Publicación: Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp
dc.contributor.advisor | Contreras Martínez, Orfa Inés | |
dc.contributor.advisor | Angulo Ortiz, Alberto | |
dc.contributor.author | Ricardo Turizo, Rafael David | |
dc.contributor.jury | Lorduy, Álvaro | |
dc.contributor.jury | Villegas, Jazmith | |
dc.date.accessioned | 2024-08-09T17:38:22Z | |
dc.date.available | 2024-08-09T17:38:22Z | |
dc.date.issued | 2024-08-06 | |
dc.description.abstract | Las especies del género Candida son la principal causa de las infecciones fúngicas a nivel global. Su elevado poder de diseminación y alta tasa de resistencia a los antifúngicos representa un desafío para el tratamiento médico que, a menudo fracasa no solo por resistencia fúngica, sino también, debido a los efectos adversos de los fármacos. En este sentido, la búsqueda de nuevas alternativas terapéuticas es apremiante hoy día, cobrando especial interés el estudio de compuestos naturales derivados de plantas. El objetivo de esta investigación fue evaluar el potencial antifúngico del diisoespintanol (DISO) obtenido de Oxandra xylopioides Diels (Annonaceae) contra aislamientos clínicos de Candida spp., y establecer su efecto sobre las biopelículas maduras de estos patógenos. La concentración mínima inhibitoria (MIC90) del DISO se determinó por el método de microdilución en caldo, y la técnica con cristal violeta fue empleada para la cuantificación de biopelículas maduras. Todos los aislamientos evaluados fueron sensibles al DISO con valores de MIC90 entre 296.7 y 890.3 μg/mL. El DISO logró inhibir las biopelículas maduras de Candida spp., mostrando porcentajes de inhibición superiores a la anfotericina B, logrando hasta un 40% de inhibición de biopelículas de C. albicans. Estos resultados ratifican el potencial antifúngico de los terpenos, destacando su importancia en la búsqueda de alternativas novedosas para combatir las levaduras patógenas del género Candida. | spa |
dc.description.abstract | Species of the genus Candida are the main cause of fungal infections globally. Its high power of dissemination and high rate of resistance to antifungals represents a challenge for medical treatment that often fails not only due to fungal resistance, but also due to the adverse effects of the drugs. In this sense, the search for new therapeutic alternatives is pressing today, with special interest in the study of natural compounds derived from plants. The objective of this research was to evaluate the antifungal potential of diisoespintanol (DISO) obtained from Oxandra xylopioides Diels (Annonaceae) against clinical isolates of Candida spp., and to establish its effect on mature biofilms of these pathogens. The minimum inhibitory concentration (MIC90) of DISO was determined by the broth microdilution method, and the crystal violet technique was used for the quantification of mature biofilms. All isolates evaluated were sensitive to DISO with MIC90 values between 296.7 and 890.3 μg/mL. DISO managed to inhibit mature Candida spp. biofilms, showing higher inhibition percentages than amphotericin B, achieving up to 40% inhibition of C. albicans biofilms. These results confirm the antifungal potential of terpenes, highlighting their importance in the search for novel alternatives to combat pathogenic yeasts of the Candida genus | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Biólogo(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8488 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Biología | |
dc.relation.references | Ahamad, I., Bano, F., Anwer, R., Srivastava, P., Kumar, R., & Fatma, T. (2022). Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Frontiers in Microbiology, 12(2022), 741493. https://doi.org/10.3389/fmicb.2021.741493 | |
dc.relation.references | Álvarez, C., Morales, S., Rodríguez, G., Rodríguez, J., Roberto, E., Picot, C., Ceballos, A., Parra, C., Le Pape, P. (2023). The mortality attributable to Candidemia in C. auris is higher than that in other Candida species: Myth or Reality? Journal of Fungi, 9(4), 430. https://doi.org/10.3390/jof9040430 | |
dc.relation.references | Alvarez-Moreno, C. A., Cortes, J. A., & Denning, D. W. (2018). Burden of Fungal Infections in Colombia. Journal of Fungi, 4(2), 41. https://doi.org/10.3390/JOF4020041 | |
dc.relation.references | Arendrup, M. C., & Patterson, T. F. (2017). Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. Journal of Infectious Diseases, 216(3), 445–451. https://doi.org/10.1093/infdis/jix131 | |
dc.relation.references | Balarezo López, G. (2018). Plantas medicinales: Una farmacia natural para la salud pública. Paideia, 6(7), 159–170. https://doi.org/10.31381/paideia.v6i7.1606 | |
dc.relation.references | Benedict, K., Whitham, H. K., & Jackson, B. R. (2022). Economic burden of fungal diseases in the United States. Open Forum Infectious Diseases, 9(4), ofac097. https://doi.org/10.1093/ofid/ofac097 | |
dc.relation.references | Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. In Infection and Drug Resistance, 10(2017), 237–245. https://doi.org/10.2147/IDR.S118892 | |
dc.relation.references | Berrio, I., Maldonado, N., De Bedout, C., Arango, K., Cano, L. E., Valencia, Y., Jiménez-Ortigosa, C., Perlin, D. S., Gómez, B. L., Robledo, C., & Robledo, J. (2018). Comparative study of Candida spp. isolates: Identification and echinocandin susceptibility in isolates obtained from blood cultures in 15 hospitals in Medellín, Colombia. Journal of Global Antimicrobial Resistance, 13(2018), 254–260. https://doi.org/10.1016/J.JGAR.2017.11.010 | |
dc.relation.references | Bezerra, C. F., de Alencar Júnior, J. G., de Lima Honorato, R., dos Santos, A. T. L., Pereira da Silva, J. C., Gusmão da Silva, T., Leal, A. L. A. B., Rocha, J. E., de Freitas, T. S., Tavares Vieira, T. A., Bezerra, M. C. F., Sales, D. L., Kerntopf, M. R., de Araujo Delmondes, G., Filho, J. M. B., Peixoto, L. R., Pinheiro, A. P., Ribeiro-Filho, J., Coutinho, H. D. M., … Gonçalves da Silva, T. (2020). Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chemistry and Physics of Lipids, 233(2020), 104987. https://doi.org/10.1016/j.chemphyslip.2020.104987 | |
dc.relation.references | Bhattacharya, A. K., Chand, H. R., John, J., & Deshpande, M. V. (2015). Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula. European Journal of Medicinal Chemistry, 94 (2015), 1–7. https://doi.org/10.1016/J.EJMECH.2015.02.054 | |
dc.relation.references | Bilal, H., Shafiq, M., Hou, B., Islam, R., Khan, M. N., Khan, R. U., & Zeng, Y. (2022). Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence, 13(1), 1573–1589. https://doi.org/10.1080/21505594.2022.2123325 | |
dc.relation.references | Bonincontro, G., Scuderi, S. A., Marino, A., & Simonetti, G. (2023). Synergistic effect of plant compounds in combination with conventional antimicrobials against biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals, 16(11), 1531. https://doi.org/10.3390/PH16111531 | |
dc.relation.references | Brown, J. L., Delaney, C., Short, B., Butcher, M. C., McKloud, E., Williams, C., Kean, R., & Ramage, G. (2020). Candida auris phenotypic heterogeneity determines pathogenicity in vitro. MSphere, 5(3). https://doi.org/10.1128/msphere.00371-20 | |
dc.relation.references | Butts, A., Reitler, P., Nishimoto, A. T., DeJarnette, C., Estredge, L. R., Peters, T. L., Veve, M. P., David Rogers, P., & Palmer, G. E. (2019). A systematic screen reveals a diverse collection of medications that induce antifungal resistance in Candida species. Antimicrobial Agents and Chemotherapy, 63(5), e00371-20. https://doi.org/10.1128/AAC.00054-19/SUPPL_FILE/AAC.00054-19-S0001.PDF | |
dc.relation.references | Cantón Lacasa, E., Martín Mazuelos, E., & Espinel-Ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad. Revista Iberoamericana de Micología, 2(15), 1-17. ISBN: 978-84-611-8776-8 | |
dc.relation.references | Campos Péret, V. A., Reis, R. C. F. M., Braga, S. F. P., Benedetti, M. D., Caldas, I. S., Carvalho, D. T., Santana, L. F. de A., Johann, S., & Souza, T. B. de. (2023). New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis. European Journal of Medicinal Chemistry, 256(2023), 115436. https://doi.org/10.1016/J.EJMECH.2023.115436 | |
dc.relation.references | Chakrabartty, I., Vijayasekhar, A., & Rangan, L. (2021). Therapeutic potential of labdane diterpene isolated from Alpinia nigra: detailed hemato-compatibility and antimicrobial studies. Natural Product Research, 35(6), 1000-1004. https://doi.org/10.1080/14786419.2019.1610756 | |
dc.relation.references | Chen, S., Tsoi, J. K. H., Tsang, P. C. S., Park, Y. J., Song, H. J., & Matinlinna, J. P. (2020). Candida albicans aspects of binary titanium alloys for biomedical applications. Regenerative Biomaterials, 7(2), 213–220. https://doi.org/10.1093/RB/RBZ052 | |
dc.relation.references | Ciurea, C. N., Kosovski, I. B., Mare, A. D., Toma, F., Pintea-Simon, I. A., & Man, A. (2020). Candida and Candidiasis—Opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 8(6), 857. https://doi.org/10.3390/MICROORGANISMS8060857 | |
dc.relation.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8(10), e11110. https://doi.org/10.1016/j.heliyon.2022.e11110 | |
dc.relation.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022a). Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules, 27(18), 5808. https://doi.org/10.3390/molecules27185808 | |
dc.relation.references | Contreras Martínez, O., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Antibacterial screening of isoespintanol, an aromatic monoterpene isolated from Oxandra xylopioides Diels. Molecules (Basel, Switzerland), 27(22), 8004. https://doi.org/10.3390/molecules27228004 | |
dc.relation.references | Contreras, O. I., Ortíz, A. A., Patiño, G. S., Peñata-Taborda, A., & Soto, R. B. (2023). Isoespintanol antifungal activity involves mitochondrial dysfunction, inhibition of biofilm formation, and damage to cell wall integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12), 10187. https://doi.org/10.3390/IJMS241210187 | |
dc.relation.references | Cortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia en Colombia. Biomédica, 40(1), 195. https://doi.org/10.7705/biomedica.4400 | |
dc.relation.references | D’Angeli, F., Guadagni, F., Genovese, C., Nicolosi, D., Salinaro, A. T., Spampinato, M., Mannino, G., Lo Furno, D., Petronio, G. P., Ronsisvalle, S., Sipala, F., Falzone, L., & Calabrese, V. (2021). Anti-candidal activity of the parasitic plant orobanche crenata forssk. Antibiotics, 10(11), 1373. https://doi.org/10.3390/antibiotics10111373 | |
dc.relation.references | de Alteriis, E., Maselli, V., Falanga, A., Galdiero, S., Di Lella, F. M., Gesuele, R., Guida, M., & Galdiero, E. (2018). Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infection and Drug Resistance, 11(2018), 915–925. https://doi.org/10.2147/IDR.S164262 | |
dc.relation.references | de Lima Silva, M. G., de Lima, L. F., Alencar Fonseca, V. J., Santos da Silva, L. Y., Calixto Donelardy, A. C., de Almeida, R. S., de Morais Oliveira-Tintino, C. D., Pereira Bezerra Martins, A. O. B., Ribeiro-Filho, J., Bezerra Morais-Braga, M. F., Tintino, S. R., & Alencar de Menezes, I. R. (2023). Enhancing the antifungal efficacy of fluconazole with a diterpene: Abietic acid as a promising adjuvant to combat antifungal resistance in Candida spp. Antibiotics, 12(11), 1565. https://doi.org/10.3390/antibiotics12111565 | |
dc.relation.references | De Sousa, I. P., Sousa Teixeira, M. V., & Jacometti Cardoso Furtado, N. A. (2018). An overview of biotransformation and toxicity of diterpenes. Molecules, 23(6), 1387. https://doi.org/10.3390/molecules23061387 | |
dc.relation.references | Del Pozo, J. L., & Cantón, E. (2016). Candidiasis asociada a biopelículas. Revista Iberoamericana de Micologia, 33(3), 176–183. https://doi.org/10.1016/j.riam.2015.06.004 | |
dc.relation.references | Dellière, S., Sze Wah Wong, S., & Aimanianda, V. (2020). Soluble mediators in anti-fungal immunity. Current Opinion in Microbiology, 58(2020), 24–31. https://doi.org/10.1016/J.MIB.2020.05.005 | |
dc.relation.references | Deng, Y., Liu, Y., Li, J., Wang, X., He, S., Yan, X., Shi, Y., Zhang, W., & Ding, L. (2022). Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. European Journal of Medicinal Chemistry, 239(2022), 114513. https://doi.org/10.1016/j.ejmech.2022.114513 | |
dc.relation.references | Diniz-Neto, H., Silva, S. L., Cordeiro, L. V., Silva, D. F., Oliveira, R. F., Athayde-Filho, P. F., Oliveira-Filho, A. A., Guerra, F. Q. S., & Lima, E. O. (2022). Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology, 84(2024), e255080. https://doi.org/10.1590/1519-6984.255080 | |
dc.relation.references | Donadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian essential oil of ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi, 7(5), 383. https://doi.org/10.3390/jof7050383 | |
dc.relation.references | El‐kholy, M. A., Helaly, G. F., El Ghazzawi, E. F., El‐sawaf, G., & Shawky, S. M. (2021). Virulence factors and antifungal susceptibility profile of Candida tropicalis isolated from various clinical specimens in alexandria, Egypt. Journal of Fungi, 7(5), 351. https://doi.org/10.3390/jof7050351 | |
dc.relation.references | Escandón, P. (2022). Novel environmental niches for Candida auris: Isolation from a coastal habitat in Colombia. Journal of Fungi, 8(7), 748. https://doi.org/10.3390/jof8070748 | |
dc.relation.references | Espinosa, H., García, E., & Gastélum, E. (2016). Los compuestos bioactivos y tecnologías de extracción. CIATEJ Editorial. https://ciatej.mx/Los_compuestos_bioactivos_y_tecnologias_de_extraccion.pdf | |
dc.relation.references | Feldman, M., Sionov, R. V., Mechoulam, R., & Steinberg, D. (2021). Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms, 9(2), 441. https://doi.org/10.3390/microorganisms9020441 | |
dc.relation.references | Fuentefria, A. M., Pippi, B., Dalla Lana, D. F., Donato, K. K., & de Andrade, S. F. (2018). Antifungals discovery: an insight into new strategies to combat antifungal resistance. Letters in Applied Microbiology, 66(1), 2-13. https://doi.org/10.1111/lam.12820 | |
dc.relation.references | He, Y., Cao, Y., Xiang, Y., Hu, F., Tang, F., Zhang, Y., Albashari, A. A., Xing, Z., Luo, L., Sun, Y., Huang, Q., Ye, Q., & Zhang, K. (2020). An evaluation of norspermidine on anti-fungal effect on mature Candida albicans biofilms and angiogenesis potential of dental pulp stem cells. Frontiers in Bioengineering and Biotechnology, 8(2020), 948. https://doi.org/10.3389/fbioe.2020.00948 | |
dc.relation.references | Herman, A., & Herman, A. P. (2021). Herbal products and their active constituents used alone and in combination with antifungal drugs against drug-resistant Candida sp. Antibiotics, 10(6), 655. https://doi.org/10.3390/antibiotics10060655 | |
dc.relation.references | Humanez Galindo, L. E. (2021). Obtención de diisoespintanol y berenjenol del subextracto de diclorometano de las hojas de Oxandra xylopioides y revisión bibliográfica sobre actividades biológicas de la familia Annonaceae. https://repositorio.unicordoba.edu.co/handle/ucordoba/3888 | |
dc.relation.references | Kim, C., Kim, J. G., & Kim, K. Y. (2023). Anti-Candida potential of sclareol in inhibiting growth, biofilm formation, and yeast–hyphal transition. Journal of Fungi, 9(1), 98. https://doi.org/10.3390/jof9010098 | |
dc.relation.references | Lee, M. J., Kim, M. J., Oh, S. H., & Kwon, J. S. (2020). Novel dental poly (methyl methacrylate) containing phytoncide for antifungal effect and inhibition of oral multispecies biofilm. Materials, 13(2), 371. https://doi.org/10.3390/ma13020371 | |
dc.relation.references | Lima, T. L. C., Souza, L. B. F. C., Tavares-Pessoa, L. C. S., Dos Santos-Silva, A. M., Cavalcante, R. S., de Araújo-Júnior, R. F., Cornélio, A. M., Fernandes-Pedrosa, M. F., Chaves, G. M., & da Silva-Júnior, A. A. (2020). Phytol-loaded solid lipid nanoparticles as a novel anticandidal nanobiotechnological approach. Pharmaceutics, 12(9), 871. https://doi.org/10.3390/pharmaceutics12090871 | |
dc.relation.references | Liu, R. H., Shang, Z. C., Li, T. X., Yang, M. H., & Kong, L. Y. (2017). In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrobial Agents and Chemotherapy, 61(8), 10.1128. https://doi.org/10.1128/AAC.02707-16 | |
dc.relation.references | Lustre Sánchez, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10 | |
dc.relation.references | Maione, A., Pietra, A. La, Salvatore, M. M., Guida, M., Galdiero, E., & de Alteriis, E. (2022). Undesired effect of vancomycin prolonged treatment: Enhanced biofilm production of the nosocomial pathogen Candida auris. Antibiotics, 11(12), 1771. https://doi.org/10.3390/antibiotics11121771 | |
dc.relation.references | Maldonado, J.; Casaña, R.; Martínez, I.; San Martín, E. (2018). La espectroscopia UV-Vis en la evaluación de la viabilidad de células de cáncer de mama. Latin-American Journal of Physics Education, 12(2), 1–7 | |
dc.relation.references | Menezes, R. P. B., Sessions, Z., Muratov, E., Scotti, L., & Scotti, M. T. (2021). Secondary Metabolites Extracted from Annonaceae and Chemotaxonomy Study of Terpenoids. Journal of the Brazilian Chemical Society, 32(11), 2061–2070. https://doi.org/10.21577/0103-5053.20210097 | |
dc.relation.references | Miranda-Cadena, K., Marcos-Arias, C., Mateo, E., Aguirre-Urizar, J. M., Quindós, G., & Eraso, E. (2021). In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomedicine & Pharmacotherapy, 143(2021), 112218. https://doi.org/10.1016/j.biopha.2021.112218 | |
dc.relation.references | Miranda-Cadena, K., Marcos-Arias, C., Pérez-Rodríguez, A., Cabello-Beitia, I., Mateo, E., Sevillano, E., … Eraso, E. (2022). Actividad anti- Candida in vitro e in vivo del citral en combinación con fluconazol. Revista de Microbiología Oral, 14(1), 2045813. https://doi.org/10.1080/20002297.2022.2045813 | |
dc.relation.references | Nett, J. E., & Andes, D. R. (2020). Contributions of the biofilm matrix to candida pathogenesis. In Journal of Fungi, 6(1), 21. https://doi.org/10.3390/jof6010021 | |
dc.relation.references | Organización Mundial para la Salud. (2022). WHO fungal priority pathogens list to guide research, development and public health action. Geneva. ISBN 978-92-4-006024-1 | |
dc.relation.references | Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 1–20. https://doi.org/10.1038/nrdp.2018.26 | |
dc.relation.references | Popova, V., Ivanova, T., Stoyanova, A., Nikolova, V., Hristeva, T., Gochev, V., Yonchev, Y., Nikolov, N., & Zheljazkov, V. D. (2020). Terpenoids in the essential oil and concentrated aromatic products obtained from nicotiana glutinosa L. Leaves. Molecules, 25(1), 30. https://doi.org/10.3390/molecules25010030 | |
dc.relation.references | Quiles-Melero, I., & García-Rodríguez, J. (2021). Antifúngicos de uso sistémico. Revista Iberoamericana de Micología, 38(2), 42–46. https://doi.org/10.1016/j.riam.2021.04.004 | |
dc.relation.references | Reddy, G. K. K., & Nancharaiah, Y. V. (2020). Alkylimidazolium Ionic Liquids as Antifungal Alternatives: Antibiofilm activity against Candida albicans and underlying mechanism of action. Frontiers in Microbiology, 11(2020), 730. https://doi.org/10.3389/fmicb.2020.00730 | |
dc.relation.references | Shahina, Z., Ndlovu, E., Persaud, O., Sultana, T., & Dahms, T. E. S. (2022). Candida albicans Reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiology Spectrum, 10(6), e03183-22. https://doi.org/10.1128/spectrum.03183-22 | |
dc.relation.references | Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F., & Chegini, Z. (2022). Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology, 13(2022), 917787. https://doi.org/10.3389/fphar.2022.917787 | |
dc.relation.references | Silva, D. M., Costa, E. V., De Lima Nogueira, P. C., De Souza Moraes, V. R., De Holanda Cavalcanti, S. C., Salvador, M. J., Ribeiro, L. H. G., Gadelha, F. R., Barison, A., & Ferreira, A. G. (2012). Ent-kaurane diterpenoids and other constituents from the stem of Xylopia laevigata (Annonaceae). Química Nova, 35(8), 1570–1576. https://doi.org/10.1590/S0100-40422012000800015 | |
dc.relation.references | Sousa Teixeira, M. V., Fernandes, L. M., Stefanelli de Paula, V., Ferreira, A. G., & Jacometti Cardoso Furtado, N. A. (2022). Ent-hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Letters in Applied Microbiology, 74(4), 622–629. https://doi.org/10.1111/lam.13648 | |
dc.relation.references | Touil, H. F. Z., Boucherit, K., Boucherit-Otmani, Z., Kohder, G., Madkour, M., & Soliman, S. S. M. (2020). Optimum inhibition of amphotericin-B-resistant candida albicans strain in single-and mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules, 10(2), 342. https://doi.org/10.3390/biom10020342 | |
dc.relation.references | Urzúa, A., Rezende, M. C., Mascayano, C., & Vásquez, L. (2008). A structure-activity study of antibacterial diterpenoids. Molecules, 13(4), 882-891. https://doi.org/10.3390/molecules13040822 | |
dc.relation.references | Žiemytė, M., Rodríguez-Díaz, J. C., Ventero-Martín, M. P., Mira, A., & Ferrer, M. D. (2023). Real-time monitoring of biofilm growth identifies andrographolide as a potent antifungal compound eradicating Candida biofilms. Biofilm, 5(2023), 100134. https://doi.org/10.1016/j.bioflm.2023.100134 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Diterpene | eng |
dc.subject.keywords | Antifungal | eng |
dc.subject.keywords | Oxandra xylopioides | eng |
dc.subject.keywords | Candida spp | eng |
dc.subject.proposal | Diterpeno | spa |
dc.subject.proposal | Antifúngico | spa |
dc.subject.proposal | Oxandra xylopioides | spa |
dc.subject.proposal | Candida spp | spa |
dc.title | Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: