.relation.references40. Lee HS, Kim Y. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans. J Microbiol Biotechnol. 2022 Jan 28;32(1):37-45. doi:10.4014/jmb.2110.10014. PMID: 34750288; PMCID: PMC9628827
dc.relation.references41. Lehner, E. M. (2022). Observational cross-sectional case study of toxicities of antifungal drugs. 29, 520–526. https://doi.org/10.1016/j.jgar.2021.11.010
dc.relation.references42. Malinovská, Z., Čonková, E., & Váczi, P. (2023). Biofilm formation in medically important Candida species. Journal of Fungi, 9(10), 955.
dc.relation.references43. Mba, I. E., Nweze, E. I., Eze, E. A., & Anyaegbunam, Z. K. G. (2022). Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. Infection, Genetics and Evolution, 99, 105256.
dc.relation.references44. Metwally, S.A., El-Gowily, A.H., Abosheasha, M.A., Ali, A.S.M., Loutfy, S.A. (2024). Kaempferol: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi-org.unipamplona.basesdedatosezproxy.com/10.1007/978-3-030-94753-8_17-1
dc.relation.references45. Mitchell, KF, Zarnowski, R. y Andes, DR (2016). Superpegamento fúngico: La matriz de la biopelícula y su composición, ensamblaje y funciones. PLOS Pathogens , 12 (9). https://doi.org/10.1371/JOURNAL.PPAT.1005828
dc.relation.references46. Mishra, D., Kumar, A., Tiwari, A., & Chaturvedi, P. (2023). Antiviral medicinal plants of India as a potential tool against COVID-19: A review with ethno scientific evidence. Journal of Medicinal Herbs and Ethnomedicine, 1–17. https://doi.org/10.25081/jmhe.2023.v9.7340
dc.relation.references47. Monroy-Pérez, E., Sainz-Espuñes, T., Paniagua-Contreras, GL, Negrete-Abascal, E., Rodríguez-Moctezuma, JR, & Vaca, S. (2012). Frecuencia y expresión de los genotipos ALS y HWP1 en cepas de Candida albicans aisladas de pacientes mexicanas con candidosis vaginal. Micosis , 55 (3). https://doi.org/10.1111/J.1439-0507.2012.02188.
dc.relation.references48. Mustafa, S., Akbar, M., Khan, M. A., Sunita, K., Parveen, S., Pawar, J. S., ... & Husain, S. A. (2022). Plant metabolite diosmin as the therapeutic agent in human diseases. Current research in pharmacology and drug discovery, 3, 100122.
dc.relation.references49. Musyayyadah, H., Wulandari, F., Nangimi, A. F., Anggraeni, A. D., Ikawati, M., & Meiyanto, E. (2021). The Growth Suppression Activity of Diosmin and PGV-1 Co-Treatment on 4T1 Breast Cancer Targets Mitotic Regulatory Proteins. Asian Pacific Journal of Cancer Prevention, 22(9), 2929–2938. https://doi.org/10.31557/APJCP.2021.22.9.2929
dc.relation.references50. Narimisa, N., Khoshbayan, A., Gharaghani, S. et al. (2024). Efectos inhibidores de nafcilina y diosmina sobre la formación de biopelículas por Salmonella Typhimurium. BMC Microbiol 24 , 522. https://doi-org/10.1186/s12866-024-03646-1
dc.relation.references51. Neale, MN, Glass, KA, Longley, SJ, Kim, DJ, Laforce-Nesbitt, SS, Wortzel, JD, Shaw, SK y Bliss, JM (2018). Función de la adhesina inducible CpAls7 en la unión de Candida parapsilosis a la matriz extracelular bajo cizallamiento de fluidos. Infección e Inmunidad , 86 (4). https://doi.org/10.1128/IAI.00892-17
dc.relation.references52. Nivoix, Y., Ledoux, M.-P., & Herbrecht, R. (2020). Antifungal Therapy: New and Evolving Therapies. Seminars in Respiratory and Critical Care Medicine, 41(1), 158–174. https://doi.org/10.1055/S-0039-3400291
dc.relation.references53. Niño-Vega, G., Padró-Villegas, L., & López-Romero, E. (2024). New Ground in Antifungal Discovery and Therapy for Invasive Fungal Infections: Innovations, Challenges, and Future Directions. Journal of Fungi, 10(12), 871. https://doi.org/10.3390/jof10120871
dc.relation.references54. Oliveira, V. M., Carraro, E., Auler, M. E., & Khalil, N. M. (2016). Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Brazilian Journal of Biology, 76(04), 1029-1034. https://doi.org/10.1590/1519-6984.07415
dc.relation.references55. Organizacion Mundial de la Salud-OMS (2022). WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. https://iris.who.int/bitstream/handle/10665/363682/9789240060241-eng.pdf?sequence=1
dc.relation.references56. Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., ... & Sobel, J. D. (2018). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1-e50. https://doi.org/10.1093/cid/civ933
dc.relation.references57. Pathadka, S., Yan, V. K., Neoh, C. F., Al-Badriyeh, D., Kong, D. C., Slavin, M. A., & Chan, E. W. (2022). Tendencia mundial del consumo de agentes antifúngicos en humanos de 2008 a 2018: datos de 65 países de ingresos medios y altos. Drogas, 82(11), 1193-1205. https://link.springer.com/article/10.1007/s40265-022-01751-x
dc.relation.references58. Peng, Z., Zhang, H., Li, W., Yuan, Z., Xie, Z., Zhang, H., Cheng, Y., Chen, J., & Xu, J. (2021). Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chemistry, 354, 129499. https://doi.org/10.1016/j.foodchem.2021.129499
dc.relation.references59. Pushkaran, A. C., Vinod, V., Vanuopadath, M., et al. (2019). La combinación del fármaco reutilizado diosmina con amoxicilina-ácido clavulánico provoca una inhibición sinérgica del crecimiento de micobacterias. Sci Rep, 9, 6800. https://doi.org/10.1038/s41598-019-43201-x
dc.relation.references60. Quave, C. L., Plano, L. R. W., Pantuso, T., & Bennett, B. C. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118(3), 418-428. https://doi.org/10.1016/j.jep.2008.05.005
dc.relation.references61. Rocha, M. F. G., Sales, J. A., da Rocha, M. G., Galdino, L. M., de Aguiar, L., Pereira-Neto, W. D. A., ... & Brilhante, R. S. N. (2019). Antifungal effects of the flavonoids kaempferol and quercetin: A possible alternative for the control of fungal biofilms. Biofouling, 35(3), 320-328. https://doi.org/10.1080/08927014.2019.1604948
dc.relation.references62. Romero Calle, D. X., Cárdenas, O. V., & Alvarez, M. T. (2016). Detection of ALS3 and EAP1 gene expresssion in Candida albicans and Candida maltosa biofilms by FISH. 6(2), 848–857. https://doi.org/10.24297/JBT.V6I2.4374
dc.relation.references63. Roemer, T., & Krysan, D. J. (2014). Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harbor Perspectives in Medicine, 4(5). https://doi.org/10.1101/CSHPERSPECT.A019703
dc.relation.references64. Rybak, J. M., Cuomo, C. A., & Rogers, P. D. (2022). The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Current opinion in microbiology, 70, 102208.
dc.relation.references65. Satala, D., Karkowska-Kuleta, J., Bras, G., Rapala-Kozik, M. y Kozik, A. (2023). Las proteínas de la pared celular de Candida parapsilosis (CPAR2_404800 y CPAR2_404780) son adhesinas que se unen a las células epiteliales y endoteliales humanas y a las proteínas de la matriz extracelular. Levadura . https://doi.org/10.1002/yea.3847
dc.relation.references66. Schlachterman, A., Valle, F., Wall, K. M., Azios, N. G., Castillo, L., Morell, L., ... & Dharmawardhane, S. F. (2008). Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Translational oncology, 1(1), 19-27.
dc.relation.references67. Shalkami, A. S., Hassan, M. I. A., & Bakr, A. G. (2018). Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Human & experimental toxicology, 37(1), 78-86.
dc.relation.references68. Soriano, A., Honore, P. M., Puerta-Alcalde, P., Garcia-Vidal, C., Pagotto, A., Gonçalves-Bradley, D. C., & Verweij, P. E. (2023). Candidiasis invasiva: desafíos clínicos actuales y necesidades insatisfechas en poblaciones adultas. Journal of Antimicrobial Chemotherapy, 78(7), 1569–1585. https://doi.org/10.1093/jac/dkad139
dc.relation.references69. Van Rhijn, N., Hagen, F., Alastruey, A., et al. (2024). Resistencia antifúngica: un desafío global emergente. The Lancet, 403(10455), 1123–1135. https://doi.org/10.1016/S0140-6736(24)00560-2
dc.relation.references70. Vianna, C. M. M., Mosegui, G. B. G., & Rodrigues, M. P. D. S. (2023). Cost-effectiveness analysis and budgetary impact of anidulafungin treatment for patients with candidemia and other forms of invasive candidiasis in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo, 65, e9. https://doi.org/10.1590/S1678-9946202365009
dc.relation.references71. Vitális, E., Nagy, F., Tóth, Z., Forgács, L., Bozo, A., Kardos, G., Mayoros, L., & Kovács, R. (2020). La producción de biopelículas de Candida se asocia con una mayor mortalidad en pacientes con candidemia. Micosis, 63, 352–360
dc.relation.references72. Welsh, R., Bentz, M., Shams, A., Houston, H., Lyons, A., Rose, L., & Litvintseva, A. (2017). Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. Journal of Clinical Microbiology, 55, 2996 - 3005. https://doi.org/10.1128/JCM.00921-17
dc.relation.references73. Yarmolinsky, L., Budovsky, A. , Yarmolinsky, L. , Khalfin, B. , Glukhman, V. y Ben-Shabat, S. ( 2019 ). "Efecto de los fitoquímicos bioactivos de phlomis viscosa poiret sobre la cicatrización de heridas" . Plantas , 8 ( 12 ), 609 .
dc.relation.references74. Yarmolinsky, L., Nakonechny, F., Budovsky, A., Zeigerman, H., Khalfin, B., Sharon, E., ... & Nisnevitch, M. (2023). Antimicrobial and antiviral compounds of Phlomis viscosa Poiret. Biomedicines, 11(2), 441.
dc.relation.references75. Zheng, Y., Zhang, R., Shi, W., Li, L., Liu, H., Chen, Z., & Wu, L. (2020). Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food & function, 11(10), 8472-8492.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsDiosminaeng
dc.subject.keywordsAntifungaleng
dc.subject.keywordsBiofilmeng
dc.subject.keywordsCandida sppeng
dc.subject.proposalDiosminaspa
dc.subject.proposalAntifungicospa
dc.subject.proposalBiopelículasspa
dc.subject.proposalCandida sppspa
dc.titleEvaluación de la actividad antifúngica del flavonoide diosmina frente a aislados clínicos de Candida sppspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RiveraCastilloNorellaEsther.pdf
Tamaño:
911.17 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
358.95 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: