Publicación:
Propiedades refractométricas y acústicas de las soluciones acuosas de acetato de calcio + glicina a diferentes temperaturas

dc.contributor.authorManjarres Nuñez, Jorge Luisspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-06-16T18:42:25Zspa
dc.date.available2020-06-16T18:42:25Zspa
dc.date.issued2020-06-16spa
dc.description.abstractEn este trabajo se determinaron y analizaron las propiedades refractométricas y acústicas a diferentes temperaturas (283.15 – 308.15) K, cada 5 K, del aminoácido: glicina en mezcla acuosa de acetato de calcio. Midiendo experimentalmente el índice de refracción y la velocidad del sonido para el sistema pseudobinario, utilizando un refractómetro Abbe y un interferómetro multifrecuencia ultrasónica M-81F. A partir de los datos de índice de refracción se calcularon: la refracción molecular (R_m ), el radio efectivo promedio (r/Å) y la polarizabilidad promedio (α/Å^3 ) de la molécula del soluto solvatado; mientras que a partir de la velocidad ultrasónica se calcularon: la compresibilidad adiabática (K_s), la longitud de onda libre intermolecular (L_f), el volumen molar (V_m ), el volumen libre (V_f ), el número de solvatación (s_N), el tiempo de relajación (τ), la energía libre de Gibbs de activación (〖∆G〗^*), el parámetro de asociación relativa (RA) y la estimación de la presión interna (π_i ). Los resultados obtenidos se discutieron en términos de las interacciones predominantes en solución y el comportamiento del soluto en virtud a los cambios en la estructura del solvente.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.description.tableofcontentsÍNDICE DE TABLAS ................................................................................................................. 9spa
dc.description.tableofcontentsÍNDICE DE FIGURAS .............................................................................................................. 12spa
dc.description.tableofcontentsÍNDICE DE GRÁFICAS ............................................................................................................ 13spa
dc.description.tableofcontentsRESUMEN .................................................................................................................................. 16spa
dc.description.tableofcontentsINTRODUCCION ...................................................................................................................... 17spa
dc.description.tableofcontentsA. Referencias .......................................................................................................................... 21spa
dc.description.tableofcontentsOBJETIVOS ............................................................................................................................... 24spa
dc.description.tableofcontentsOBJETIVO GENERAL ................................................................................................................. 24spa
dc.description.tableofcontentsOBJETIVOS ESPECÍFICOS .......................................................................................................... 24spa
dc.description.tableofcontentsCAPÍTULO 1. MARCO TEÓRICO ........................................................................................... 25spa
dc.description.tableofcontentsSección 1.1. El agua como solvente ............................................................................................ 25spa
dc.description.tableofcontents1.1.1. Generalidades .......................................................................................................... 25spa
dc.description.tableofcontents1.1.2. Estructura del agua líquida ..................................................................................... 26spa
dc.description.tableofcontents1.1.3. Modelos sobre la estructura de agua líquida .......................................................... 26spa
dc.description.tableofcontents1.1.4. Soluciones acuosas ........................................................................................................ 27spa
dc.description.tableofcontents1.1.4.1. Efecto hidrofóbico ...................................................................................................... 27spa
dc.description.tableofcontents1.1.4.1.1. Hidratación hidrofóbica........................................................................................... 27spa
dc.description.tableofcontents1.1.4.1.2. Interacción hidrofóbica ........................................................................................... 28spa
dc.description.tableofcontents1.1.4.2. Efecto hidrofílico ......................................................................................................... 28spa
dc.description.tableofcontents1.1.4.3. Efecto de electrostricción ........................................................................................... 28spa
dc.description.tableofcontentsSección 1.2. Aminoácidos en solución ........................................................................................ 29spa
dc.description.tableofcontents1.2.1. Aminoácidos .................................................................................................................. 29spa
dc.description.tableofcontentsSección 1.3. Refractometría ........................................................................................................ 30spa
dc.description.tableofcontents1.3.1. Índice de refracción .......................................................................................................... 31spa
dc.description.tableofcontents1.3.2.. Ecuación De Lorentz-Lorenz ......................................................................................... 31spa
dc.description.tableofcontents1.3.3.. Ecuación De Bottcher ................................................................................................... 32spa
dc.description.tableofcontents1.3.4. Propiedades derivadas del índice de refracción ............................................................... 32spa
dc.description.tableofcontents1.3.4.1. Refracción Molar, Radio Atómico y Polarizabilidad ................................................... 33spa
dc.description.tableofcontentsSección 1.4. Estudio acústico de un líquido ................................................................................ 34spa
dc.description.tableofcontents1.4.1. Parámetros termo-acústicos ............................................................................................. 35spa
dc.description.tableofcontents1.4.2. Volumen molar ( m V ) ..................................................................................................... 35spa
dc.description.tableofcontents1.4.2. Volumen molar ( m V ) ..................................................................................................... 35spa
dc.description.tableofcontents1.4.4. Compresibilidad adiabática ................................................................................. 36spa
dc.description.tableofcontents1.4.5. Longitud de onda libre intermolecular ............................................................... 37spa
dc.description.tableofcontents1.4.6. Volumen libre ...................................................................................................... 37spa
dc.description.tableofcontents1.4.7. Número de Solvatación ....................................................................................... 39spa
dc.description.tableofcontents1.4.8. Tiempo de relajación .............................................................................................. 39spa
dc.description.tableofcontents1.4.9. Energía libre de Gibbs de activación .................................................................... 39spa
dc.description.tableofcontents1.4.10. Presión Interna (π) ...................................................................................................... 40spa
dc.description.tableofcontentsB. Referencias .......................................................................................................................... 41spa
dc.description.tableofcontentsCAPÍTULO 2. METODOLOGÍA ............................................................................................... 46spa
dc.description.tableofcontentsSección 2.1. Reactivos y preparación de soluciones ................................................................... 46spa
dc.description.tableofcontents2.1.1. Reactivos ....................................................................................................................... 46spa
dc.description.tableofcontents2.1.2. Limpieza del material de vidrio ..................................................................................... 46spa
dc.description.tableofcontents2.1.3. Preparación de soluciones ............................................................................................. 47spa
dc.description.tableofcontents2.1.4. Bidestilación del agua ................................................................................................... 47spa
dc.description.tableofcontents2.1.5. Preparación de la solución sulfocrómica ....................................................................... 48spa
dc.description.tableofcontentsSección 2.2. Determinación del índice de refracción ................................................................. 48spa
dc.description.tableofcontents2.2.1. Descripción del refractómetro ....................................................................................... 48spa
dc.description.tableofcontents2.2.2. Protocolo de medición ................................................................................................... 49spa
dc.description.tableofcontentsSección 2.3. Determinación de la velocidad del sonido .............................................................. 51spa
dc.description.tableofcontentsSección 2.3. Determinación de la velocidad del sonido .............................................................. 51spa
dc.description.tableofcontents2.3.2. Descripción del interferómetro ...................................................................................... 52spa
dc.description.tableofcontents2.3.4. Principio de funcionamiento .......................................................................................... 53spa
dc.description.tableofcontents2.3.5. Ajuste del interferómetro ultrasónico ........................................................................... 53spa
dc.description.tableofcontents2.3.6. Protocolo de medición ................................................................................................... 53spa
dc.description.tableofcontentsC. Referencias .......................................................................................................................... 56spa
dc.description.tableofcontentsCAPÍTULO 3. RESULTADOS Y DISCUSIÓN SISTEMA BINARIO.................................................................57spa
dc.description.tableofcontentsSección 3.1. Resultados y análisis refractométrico ..................................................................... 57spa
dc.description.tableofcontents3.1.1. Propagación de incertidumbre de la concentración molal........................................................ 57spa
dc.description.tableofcontents3.2.1. Índice de refracción ............................................................................................. 58spa
dc.description.tableofcontentsSección 3.2. Resultados y análisis termo-acústico ..................................................................... 60spa
dc.description.tableofcontents3.2.1 Propagación de incertidumbre de la velocidad del sonido.................................................... 60spa
dc.description.tableofcontents3.1.2. Velocidad del sonido ................................................................................................ 60spa
dc.description.tableofcontents3.1.3. Propagación de incertidumbre de los volúmenes molares ................................. 62spa
dc.description.tableofcontents3.1.4. Volúmenes molares ............................................................................................ 63spa
dc.description.tableofcontentsD. Referencias ............................................................................................................................. 65spa
dc.description.tableofcontentsCAPÍTULO 4. RESULTADOS Y DISCUSIÓN SISTEMA PSEUDOBINARIO ......................................................................................................... 66spa
dc.description.tableofcontentsSección 4.1. Resultados y análisis refractométrico ..................................................................... 66spa
dc.description.tableofcontents4.1.1. Propagación de incertidumbre de la concentración molal............................................................... 66spa
dc.description.tableofcontents4.1.2. Índice de refracción ............................................................................................. 67spa
dc.description.tableofcontents4.1.3. Refracción molar, radio atómico y polarizabilidad .............................. 72spa
dc.description.tableofcontentsSección 4.2. Resultados y análisis termo-acústico ...................................................................... 76spa
dc.description.tableofcontents4.2.1. Velocidad del sonido ............................................................................................... 76spa
dc.description.tableofcontents4.2.3. Propagación en la incertidumbre del volumen molar ......................................... 81spa
dc.description.tableofcontents4.2.4. Volúmenes molares ................................................................................................ 81spa
dc.description.tableofcontents4.2.5. Propagación de incertidumbre del coeficiente de expansión térmica..................................... 83spa
dc.description.tableofcontents4.2.6. Coeficiente de expansión térmica ........................................................................... 84spa
dc.description.tableofcontents4.2.7. Propagación de incertidumbre en el coeficiente de compresibilidad isoentrópica .........................................................................................86spa
dc.description.tableofcontents4.2.8. Coeficiente de compresibilidad isoentrópica ......................................................... 87spa
dc.description.tableofcontents4.2.9. Propagación en la incertidumbre de la longitud libre intermolecular........................................ 91spa
dc.description.tableofcontents4.2.10 Longitud libre intermolecular .............................................................................. 92spa
dc.description.tableofcontents4.2.11. Propagación de incertidumbre para el volumen libre ........................................ 97spa
dc.description.tableofcontents4.2.21. Volumen libre ..................................................................................................... 98spa
dc.description.tableofcontents4.2.22. Número de solvatación .................................................................................... 100spa
dc.description.tableofcontents4.2.22. Tiempo de relajación .............................................................................................. 102spa
dc.description.tableofcontents4.2.23. Energía libre de Gibbs de activación ................................................................ 103spa
dc.description.tableofcontents4.2.24. Asociación relativa ........................................................................................... 105spa
dc.description.tableofcontents4.2.25. Presión interna ................................................................................................... 107spa
dc.description.tableofcontentsE. Referencias ........................................................................................................................... 110spa
dc.description.tableofcontentsCONCLUSIÓN ......................................................................................................................... 112spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/2969spa
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programQuímicaspa
dc.relation.referencesNain, A. K. & Lather, M. Study of solute-solute and solute-solvent interactions of homologous series of some α-amino acids in aqueous-d-xylose solutions at different temperatures by using physicochemical methods. J. Chem. Thermodyn. 102, 22-38 (2016).spa
dc.relation.referencesTomé, L. I. N., Jorge, M., Gomes, J. R. B. & Coutinho, J. A. P. Toward an understanding of the aqueous solubility of amino acids in the presence of salts: A molecular dynamics simulation study. J. Phys. Chem. 114, 16450-16459 (2010)spa
dc.relation.referencesCantero, P., Yañez, O., Páez M., López J., Páez, D., &Arratia, R. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment. Chem. Phys. Lett. 687, 73-84 (2017).spa
dc.relation.referencesKumar, H., Singla, M. & Jindal, R. Investigations on solute-solvent interactions of amino acids in aqueous solutions of sodium dihydrogen phosphate at different temperatures. Monatshefte für Chemie-Chem. Mon. 145, 1063-1082 (2014).spa
dc.relation.referencesNain, A. K., Pal, R. & Droliya, P. Study of (solute + solute) and (solute + solvent) interactions of homologous series of some α-amino acids in aqueousstreptomycin sulfate solutions at different temperatures by using physicochemical methods. J. Chem. Thermodyn. 95, 77-98 (2016).spa
dc.relation.referencesJiang, X., Zhu, C. & Ma, Y. Volumetric and viscometric studies of amino acids in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Thermodyn. 71, 50-63 (2014).spa
dc.relation.referencesVasantha, T., Kumar, A., Attri, P., Venkatesu, P. & Rama Devi, R. S. Influence of biocompatible ammonium ionic liquids on the solubility of L-alanine and Lvaline in water. Fluid Phase Equilib. 335, 39-45 (2012).spa
dc.relation.referencesSingh, V., Chhotaray, P. K., Banipal, P. K., Banipal, T. S. & Gardas, R. L. Volumetric properties of amino acids in aqueous solutions of ammonium based protic ionic liquids. Fluid Phase Equilib. 385, 258-274 (2015).spa
dc.relation.referencesKar, K., Alex, B. & Kishore, N. Thermodynamics of the interactions of calcium chloride with α-chymotrypsin. J. Chem. Thermodyn. 34, 319-336 (2002).spa
dc.relation.referencesHendrix, T., Griko, Y. V. & Privalov, P. L. A calorimetric study of the influence of calcium on the stability of bovine α-lactalbumin. Biophys. Chem. 84, 27-34 (2000)spa
dc.relation.referencesThirumaran. Ultrasonic investigation of amino acids in aqueous sodium acetate medium. Indian Journal of Pure & Applied Physics vol. 47, february 2009.spa
dc.relation.referencesKanhekar. Thermodynamic properties of electrolytes in aqueous solution of glycine at different temperatures. Indian Journal of Pure & Applied physics vol. 48, february 2010.spa
dc.relation.referencesRodríguez. Densities and speed of sound in aqueous ammonium sulfate solutions containing glycine or alanina. Tesis de maestria escuela superior de tegnologia.spa
dc.relation.referencesB. Hemalatha. Solute-solvent and solute-solute interactions of tetrabutylammonium bromide in dmf-water systems at different temperatures. International Journal of Advances in Engineering & Technology, May 2013.spa
dc.relation.referencesDeosarkar. Refractive index, molar refraction and polarizability of ciprofloxacin hydrochloride in aqueous-glycine solutions. School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, NANDED – 431606 (M.S.) INDIA.spa
dc.relation.referencesSethi. Molar refraction, thermal expansivity and polarizabilities of aqueous 1-1 electrolyte solutions. Chemical science transactions 2018, 7(1), 151-157.spa
dc.relation.referencesSundaramurthy. Ultrasonic study of l-valine in aqueous magnesium nitrate solutions at 303.15k. International Journal of Scientific Research and Reviews. 2019.spa
dc.relation.referencesBrusseau, M. L., Walker, D. B. & Fitzsimmons, K. Physical-Chemical Characteristics of Water. Environ. Pollut. Sci. 3, 23-45 (2019).spa
dc.relation.referencesCuello, Y. Interacciones de la DL-alanina en soluciones acuosas del líquido iónico cloruro de 1-butil-3-metilmidazolio [Bmim+][Cl-] a partir de propiedades volumétricas y viscosimétricas a varias temperaturas. (Tesis de Maestría). Departamento de Química. Universidad de Córdoba (2013)spa
dc.relation.referencesClavijo, J., Efecto de dos Aminales Macrocíclicos Sobre la Temperatura de Máxima Densidad del Agua. (Tesis Doctoral). Departamento de Química. Universidad Nacional de Colombia. (2011).spa
dc.relation.referencesChadha, C., Singla, M. & Kumar, H. Interionic interactions of glycine, l-alanine, glycylglycine and phenylalanine in aqueous 1-hexyl-3-methylimidazolium chloride ionic liquid solutions at T = (288.15 to 308.15) K: Volumetric, speed of sound and viscometric measurements. J. Mol. Liq. 218, 68-82 (2016).spa
dc.relation.referencesRafiee, H. R. & Frouzesh, F. The study of solute–solvent interactions in the ternary {Amino acid (Glycine or L-serine) + ionic liquid (1-butyl-3methylimidazolium tetrafluoroborate [Bmim][BF4]) + H2O} system at different temperatures and ambient pressure: Volumetric study. J. Mol. Liq. 230, 6-14 (2017).spa
dc.relation.referencesCantero, P., Yañez, O., Páez M., López J., Páez, D., &Arratia, R. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment. Chem. Phys. Lett. 687, 73-84 (2017).spa
dc.relation.referencesPáez, M., Figueredo, S., Pérez, D., Vergara, M. & Lans, E. Volumetric, viscometric and molecular simulation studies of glycine in aqueous sodium sulphate solutions at different temperatures. J. Mol. Liq. 266, 718-726 (2018).spa
dc.relation.referencesP.H. Von Hippel, Ion effects on the solution structure of biological macromolecules, Accounts Chem. Res. 2 (1969) 257–265.spa
dc.relation.referencesK.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300–311.spa
dc.relation.referencesW. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14 (1979) 1spa
dc.relation.referencesO. Enea, C. Jolicoeur, Heat capacities and volumes of several oligopeptides in urea–water mixtures at 25.degree.C. Some implications for protein unfolding, J. Phys. Chem. 86 (1982) 3870–3881.spa
dc.relation.referencesPáez, M., Pérez, D. & Lafont, J. Estudio Volumétrico, Viscosimétrico y Termodinámico de DL-Alanina en Soluciones Acuosas de Sulfato de sodio a diferentes Temperaturas. Inf. Tecnológica. 30, 125-134 (2019).spa
dc.relation.referencesBanipal, T.S., Singh, K. & Banipal, P.K. Volumetric Investigations on Interactions of Acidic/Basic Amino Acids with Sodium Acetate, Sodium Propionate and Sodium Butyrate in Aqueous Solutions. J Solution Chem 36, 1635–1667 (2007) doi:10.1007/s10953-007-9212-8.spa
dc.relation.referencesBadarayani, R., Kumar, A.: Effect of tetra-n-alkylammonium bromides on the volumetric properties of glycine, L-alanine and glycylglycine at T=298.15 K. J. Chem. Thermodyn. 36, 49–58 (2004). doi. 10.1016/j.jct.2003.09.008spa
dc.relation.referencesSingh, S.K., Kundu, A., Kishore, N.: Interaction of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyl trimethylammonium bromide at T=298.15 K: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004)spa
dc.relation.referencesWang, J., Yan, Z., Zhuo, H., Lu, J.: Effect of temperature on viscosity properties of some α-amino acids in aqueous urea solutions. Biophys. Chem. 86, 71–78 (2000)spa
dc.relation.referencesSinha, B., Dakua, V., Roy, M. Apparent molar volumes and viscosity Bcoefficients of some amino acids in aqueous tetramethylammonium iodide solutións at 298,15 K, J. Chem, Eng, Data: 1768-1772,2007.spa
dc.relation.referencesRajagopal, K., Jayabalakrishnan, S,; Volumetric and viscometric studies of 4aminobutyric acid in aqueous solutións of salbutamol sulphate at 308,15, 313,15 and 318,15 k, Chinese journal of chemical engineering:17(5), 796-804,2009.spa
dc.relation.referencesC M Trivedi & V A Rana. Static permittivity, refractive index, density and related properties of binary mixtures of pyridine and 1-propanol at different temperatures. indian journal of pure & applied physics 52, 2014, 183-191spa
dc.relation.referencesCheeke JDN. Fundamentals and applications of ultrasonic waves. Second Edi. (Taylor, Group F, eds.). Boca Raton; 2012.spa
dc.relation.referencesTardajos G, Diaz Peña M, Aicart E. Speed of sound in pure liquids by a pulseecho-overlap method. J Chem Thermodyn. 1986;18(7):683-689.spa
dc.relation.referencesMarwein BL, Bhat SN. Thermodynamic study of molecular interactions in ternary liquid systems. Thermochimica. 1987;118:277-285.spa
dc.relation.referencesKumar DBK, Reddy KR, Rao GS, Sandhyasri PB, Begum Z, Rambabu C. Measurements of some physical properties of binary liquid mixtures (N-methyl-2pyrrolidone + an aliphatic ester) at several temperatures and data processing of viscosity and ultrasonic speed. J Mol Liq. 2013;183:31-44.spa
dc.relation.referencesMatos JS, Trenzado JL, González E, Alcalde R. Volumetric properties and viscosities of the methyl and its binary constituents in the temperature range from 283 . 15 to 313 . 15 K. Fluid Phase Equilib. 2001;186:207-234.spa
dc.relation.referencesParveen S et al. Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures. Appl Acoust. 2009;70(3):507-513spa
dc.relation.referencesKumar DBK. Acoustic, thermodynamic, spectral and transport studies of molecular interactions in certain binary liquid mixtures of n-methyl-2-pyrrolidone. 2012.spa
dc.relation.referencesN R Pawar, O P Chimankar, V D Bhandakkar and N N Padole. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies. Materials Science and Engineering 42 (2012), 1-4. doi:10.1088/1757-899X/42/1/012030spa
dc.relation.referencesMorey YC, Dahire SL, Agrawal PS. Thermodynamic and acoustic study on molecular interactions in certain binary liquid systems involving ethylbenzene at temperature 313K. Int J Emerg Technol Comput Appl Sci ( IJETCAS ). 2013;4(5):391-397.spa
dc.relation.referencesSanthi, N., & Madhumitha, J. (2014). Molecular interaction studies in binary liquid mixture through ultrasonic measurements at 303.15k. International Journal of Advanced Chemistry, 2(1), 12-16.spa
dc.relation.referencesRani, M., Gahlyan, S., Om, H., Verma, N., Maken, S., Ultrasonic studies of molecular interactions in binary mixtures of formamide with some isomers of butanol at 298.15 K and 308.15 K, Journal of Molecular Liquids: 194, 100-109, 2014.spa
dc.relation.referencesKinart, C., Maj-Rudnicka, M., Kinart, W., Cwiklinska, A., Kinart, Z., Studies on intermolecular interactions in sulfolane + alkoxyethanol binary mixtures by speed of sound and 1H NMR measurements at T= 303.15 K, Journal of Molecular Liquids: 186, 28-32, 186.spa
dc.relation.referencesKinart, C., Maj-Rudnicka, M., Kinart, W., Cwiklinska, A., Kinart, Z., Studies on intermolecular interactions in sulfolane + alkoxyethanol binary mixtures by 45 speed of sound and 1H NMR measurements at T= 303.15 K, Journal of Molecular Liquids: 186, 28-32, 186.spa
dc.relation.referencesSingh DP, Upmanyu A. Acoustical investigations of molecular interactions in polymer solution of pan / clay nano composites and dmso. j polym biopolym phys chem. 2014;2(4):73-77. DOI:10.12691/JPBPC-2-4-3.spa
dc.relation.referencesUmadevi, M., Kesavasamy, R., Rathina, K., Mahalakshmi, R., Studies on liquid–liquid interactions of some ternary mixtures by density, viscosity and ultrasonic speed measurements, Journal of Molecular Liquids: 219, 820-828, 2016.spa
dc.relation.referencesLampreia IMS, Santos ÂFS, Moita M-LCJ, Figueiras AO, Reis JCR. Ultrasound speeds and molar isentropic compressions of aqueous 1-propoxypropan-2-ol mixtures from T=(283.15 to 303.15)K. Influence of solute structure. J Chem Thermodyn. 2012;45(1):75-82.spa
dc.relation.referencesAmeta RK, Singh M, Kale RK. Comparative study of density, sound velocity and refractive index for (water + alkali metal) phosphates aqueous systems at T = (298.15, 303.15, and 308.15) K. J Chem Thermodyn. 2013;60:159-168.spa
dc.relation.referencesMirikar SA, Pawar PP, Bichile GK. Scholars research library Studies in thermodynamic properties of glycine in aqueous solutions of mono and divalent electrolytes at different temperatures. Solutions. 2011;3(5):233-241.spa
dc.relation.referencesGardas R, L., Dagade D, H., Coutinho J, A, P., Patil K, J. Thermodynamic Studies of Iónic Interactións in Aqueous Solutións of Imidazolium-Based Iónic Liquids [Emim][Br] and [Bmim][Cl]. J, Phys, Chem B.,112, 3380–3389,2008.spa
dc.relation.referencesJoão Carlos R. Reis. Isabel M. S. Lampreia. Ângela F. S. Santos. Maria Luísa C. J. Moita. Gérard Douhéret. Refractive Index of Liquid Mixtures: Theory and Experiment. ChemPhysChem 2, 11, 3722 – 3733 DOI: 10.1002/cphc.201000566spa
dc.relation.referencesA. F. S. Santos, M. L. C. J. Moita, I. M. S. Lampreia, J. Chem. Thermodyn. 2009, 41, 1387 – 1393. Note: Redlich–Kister ai coefficients in Table 2 of this reference are valid for aqueous mixtures with x(1-PP-2-ol)_0.041 and the bi coefficients are for x(1-PP-2-ol)_0.041.spa
dc.relation.referencesG. Douh_ret, M. I. Davis, J. C. R. Reis, I. J. Fjellanger, H. Høiland, Phys.Chem. Chem. Phys. 2002, 4, 6034 –6042.spa
dc.relation.referencesa) G. Douh_ret, M. I. Davis, I. J. Fjellanger, H. Høiland, J. Chem. Soc. Faraday Trans. 1997, 93, 1943 –1949; b) G. Douh_ret, M. I. Davis, H. Høiland, J. Mol. Liq. 1999, 80, 1 –18; c) K. Tamura, S. Tabata, S. Murakami, J.Chem. Thermodyn. 1998, 30, 1319 –1332; d) I. M. S. Lampreia, F. A. Dias,A. F. S. S. MendonÅa, Phys. Chem. Chem. Phys. 2003, 5, 4869 –4874; e) I. M. S. Lampreia, A. F. S. Santos, M. J. A. Barbas, F. J. V. Santos, M. L. S. M. Lopes, J. Chem. Eng. Data 2007, 52, 2388 –2394.spa
dc.relation.referencesSyal, V.K., Gautam, R., Chauhan, S., “Ultrasonic velocity measurements of carbohydrates in binary mixtures of DMSO+H2O at 25°C”, Ultrasonics, 36, 619623 (1998)spa
dc.relation.referencesCuello, Y. Interacciones de la DL-alanina en soluciones acuosas del líquido iónico cloruro de 1-butil-3-metilmidazolio [Bmim+][Cl-] a partir de propiedades volumétricas y viscosimétricas a varias temperaturas. (Tesis de Maestría). Departamento de Química. Universidad de Córdoba (2013).spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsRefractometriceng
dc.subject.keywordsAmino acidseng
dc.subject.keywordsInteractionseng
dc.subject.keywordsAcousticspa
dc.subject.proposalAcústicaspa
dc.subject.proposalRefractometricaspa
dc.subject.proposalAminoácidosspa
dc.subject.proposalInteraccionesspa
dc.titlePropiedades refractométricas y acústicas de las soluciones acuosas de acetato de calcio + glicina a diferentes temperaturasspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versionInfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
manjarresnuñezjorgeluis.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación. JManjarres(1).pdf
Tamaño:
330.69 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: