Este ítem es privado
Publicación: Propiedades refractométricas y acústicas de las soluciones acuosas de acetato de calcio + glicina a diferentes temperaturas
dc.contributor.author | Manjarres Nuñez, Jorge Luis | spa |
dc.coverage.spatial | Montería, Córdoba | spa |
dc.date.accessioned | 2020-06-16T18:42:25Z | spa |
dc.date.available | 2020-06-16T18:42:25Z | spa |
dc.date.issued | 2020-06-16 | spa |
dc.description.abstract | En este trabajo se determinaron y analizaron las propiedades refractométricas y acústicas a diferentes temperaturas (283.15 – 308.15) K, cada 5 K, del aminoácido: glicina en mezcla acuosa de acetato de calcio. Midiendo experimentalmente el índice de refracción y la velocidad del sonido para el sistema pseudobinario, utilizando un refractómetro Abbe y un interferómetro multifrecuencia ultrasónica M-81F. A partir de los datos de índice de refracción se calcularon: la refracción molecular (R_m ), el radio efectivo promedio (r/Å) y la polarizabilidad promedio (α/Å^3 ) de la molécula del soluto solvatado; mientras que a partir de la velocidad ultrasónica se calcularon: la compresibilidad adiabática (K_s), la longitud de onda libre intermolecular (L_f), el volumen molar (V_m ), el volumen libre (V_f ), el número de solvatación (s_N), el tiempo de relajación (τ), la energía libre de Gibbs de activación (〖∆G〗^*), el parámetro de asociación relativa (RA) y la estimación de la presión interna (π_i ). Los resultados obtenidos se discutieron en términos de las interacciones predominantes en solución y el comportamiento del soluto en virtud a los cambios en la estructura del solvente. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.tableofcontents | ÍNDICE DE TABLAS ................................................................................................................. 9 | spa |
dc.description.tableofcontents | ÍNDICE DE FIGURAS .............................................................................................................. 12 | spa |
dc.description.tableofcontents | ÍNDICE DE GRÁFICAS ............................................................................................................ 13 | spa |
dc.description.tableofcontents | RESUMEN .................................................................................................................................. 16 | spa |
dc.description.tableofcontents | INTRODUCCION ...................................................................................................................... 17 | spa |
dc.description.tableofcontents | A. Referencias .......................................................................................................................... 21 | spa |
dc.description.tableofcontents | OBJETIVOS ............................................................................................................................... 24 | spa |
dc.description.tableofcontents | OBJETIVO GENERAL ................................................................................................................. 24 | spa |
dc.description.tableofcontents | OBJETIVOS ESPECÍFICOS .......................................................................................................... 24 | spa |
dc.description.tableofcontents | CAPÍTULO 1. MARCO TEÓRICO ........................................................................................... 25 | spa |
dc.description.tableofcontents | Sección 1.1. El agua como solvente ............................................................................................ 25 | spa |
dc.description.tableofcontents | 1.1.1. Generalidades .......................................................................................................... 25 | spa |
dc.description.tableofcontents | 1.1.2. Estructura del agua líquida ..................................................................................... 26 | spa |
dc.description.tableofcontents | 1.1.3. Modelos sobre la estructura de agua líquida .......................................................... 26 | spa |
dc.description.tableofcontents | 1.1.4. Soluciones acuosas ........................................................................................................ 27 | spa |
dc.description.tableofcontents | 1.1.4.1. Efecto hidrofóbico ...................................................................................................... 27 | spa |
dc.description.tableofcontents | 1.1.4.1.1. Hidratación hidrofóbica........................................................................................... 27 | spa |
dc.description.tableofcontents | 1.1.4.1.2. Interacción hidrofóbica ........................................................................................... 28 | spa |
dc.description.tableofcontents | 1.1.4.2. Efecto hidrofílico ......................................................................................................... 28 | spa |
dc.description.tableofcontents | 1.1.4.3. Efecto de electrostricción ........................................................................................... 28 | spa |
dc.description.tableofcontents | Sección 1.2. Aminoácidos en solución ........................................................................................ 29 | spa |
dc.description.tableofcontents | 1.2.1. Aminoácidos .................................................................................................................. 29 | spa |
dc.description.tableofcontents | Sección 1.3. Refractometría ........................................................................................................ 30 | spa |
dc.description.tableofcontents | 1.3.1. Índice de refracción .......................................................................................................... 31 | spa |
dc.description.tableofcontents | 1.3.2.. Ecuación De Lorentz-Lorenz ......................................................................................... 31 | spa |
dc.description.tableofcontents | 1.3.3.. Ecuación De Bottcher ................................................................................................... 32 | spa |
dc.description.tableofcontents | 1.3.4. Propiedades derivadas del índice de refracción ............................................................... 32 | spa |
dc.description.tableofcontents | 1.3.4.1. Refracción Molar, Radio Atómico y Polarizabilidad ................................................... 33 | spa |
dc.description.tableofcontents | Sección 1.4. Estudio acústico de un líquido ................................................................................ 34 | spa |
dc.description.tableofcontents | 1.4.1. Parámetros termo-acústicos ............................................................................................. 35 | spa |
dc.description.tableofcontents | 1.4.2. Volumen molar ( m V ) ..................................................................................................... 35 | spa |
dc.description.tableofcontents | 1.4.2. Volumen molar ( m V ) ..................................................................................................... 35 | spa |
dc.description.tableofcontents | 1.4.4. Compresibilidad adiabática ................................................................................. 36 | spa |
dc.description.tableofcontents | 1.4.5. Longitud de onda libre intermolecular ............................................................... 37 | spa |
dc.description.tableofcontents | 1.4.6. Volumen libre ...................................................................................................... 37 | spa |
dc.description.tableofcontents | 1.4.7. Número de Solvatación ....................................................................................... 39 | spa |
dc.description.tableofcontents | 1.4.8. Tiempo de relajación .............................................................................................. 39 | spa |
dc.description.tableofcontents | 1.4.9. Energía libre de Gibbs de activación .................................................................... 39 | spa |
dc.description.tableofcontents | 1.4.10. Presión Interna (π) ...................................................................................................... 40 | spa |
dc.description.tableofcontents | B. Referencias .......................................................................................................................... 41 | spa |
dc.description.tableofcontents | CAPÍTULO 2. METODOLOGÍA ............................................................................................... 46 | spa |
dc.description.tableofcontents | Sección 2.1. Reactivos y preparación de soluciones ................................................................... 46 | spa |
dc.description.tableofcontents | 2.1.1. Reactivos ....................................................................................................................... 46 | spa |
dc.description.tableofcontents | 2.1.2. Limpieza del material de vidrio ..................................................................................... 46 | spa |
dc.description.tableofcontents | 2.1.3. Preparación de soluciones ............................................................................................. 47 | spa |
dc.description.tableofcontents | 2.1.4. Bidestilación del agua ................................................................................................... 47 | spa |
dc.description.tableofcontents | 2.1.5. Preparación de la solución sulfocrómica ....................................................................... 48 | spa |
dc.description.tableofcontents | Sección 2.2. Determinación del índice de refracción ................................................................. 48 | spa |
dc.description.tableofcontents | 2.2.1. Descripción del refractómetro ....................................................................................... 48 | spa |
dc.description.tableofcontents | 2.2.2. Protocolo de medición ................................................................................................... 49 | spa |
dc.description.tableofcontents | Sección 2.3. Determinación de la velocidad del sonido .............................................................. 51 | spa |
dc.description.tableofcontents | Sección 2.3. Determinación de la velocidad del sonido .............................................................. 51 | spa |
dc.description.tableofcontents | 2.3.2. Descripción del interferómetro ...................................................................................... 52 | spa |
dc.description.tableofcontents | 2.3.4. Principio de funcionamiento .......................................................................................... 53 | spa |
dc.description.tableofcontents | 2.3.5. Ajuste del interferómetro ultrasónico ........................................................................... 53 | spa |
dc.description.tableofcontents | 2.3.6. Protocolo de medición ................................................................................................... 53 | spa |
dc.description.tableofcontents | C. Referencias .......................................................................................................................... 56 | spa |
dc.description.tableofcontents | CAPÍTULO 3. RESULTADOS Y DISCUSIÓN SISTEMA BINARIO.................................................................57 | spa |
dc.description.tableofcontents | Sección 3.1. Resultados y análisis refractométrico ..................................................................... 57 | spa |
dc.description.tableofcontents | 3.1.1. Propagación de incertidumbre de la concentración molal........................................................ 57 | spa |
dc.description.tableofcontents | 3.2.1. Índice de refracción ............................................................................................. 58 | spa |
dc.description.tableofcontents | Sección 3.2. Resultados y análisis termo-acústico ..................................................................... 60 | spa |
dc.description.tableofcontents | 3.2.1 Propagación de incertidumbre de la velocidad del sonido.................................................... 60 | spa |
dc.description.tableofcontents | 3.1.2. Velocidad del sonido ................................................................................................ 60 | spa |
dc.description.tableofcontents | 3.1.3. Propagación de incertidumbre de los volúmenes molares ................................. 62 | spa |
dc.description.tableofcontents | 3.1.4. Volúmenes molares ............................................................................................ 63 | spa |
dc.description.tableofcontents | D. Referencias ............................................................................................................................. 65 | spa |
dc.description.tableofcontents | CAPÍTULO 4. RESULTADOS Y DISCUSIÓN SISTEMA PSEUDOBINARIO ......................................................................................................... 66 | spa |
dc.description.tableofcontents | Sección 4.1. Resultados y análisis refractométrico ..................................................................... 66 | spa |
dc.description.tableofcontents | 4.1.1. Propagación de incertidumbre de la concentración molal............................................................... 66 | spa |
dc.description.tableofcontents | 4.1.2. Índice de refracción ............................................................................................. 67 | spa |
dc.description.tableofcontents | 4.1.3. Refracción molar, radio atómico y polarizabilidad .............................. 72 | spa |
dc.description.tableofcontents | Sección 4.2. Resultados y análisis termo-acústico ...................................................................... 76 | spa |
dc.description.tableofcontents | 4.2.1. Velocidad del sonido ............................................................................................... 76 | spa |
dc.description.tableofcontents | 4.2.3. Propagación en la incertidumbre del volumen molar ......................................... 81 | spa |
dc.description.tableofcontents | 4.2.4. Volúmenes molares ................................................................................................ 81 | spa |
dc.description.tableofcontents | 4.2.5. Propagación de incertidumbre del coeficiente de expansión térmica..................................... 83 | spa |
dc.description.tableofcontents | 4.2.6. Coeficiente de expansión térmica ........................................................................... 84 | spa |
dc.description.tableofcontents | 4.2.7. Propagación de incertidumbre en el coeficiente de compresibilidad isoentrópica .........................................................................................86 | spa |
dc.description.tableofcontents | 4.2.8. Coeficiente de compresibilidad isoentrópica ......................................................... 87 | spa |
dc.description.tableofcontents | 4.2.9. Propagación en la incertidumbre de la longitud libre intermolecular........................................ 91 | spa |
dc.description.tableofcontents | 4.2.10 Longitud libre intermolecular .............................................................................. 92 | spa |
dc.description.tableofcontents | 4.2.11. Propagación de incertidumbre para el volumen libre ........................................ 97 | spa |
dc.description.tableofcontents | 4.2.21. Volumen libre ..................................................................................................... 98 | spa |
dc.description.tableofcontents | 4.2.22. Número de solvatación .................................................................................... 100 | spa |
dc.description.tableofcontents | 4.2.22. Tiempo de relajación .............................................................................................. 102 | spa |
dc.description.tableofcontents | 4.2.23. Energía libre de Gibbs de activación ................................................................ 103 | spa |
dc.description.tableofcontents | 4.2.24. Asociación relativa ........................................................................................... 105 | spa |
dc.description.tableofcontents | 4.2.25. Presión interna ................................................................................................... 107 | spa |
dc.description.tableofcontents | E. Referencias ........................................................................................................................... 110 | spa |
dc.description.tableofcontents | CONCLUSIÓN ......................................................................................................................... 112 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/2969 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Química | spa |
dc.relation.references | Nain, A. K. & Lather, M. Study of solute-solute and solute-solvent interactions of homologous series of some α-amino acids in aqueous-d-xylose solutions at different temperatures by using physicochemical methods. J. Chem. Thermodyn. 102, 22-38 (2016). | spa |
dc.relation.references | Tomé, L. I. N., Jorge, M., Gomes, J. R. B. & Coutinho, J. A. P. Toward an understanding of the aqueous solubility of amino acids in the presence of salts: A molecular dynamics simulation study. J. Phys. Chem. 114, 16450-16459 (2010) | spa |
dc.relation.references | Cantero, P., Yañez, O., Páez M., López J., Páez, D., &Arratia, R. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment. Chem. Phys. Lett. 687, 73-84 (2017). | spa |
dc.relation.references | Kumar, H., Singla, M. & Jindal, R. Investigations on solute-solvent interactions of amino acids in aqueous solutions of sodium dihydrogen phosphate at different temperatures. Monatshefte für Chemie-Chem. Mon. 145, 1063-1082 (2014). | spa |
dc.relation.references | Nain, A. K., Pal, R. & Droliya, P. Study of (solute + solute) and (solute + solvent) interactions of homologous series of some α-amino acids in aqueousstreptomycin sulfate solutions at different temperatures by using physicochemical methods. J. Chem. Thermodyn. 95, 77-98 (2016). | spa |
dc.relation.references | Jiang, X., Zhu, C. & Ma, Y. Volumetric and viscometric studies of amino acids in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Thermodyn. 71, 50-63 (2014). | spa |
dc.relation.references | Vasantha, T., Kumar, A., Attri, P., Venkatesu, P. & Rama Devi, R. S. Influence of biocompatible ammonium ionic liquids on the solubility of L-alanine and Lvaline in water. Fluid Phase Equilib. 335, 39-45 (2012). | spa |
dc.relation.references | Singh, V., Chhotaray, P. K., Banipal, P. K., Banipal, T. S. & Gardas, R. L. Volumetric properties of amino acids in aqueous solutions of ammonium based protic ionic liquids. Fluid Phase Equilib. 385, 258-274 (2015). | spa |
dc.relation.references | Kar, K., Alex, B. & Kishore, N. Thermodynamics of the interactions of calcium chloride with α-chymotrypsin. J. Chem. Thermodyn. 34, 319-336 (2002). | spa |
dc.relation.references | Hendrix, T., Griko, Y. V. & Privalov, P. L. A calorimetric study of the influence of calcium on the stability of bovine α-lactalbumin. Biophys. Chem. 84, 27-34 (2000) | spa |
dc.relation.references | Thirumaran. Ultrasonic investigation of amino acids in aqueous sodium acetate medium. Indian Journal of Pure & Applied Physics vol. 47, february 2009. | spa |
dc.relation.references | Kanhekar. Thermodynamic properties of electrolytes in aqueous solution of glycine at different temperatures. Indian Journal of Pure & Applied physics vol. 48, february 2010. | spa |
dc.relation.references | Rodríguez. Densities and speed of sound in aqueous ammonium sulfate solutions containing glycine or alanina. Tesis de maestria escuela superior de tegnologia. | spa |
dc.relation.references | B. Hemalatha. Solute-solvent and solute-solute interactions of tetrabutylammonium bromide in dmf-water systems at different temperatures. International Journal of Advances in Engineering & Technology, May 2013. | spa |
dc.relation.references | Deosarkar. Refractive index, molar refraction and polarizability of ciprofloxacin hydrochloride in aqueous-glycine solutions. School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, NANDED – 431606 (M.S.) INDIA. | spa |
dc.relation.references | Sethi. Molar refraction, thermal expansivity and polarizabilities of aqueous 1-1 electrolyte solutions. Chemical science transactions 2018, 7(1), 151-157. | spa |
dc.relation.references | Sundaramurthy. Ultrasonic study of l-valine in aqueous magnesium nitrate solutions at 303.15k. International Journal of Scientific Research and Reviews. 2019. | spa |
dc.relation.references | Brusseau, M. L., Walker, D. B. & Fitzsimmons, K. Physical-Chemical Characteristics of Water. Environ. Pollut. Sci. 3, 23-45 (2019). | spa |
dc.relation.references | Cuello, Y. Interacciones de la DL-alanina en soluciones acuosas del líquido iónico cloruro de 1-butil-3-metilmidazolio [Bmim+][Cl-] a partir de propiedades volumétricas y viscosimétricas a varias temperaturas. (Tesis de Maestría). Departamento de Química. Universidad de Córdoba (2013) | spa |
dc.relation.references | Clavijo, J., Efecto de dos Aminales Macrocíclicos Sobre la Temperatura de Máxima Densidad del Agua. (Tesis Doctoral). Departamento de Química. Universidad Nacional de Colombia. (2011). | spa |
dc.relation.references | Chadha, C., Singla, M. & Kumar, H. Interionic interactions of glycine, l-alanine, glycylglycine and phenylalanine in aqueous 1-hexyl-3-methylimidazolium chloride ionic liquid solutions at T = (288.15 to 308.15) K: Volumetric, speed of sound and viscometric measurements. J. Mol. Liq. 218, 68-82 (2016). | spa |
dc.relation.references | Rafiee, H. R. & Frouzesh, F. The study of solute–solvent interactions in the ternary {Amino acid (Glycine or L-serine) + ionic liquid (1-butyl-3methylimidazolium tetrafluoroborate [Bmim][BF4]) + H2O} system at different temperatures and ambient pressure: Volumetric study. J. Mol. Liq. 230, 6-14 (2017). | spa |
dc.relation.references | Cantero, P., Yañez, O., Páez M., López J., Páez, D., &Arratia, R. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment. Chem. Phys. Lett. 687, 73-84 (2017). | spa |
dc.relation.references | Páez, M., Figueredo, S., Pérez, D., Vergara, M. & Lans, E. Volumetric, viscometric and molecular simulation studies of glycine in aqueous sodium sulphate solutions at different temperatures. J. Mol. Liq. 266, 718-726 (2018). | spa |
dc.relation.references | P.H. Von Hippel, Ion effects on the solution structure of biological macromolecules, Accounts Chem. Res. 2 (1969) 257–265. | spa |
dc.relation.references | K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300–311. | spa |
dc.relation.references | W. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14 (1979) 1 | spa |
dc.relation.references | O. Enea, C. Jolicoeur, Heat capacities and volumes of several oligopeptides in urea–water mixtures at 25.degree.C. Some implications for protein unfolding, J. Phys. Chem. 86 (1982) 3870–3881. | spa |
dc.relation.references | Páez, M., Pérez, D. & Lafont, J. Estudio Volumétrico, Viscosimétrico y Termodinámico de DL-Alanina en Soluciones Acuosas de Sulfato de sodio a diferentes Temperaturas. Inf. Tecnológica. 30, 125-134 (2019). | spa |
dc.relation.references | Banipal, T.S., Singh, K. & Banipal, P.K. Volumetric Investigations on Interactions of Acidic/Basic Amino Acids with Sodium Acetate, Sodium Propionate and Sodium Butyrate in Aqueous Solutions. J Solution Chem 36, 1635–1667 (2007) doi:10.1007/s10953-007-9212-8. | spa |
dc.relation.references | Badarayani, R., Kumar, A.: Effect of tetra-n-alkylammonium bromides on the volumetric properties of glycine, L-alanine and glycylglycine at T=298.15 K. J. Chem. Thermodyn. 36, 49–58 (2004). doi. 10.1016/j.jct.2003.09.008 | spa |
dc.relation.references | Singh, S.K., Kundu, A., Kishore, N.: Interaction of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyl trimethylammonium bromide at T=298.15 K: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004) | spa |
dc.relation.references | Wang, J., Yan, Z., Zhuo, H., Lu, J.: Effect of temperature on viscosity properties of some α-amino acids in aqueous urea solutions. Biophys. Chem. 86, 71–78 (2000) | spa |
dc.relation.references | Sinha, B., Dakua, V., Roy, M. Apparent molar volumes and viscosity Bcoefficients of some amino acids in aqueous tetramethylammonium iodide solutións at 298,15 K, J. Chem, Eng, Data: 1768-1772,2007. | spa |
dc.relation.references | Rajagopal, K., Jayabalakrishnan, S,; Volumetric and viscometric studies of 4aminobutyric acid in aqueous solutións of salbutamol sulphate at 308,15, 313,15 and 318,15 k, Chinese journal of chemical engineering:17(5), 796-804,2009. | spa |
dc.relation.references | C M Trivedi & V A Rana. Static permittivity, refractive index, density and related properties of binary mixtures of pyridine and 1-propanol at different temperatures. indian journal of pure & applied physics 52, 2014, 183-191 | spa |
dc.relation.references | Cheeke JDN. Fundamentals and applications of ultrasonic waves. Second Edi. (Taylor, Group F, eds.). Boca Raton; 2012. | spa |
dc.relation.references | Tardajos G, Diaz Peña M, Aicart E. Speed of sound in pure liquids by a pulseecho-overlap method. J Chem Thermodyn. 1986;18(7):683-689. | spa |
dc.relation.references | Marwein BL, Bhat SN. Thermodynamic study of molecular interactions in ternary liquid systems. Thermochimica. 1987;118:277-285. | spa |
dc.relation.references | Kumar DBK, Reddy KR, Rao GS, Sandhyasri PB, Begum Z, Rambabu C. Measurements of some physical properties of binary liquid mixtures (N-methyl-2pyrrolidone + an aliphatic ester) at several temperatures and data processing of viscosity and ultrasonic speed. J Mol Liq. 2013;183:31-44. | spa |
dc.relation.references | Matos JS, Trenzado JL, González E, Alcalde R. Volumetric properties and viscosities of the methyl and its binary constituents in the temperature range from 283 . 15 to 313 . 15 K. Fluid Phase Equilib. 2001;186:207-234. | spa |
dc.relation.references | Parveen S et al. Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures. Appl Acoust. 2009;70(3):507-513 | spa |
dc.relation.references | Kumar DBK. Acoustic, thermodynamic, spectral and transport studies of molecular interactions in certain binary liquid mixtures of n-methyl-2-pyrrolidone. 2012. | spa |
dc.relation.references | N R Pawar, O P Chimankar, V D Bhandakkar and N N Padole. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies. Materials Science and Engineering 42 (2012), 1-4. doi:10.1088/1757-899X/42/1/012030 | spa |
dc.relation.references | Morey YC, Dahire SL, Agrawal PS. Thermodynamic and acoustic study on molecular interactions in certain binary liquid systems involving ethylbenzene at temperature 313K. Int J Emerg Technol Comput Appl Sci ( IJETCAS ). 2013;4(5):391-397. | spa |
dc.relation.references | Santhi, N., & Madhumitha, J. (2014). Molecular interaction studies in binary liquid mixture through ultrasonic measurements at 303.15k. International Journal of Advanced Chemistry, 2(1), 12-16. | spa |
dc.relation.references | Rani, M., Gahlyan, S., Om, H., Verma, N., Maken, S., Ultrasonic studies of molecular interactions in binary mixtures of formamide with some isomers of butanol at 298.15 K and 308.15 K, Journal of Molecular Liquids: 194, 100-109, 2014. | spa |
dc.relation.references | Kinart, C., Maj-Rudnicka, M., Kinart, W., Cwiklinska, A., Kinart, Z., Studies on intermolecular interactions in sulfolane + alkoxyethanol binary mixtures by speed of sound and 1H NMR measurements at T= 303.15 K, Journal of Molecular Liquids: 186, 28-32, 186. | spa |
dc.relation.references | Kinart, C., Maj-Rudnicka, M., Kinart, W., Cwiklinska, A., Kinart, Z., Studies on intermolecular interactions in sulfolane + alkoxyethanol binary mixtures by 45 speed of sound and 1H NMR measurements at T= 303.15 K, Journal of Molecular Liquids: 186, 28-32, 186. | spa |
dc.relation.references | Singh DP, Upmanyu A. Acoustical investigations of molecular interactions in polymer solution of pan / clay nano composites and dmso. j polym biopolym phys chem. 2014;2(4):73-77. DOI:10.12691/JPBPC-2-4-3. | spa |
dc.relation.references | Umadevi, M., Kesavasamy, R., Rathina, K., Mahalakshmi, R., Studies on liquid–liquid interactions of some ternary mixtures by density, viscosity and ultrasonic speed measurements, Journal of Molecular Liquids: 219, 820-828, 2016. | spa |
dc.relation.references | Lampreia IMS, Santos ÂFS, Moita M-LCJ, Figueiras AO, Reis JCR. Ultrasound speeds and molar isentropic compressions of aqueous 1-propoxypropan-2-ol mixtures from T=(283.15 to 303.15)K. Influence of solute structure. J Chem Thermodyn. 2012;45(1):75-82. | spa |
dc.relation.references | Ameta RK, Singh M, Kale RK. Comparative study of density, sound velocity and refractive index for (water + alkali metal) phosphates aqueous systems at T = (298.15, 303.15, and 308.15) K. J Chem Thermodyn. 2013;60:159-168. | spa |
dc.relation.references | Mirikar SA, Pawar PP, Bichile GK. Scholars research library Studies in thermodynamic properties of glycine in aqueous solutions of mono and divalent electrolytes at different temperatures. Solutions. 2011;3(5):233-241. | spa |
dc.relation.references | Gardas R, L., Dagade D, H., Coutinho J, A, P., Patil K, J. Thermodynamic Studies of Iónic Interactións in Aqueous Solutións of Imidazolium-Based Iónic Liquids [Emim][Br] and [Bmim][Cl]. J, Phys, Chem B.,112, 3380–3389,2008. | spa |
dc.relation.references | João Carlos R. Reis. Isabel M. S. Lampreia. Ângela F. S. Santos. Maria Luísa C. J. Moita. Gérard Douhéret. Refractive Index of Liquid Mixtures: Theory and Experiment. ChemPhysChem 2, 11, 3722 – 3733 DOI: 10.1002/cphc.201000566 | spa |
dc.relation.references | A. F. S. Santos, M. L. C. J. Moita, I. M. S. Lampreia, J. Chem. Thermodyn. 2009, 41, 1387 – 1393. Note: Redlich–Kister ai coefficients in Table 2 of this reference are valid for aqueous mixtures with x(1-PP-2-ol)_0.041 and the bi coefficients are for x(1-PP-2-ol)_0.041. | spa |
dc.relation.references | G. Douh_ret, M. I. Davis, J. C. R. Reis, I. J. Fjellanger, H. Høiland, Phys.Chem. Chem. Phys. 2002, 4, 6034 –6042. | spa |
dc.relation.references | a) G. Douh_ret, M. I. Davis, I. J. Fjellanger, H. Høiland, J. Chem. Soc. Faraday Trans. 1997, 93, 1943 –1949; b) G. Douh_ret, M. I. Davis, H. Høiland, J. Mol. Liq. 1999, 80, 1 –18; c) K. Tamura, S. Tabata, S. Murakami, J.Chem. Thermodyn. 1998, 30, 1319 –1332; d) I. M. S. Lampreia, F. A. Dias,A. F. S. S. MendonÅa, Phys. Chem. Chem. Phys. 2003, 5, 4869 –4874; e) I. M. S. Lampreia, A. F. S. Santos, M. J. A. Barbas, F. J. V. Santos, M. L. S. M. Lopes, J. Chem. Eng. Data 2007, 52, 2388 –2394. | spa |
dc.relation.references | Syal, V.K., Gautam, R., Chauhan, S., “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO+H2O at 25°C”, Ultrasonics, 36, 619623 (1998) | spa |
dc.relation.references | Cuello, Y. Interacciones de la DL-alanina en soluciones acuosas del líquido iónico cloruro de 1-butil-3-metilmidazolio [Bmim+][Cl-] a partir de propiedades volumétricas y viscosimétricas a varias temperaturas. (Tesis de Maestría). Departamento de Química. Universidad de Córdoba (2013). | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.keywords | Refractometric | eng |
dc.subject.keywords | Amino acids | eng |
dc.subject.keywords | Interactions | eng |
dc.subject.keywords | Acoustic | spa |
dc.subject.proposal | Acústica | spa |
dc.subject.proposal | Refractometrica | spa |
dc.subject.proposal | Aminoácidos | spa |
dc.subject.proposal | Interacciones | spa |
dc.title | Propiedades refractométricas y acústicas de las soluciones acuosas de acetato de calcio + glicina a diferentes temperaturas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | Info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- manjarresnuñezjorgeluis.pdf
- Tamaño:
- 3.23 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación. JManjarres(1).pdf
- Tamaño:
- 330.69 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: